WO2022037154A1 - 光信号的功率检测电路、系统、方法以及芯片 - Google Patents

光信号的功率检测电路、系统、方法以及芯片 Download PDF

Info

Publication number
WO2022037154A1
WO2022037154A1 PCT/CN2021/095345 CN2021095345W WO2022037154A1 WO 2022037154 A1 WO2022037154 A1 WO 2022037154A1 CN 2021095345 W CN2021095345 W CN 2021095345W WO 2022037154 A1 WO2022037154 A1 WO 2022037154A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
optical signal
frequency
modulation
Prior art date
Application number
PCT/CN2021/095345
Other languages
English (en)
French (fr)
Inventor
潘超
邓宁
赵壮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022037154A1 publication Critical patent/WO2022037154A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of optical communication, and in particular, to a power detection circuit, system, method and chip of an optical signal.
  • a power detection system for an optical signal generally includes a tunable laser, a coherent receiver, a low-pass filter, and an operator.
  • the coherent receiver is used for coherently mixing the optical signal to be detected and the optical signal emitted by the tunable laser, and outputting the mixed mixed optical signal to the low-pass filter.
  • the low-pass filter filters the mixed optical signal, and outputs the filtered mixed optical signal to the operator.
  • the low-pass filter can output the frequency component of the optical signal to be detected that is consistent with the center frequency of the optical signal output by the tunable laser to the operator.
  • the calculator can further calculate and obtain the power of the frequency component in the optical signal to be detected that is consistent with the center frequency of the optical signal output by the tunable laser.
  • the above method needs to adjust the wavelength of the optical signal emitted by the tunable laser multiple times to realize the power detection of each frequency point in the optical signal to be detected. This power detection method is less efficient.
  • the present application provides an optical signal power detection circuit, system, method and chip, which can solve the technical problem of low efficiency of the power detection method in the related art.
  • a power detection circuit for an optical signal is provided.
  • the power detection circuit is used to receive a mixed optical signal, where the mixed optical signal is obtained by coherently mixing a measured optical signal and a local oscillator optical signal.
  • the optical signal includes N optical carriers, the center frequencies of at least two optical carriers in the N optical carriers are different, and N is an integer greater than 1; the power detection circuit is also used for filtering the mixed optical signal, and according to the filtering After mixing the optical signal, determine the power of the measured optical signal at the center frequency of each optical carrier.
  • the center frequency of each optical carrier may be located within the spectral range of the measured optical signal.
  • the coherently mixed local oscillator optical signal in the mixed optical signal includes at least two optical carriers with different center frequencies
  • the power at at least two different frequency points in the measured optical signal can be realized based on the mixed optical signal parallel detection, thereby effectively improving the efficiency of power detection.
  • the power detection circuit can also be used to: adjust the center frequency of each optical carrier in the local oscillator optical signal emitted by the comb-shaped light source, so that the center frequency of each optical carrier varies within a corresponding spectrum range. , and the spectral ranges corresponding to the center frequencies of different optical carriers are different.
  • each optical carrier can vary within a corresponding spectrum range, it is possible to effectively increase the number of frequency points detected during power detection of the optical signal under test without increasing the number N of optical carriers. number. Furthermore, accurate detection of the spectral shape of the light signal to be measured can be realized, and the accuracy of power detection is improved.
  • the measured optical signal may be a wavelength-division multiplexed signal, and the wavelength-division multiplexed signal includes N service optical signals, and each service optical signal has the same spectral width and different wavelengths;
  • the optical signal is the signal obtained by the top modulation, and the modulation frequency of the optical signal of different services is different;
  • the power detection circuit can be used to adjust the center frequency of each optical carrier according to the target frequency interval, so that the center frequency of each optical carrier is within the It varies within the spectrum range of a service optical signal; wherein, the target frequency interval is smaller than the spectrum width of the service optical signal.
  • the power detection circuit can adjust the center frequency of each optical carrier according to a fixed target frequency interval, thereby effectively simplifying the operation of frequency adjustment.
  • the measured optical signal may be a wavelength division multiplexed signal
  • the wavelength division multiplexed signal includes a plurality of service optical signals
  • the wavelengths of the multiple service optical signals are different from each other
  • the wavelengths of the multiple service optical signals are different from each other.
  • each service optical signal includes at least one slice signal
  • each slice signal is a signal obtained by top modulation, the modulation frequencies of different slice signals are different, and the spectral widths of different slice signals are the same
  • N is the total number of slice signals included in the wavelength division multiplexed signal
  • the power detection circuit can be used to adjust the center frequency of each optical carrier according to the target frequency interval, so that the center frequency of each optical carrier is within a slice signal
  • the target frequency interval is smaller than the spectral width of the sliced signal.
  • the service optical signal may be sliced to obtain multiple sliced signals with the same spectrum width. Since the spectral width of each slice signal is the same, the center frequencies of the N optical carriers can be uniformly adjusted according to the same target frequency interval, thereby effectively simplifying the operation of frequency adjustment.
  • each optical carrier is a signal obtained through top modulation, and the modulation frequencies of different optical carriers are different; the power detection circuit can be used to adjust the center frequency of each optical carrier according to the target frequency interval, and the target frequency The spacing is smaller than the frequency difference between the center frequencies of two adjacent optical carriers.
  • the solution provided by the present application can further adjust the top of the optical carrier, thereby reducing the requirements for the measured optical signal to be detected. For example, even if each service optical signal included in the WDM signal is not top-modulated, or the spectrum width of each service optical signal is different, the power of each service optical signal can be effectively detected based on the top-modulated optical carrier.
  • the mixed optical signal includes four components, and the four components are the quadrature component of the first polarization component, the in-phase component of the first polarization component, the quadrature component of the second polarization component, and the second polarization component.
  • an in-phase component the power detection circuit may include: a low-pass filter, an operator, a comb filter, and a power detection sub-circuit; wherein, the low-pass filter is used to perform low-pass filtering on the four components respectively; the an operator, used to determine the power of the four components after low-pass filtering; the comb filter, used to comb filter the power of the four components, wherein the number of passbands of the comb filter greater than or equal to N, the center frequency of each passband is equal to a modulation frequency; the power detection sub-circuit is used to determine the power of the comb-filtered power of the four components at each modulation frequency, and obtain each modulation frequency The top tuning power corresponding to the frequency, and according to the top tuning power corresponding to each
  • the power of the measured optical signal at the center frequency of the optical carrier is positively correlated with the top-adjustment power, and is negatively correlated with the intensity of the optical carrier and the top-adjustment depth.
  • the optical carrier corresponding to the modulation frequency refers to an optical carrier whose center frequency varies within the spectrum range of the service optical signal top-tuned with the modulation frequency. carrier.
  • the optical carrier corresponding to the modulation frequency refers to an optical carrier whose center frequency varies within the spectrum range of the chip signal top-tuned with the modulation frequency.
  • the optical carrier corresponding to the modulation frequency refers to the optical carrier whose top-tuning is performed with this modulation frequency.
  • the i-th modulation frequency in the N modulation frequencies corresponds to the i-th optical carrier in the N optical carriers, and i is a positive integer not greater than N; then the measured optical signal is in the i-th optical carrier.
  • the power at the center frequency f Ci of the carrier satisfies:
  • P Pi is the top tuning power corresponding to the ith modulation frequency
  • a Ci is the intensity of the ith optical carrier
  • a i is the top tuning depth corresponding to the ith modulation frequency.
  • an optical signal power detection device includes: a coherent receiver, and a power detection circuit; the coherent receiver is used for coherently mixing the measured optical signal and the local oscillator optical signal , obtain a mixed optical signal, and send the mixed optical signal to the power detection circuit, wherein the local oscillator optical signal includes N optical carriers, and the center frequencies of at least two optical carriers in the N optical carriers are different, and N is an integer greater than 1; the power detection circuit is used to receive the mixed optical signal, filter the mixed optical signal, and determine the measured optical signal at the center frequency of each optical carrier according to the filtered mixed optical signal of power.
  • the coherent receiver and the power detection circuit can be integrated.
  • the power detection circuit may be an integrated circuit, which may be provided in the coherent receiver.
  • the power detection circuit can also be used to: adjust the center frequency of each optical carrier in the local oscillator optical signal emitted by the comb-shaped light source, so that the center frequency of each optical carrier varies within a corresponding spectrum range. , and the spectral ranges corresponding to the center frequencies of different optical carriers are different.
  • the measured optical signal may be a wavelength-division multiplexed signal, and the wavelength-division multiplexed signal includes N service optical signals, and each service optical signal has the same spectral width and different wavelengths;
  • the optical signal is the signal obtained by the top modulation, and the modulation frequency of the optical signal of different services is different;
  • the power detection circuit can be used to adjust the center frequency of each optical carrier according to the target frequency interval, so that the center frequency of each optical carrier is within the It varies within the spectrum range of a service optical signal; wherein, the target frequency interval is smaller than the spectrum width of the service optical signal.
  • the measured optical signal may be a wavelength division multiplexed signal
  • the wavelength division multiplexed signal includes a plurality of service optical signals
  • the wavelengths of the multiple service optical signals are different from each other
  • the wavelengths of the multiple service optical signals are different from each other.
  • each service optical signal includes at least one slice signal
  • each slice signal is a signal obtained by top modulation, the modulation frequencies of different slice signals are different, and the spectral widths of different slice signals are the same
  • N is the total number of slice signals included in the wavelength division multiplexed signal
  • the power detection circuit can be used to adjust the center frequency of each optical carrier according to the target frequency interval, so that the center frequency of each optical carrier is within a slice signal
  • the target frequency interval is smaller than the spectral width of the sliced signal.
  • each optical carrier is a signal obtained through top modulation, and the modulation frequencies of different optical carriers are different; the power detection circuit can be used to adjust the center frequency of each optical carrier according to the target frequency interval, and the target frequency The spacing is smaller than the frequency difference between the center frequencies of two adjacent optical carriers.
  • the mixed optical signal includes four components, and the four components are the quadrature component of the first polarization component, the in-phase component of the first polarization component, the quadrature component of the second polarization component, and the second polarization component.
  • an in-phase component the power detection circuit may include: a low-pass filter, an operator, a comb filter, and a power detection sub-circuit; wherein, the low-pass filter is used to perform low-pass filtering on the four components respectively; the an operator, used to determine the power of the four components after low-pass filtering; the comb filter, used to comb filter the power of the four components, wherein the number of passbands of the comb filter greater than or equal to N, the center frequency of each passband is equal to a modulation frequency; the power detection sub-circuit is used to determine the power of the comb-filtered power of the four components at each modulation frequency, and obtain each modulation frequency The top tuning power corresponding to the frequency, and according to the top tuning power corresponding to each
  • the i-th modulation frequency in the N modulation frequencies corresponds to the i-th optical carrier in the N optical carriers, and i is a positive integer not greater than N; then the measured optical signal is in the i-th optical carrier.
  • the power at the center frequency f Ci of the carrier satisfies:
  • P Pi is the top tuning power corresponding to the ith modulation frequency
  • a Ci is the intensity of the ith optical carrier
  • a i is the top tuning depth corresponding to the ith modulation frequency.
  • a power detection system for an optical signal includes: a comb-shaped light source, a coherent receiver, and a power detection circuit; the comb-shaped light source is used for emitting a local oscillator optical signal, the local oscillator light
  • the signal includes N optical carriers, the center frequencies of at least two optical carriers in the N optical carriers are different, and N is an integer greater than 1;
  • the coherent receiver is used to perform coherence between the measured optical signal and the local oscillator optical signal mixing to obtain a mixed optical signal, and sending the mixed optical signal to the power detection circuit;
  • the power detection circuit is used for filtering the mixed optical signal, and according to the filtered mixed optical signal, it is determined that the measured optical signal is in The power at the center frequency of each optical carrier.
  • the center frequency of each optical carrier may be located within the spectral range of the measured optical signal.
  • the power detection circuit can also be used to: adjust the center frequency of each optical carrier in the local oscillator optical signal emitted by the comb-shaped light source, so that the center frequency of each optical carrier varies within a corresponding spectrum range. , and the spectral ranges corresponding to the center frequencies of different optical carriers are different.
  • the measured optical signal may be a wavelength-division multiplexed signal, and the wavelength-division multiplexed signal includes N service optical signals, and each service optical signal has the same spectral width and different wavelengths;
  • the optical signal is the signal obtained by the top modulation, and the modulation frequency of the optical signal of different services is different;
  • the power detection circuit can be used to adjust the center frequency of each optical carrier according to the target frequency interval, so that the center frequency of each optical carrier is within the It varies within the spectrum range of a service optical signal; wherein, the target frequency interval is smaller than the spectrum width of the service optical signal.
  • the measured optical signal may be a wavelength division multiplexed signal
  • the wavelength division multiplexed signal includes a plurality of service optical signals
  • the wavelengths of the multiple service optical signals are different from each other
  • the wavelengths of the multiple service optical signals are different from each other.
  • each service optical signal includes at least one slice signal
  • each slice signal is a signal obtained by top modulation, the modulation frequencies of different slice signals are different, and the spectral widths of different slice signals are the same
  • N is the total number of slice signals included in the wavelength division multiplexed signal
  • the power detection circuit can be used to adjust the center frequency of each optical carrier according to the target frequency interval, so that the center frequency of each optical carrier is within a slice signal
  • the target frequency interval is smaller than the spectral width of the sliced signal.
  • each optical carrier is a signal obtained through top modulation, and the modulation frequencies of different optical carriers are different; the power detection circuit can be used to adjust the center frequency of each optical carrier according to the target frequency interval, and the target frequency The spacing is smaller than the frequency difference between the center frequencies of two adjacent optical carriers.
  • the mixed optical signal includes four components, and the four components are the quadrature component of the first polarization component, the in-phase component of the first polarization component, the quadrature component of the second polarization component, and the second polarization component.
  • an in-phase component the power detection circuit may include: a low-pass filter, an operator, a comb filter, and a power detection sub-circuit; wherein, the low-pass filter is used to perform low-pass filtering on the four components respectively; the an operator, used to determine the power of the four components after low-pass filtering; the comb filter, used to comb filter the power of the four components, wherein the number of passbands of the comb filter greater than or equal to N, the center frequency of each passband is equal to a modulation frequency; the power detection sub-circuit is used to determine the power of the comb-filtered power of the four components at each modulation frequency, and obtain each modulation frequency The top tuning power corresponding to the frequency, and according to the top tuning power corresponding to each
  • the i-th modulation frequency in the N modulation frequencies corresponds to the i-th optical carrier in the N optical carriers, and i is a positive integer not greater than N; then the measured optical signal is in the i-th optical carrier.
  • the power at the center frequency f Ci of the carrier satisfies:
  • P Pi is the top tuning power corresponding to the ith modulation frequency
  • a Ci is the intensity of the ith optical carrier
  • a i is the top tuning depth corresponding to the ith modulation frequency.
  • the comb-shaped light source may include a frequency comb light source; or, the comb-shaped light source includes a wave combiner and a plurality of frequency comb light sources with different wavelength bands, and the wave combiner is used for the plurality of frequency comb light sources.
  • the transmitted optical carrier is combined to obtain a local oscillator optical signal.
  • the comb-shaped light source may include only one frequency comb light source, so as to reduce the cost and volume of the comb-shaped light source.
  • the comb-shaped light source may include a plurality of frequency comb light sources to cover the wavelength band occupied by the measured light signal, thereby realizing the power of the measured light signal. effective detection.
  • an optical communication system comprising: the optical signal power detection system provided in the above aspect, a first optical transceiver device, a second optical transceiver device, and a system connected to the first optical transceiver device and the optical transceiver. at least one optical amplifier between the second optical transceivers;
  • the coherent receiver in the power detection system is connected to a target device, the target device includes at least one of the at least one optical amplifier, the first optical transceiver and the second optical transceiver, and the coherent receiver is used to receive the The measured light signal emitted by the target device.
  • the optical communication system may include multiple optical signal power detection systems.
  • a method for detecting power of an optical signal is provided, and the method can be applied to the power detection circuit provided in the above aspect, and the method includes: receiving a mixture obtained by coherently mixing a measured optical signal and a local oscillator optical signal optical signal, then filter the mixed optical signal, and then determine the power of the measured optical signal at the center frequency of each optical carrier according to the filtered mixed optical signal; wherein, the local oscillator optical signal includes N optical signals carrier, the center frequencies of at least two of the N optical carriers are different, and N is an integer greater than 1.
  • the method may also include: adjusting the center frequency of each optical carrier in the local oscillator optical signal, so that the center frequency of each optical carrier varies within a spectrum range, and the center frequencies of different optical carriers are in different changes in the frequency spectrum.
  • the measured optical signal is a wavelength division multiplexed signal
  • the wavelength division multiplexed signal includes N service optical signals
  • the N service optical signals have the same spectral width
  • each service optical signal is obtained after top adjustment.
  • the modulation frequencies of optical signals of different services are different;
  • the process of adjusting the center frequency of each optical carrier in the local oscillator optical signal may include: adjusting each optical carrier in the local oscillator optical signal according to the target frequency interval The center frequency of the carrier, so that the center frequency of each optical carrier varies within the spectrum range of a service optical signal; wherein, the target frequency interval is smaller than the spectrum width of the service optical signal.
  • the measured optical signal is a wavelength division multiplexed signal
  • the wavelength division multiplexed signal includes at least two service optical signals of a plurality of service optical signals with different spectral widths
  • each service optical signal includes at least one slice.
  • each slice signal is a signal obtained by top modulation
  • the modulation frequency of different slice signals is different
  • the spectral width of different slice signals is the same
  • N is the total number of slice signals included in the wavelength division multiplexed signal; accordingly, adjust
  • the process of the center frequency of each optical carrier in the local oscillator optical signal may include: adjusting the center frequency of each optical carrier according to the target frequency interval, so that the center frequency of each optical carrier varies within the spectrum range of a slice signal; Wherein, the target frequency interval is smaller than the spectral width of the slice signal.
  • the mixed optical signal includes four components, and the four components are the quadrature component of the first polarization component, the in-phase component of the first polarization component, the quadrature component of the second polarization component, and the second polarization component.
  • in-phase component; filtering the mixed optical signal may include: low-pass filtering the four components respectively; determining the power of each service optical signal at the center frequency of an optical carrier according to the filtered mixed optical signal
  • the process may include: determining the power of the low pass filtered four components; comb filtering the power of the four components through a comb filter, wherein the comb filter has a plurality of passbands, each passband The center frequency of is equal to a modulation frequency; determine the power of the four components after comb filtering at each modulation frequency, and obtain the top tuning power corresponding to each modulation frequency; according to the top tuning power corresponding to each modulation frequency , the intensity of the optical carrier corresponding to the modulation frequency, and the top adjustment depth corresponding to the modulation frequency to
  • the ith modulation frequency corresponds to the ith optical carrier, and i is a positive integer not greater than N; the power of the measured optical signal at the center frequency f Ci of the ith optical carrier satisfies:
  • P Pi is the top tuning power corresponding to the ith modulation frequency
  • a Ci is the intensity of the ith optical carrier
  • a i is the top tuning depth corresponding to the ith modulation frequency.
  • a chip in yet another aspect, includes a programmable logic circuit and/or program instructions, and when the chip runs, it is used to implement the power detection method for an optical signal provided by the above aspects.
  • a power detection circuit may include: a memory, a processor, and a computer program stored in the memory and executable on the processor, and the processor implements the computer program when the processor executes the computer program.
  • the power detection method of an optical signal provided by the above aspects.
  • a computer-readable storage medium stores instructions that, when executed on a computer, cause the computer to execute the optical signal power detection method provided by the above aspects.
  • a computer program product containing instructions, which, when executed on a computer, causes the computer to perform the method for detecting power of an optical signal provided by the above aspects.
  • the present application provides an optical signal power detection circuit, system, method and chip.
  • the mixed optical signal received by the power detection circuit is obtained by coherently mixing the measured optical signal and the local oscillator optical signal.
  • the local oscillator optical signal includes N optical carriers, and the center frequencies of at least two optical carriers in the N optical carriers are different. Based on the mixed optical signal, parallel detection of the power of the measured optical signal at at least two different frequency points can be realized, thereby effectively improving the efficiency of power detection.
  • the power detection circuit can also adjust the center frequency of the optical carrier in a spectral range corresponding to each optical carrier, so as to realize the detection of the power of the measured optical signal at multiple frequency points in each spectral range. Therefore, the power detection accuracy of the measured optical signal can be effectively improved, and the spectral shape detection of the measured optical signal can be realized.
  • FIG. 1 is a schematic structural diagram of an optical communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an optical signal power detection system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a spectrum of a measured optical signal and a local oscillator optical signal provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a segmented signal provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of performing slice top adjustment on a service optical signal according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of adjusting the center frequency of an optical carrier provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another optical signal power detection system provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of still another optical signal power detection system provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of still another optical signal power detection system provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of still another optical signal power detection system provided by an embodiment of the present application.
  • FIG. 11 is a flowchart of a method for detecting power of an optical signal provided by an embodiment of the present application.
  • FIG. 12 is a flowchart of a method for determining the power of a measured optical signal at the center frequency of an optical carrier provided by an embodiment of the present application;
  • FIG. 13 is a schematic structural diagram of a power detection circuit provided by an embodiment of the present application.
  • WDM wavelength division multiplexing
  • dense WDM dense WDM
  • WDM dense WDM
  • WDM dense WDM
  • WG arrayed waveguide grating
  • OXCs optical cross-connects
  • Embodiments of the present application provide an optical signal power detection system and method, an optical communication system, and a chip, which can implement power detection of service optical signals of each channel in an optical communication system (eg, a WDM system or a DWDM system).
  • an optical communication system eg, a WDM system or a DWDM system.
  • FIG. 1 is a schematic structural diagram of an optical communication system provided by an embodiment of the present application.
  • the optical communication system may include: an optical signal power detection system 000 , a first optical transceiver device 100 , a second optical transceiver device 200 , and a connection between the first optical transceiver device 100 and the second optical transceiver device 100 At least one optical amplifier (OA) between the transceiver devices 200.
  • OA optical amplifier
  • the optical fiber 300 may be used to connect each optical transceiver and the OA, as well as each of the OAs.
  • the first optical transceiver device 100 may be used to transmit a measured optical signal, and the at least one OA is used to amplify the measured optical signal and transmit the measured optical signal to the second optical transceiver device 200 .
  • the measured optical signal may be a wavelength-division multiplexed signal, and the wavelength-division multiplexed signal includes a plurality of service optical signals with mutually different wavelengths.
  • the measured optical signal may also be a signal of a single wavelength.
  • the optical signal power detection system 000 may be connected to a target device, and the target device may include at least one of the at least one OA, the first optical transceiver device 10 and the second optical transceiver device 200 . That is, the target device connected to the optical signal power detection system 000 may include only one device, or may include multiple devices.
  • the power detection system 000 can receive the measured light signal emitted by the target device, and detect the power of the measured light signal.
  • the optical signal power detection system 000 may also be referred to as an optical power monitor (OPM) system.
  • OPM optical power monitor
  • the optical communication system provided in this embodiment of the present application may include one or more power detection systems 000 for optical signals.
  • the optical communication system shown in FIG. 1 includes three optical signal power detection systems 000, wherein each optical signal power detection system 000 is connected to one OA.
  • each optical transceiver device in the first optical transceiver device 100 and the second optical transceiver device 200 may include: a plurality of optical signal transceiver units (optical transponder units, OTUs), up and down A wavelength selective switch (add drop wavelength selective switch, AD WSS), and at least one wavelength selective switch (wavelength selective switch, WSS).
  • OTUs optical transponder units
  • AD WSS add drop wavelength selective switch
  • WSS wavelength selective switch
  • two WSSs are shown in FIG. 1 .
  • each OUT is used to transmit and receive a service optical signal of one wavelength, and the wavelengths of the service optical signals transmitted (or received) by each OUT are different.
  • the AD WSS is used for realizing the adding and dropping of each service optical signal, that is, the AD WSS can be used for multiplexing each uplink service optical signal, and for demultiplexing the downlink wavelength division multiplexed signal.
  • the WSS is used to implement the routing of wavelength division multiplexed signals.
  • An embodiment of the present application provides an optical signal power detection system, and the optical signal power detection system 000 can be applied to the optical communication system as shown in FIG. 1 .
  • the power detection system may include: a power detection device 00 of an optical signal and a comb-shaped light source 10 .
  • the comb-shaped light source 10 is used for emitting the local oscillator light signal LO.
  • the local oscillator optical signal LO includes N optical carriers, at least two of the N optical carriers have different center frequencies, and N is an integer greater than 1.
  • the center frequencies of the N optical carriers included in the local oscillator optical signal LO are different from each other.
  • the power detection device 00 of the optical signal may include a power detection circuit 01 and a coherent receiver 02 .
  • the coherent receiver 02 is used for coherently mixing the measured optical signal SI and the local oscillator optical signal LO to obtain a mixed optical signal, and transmitting the mixed optical signal to the power detection circuit 01 .
  • the measured optical signal SI may be a wavelength-division multiplexed signal, and the wavelength-division multiplexed signal includes a plurality of service optical signals with mutually different wavelengths.
  • the measured optical signal SI may also be a signal of a single wavelength.
  • the power detection circuit 01 is configured to receive the mixed optical signal, filter the mixed optical signal, and determine the power of the measured optical signal at the center frequency of each optical carrier according to the filtered mixed optical signal. Wherein, the center frequency of each optical carrier is located in the spectral range of the measured optical signal.
  • the power detection circuit 01 filters the mixed optical signal, it can filter out the components of the measured optical signal with the same frequency as each center frequency in the local oscillator optical signal, and the remaining components are filtered out.
  • the power detection circuit 01 can determine the power of the measured optical signal at the center frequency of each optical carrier according to the filtered mixed optical signal.
  • the power detection circuit 01 receives a After coherently mixing the obtained mixed optical signal, parallel detection of the power of the measured optical signal at at least two different frequency points can be realized, thereby effectively improving the efficiency of power detection.
  • the power detection circuit 01 provided in this embodiment of the present application may be set independently of the coherent receiver 02 .
  • the power detection circuit 01 may be an integrated circuit (integrated circuit, IC), which may also be referred to as an integrated chip, and the power detection circuit 01 may be provided in the coherent receiver 02 .
  • integrated circuit integrated circuit
  • the wavelength band of the wavelength division multiplexed signal SI may be a conventional (conventional, C) band (wavelength band), that is, the wavelength division multiplexed signal SI
  • the wavelength range of each service optical signal included in the multiplexed signal SI is 1530 nanometers (nm) to 1565 nm.
  • the wavelength band of the wavelength division multiplexed signal SI may be a long (longer, L) wavelength band, that is, the wavelength range of each service optical signal included in the wavelength division multiplexed signal SI is 1565 nm to 1625 nm.
  • the wavelength band of the wavelength division multiplexed signal SI may be the C+L wavelength band, that is, the wavelength range of each service optical signal included in the wavelength division multiplexed signal SI is 1530 nm to 1625 nm.
  • the center frequencies of the N optical carriers are different from each other, and the power detection circuit 01 can also be used to: adjust the center frequency of each optical carrier in the local oscillator optical signal LO emitted by the comb-shaped light source 10, so that The center frequency of each optical carrier can vary within a corresponding spectrum range, and the spectrum ranges corresponding to the center frequencies of different optical carriers are different.
  • the spectral range corresponding to the center frequency of each optical carrier may be located within the spectral range of the measured optical signal.
  • the spectral range corresponding to the center frequency of each optical carrier may include multiple frequency points to be detected, and the power detection circuit 01 can adjust the center frequency of the optical carrier so that the center frequency of each optical carrier can traverse the corresponding Multiple frequency points within a spectral range.
  • the frequency points to be detected in each spectrum range may be pre-stored in the power detection circuit 01 .
  • each optical carrier can vary within a corresponding spectrum range, it is possible to effectively increase the number of frequency points detected during power detection of the optical signal under test without increasing the number N of optical carriers. number. That is, accurate detection of the spectral shape of the light signal to be measured can be achieved, and the accuracy of power detection can be effectively improved.
  • the measured optical signal SI is a wavelength division multiplexed signal
  • the wavelength division multiplexed signal SI includes N pieces with the same spectral width ⁇ f BW but different wavelengths.
  • Business optical signal That is, the number N of optical carriers included in the local oscillator optical signal LO is equal to the number of service optical signals included in the wavelength division multiplexed signal SI.
  • the N optical carriers may be in one-to-one correspondence with the N service optical signals.
  • Each service optical signal included in the wavelength division multiplexed signal SI is a signal obtained by pilot tone modulation, and different service optical signals have different modulation frequencies.
  • the power detection circuit 01 can be used to adjust the center frequency of each optical carrier according to the target frequency interval ⁇ f Step , so that the center frequency of each optical carrier can be within the spectral range of a corresponding service optical signal Variety.
  • the target frequency interval ⁇ f Step is smaller than the spectral width ⁇ f BW of the service optical signal. Since the spectral widths ⁇ f BW of the service optical signals of different wavelengths are the same, the power detection circuit 01 can adjust the center frequency of each optical carrier according to the fixed target frequency interval ⁇ f Step , thereby effectively simplifying the operation of frequency adjustment.
  • the local oscillator optical signal LO emitted by the comb-shaped light source 10 may include the same number as the N service optical signals.
  • the center frequency of each optical carrier is located within the spectrum range of a corresponding service optical signal, and can vary within the spectrum range.
  • the center frequency f c1 of the first optical carrier can vary within the spectral range of the first service optical signal CH1 .
  • the center frequency f cN of the Nth optical carrier can vary within the spectral range of the Nth service optical signal CHN.
  • the frequency difference between the center frequencies of two adjacent optical carriers may be equal to the spectral width ⁇ f BW of the service optical signal.
  • the frequency difference between the center frequency f C1 of the first optical carrier and f C2 of the center frequency of the second optical carrier is equal to ⁇ f BW .
  • the spectrum intervals of the optical signals of each service are drawn. In practical applications, the spectrums of the optical signals of adjacent services may partially overlap.
  • the measured optical signal SI is a wavelength division multiplexed signal
  • the wavelength division multiplexed signal SI includes a plurality of service optical signals with mutually different wavelengths, and at least one of the multiple service optical signals The spectral widths of the two service optical signals are different.
  • each service optical signal may include at least one slice signal
  • each slice signal is a signal obtained through top modulation.
  • the N slice signals have the same spectral width, and different slice signals have different modulation frequencies, that is, any two slice signals have different modulation frequencies.
  • N is the total number of slice signals included in the wavelength division multiplexed signal SI, and correspondingly, the N optical carriers may correspond to the N slice signals one-to-one.
  • the spectrum width of the slice signal may be determined according to the spectrum width of each service optical signal, and the spectrum width of the slice signal is not greater than the spectrum width of any service optical signal.
  • the spectral width of the slice signal may be the greatest common divisor of the spectral widths of the respective service optical signals.
  • the service optical signal CNn can be divided into three frequency spectra Slice signals CHn1, CHn2 and CHn3 with the same width.
  • the three slice signals are signals obtained by performing top modulation with different modulation frequencies.
  • n is a positive integer
  • n is not greater than the number of service optical signals included in the wavelength division multiplexed signal SI.
  • the spectrum width of some service optical signals is 50 gigahertz (GHz)
  • the spectrum width of some service optical signals is 75 GHz
  • the spectrum width of some service optical signals is 75 GHz.
  • the spectrum width of the segmented signal may be 25 GHz.
  • each service optical signal with a spectrum width of 50GHz can be divided into two 25GHz slice signals
  • each service optical signal with a spectrum width of 75GHz can be divided into three 25GHz slice signals.
  • a service optical signal with a width of 100 GHz can be sliced into four sliced signals of 25 GHz.
  • the power detection circuit 01 is used to adjust the center frequency of each optical carrier according to the target frequency interval, so that the center frequency of each optical carrier can vary within the spectral range of a corresponding slice signal.
  • the target frequency interval is smaller than the spectral width of the slice signal.
  • the solution provided by the embodiment of the present application can perform electro-optical modulation on the service electrical signal to generate the service optical signal.
  • the electrical signal is sliced and top-adjusted, so that the finally generated service optical signal includes multiple sliced signals with the same spectral width. Since the spectral width of each slice signal is the same, the center frequencies of the N optical carriers can be uniformly adjusted according to the same frequency interval (ie, the target frequency interval), so as to realize parallel detection of the power of the N slice signals, which effectively simplifies the The complexity of adjusting the center frequencies of multiple optical carriers.
  • the process of slicing the service electrical signal and then performing top adjustment on the sliced electrical signal may also be referred to as slice top adjustment.
  • slice top adjustment For the implementation process of performing slice top adjustment on the service electrical signal to generate the service optical signal, reference may be made to FIG. 5 .
  • FFT fast Fourier transform
  • the service optical signal in the frequency domain can be The electrical signal is sliced into L slices. After that, inverse fast Fourier transform (inverse FFT, IFFT) is performed on each slice separately to transform each slice into the time domain. Then, for each slice, the slice can be multiplied by the corresponding top-adjustment coefficient through a multiplier, so as to realize the top-adjustment of the slice.
  • inverse FFT inverse fast Fourier transform
  • the top-adjustment coefficient k l used when top-adjusting the l-th slice in the L slices may satisfy: a l ⁇ cos(2 ⁇ f Pl ⁇ t)+(1 ⁇ a l ).
  • a l is the top-adjustment depth when the l-th slice is top-adjusted
  • f Pl is the modulation frequency when the l-th slice is top-adjusted
  • l is a positive integer not greater than L.
  • the top-adjusted L slices can be superimposed by an adder, the superimposed slices can be converted into analog signals by a digital-to-analog converter (DAC), and the analog signals can be output to the optical signal.
  • DAC digital-to-analog converter
  • the optical modulator can use a service optical carrier to modulate the analog signal, thereby generating a service optical signal.
  • the service optical signal to be generated is the service optical signal of the nth channel
  • the optical modulator can use the service optical carrier whose center frequency is f Sn to modulate the analog signal, so that the center frequency is f Sn service optical signal.
  • each optical carrier is a signal obtained by top modulation, and the modulation frequencies of different optical carriers are different.
  • the power detection circuit 01 can be used to adjust the center frequency of each optical carrier according to the target frequency interval, so that the center frequency of each optical carrier can vary within a corresponding spectrum range.
  • the width of the spectral range corresponding to the center frequency of each optical carrier may be equal to the frequency difference between the center frequencies of two adjacent optical carriers.
  • the target frequency interval is smaller than the frequency difference between the center frequencies of two adjacent optical carriers.
  • the number N of optical carriers included in the local oscillator optical signal is independent of the type of the measured optical signal. That is, if the measured optical signal is a wavelength division multiplexed signal, the number N of the optical carriers has nothing to do with the number of service optical signals included in the wavelength division multiplexed signal. Moreover, the spectral range corresponding to the center frequency of each optical carrier is also independent of the spectral range of any service optical signal, and it is only necessary to ensure that the set of spectral ranges corresponding to the center frequencies of the N optical carriers can cover the measured The spectral range of the optical signal is sufficient. Since the power detection circuit 01 can adjust the center frequency of each optical carrier according to a fixed target frequency interval, the operation of frequency adjustment is effectively simplified.
  • the above-mentioned implementation manner of adjusting the top of the optical carrier can also reduce the requirement of the measured optical signal to be detected.
  • the measured optical signal is a wavelength-division multiplexed signal
  • the service optical signals included in the wavelength-division multiplexed signal have not been top-adjusted, or the spectral widths of the service optical signals are different, the signal can be adjusted based on The optical carrier realizes effective detection of the power of each service optical signal.
  • the solutions provided in the embodiments of the present application can respectively perform top adjustment on N service optical signals, or can perform top adjustment on N slice signals respectively, or can also perform top adjustment on N service optical signals respectively.
  • the optical carrier is top-tuned.
  • the top modulation is a signal modulation technology, which can superimpose a small amplitude low-frequency sine signal or low-frequency cosine signal on top of the optical signal of each wavelength at the signal transmitting end as the identification of the optical signal.
  • the frequency of the low-frequency sine signal or the low-frequency cosine signal is the modulation frequency of the top adjustment, and different modulation frequencies are used for the top adjustment of different optical signals.
  • the power detection circuit 01 can further discriminate optical signals of different wavelengths based on the modulation frequency, and detect the power of the different optical signals.
  • the measured optical signal is a wavelength-division multiplexed signal including N service optical signals, and each service optical signal is a top-modulated signal, then the intensity of the i-th service optical signal after top-modulation
  • the formula for variation with time t can be:
  • a i is the top modulation depth of the i-th service optical signal, and its value range is generally 0.01 ⁇ a i ⁇ 0.1.
  • the top adjustment depth for each service optical signal may be the same or different.
  • a Si is the intensity of the ith service optical signal
  • f Si is the center frequency of the ith service optical signal
  • the phase is time-variant.
  • f Pi is the modulation frequency used when top-adjusting the i-th service optical signal.
  • j is an imaginary unit. Since the modulation frequencies used for top-adjusting optical signals of different services are different, when i ⁇ k, f Pi ⁇ f Pk . Wherein, i and k are both positive integers not greater than N.
  • the formula for the change of the intensity of the wavelength division multiplexed signal obtained by combining the N service optical signals with different wavelengths with time t is: Based on this formula, it can be known that the intensity of the wavelength division multiplexed signal is equal to the sum of the intensities of the N service optical signals.
  • the power detection circuit 01 can adjust the center frequency of each optical carrier in the local oscillator optical signal emitted by the comb-shaped light source in the order of center frequency from low to high, so that the The center frequency can traverse multiple frequency points to be detected in a corresponding spectrum range.
  • the initial value of the center frequency of each optical carrier may be equal to the difference between the center frequency of a corresponding spectral range and half the width of the spectral range.
  • the wavelength-division multiplexed signal includes N service optical signals with a spectrum width of ⁇ f BW
  • the center frequency of each optical carrier corresponds to the spectrum range of a service optical signal
  • f Ci-0 f Si - ⁇ f BW /2;
  • f Si represents the center frequency of the i-th service optical signal, and i is a positive integer not greater than N.
  • the spectrum range of each service optical signal includes M+1 frequency points to be detected, where M is a positive integer.
  • the power detection circuit 01 can start from the initial value of the center frequency of each optical carrier, and adjust the center frequency of each optical carrier M times according to the target frequency interval ⁇ f Step , so that the center frequency of each optical carrier can traverse the M+1 frequency points to be detected. Since the M+1 frequency points to be detected are all located within the spectral range of the service optical signal, the target frequency interval ⁇ f Step and the spectral width ⁇ f BW of each service optical signal can satisfy the following relationship: ⁇ f BW ⁇ M ⁇ ⁇ f Step .
  • the m is a positive integer not greater than M.
  • the power detection circuit 01 can also adjust the center frequency of each optical carrier in the local oscillator optical signal emitted by the comb-shaped light source in order of center frequency from high to low, so that the center frequency can traverse a corresponding spectrum Multiple frequency points to be detected within the range.
  • the initial value of the center frequency of each optical carrier may be equal to the sum of the center frequency of a corresponding spectral range and half the width of the spectral range.
  • the wavelength-division multiplexed signal includes N service optical signals with a spectrum width of ⁇ f BW
  • the center frequency of each optical carrier corresponds to the spectrum range of a service optical signal
  • the power detection circuit 01 can also adjust the center frequency of each optical carrier in the local oscillator optical signal in other order, as long as the center frequency can traverse a plurality of frequency points to be detected in a corresponding spectrum range. .
  • the mixed optical signal output by the coherent receiver 02 may include four components, and the four components are the in-phase component I x of the first polarization component, the quadrature component Q x of the first polarization component, The in-phase component I y of the second polarization component and the quadrature component Q y of the second polarization component.
  • the power detection circuit 01 may include: a low-pass filter 011 , an operator 012 , a comb filter 013 and a power detection sub-circuit 014 .
  • the low-pass filter 011 is used to perform low-pass filtering on the four components respectively. Since the four components can be individually low-pass filtered, the low-pass filter 011 can also be called a four-channel low-pass filter. After the low-pass filter 011 performs low-pass filtering on the four components, the components of the same frequency as the center frequencies of the local oscillator optical signals in the measured optical signal can be filtered out, and the remaining components are filtered out. Since in the embodiments of the present application, the center frequencies of the top-modulation signals are all low frequencies, which are lower than the cutoff frequency of the low-pass filter, so the operation of the low-pass filter has no effect on the top-modulation.
  • the four components can be expressed as:
  • Ix-LP (t) is the low-pass filtered component Ix
  • Qx -LP (t) is the low-pass filtered component Qx
  • Iy-LP ( t ) is the low-pass filtered component I y
  • Q y-LP (t) is the low-pass filtered component Q y
  • f Pi represents the modulation frequency used when top-tuning the i-th optical signal (the optical signal may be a service optical signal, a slice signal, or an optical carrier), that is, the i-th modulation frequency.
  • a i represents the top-adjustment depth when the i-th optical signal is top-adjusted, that is, the i-th modulation depth, and the top-adjustment depths of different optical signals may be the same or different.
  • a Si-x (f Ci ) represents the intensity of the x-polarized component of the frequency component with frequency f Ci (ie, the center frequency of the ith optical carrier) in the measured optical signal
  • a Si-y (f Ci ) represents the measured The intensity of the y-polarized component of the frequency component of frequency f Ci in the optical signal. represents the phase of the x-polarized component of the frequency component with frequency f Ci in the measured optical signal, Represents the phase of the y-polarized component of the frequency component of frequency f Ci in the measured optical signal.
  • the operator 012 is configured to determine the power of the four components after low-pass filtering. For example, the operator 012 can first determine the square of each low-pass filtered component, and then sum the squares of the four components to obtain the power of the four components. That is, the power of the four components refers to the total power of the four components.
  • the operator 012 may also be referred to as a sum of squares operator.
  • the formula for the power variation of the four components with time t after low-pass filtering can be expressed as:
  • k is a positive integer not greater than N, and k ⁇ i.
  • f Ck is the center frequency of the kth optical carrier. due to and are random, so the second and third terms in the expression of the power can be understood as random noise.
  • the comb filter 013 is used for comb filtering the power of the four components.
  • the number of passbands of the comb filter 013 may be greater than or equal to N, and the center frequency of each passband is equal to a modulation frequency. That is, the center frequencies of the at least N passbands of the comb filter 013 are respectively f P1 , f P2 . . . f PN .
  • the comb filter 013 After using the comb filter 013 to perform comb filtering on the power of the four components, random noise in the power can be filtered out.
  • the output of this comb filter 013 can be expressed as:
  • the power detection sub-circuit 014 is used to determine the power of the comb-filtered power of the four components at each modulation frequency, obtain the top modulation power corresponding to each modulation frequency, and according to the modulation frequency corresponding to each modulation frequency
  • the top power, the intensity of the optical carrier corresponding to the modulation frequency, and the top modulation depth corresponding to the modulation frequency determine the power of the measured optical signal at the center frequency of the optical carrier.
  • the power of the measured optical signal at the center frequency of the optical carrier is positively correlated with the top-adjustment power, and negatively correlated with both the optical carrier intensity and the top-adjustment depth.
  • the optical carrier corresponding to the modulation frequency refers to: An optical carrier that varies within the frequency spectrum of a service optical signal modulated by a frequency topping. For example, assuming that the center frequency of the i-th optical carrier varies within the spectral range of the i-th service optical signal, and the modulation frequency used for top-tuning the i-th service optical signal is f Pi , then the modulation frequency f The optical carrier corresponding to Pi is the ith optical carrier.
  • the optical carrier corresponding to the modulation frequency refers to the optical carrier whose center frequency is adjusted using the modulation frequency
  • the top of the slice signal varies within the spectral range of the optical carrier. For example, assuming that the center frequency of the i-th optical carrier varies within the spectral range of the i-th slice signal, and the modulation frequency used for top-tuning the i-th slice signal is f Pi , then the modulation frequency f Pi corresponds to The optical carrier is the i-th optical carrier.
  • the optical carrier corresponding to the modulation frequency refers to the optical carrier that is top-tuned with the modulation frequency.
  • the modulation frequency used for top-tuning the i-th optical carrier is f Pi
  • the optical carrier corresponding to the modulation frequency f Pi is the i-th optical carrier.
  • the power detection sub-circuit 014 may include: a power detection module 0141 , a spectral shape recovery module 0142 and a controller 0143 .
  • the input end of the power detection module 0141 is connected to the output end of the comb filter 013, and the power detection module 0141 can first perform FFT transformation on the powers of the four components after comb filtering, so as to obtain the comb filter.
  • the filtered power is converted to the frequency domain.
  • the power detection module 0141 can detect the power at the frequencies f P1 , f P2 . . . f PN in the frequency domain, that is, the power at each modulation frequency in the frequency domain.
  • the power at each modulation frequency is the top modulation power corresponding to the modulation frequency.
  • the N top-adjusting powers detected by the power detection module 0141 are respectively P P1 , P P2 . . . P PN .
  • the i-th top power P Pi in the N top powers can be expressed as:
  • the spectral shape recovery module 0142 can obtain from the controller 0143 the center frequencies f C1 , f C2 . . . f CN of the N optical carriers in the local oscillator optical signal output by the comb light source 10 , and the intensities of the N optical carriers A C1 , A C2 . . . A CN .
  • the spectral shape recovery module 0142 can respectively calculate the N top modulation powers P P1 , P P2 ... P PN output by the power detection module 0141 according to the obtained center frequency and intensity of the optical carrier, thereby obtaining The power of the measured optical signal at the center frequency of each optical carrier.
  • the spectral shape recovery module 0142 uses the top modulation depth a i corresponding to the i-th modulation frequency and the intensity A Ci of the i-th optical carrier to calculate the i-th top modulation power P Pi to obtain the The power P S (f Ci ) of the photometric signal at the center frequency f Ci of the i-th optical carrier:
  • the spectral shape recovery module 0142 After the spectral shape recovery module 0142 determines the power of the measured optical signal at the center frequency of each optical carrier based on the above method, it can record the center frequencies f C1 , f C2 . . . f CN of the N optical carriers, and The corresponding relationship of the N powers P S (f C1 ), P S (f C2 ), . . . P S (f CN ). For example, the spectral shape recovery module 0142 can generate a two-dimensional array to record the above-mentioned corresponding relationship between the center frequency and the power.
  • FIG. 8 is a schematic structural diagram of yet another power detection system provided by an embodiment of the present application. It can be seen from FIG. 7 and FIG. 8 that the calculator 012, the comb filter 013 and the power detection circuit Subcircuits 014 may all be integrated in a microprocessor.
  • the microprocessor may be a microcontroller unit (MCU).
  • the power detection device may further include an analog-to-digital converter (analog-to-digital converter, ADC) 03 and a memory 04 .
  • ADC analog-to-digital converter
  • the ADC 03 is respectively connected with the low-pass filter 011 and the MCU, and is used to perform analog-to-digital conversion on each component output by the low-pass filter 011, and transmit the analog-to-digital converted data to the MCU.
  • the memory 04 can be used to store the center frequency and intensity of each optical carrier in the local oscillator light emitted by the comb-shaped light source 10, and the corresponding relationship between each optical carrier and each service optical signal.
  • the memory 04 may be set independently of the MCU, or may also be integrated in the MCU, that is, the memory 04 may be an internal memory of the MCU.
  • the low-pass filter 011, the operator 012, the ADC 03, the comb filter 013, and the power detection sub-circuit 014 may also be integrated in a microprocessor. That is, the power detection circuit 01 may be an integrated circuit.
  • the power detection circuit 01 may be a digital signal processor (digital signal processor, DSP).
  • the comb-shaped light source 10 may include a frequency-adjustable frequency comb light source 101 .
  • the comb-shaped light source 10 may include a plurality of frequency comb light sources 101 with different wavelength bands, and a wave combiner 102 .
  • two frequency comb light sources 101 are shown in FIG. 9 .
  • the multiplexer 102 is used for multiplexing optical carriers of different wavelength bands emitted by the multiple frequency comb light sources 101 to obtain the local oscillator optical signal.
  • the comb light source 10 may only include a frequency comb light source 101 with an adjustable frequency, so as to reduce the cost and volume of the comb light source 10 .
  • the comb-shaped light source 10 may include a C-band frequency comb light source 101 .
  • the comb-shaped light source 10 may include an L-band frequency comb light source 101 .
  • the comb-shaped light source 10 may include a plurality of frequency comb light sources 101 with different wavelength bands to cover the wavelength band occupied by the measured light signal, thereby realizing the Efficient detection of the power of an optical signal.
  • the comb light source 10 may include a C-band frequency comb light source 101 and an L-band frequency comb light source 101 .
  • FIG. 10 is a schematic structural diagram of still another power detection system provided by an embodiment of the present application.
  • the comb-shaped light source 10 may include at least one frequency comb light source 101 and a top-adjustment circuit 103 . Only one frequency comb light source 101 is schematically shown in FIG. 10 . Wherein, the top adjustment circuit 103 is used to adjust the top of each optical carrier output by the at least one frequency comb light source 101 respectively.
  • the top adjustment circuit 103 may include a wave splitter 1031 , N intensity modulators 1032 and a wave combiner 1033 .
  • the demultiplexer 1031 is used for demultiplexing the N optical carriers output by the at least one frequency comb light source 101 , so as to output each optical carrier to an intensity modulator 1032 .
  • Each of the intensity modulators 1032 is configured to use one modulation frequency to modulate the received channel of the optical carrier, and the modulation frequencies used by different intensity modulators 1032 are different.
  • the combiner 1033 is used to combine the top-modulated optical carriers output by the N intensity modulators 1032, and output the combined N optical carriers (ie, the local oscillator optical signal L0) to the coherent receiver 02.
  • the power detection circuit and system provided by the embodiments of the present application can realize parallel detection of the power of the measured optical signal at the N center frequencies through the N optical carriers output by the comb-shaped light source. Therefore, the time required for power detection is effectively shortened, and the efficiency of power detection is improved.
  • the wavelength band occupied by the measured optical signal is wide, that is, the spectral width is wide (for example, up to 100 nm)
  • the power detection speed of the power detection circuit and system provided by the embodiments of the present application can meet the detection of sudden spectral events. need.
  • the sudden spectral event refers to that the frequency spectrum of the service optical signal changes in a short period of time and then returns to normal. Since the duration of the burst spectral event is short, if the power detection speed of the power detection system is slow, the burst spectral event cannot be effectively detected.
  • the measured optical signal is a wavelength-division multiplexed signal
  • the wavelength-division multiplexed signal includes N (N can be 100 or 200) service optical signals with different wavelengths
  • the service optical signal of each wavelength is There are M+1 frequency points to be detected.
  • the power detection system provided by the embodiment of the present application the power detection of the N service optical signals needs to be repeated M+1 times.
  • the power detection process of the N service optical signals needs to be repeated N ⁇ (M+1) times. It can be seen that, compared with the power detection method in the related art, the power detection circuit and system provided by the embodiments of the present application can increase the power detection speed by N times.
  • the embodiments of the present application provide an optical signal power detection system.
  • the local oscillator optical signal output by the comb-shaped light source in the power detection system includes N optical carriers, and at least two of the N optical carriers are included.
  • the center frequencies of the optical carriers are different.
  • parallel detection of the power of the measured optical signal at at least two different frequency points can be realized, thereby effectively improving the power detection efficiency.
  • the power detection circuit in the power detection system can also adjust the center frequency of each optical carrier in a spectral range corresponding to each optical carrier, so as to realize the detection of multiple frequencies of the measured optical signal in each spectral range. Therefore, the power detection accuracy of the measured optical signal can be effectively improved, and the spectral shape detection of the measured optical signal can be realized.
  • This embodiment of the present application further provides a method for detecting power of an optical signal, and the method can be applied to the circuit 01 for detecting the power of an optical signal provided in the above-mentioned embodiment.
  • the method may include:
  • Step 201 Receive a mixed optical signal.
  • the mixed optical signal is obtained by coherently mixing the measured optical signal and the local oscillator optical signal.
  • the local oscillator optical signal includes N optical carriers, at least two of the N optical carriers have different center frequencies, and N is an integer greater than 1.
  • the measured optical signal may be a wavelength division multiplexed signal including a plurality of service optical signals with mutually different wavelengths, or may be a service optical signal of a single wavelength. Referring to FIG. 1 , the measured optical signal is emitted by a target device connected to the power detection system 000 of the optical signal.
  • the optical signal power detection system includes a coherent receiver 02, which can be used to coherently mix the measured optical signal and the local oscillator optical signal to obtain a mixed optical signal, and combine the mixed optical signal sent to the power detection circuit 01. That is, the power detection circuit 01 can receive the mixed optical signal sent by the coherent receiver 02 .
  • Step 202 Filter the mixed optical signal.
  • components of the same frequency as each center frequency of the local oscillator optical signal in the measured optical signal can be filtered out, and the remaining components are all filtered out.
  • Step 203 Determine the power of the measured optical signal at the center frequency of each optical carrier according to the filtered mixed optical signal.
  • the local oscillator optical signal includes N optical carriers, and the center frequencies of at least two optical carriers in the N optical carriers are different, based on the methods of the above steps 201 to 203, it is possible to realize the detection of the measured optical signal between at least two optical carriers. Parallel detection of power at different center frequencies.
  • Step 204 Detect whether the center frequency of each optical carrier in the local oscillator optical signal traverses a plurality of frequency points to be detected in a corresponding spectrum range.
  • the power detection circuit 01 can also adjust the center frequency of each optical carrier, so that the center frequency of each optical carrier can traverse multiple frequency points to be detected in a corresponding spectrum range.
  • the spectral ranges corresponding to the center frequencies of different optical carriers are different.
  • step 205 may be executed.
  • Step 205 Adjust the center frequency of each optical carrier within a spectral range corresponding to the optical carrier.
  • the power detection circuit 01 can adjust the frequency within a spectrum range corresponding to each optical carrier The center frequency of the optical carrier. After that, the above step 201 can be continued. That is, in this embodiment of the present application, the power detection circuit 01 of the optical signal may repeatedly perform the above steps 201 to 205 until the center frequency of each optical carrier traverses a plurality of to-be-detected signals within a corresponding spectral range. Frequency.
  • the power detection circuit 01 of the optical signal can repeat the above steps 201 to 205 to perform M+ 1 time, so as to realize the spectral shape detection of the measured light signal.
  • the measured optical signal is a wavelength division multiplexed signal
  • the wavelength division multiplexed signal includes N service optical signals with the same spectral width but different wavelengths.
  • each service optical signal is a signal obtained through top modulation, and different service optical signals have different modulation frequencies.
  • the above step 205 may include:
  • the center frequency of each optical carrier in the local oscillator optical signal is adjusted so that the center frequency of each optical carrier varies within the spectral range of a service optical signal.
  • the target frequency interval is smaller than the spectral width of the service optical signal.
  • the measured optical signal is a wavelength division multiplexed signal
  • the wavelength division multiplexed signal includes a plurality of service optical signals with mutually different wavelengths, and at least two of the multiple service optical signals The spectral widths of the service optical signals are different.
  • each service optical signal includes at least one slice signal
  • each slice signal is a signal obtained through top modulation.
  • the N slice signals have the same spectral width, and different slice signals have different modulation frequencies.
  • N is the total number of slice signals included in the wavelength division multiplexed signal.
  • the above step 205 may include:
  • the center frequency of each optical carrier is adjusted so that the center frequency of each optical carrier varies within the spectrum range of a slice signal.
  • the target frequency interval is smaller than the spectral width of the slice signal.
  • each optical carrier is a signal obtained through modulation, and the modulation frequencies of different optical carriers are different; correspondingly, the above step 205 may include:
  • the center frequency of each optical carrier is adjusted according to the target frequency interval, and the target frequency interval is smaller than the frequency difference between the center frequencies of two adjacent optical carriers.
  • the mixed optical signal includes four components, and the four components are the quadrature component of the first polarization component, the in-phase component of the first polarization component, the quadrature component of the second polarization component, and the second polarization component. In-phase component.
  • the above step 202 may include: performing low-pass filtering on the four components respectively.
  • the power detection circuit 01 may include a low-pass filter 011, and the low-pass filter 011 is used to execute the step 201 and the step 202. Therefore, the implementation process of the step 201 and the step 202 can refer to the above-mentioned low-pass filter. Related description of pass filter 011.
  • FIG. 12 is a flowchart of a method for determining the power of a measured optical signal at the center frequency of an optical carrier provided by an embodiment of the present application. As shown in FIG. 12, the above step 203 may include:
  • Step 2031 Determine the powers of the four low-pass filtered components.
  • the power detection circuit 01 may calculate the sum of the squares of the four low-pass filtered components as the power of the four components. That is, the power of the four components refers to the total power of the four components.
  • the power detection circuit 01 may further include an arithmetic unit 012, and the arithmetic unit 012 is used to execute the step 2031. Therefore, for the implementation process of the step 2031, reference may be made to the relevant description of the arithmetic unit 012 above.
  • Step 2032 Perform comb filtering on the powers of the four components through a comb filter, where the comb filter has multiple passbands, and the center frequency of each passband is equal to a modulation frequency.
  • the random noise in the power can be filtered out.
  • this step 2032 reference may be made to the relevant description of the comb filter 013 above.
  • Step 2033 Determine the power of the comb-filtered power of the four components at each modulation frequency, and obtain the top modulation power corresponding to each modulation frequency.
  • the comb-filtered powers of the four components may be firstly subjected to FFT transformation to convert the comb-filtered powers into the frequency domain, and then the respective frequencies in the frequency domain may be detected.
  • the power detection circuit 01 further includes a power detection sub-circuit 014 , and the power detection sub-circuit 014 includes a power detection module 0141 .
  • the power detection module 0141 For the implementation process of this step 2033, reference may be made to the relevant description of the power detection module 0141 above.
  • Step 2034 Determine the power of the measured optical signal at the center frequency of the optical carrier according to the top modulation power corresponding to each modulation frequency, the intensity of the optical carrier corresponding to the modulation frequency, and the top modulation depth corresponding to the modulation frequency.
  • the power detection sub-circuit 014 further includes a spectral shape recovery module 0142 .
  • a spectral shape recovery module 0142 For the implementation process of this step 2034, reference may be made to the relevant description of the spectral shape recovery module 0142 above.
  • the i-th modulation frequency in the N modulation frequencies corresponds to the i-th optical carrier in the N optical carriers, then the measured optical signal is at the center frequency f Ci of the i-th optical carrier. Power meets:
  • P Pi is the top modulation power corresponding to the ith modulation frequency
  • a Ci is the intensity of the ith optical carrier
  • a i is the top modulation depth corresponding to the ith modulation frequency.
  • the sequence of steps of the method for detecting power of an optical signal provided in this embodiment of the present application may be appropriately adjusted, and the steps may be correspondingly increased or decreased according to the situation.
  • the above steps 204 and 205 may be deleted according to the situation.
  • the embodiments of the present application provide a method for detecting power of an optical signal, which can receive a mixed optical signal obtained by coherently mixing a local oscillator optical signal and a measured optical signal. Since the center frequencies of at least two of the N optical carriers included in the local oscillator optical signal are different, parallel detection of the power of the measured optical signal at at least two different frequency points can be realized based on the mixed optical signal. , which effectively improves the efficiency of power detection.
  • the method can also adjust the center frequency of each optical carrier within a spectral range corresponding to each optical carrier, so that the detection of the power of multiple frequency points of the measured optical signal in each spectral range can be achieved by This can effectively improve the power detection accuracy of the measured optical signal, and realize the spectral shape detection of the measured optical signal.
  • the power detection circuit of the optical signal may also be implemented by an application-specific integrated circuit (ASIC), or a programmable logic device (PLD), and the above-mentioned PLD It can be a complex programmable logical device (CPLD), a field-programmable gate array (FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • CPLD complex programmable logical device
  • FPGA field-programmable gate array
  • GAL general array logic
  • the power detection method provided by the above method embodiments may also be implemented by software.
  • each device and subcircuit in the power detection circuit may also be software modules.
  • An embodiment of the present application further provides an optical communication system.
  • the system includes: at least one optical signal power detection system 000 as provided in the above-mentioned embodiments, a first optical transceiver 100 , and a second optical transceiver device 200, and at least one OA connected between the first optical transceiver device 100 and the second optical transceiver device 200.
  • the coherent receiver 02 in the power detection system 000 is connected to a target device, the target device includes at least one of the at least one OA, the first optical transceiver 100 and the second optical transceiver 200, the coherent receiver 02 Used to receive the measured light signal emitted by the target device.
  • the optical communication system may be a WDM or DWDM system.
  • FIG. 13 is a schematic structural diagram of a power detection circuit provided by an embodiment of the present application, and the power detection circuit may be applied to the optical signal power detection system provided by the foregoing embodiment.
  • the power detection circuit may include: a processor 1301 , a memory 1302 , a transceiver 1303 and a bus 1304 .
  • the bus 1304 is used to connect the processor 1301 , the memory 1302 and the transceiver 1303 .
  • the communication connection with other devices can be realized through the transceiver 1303 (which may be wired or wireless).
  • a computer program for realizing various application functions is stored in the memory 1302 .
  • the processor 1301 may be a central processing unit (central processing unit, CPU), and the processor 1301 may also be other general-purpose processors, digital signal processors (DSPs), application-specific integrated circuits ( ASIC), Field Programmable Gate Array (FPGA), GPU or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSPs digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA Field Programmable Gate Array
  • GPU GPU or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • Memory 1302 may be volatile memory or nonvolatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • Double data rate synchronous dynamic random access memory double data date SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory direct rambus RAM, DR RAM
  • bus 1304 may also include a power bus, a control bus, a status signal bus, and the like. However, for clarity of illustration, the various buses are labeled as bus 1304 in the figure.
  • the processor 1301 is configured to execute computer programs stored in the memory 1302 .
  • the processor 1301 implements the power detection method provided by the above embodiments by executing the computer program. For example, the methods shown in steps 201 to 205 and the methods shown in steps 2031 to 2034 in the above method embodiments can be implemented.
  • Embodiments of the present application further provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, the computer enables the computer to implement the power detection provided by the foregoing embodiments method.
  • the methods shown in steps 201 to 205 and the methods shown in steps 2031 to 2034 in the above method embodiments may be performed.
  • Embodiments of the present application also provide a computer program product containing instructions, which, when the computer program product runs on a computer, enables the computer to implement the power detection method provided by the above embodiments.
  • the methods shown in steps 201 to 205 and the methods shown in steps 2031 to 2034 in the above method embodiments may be performed.
  • Embodiments of the present application further provide a chip, where the chip includes a programmable logic circuit and/or program instructions, when the chip is running, it is used to implement the power detection method provided by the above embodiments.
  • the chip includes a programmable logic circuit and/or program instructions, when the chip is running, it is used to implement the power detection method provided by the above embodiments.
  • the methods shown in steps 201 to 205 and the methods shown in steps 2031 to 2034 in the above method embodiments may be performed.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive (SSD).
  • references herein to "at least one” refers to one or more, and “plurality” refers to two or more.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种光信号的功率检测电路、系统、方法以及芯片,属于光通信技术领域。本申请提供的光信号的功率检测电路接收到的混合光信号是对被测光信号和本振光信号进行相干混合得到的。由于该本振光信号中包括N个光载波,且该N个光载波中至少两个光载波的中心频率不同,因此基于该混合光信号,即可实现对该被测光信号中至少两个不同频点处的功率的并行检测,从而有效提高了功率检测的效率。

Description

光信号的功率检测电路、系统、方法以及芯片
本申请要求于2020年8月19日提交的申请号为202010839817.3、申请名称为“光信号的功率检测电路、系统、方法以及芯片”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,特别涉及一种光信号的功率检测电路、系统、方法以及芯片。
背景技术
为了监测光通信系统的性能,以确保光通信系统的可靠性,需要对光通信系统中传输的光信号的功率进行检测。
相关技术中,光信号的功率检测系统一般包括可调谐激光器、相干接收机、低通滤波器以及运算器。其中,相干接收机用于对待检测的光信号,以及可调谐激光器发射的光信号进行相干混合,并将混合后的混合光信号输出至低通滤波器。低通滤波器对混合光信号进行滤波,并将滤波后的混合光信号输出至运算器。其中,该低通滤波器可以将待检测的光信号中与可调谐激光器输出的光信号的中心频率一致的频率分量输出至运算器。运算器进而可以计算得到该待检测的光信号中,与可调谐激光器输出的光信号的中心频率一致的频率分量的功率。
但是,当待检测的光信号的频谱宽度较宽时,上述方法需多次调整可调谐激光器发射的光信号的波长,以实现对待检测的光信号中各个频点的功率检测。该功率检测方法的效率较低。
发明内容
本申请提供了一种光信号的功率检测电路、系统、方法以及芯片,可以解决相关技术中的功率检测方法效率较低的技术问题。
一方面,提供了一种光信号的功率检测电路,该功率检测电路,用于接收混合光信号,该混合光信号是对被测光信号和本振光信号进行相干混合得到的,该本振光信号包括N个光载波,该N个光载波中至少两个光载波的中心频率不同,且N为大于1的整数;该功率检测电路还用于对该混合光信号进行滤波,以及根据滤波后的混合光信号,确定该被测光信号在每个光载波的中心频率处的功率。其中,该每个光载波的中心频率可以均位于该被测光信号的频谱范围内。
由于该混合光信号中相干混合的本振光信号包括中心频率不同的至少两个光载波,因此基于该混合光信号,即可实现对该被测光信号中至少两个不同频点处的功率的并行检测,从而有效提高了功率检测的效率。
可选地,该功率检测电路还可以用于:调整该梳状光源发射的该本振光信号中每个光载波的中心频率,使每个光载波的中心频率在对应的一个频谱范围内变化,且不同光载波的中心频率对应的频谱范围不同。
由于每个光载波的中心频率能够在对应的一个频谱范围内变化,因此能够在不增加光载波的个数N的前提下,有效增加对被测光信号进行功率检测时检测的频点的个数。进而,可以实现对被测光信号的谱形的精确检测,提高了功率检测的精度。
可选地,该被测光信号可以为波分复用信号,该波分复用信号包括N个业务光信号,各个业务光信号的频谱宽度相同,且波长互不相同;其中,每个业务光信号为经过调顶得到的信号,不同业务光信号的调制频率不同;该功率检测电路,可以用于按照目标频率间隔,调整每个光载波的中心频率,使每个光载波的中心频率在一个业务光信号的频谱范围内变化;其中,该目标频率间隔小于该业务光信号的频谱宽度。
由于不同波长的业务光信号的频谱宽度相同,使得功率检测电路可以按照固定的目标频率间隔调整各个光载波的中心频率,从而有效简化了频率调整的操作。
可选地,该被测光信号可以为波分复用信号,该波分复用信号包括多个业务光信号,该多个业务光信号的波长互不相同,且该多个业务光信号中至少两个业务光信号的频谱宽度不同,每个业务光信号包括至少一个切片信号,每个切片信号为经过调顶得到的信号,不同切片信号的调制频率不同,且不同切片信号的频谱宽度相同,N为该波分复用信号包括的切片信号的总数;该功率检测电路,可以用于按照目标频率间隔,调整每个光载波的中心频率,使每个光载波的中心频率在一个切片信号的频谱范围内变化;其中,该目标频率间隔小于该切片信号的频谱宽度。
在业务光信号的频谱宽度不完全相同的场景中,可以对业务光信号进行切片,得到多个频谱宽度相同的切片信号。由于各个切片信号的频谱宽度均相同,因此可以按照相同的目标频率间隔统一调整该N个光载波的中心频率,从而有效简化了频率调整的操作。
可选地,每个光载波为经过调顶得到的信号,且不同光载波的调制频率不同;该功率检测电路,可以用于按照目标频率间隔,调整每个光载波的中心频率,该目标频率间隔小于相邻两个光载波的中心频率的频率差。
本申请提供的方案还可以对光载波进行调顶,由此可以降低对待检测的被测光信号的要求。例如,即使波分复用信号包括的各业务光信号未经过调顶,或者各业务光信号的频谱宽度不同,也可以基于调顶后的光载波实现对各业务光信号的功率的有效检测。
可选地,该混合光信号包括四个分量,该四个分量分别为第一偏振分量的正交分量、第一偏振分量的同相分量、第二偏振分量的正交分量以及第二偏振分量的同相分量;该功率检测电路可以包括:低通滤波器、运算器、梳状滤波器以及功率检测子电路;其中,该低通滤波器,用于分别对该四个分量进行低通滤波;该运算器,用于确定低通滤波后的该四个分量的功率;该梳状滤波器,用于对该四个分量的功率进行梳状滤波,其中,该梳状滤波器的通带的数量大于或等于N,每个通带的中心频率等于一个调制频率;该功率检测子电路,用于确定梳状滤波后的该四个分量的功率在每个调制频率处的功率,得到每个调制频率对应的调顶功率,以及根据每个调制频率对应的调顶功率、该调制频率对应的光载波的强度,以及该调制频率对应的调顶深度,确定该被测光信号在该光载波的中心频率处的功率。
其中,被测光信号在该光载波的中心频率处的功率与该调顶功率正相关,与该光载波的强度以及该调顶深度均负相关。在对波分复用信号包括的N个业务光信号分别进行调顶的场景,调制频率对应的光载波是指:中心频率在采用该调制频率调顶的业务光信号的频谱范围内变化的光载波。在对波分复用信号包括的N个切片信号分别进行调顶的场景,调制频率对应的光载波是指:中心频率在采用该调制频率调顶的切片信号的频谱范围内变化的光载波。在对N个光载波分别进行调顶的场景,调制频率对应的光载波是指:采用该调制频率调顶的 光载波。
可选地,N个调制频率中的第i个调制频率与N个光载波中的第i个光载波对应,i为不大于N的正整数;则该被测光信号在该第i个光载波的中心频率f Ci处的功率满足:
Figure PCTCN2021095345-appb-000001
其中,P Pi为该第i个调制频率对应的调顶功率,A Ci为该第i个光载波的强度,a i为该第i个调制频率对应的调顶深度。
另一方面,提供了一种光信号的功率检测设备,该功率检测设备包括:相干接收机,以及功率检测电路;该相干接收机,用于对被测光信号和本振光信号进行相干混合,得到混合光信号,以及将该混合光信号发送至该功率检测电路,其中,该本振光信号包括N个光载波,该N个光载波中至少两个光载波的中心频率不同,N为大于1的整数;该功率检测电路,用于接收该混合光信号,对该混合光信号进行滤波,以及根据滤波后的混合光信号,确定该被测光信号在每个光载波的中心频率处的功率。
可选地,该相干接收机和该功率检测电路可以集成设置。例如,该功率检测电路可以为集成电路,该集成电路可以设置在该相干接收机中。
可选地,该功率检测电路还可以用于:调整该梳状光源发射的该本振光信号中每个光载波的中心频率,使每个光载波的中心频率在对应的一个频谱范围内变化,且不同光载波的中心频率对应的频谱范围不同。
可选地,该被测光信号可以为波分复用信号,该波分复用信号包括N个业务光信号,各个业务光信号的频谱宽度相同,且波长互不相同;其中,每个业务光信号为经过调顶得到的信号,不同业务光信号的调制频率不同;该功率检测电路,可以用于按照目标频率间隔,调整每个光载波的中心频率,使每个光载波的中心频率在一个业务光信号的频谱范围内变化;其中,该目标频率间隔小于该业务光信号的频谱宽度。
可选地,该被测光信号可以为波分复用信号,该波分复用信号包括多个业务光信号,该多个业务光信号的波长互不相同,且该多个业务光信号中至少两个业务光信号的频谱宽度不同,每个业务光信号包括至少一个切片信号,每个切片信号为经过调顶得到的信号,不同切片信号的调制频率不同,且不同切片信号的频谱宽度相同,N为该波分复用信号包括的切片信号的总数;该功率检测电路,可以用于按照目标频率间隔,调整每个光载波的中心频率,使每个光载波的中心频率在一个切片信号的频谱范围内变化;其中,该目标频率间隔小于该切片信号的频谱宽度。
可选地,每个光载波为经过调顶得到的信号,且不同光载波的调制频率不同;该功率检测电路,可以用于按照目标频率间隔,调整每个光载波的中心频率,该目标频率间隔小于相邻两个光载波的中心频率的频率差。
可选地,该混合光信号包括四个分量,该四个分量分别为第一偏振分量的正交分量、第一偏振分量的同相分量、第二偏振分量的正交分量以及第二偏振分量的同相分量;该功率检测电路可以包括:低通滤波器、运算器、梳状滤波器以及功率检测子电路;其中,该低通滤波器,用于分别对该四个分量进行低通滤波;该运算器,用于确定低通滤波后的该四个分量的功率;该梳状滤波器,用于对该四个分量的功率进行梳状滤波,其中,该梳状滤波器的通带的数量大于或等于N,每个通带的中心频率等于一个调制频率;该功率检测子电路,用于确定梳状滤波后的该四个分量的功率在每个调制频率处的功率,得到每个调制频率对应的调顶功率,以及根据每个调制频率对应的调顶功率、该调制频率对应的光载波的强度,以及该调制频率对应的调顶深度,确定该被测光信号在该光载波的中心频率处的功率。
可选地,N个调制频率中的第i个调制频率与N个光载波中的第i个光载波对应,i为不大于 N的正整数;则该被测光信号在该第i个光载波的中心频率f Ci处的功率满足:
Figure PCTCN2021095345-appb-000002
其中,P Pi为该第i个调制频率对应的调顶功率,A Ci为该第i个光载波的强度,a i为该第i个调制频率对应的调顶深度。
又一方面,提供了一种光信号的功率检测系统,该功率检测系统包括:梳状光源,相干接收机和功率检测电路;该梳状光源,用于发射本振光信号,该本振光信号包括N个光载波,该N个光载波中至少两个光载波的中心频率不同,N为大于1的整数;该相干接收机,用于对被测光信号和该本振光信号进行相干混合,得到混合光信号,以及将该混合光信号发送至该功率检测电路;该功率检测电路,用于对该混合光信号进行滤波,根据滤波后的混合光信号,确定该被测光信号在每个光载波的中心频率处的功率。其中,该每个光载波的中心频率可以均位于该被测光信号的频谱范围内。
可选地,该功率检测电路还可以用于:调整该梳状光源发射的该本振光信号中每个光载波的中心频率,使每个光载波的中心频率在对应的一个频谱范围内变化,且不同光载波的中心频率对应的频谱范围不同。
可选地,该被测光信号可以为波分复用信号,该波分复用信号包括N个业务光信号,各个业务光信号的频谱宽度相同,且波长互不相同;其中,每个业务光信号为经过调顶得到的信号,不同业务光信号的调制频率不同;该功率检测电路,可以用于按照目标频率间隔,调整每个光载波的中心频率,使每个光载波的中心频率在一个业务光信号的频谱范围内变化;其中,该目标频率间隔小于该业务光信号的频谱宽度。
可选地,该被测光信号可以为波分复用信号,该波分复用信号包括多个业务光信号,该多个业务光信号的波长互不相同,且该多个业务光信号中至少两个业务光信号的频谱宽度不同,每个业务光信号包括至少一个切片信号,每个切片信号为经过调顶得到的信号,不同切片信号的调制频率不同,且不同切片信号的频谱宽度相同,N为该波分复用信号包括的切片信号的总数;该功率检测电路,可以用于按照目标频率间隔,调整每个光载波的中心频率,使每个光载波的中心频率在一个切片信号的频谱范围内变化;其中,该目标频率间隔小于该切片信号的频谱宽度。
可选地,每个光载波为经过调顶得到的信号,且不同光载波的调制频率不同;该功率检测电路,可以用于按照目标频率间隔,调整每个光载波的中心频率,该目标频率间隔小于相邻两个光载波的中心频率的频率差。
可选地,该混合光信号包括四个分量,该四个分量分别为第一偏振分量的正交分量、第一偏振分量的同相分量、第二偏振分量的正交分量以及第二偏振分量的同相分量;该功率检测电路可以包括:低通滤波器、运算器、梳状滤波器以及功率检测子电路;其中,该低通滤波器,用于分别对该四个分量进行低通滤波;该运算器,用于确定低通滤波后的该四个分量的功率;该梳状滤波器,用于对该四个分量的功率进行梳状滤波,其中,该梳状滤波器的通带的数量大于或等于N,每个通带的中心频率等于一个调制频率;该功率检测子电路,用于确定梳状滤波后的该四个分量的功率在每个调制频率处的功率,得到每个调制频率对应的调顶功率,以及根据每个调制频率对应的调顶功率、该调制频率对应的光载波的强度,以及该调制频率对应的调顶深度,确定该被测光信号在该光载波的中心频率处的功率。
可选地,N个调制频率中的第i个调制频率与N个光载波中的第i个光载波对应,i为不大于N的正整数;则该被测光信号在该第i个光载波的中心频率f Ci处的功率满足:
Figure PCTCN2021095345-appb-000003
其中,P Pi为该第i个调制频率对应的调顶功率,A Ci为该第i个光载波的强度,a i为该第i个 调制频率对应的调顶深度。
可选地,该梳状光源可以包括一个频率梳光源;或者,该梳状光源包括合波器,以及波段互不相同的多个频率梳光源,该合波器用于对该多个频率梳光源发射的光载波进行合波得到本振光信号。
对于待检测的被测光信号占用的波段较窄的场景,该梳状光源可以仅包括一个频率梳光源,以降低该梳状光源的成本和体积。对于待检测的被测光信号占用的波段较宽的场景,该梳状光源可以包括多个频率梳光源,以覆盖该被测光信号所占用的波段,进而实现对该被测光信号的功率的有效检测。
再一方面,提供了一种光通信系统,该系统包括:如上述方面提供的光信号的功率检测系统,第一光收发设备,第二光收发设备,以及连接在该第一光收发设备和该第二光收发设备之间的至少一个光放大器;
该功率检测系统中的相干接收机与目标器件连接,该目标器件包括该至少一个光放大器、该第一光收发设备和该第二光收发设备中的至少一个,该相干接收机用于接收该目标器件发射的被测光信号。
可选地,该光通信系统可以包括多个光信号的功率检测系统。
再一方面,提供了一种光信号的功率检测方法,该方法可以应用于上述方面所提供的功率检测电路,该方法包括:接收对被测光信号和本振光信号进行相干混合得到的混合光信号,然后对该混合光信号进行滤波,再根据滤波后的混合光信号,确定该被测光信号在每个光载波的中心频率处的功率;其中,该本振光信号包括N个光载波,该N个光载波中至少两个光载波的中心频率不同,N为大于1的整数。
可选地,该方法还可以包括:调整该本振光信号中每个光载波的中心频率,使每个光载波的中心频率在一个频谱范围内变化,且不同光载波的中心频率在不同的频谱范围内变化。
可选地,该被测光信号为波分复用信号,该波分复用信号包括N个业务光信号,该N个业务光信号的频谱宽度相同,每个业务光信号为经过调顶得到的信号,且不同业务光信号的调制频率不同;相应的,调整该本振光信号中每个光载波的中心频率的过程可以包括:按照目标频率间隔,调整该本振光信号中每个光载波的中心频率,使每个光载波的中心频率在一个业务光信号的频谱范围内变化;其中,该目标频率间隔小于该业务光信号的频谱宽度。
可选地,该被测光信号为波分复用信号,该波分复用信号包括多个的业务光信号中至少两个业务光信号的频谱宽度不同,每个业务光信号包括至少一个切片信号,每个切片信号为经过调顶得到的信号,不同切片信号的调制频率不同,且不同切片信号的频谱宽度相同,N为该波分复用信号包括的切片信号的总数;相应的,调整该本振光信号中每个光载波的中心频率的过程可以包括:按照目标频率间隔,调整每个光载波的中心频率,使每个光载波的中心频率在一个切片信号的频谱范围内变化;其中,该目标频率间隔小于该切片信号的频谱宽度。
可选地,每个光载波为经过调顶得到的信号,且不同光载波的调制频率不同;调整该本振光信号中每个光载波的中心频率的过程可以包括:按照目标频率间隔,调整每个光载波的中心频率,该目标频率间隔小于相邻两个光载波的中心频率的频率差。
可选地,该混合光信号包括四个分量,该四个分量分别为第一偏振分量的正交分量、第一偏振分量的同相分量、第二偏振分量的正交分量以及第二偏振分量的同相分量;对该混合光信号进行滤波可以包括:分别对该四个分量进行低通滤波;根据滤波后的该混合光信号,确定每个业务光信号在一个光载波的中心频率处的功率的过程可以包括:确定低通滤波后的 四个分量的功率;通过梳状滤波器对该四个分量的功率进行梳状滤波,其中,该梳状滤波器具有多个通带,每个通带的中心频率等于一个调制频率;确定梳状滤波后的该四个分量的功率在每个调制频率处的功率,得到每个调制频率对应的调顶功率;根据每个调制频率对应的调顶功率、该调制频率对应的光载波的强度,以及该调制频率对应的调顶深度,确定该被测光信号在该光载波的中心频率处的功率。
可选地,第i个调制频率与第i个光载波对应,i为不大于N的正整数;该被测光信号在第i个光载波的中心频率f Ci处的功率满足:
Figure PCTCN2021095345-appb-000004
其中,P Pi为第i个调制频率对应的调顶功率,A Ci为第i个光载波的强度,a i为第i个调制频率对应的调顶深度。
上述方面所提供的光信号的功率检测设备、系统以及方法中任一种设计方式所带来的技术效果可参见前述光信号的功率检测电路中相应设计方式所带来的技术效果,此处不再赘述。
再一方面,提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时,用于实现如上述方面提供的光信号的功率检测方法。
再一方面,提供了一种功率检测电路,该功率检测电路可以包括:存储器,处理器及存储在该存储器上并可在该处理器上运行的计算机程序,该处理器执行该计算机程序时实现如上述方面所提供的光信号的功率检测方法。
再一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行如上述方面所提供的光信号的功率检测方法。
再一方面,提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如上述方面所提供的光信号的功率检测方法。
综上所述,本申请提供了一种光信号的功率检测电路、系统、方法以及芯片,该功率检测电路接收到的混合光信号是对被测光信号和本振光信号进行相干混合得到的,且该本振光信号中包括N个光载波,该N个光载波中至少两个光载波的中心频率不同。基于该混合光信号,即可实现对该被测光信号在至少两个不同频点处的功率的并行检测,从而有效提高了功率检测的效率。并且,该功率检测电路还可以在每个光载波对应的一个频谱范围内调整该光载波的中心频率,从而可以实现对被测光信号在每个频谱范围内的多个频点的功率的检测,由此可以有效提高对被测光信号的功率检测精度,实现对被测光信号的谱形检测。
附图说明
图1是本申请实施例提供的一种光通信系统的结构示意图;
图2是本申请实施例提供的一种光信号的功率检测系统的结构示意图;
图3是本申请实施例提供的一种被测光信号和本振光信号的频谱示意图;
图4是本申请实施例提供的一种切分信号的示意图;
图5是本申请实施例提供的一种对业务光信号进行切片调顶的示意图;
图6是本申请实施例提供的一种调整光载波的中心频率的示意图;
图7是本申请实施例提供的另一种光信号的功率检测系统的结构示意图;
图8是本申请实施例提供的再一种光信号的功率检测系统的结构示意图;
图9是本申请实施例提供的再一种光信号的功率检测系统的结构示意图;
图10是本申请实施例提供的再一种光信号的功率检测系统的结构示意图;
图11是本申请实施例提供的一种光信号的功率检测方法的流程图;
图12是本申请实施例提供的一种确定被测光信号在光载波的中心频率处的功率的方法流 程图;
图13是本申请实施例提供的一种功率检测电路的结构示意图。
具体实施方式
下面结合附图详细介绍本申请实施例提供的光信号的功率检测电路、系统、方法以及芯片。
随着光信号传输速率的提升,以及光交换维度的增加,光通信系统的结构也变得越来越复杂,对光信号损伤的容忍度也随之降低。在波分复用(wavelength division multiplexing,WDM)系统中,例如密集型WDM(dense WDM,DWDM)系统中,需要对每个通道的功率、中心波长以及信号谱形进行监测,以判断各通道是否正常,是否会相互影响,以及确定通信链路中具有滤波特性的器件是否会带来的滤波损伤。其中,具有滤波特性的器件可以包括波长选择开关(wavelength selective switch,WSS),波分复用器和阵列波导光栅(arrayed waveguide grating,AWG)等。
并且,随着光交叉连接器(optical cross-connect,OXC)的大规模使用,监测WDM系统中各通道的参数的需求越来越强烈。基于实时监测出的参数,结合OXC对通道参数的调整能力,可以实现通信链路性能的实时优化。
本申请实施例提供了一种光信号的功率检测系统及方法、光通信系统、芯片,可以实现对光通信系统(例如WDM系统或DWDM系统)中各通道的业务光信号的功率的检测。
图1是本申请实施例提供的一种光通信系统的结构示意图。如图1所示,该光通信系统可以包括:光信号的功率检测系统000,第一光收发设备100,第二光收发设备200,以及连接在该第一光收发设备100和该第二光收发设备200之间的至少一个光放大器(optical amplifier,OA)。例如,图1中示出了三个OA。其中每个光收发设备与OA之间,以及各个OA之间均可以通过光纤300连接。
第一光收发设备100可以用于发射被测光信号,该至少一个OA用于将该被测光信号放大后传输至第二光收发设备200。其中,该被测光信号可以为波分复用信号,该波分复用信号包括波长互不相同的多个业务光信号。或者,该被测光信号也可以为单一波长的信号。
在本申请实施例中,该光信号的功率检测系统000可以与目标器件连接,该目标器件可以包括该至少一个OA、该第一光收发设备10和第二光收发设备200中的至少一个。也即是,该光信号的功率检测系统000所连接的目标器件可以仅包括一个器件,也可以包括多个器件。该功率检测系统000可以接收该目标器件发射的被测光信号,并对该被测光信号的功率进行检测。该光信号的功率检测系统000也可以称为光功率检测(optical power monitor,OPM)系统。
本申请实施例提供的光通信系统中可以包括一个或多个光信号的功率检测系统000。例如,图1所示的光通信系统包括三个光信号的功率检测系统000,其中每个光信号的功率检测系统000与一个OA连接。
可选地,如图1所示,该第一光收发设备100和第二光收发设备200中的每个光收发设备均可以包括:多个光信号收发单元(optical transponder unit,OTU),上下波长选择开关(add drop wavelength selective switch,AD WSS),以及至少一个波长选择开关(wavelength selective switch,WSS)。例如,图1中示出了两个WSS。其中,每个OUT用于发射和接收一个波长的业务光信号,且各个OUT发射(或接收)的业务光信号的波长不同。其中,该AD WSS用于实现各个业务光信号的上下波,即该AD WSS可以用于对上行的各个业务光信号进行合波, 以及用于对下行的波分复用信号进行分波。该WSS用于实现波分复用信号的路由。
本申请实施例提供了一种光信号的功率检测系统,该光信号的功率检测系统000可以应用于如图1所示的光通信系统中。如图2所示,该功率检测系统可以包括:光信号的功率检测设备00以及梳状光源10。
其中,该梳状光源10,用于发射本振光信号LO。该本振光信号LO包括N个光载波,该N个光载波中至少两个光载波的中心频率不同,且N为大于1的整数。例如,该本振光信号LO包括的N个光载波的中心频率各不相同。
如图2所示,该光信号的功率检测设备00可以包括功率检测电路01和相干接收机02。
该相干接收机02,用于对被测光信号SI和该本振光信号LO进行相干混合,得到混合光信号,以及将该混合光信号传输至该功率检测电路01。其中,该被测光信号SI可以为波分复用信号,该波分复用信号包括波长互不相同的多个业务光信号。或者,该被测光信号SI也可以为单一波长的信号。
该功率检测电路01,用于接收该混合光信号,对该混合光信号进行滤波,以及根据滤波后的该混合光信号,确定该被测光信号在每个光载波的中心频率处的功率。其中,每个光载波的中心频率均位于该被测光信号的频谱范围内。
其中,功率检测电路01对混合光信号进行滤波后,可以滤出该被测光信号中与该本振光信号中各中心频率相同频率的分量,其余分量则均被滤除。由此,功率检测电路01即可根据该滤波后的混合光信号,确定出该被测光信号在每个光载波的中心频率处的功率。
由于该本振光信号中包括N个光载波,且该N个光载波中至少两个光载波的中心频率不同,因此,功率检测电路01接收到将该本振光信号与被测光信号进行相干混合得到的混合光信号后,即可实现对该被测光信号在至少两个不同频点处的功率的并行检测,从而有效提高了功率检测的效率。
可选地,本申请实施例提供的功率检测电路01可以独立于相干接收机02设置。或者,该功率检测电路01可以为集成电路(integrated circuit,IC),也可以称为集成芯片,且该功率检测电路01可以设置在该相干接收机02中。
在本申请实施例中,对于该被测光信号SI为波分复用信号的场景,该波分复用信号SI的波段可以为常规(conventional,C)波段(wavelength band),即该波分复用信号SI包括的各个业务光信号的波长范围为1530纳米(nm)至1565nm。
或者,该波分复用信号SI的波段可以为长(longer,L)波段,即该波分复用信号SI包括的各个业务光信号的波长范围为1565nm至1625nm。
又或者,该波分复用信号SI的波段可以为C+L波段,即该波分复用信号SI包括的各个业务光信号的波长范围为1530nm至1625nm。
可选地,该N个光载波的中心频率互不相同,该功率检测电路01还可以用于:调整该梳状光源10发射的该本振光信号LO中每个光载波的中心频率,使该每个光载波的中心频率能够在对应的一个频谱范围内变化,且不同光载波的中心频率所对应的频谱范围不同。其中,每个光载波的中心频率所对应的频谱范围均可以位于该被测光信号的频谱范围内。
例如,每个光载波的中心频率所对应的频谱范围内可以包括多个待检测的频点,该功率检测电路01可以调整光载波的中心频率,使得每个光载波的中心频率能够遍历对应的一个频谱范围内的多个频点。其中,每个频谱范围内的待检测的频点可以是功率检测电路01中预先存储的。
由于每个光载波的中心频率能够在对应的一个频谱范围内变化,因此能够在不增加光载波的个数N的前提下,有效增加对被测光信号进行功率检测时检测的频点的个数。也即是,可以实现对被测光信号的谱形的精确检测,有效提高了功率检测的精度。
作为一种可选地实现方式,如图3所示,该被测光信号SI为波分复用信号,该波分复用信号SI包括频谱宽度Δf BW相同,但波长互不相同的N个业务光信号。也即是,该本振光信号LO包括的光载波的个数N,等于该波分复用信号SI所包括的业务光信号的个数。该N个光载波可以与该N个业务光信号一一对应。该波分复用信号SI包括的每个业务光信号均为经过调顶(pilot tone modulation)得到的信号,且不同的业务光信号的调制频率不同。
在上述实现方式中,该功率检测电路01可以用于按照目标频率间隔Δf Step,调整每个光载波的中心频率,使每个光载波的中心频率能够在对应的一个业务光信号的频谱范围内变化。其中,该目标频率间隔Δf Step小于该业务光信号的频谱宽度Δf BW。由于不同波长的业务光信号的频谱宽度Δf BW相同,使得功率检测电路01可以按照固定的目标频率间隔Δf Step调整各个光载波的中心频率,从而有效简化了频率调整的操作。
示例的,参考图3,假设波分复用信号SI包括CH1至CHN共N个通道的业务光信号,则该梳状光源10发射的本振光信号LO可以包括与该N个业务光信号一一对应的N个光载波。每个光载波的中心频率位于对应的一个业务光信号的频谱范围内,且能够在该频谱范围内变化。例如,第一个光载波的中心频率f c1能够在第一个业务光信号CH1的频谱范围内变化。第N个光载波的中心频率f cN能够在第N个业务光信号CHN的频谱范围内变化。
可选地,在上述实现方式中,相邻两个光载波的中心频率的频率差可以等于该业务光信号的频谱宽度Δf BW。例如图3中,第一个光载波的中心频率f C1与第二个光载波的中心频率的f C2的频率差等于Δf BW。其中,图3中为了示意清楚,将各个业务光信号的频谱间隔绘制,在实际应用中,相邻业务光信号的频谱会部分重叠。
作为另一种可选地实现方式,被测光信号SI为波分复用信号,该波分复用信号SI包括多个波长互不相同的业务光信号,且该多个业务光信号中至少两个业务光信号的频谱宽度不同。其中,每个业务光信号可以包括至少一个切片信号,且每个切片信号为经过调顶得到的信号。该N个切片信号的频谱宽度相同,且不同切片信号的调制频率不同,即任意两个切片信号的调制频率不同。在该实现方式中,N为该波分复用信号SI包括的切片信号的总数,相应的,该N个光载波可以与该N个切片信号一一对应。
可选地,切片信号的频谱宽度可以是根据各个业务光信号的频谱宽度确定的,且切片信号的频谱宽度不大于任一业务光信号的频谱宽度。例如,该切片信号的频谱宽度可以为各个业务光信号的频谱宽度的最大公约数。如图5所示,若该波分复用信号SI中的第n个通道的业务光信号CNn的频谱宽度为该最大公约数的三倍,则该业务光信号CNn可以被划分为三个频谱宽度相同的切片信号CHn1,CHn2和CHn3。并且,该三个切片信号为采用不同调制频率进行调顶得到的信号。其中,n为正整数,且n不大于波分复用信号SI包括的业务光信号的个数。
示例的,假设该波分复用信号SI包括的多个业务光信号中,部分业务光信号的频谱宽度为50吉赫兹(GHz),部分业务光信号的频谱宽度为75GHz,部分业务光信号的频谱宽度为100GHz,则该切分信号的频谱宽度可以为25GHz。相应的,每个频谱宽度为50GHz的业务光信号可以被切分为两个25GHz的切片信号,每个频谱宽度为75GHz的业务光信号可以被切分为三个25GHz的切片信号,每个频谱宽度为100GHz的业务光信号可以被切分为四个25GHz的切片信号。
在上述实现方式中,该功率检测电路01,用于按照目标频率间隔,调整每个光载波的中 心频率,使每个光载波的中心频率能够在对应于的一个切片信号的频谱范围内变化。其中,该目标频率间隔小于该切片信号的频谱宽度。
在波分复用信号SI包括的各个业务光信号的频谱宽度不完全相同的场景中,本申请实施例提供的方案可以在对业务电信号进行电光调制以生成业务光信号的过程中,对业务电信号进行切片和调顶,使得最终生成的业务光信号包括多个频谱宽度相同的切片信号。由于各个切片信号的频谱宽度相同,因此可以按照相同的频率间隔(即目标频率间隔)统一调整该N个光载波的中心频率,以实现对N个切片信号的功率的并行检测,从而有效简化了调整多个光载波的中心频率时的复杂度。
在本申请实施例中,对业务电信号进行切片,再对切片后的电信号进行调顶的过程也可以称为切片调顶。对业务电信号进行切片调顶以生成业务光信号的实现过程可以参考图5。如图5所示,需要先对时域的业务电信号进行快速傅里叶变换(fast Fourier transform,FFT),以将该业务电信号变换到频域。然后再对该频域的业务电信号进行切片得到多个切片。例如,如图5所示,假设待生成的业务光信号的频谱宽度为各个业务光信号的频谱宽度的最大公约数的L倍(L为大于1的整数),则可以将该频域的业务电信号切分为L个切片。之后,对每一个切片分别进行快速傅里叶逆变换(inverse FFT,IFFT),以将每个切片变换到时域。然后,对于每个切片,可以通过乘法器将该切片与对应的调顶系数相乘,以实现对该切片的调顶。其中,对该L个切片中的第l个切片进行调顶时采用的调顶系数k l可以满足:a l·cos(2π·f Pl·t)+(1-a l)。其中,a l为对第l个切片进行调顶时的调顶深度,f Pl为对第l个切片进行调顶时的调制频率,l为不大于L的正整数。
进一步的,可以通过加法器将调顶后的L个切片叠加,将叠加后的切片通过数模转换器(digital-to-analog converter,DAC)转换为模拟信号,并将该模拟信号输出至光调制器。最后,光调制器可以采用一个业务光载波对该模拟信号进行调制,从而生成一个业务光信号。例如,参考图5,假设待生成的业务光信号为第n个通道的业务光信号,则光调制器可以采用中心频率为f Sn的业务光载波对该模拟信号进行调制,从而得到中心频率为f Sn的业务光信号。
作为再一种可选的实现方式,该本振光信号包括的N个光载波中,每个光载波均为经过调顶得到的信号,且不同光载波的调制频率不同。在该实现方式中,该功率检测电路01,可以用于按照目标频率间隔,调整每个光载波的中心频率,使得每个光载波的中心频率能够在对应的一个频谱范围内变化。其中,每个光载波的中心频率所对应的频谱范围的宽度可以等于相邻两个光载波的中心频率的频率差。相应的,该目标频率间隔小于相邻两个光载波的中心频率的频率差。
在该实现方式中,该本振光信号包括的光载波的个数N与该被测光信号的类型无关。也即是,若该被测光信号为波分复用信号,则该光载波的个数N与该波分复用信号包括的业务光信号的个数无关。并且,每个光载波的中心频率所对应的频谱范围也与任一业务光信号的频谱范围无关,仅需保证该N个光载波的中心频率所对应的频谱范围的集合,能够覆盖该被测光信号的频谱范围即可。由于功率检测电路01可以按照固定的目标频率间隔调整各个光载波的中心频率,从而有效简化了频率调整的操作。
并且,上述对光载波进行调顶的实现方式,还可以降低对待检测的被测光信号的要求。例如,若该被测光信号为波分复用信号,则即使该波分复用信号包括的各业务光信号未经过调顶,或者各业务光信号的频谱宽度不同,也可以基于调顶后的光载波实现对各业务光信号的功率的有效检测。
基于上述例举的各个实现方式可知,本申请实施例提供的方案可以对N个业务光信号分别 进行调顶,或者可以分别对N个切片信号进行调顶,又或者,还可以分别对N个光载波进行调顶。该调顶是一种信号调制技术,其能够在信号发射端,在每个波长的光信号的顶部均叠加一小幅度的低频正弦信号或低频余弦信号作为该光信号的标识。该低频正弦信号或低频余弦信号的频率即为调顶的调制频率,且对不同光信号进行调顶时采用的调制频率不同。功率检测电路01进而可以基于该调制频率判别不同波长的光信号,并检测不同光信号的功率。
例如,假设该被测光信号为包括N个业务光信号的波分复用信号,且每个业务光信号均为经过调顶的信号,则经过调顶后的第i个业务光信号的强度随时间t变化的公式可以为:
Figure PCTCN2021095345-appb-000005
其中,a i为第i个业务光信号的调顶深度,其取值范围一般为0.01<a i<0.1。对各个业务光信号的调顶深度可以相同,也可以不同。A Si为第i个业务光信号的强度,f Si为第i个业务光信号的中心频率,
Figure PCTCN2021095345-appb-000006
为第i个业务光信号的相位,且该相位为时变量。f Pi为对第i个业务光信号进行调顶时所采用的调制频率。j为虚数单位。由于对不同业务光信号进行调顶时采用的调制频率不同,因此当i≠k时,f Pi≠f Pk。其中,i和k均为不大于N的正整数。
该波长互不相同的N个业务光信号合波后得到的波分复用信号的强度随时间t变化的公式为:
Figure PCTCN2021095345-appb-000007
基于该公式可知,该波分复用信号的强度等于该N个业务光信号的强度之和。
可选地,在本申请实施例中,该功率检测电路01可以按照中心频率由低到高的顺序,调整该梳状光源发射的本振光信号中每个光载波的中心频率,进而使得该中心频率能够遍历对应的一个频谱范围内的多个待检测的频点。
在该调整方式中,每个光载波的中心频率的初始值,可以等于对应的一个频谱范围的中心频率与该频谱范围的宽度的一半的差值。假设被测光信号为波分复用信号,该波分复用信号包括N个频谱宽度均为Δf BW的业务光信号,且每个光载波的中心频率对应一个业务光信号的频谱范围,则第i个光载波的中心频率的初始值f Ci-0可以满足:
f Ci-0=f Si-Δf BW/2;
其中,f Si表示第i个业务光信号的中心频率,i为不大于N的正整数。
如图6所示,假设每个业务光信号的频谱范围内均包括M+1个待检测的频点,其中M为正整数。则该功率检测电路01可以从每个光载波的中心频率的初始值开始,按照目标频率间隔Δf Step将每个光载波的中心频率调整M次,从而使每个光载波的中心频率能够遍历该M+1个待检测的频点。由于该M+1个待检测的频点均位于业务光信号的频谱范围内,因此该目标频率间隔Δf Step和每个业务光信号的频谱宽度Δf BW可以满足如下关系式:Δf BW≤M×Δf Step
示例的,对于第一个光载波,功率检测电路01可以先设置该第一个光载波的中心频率f C1-0为:f C1-0=f S1-Δf BW/2。之后,功率检测电路01能够以目标频率间隔Δf Step为步长,逐步增大该第一个光载波的中心频率。其中,功率检测电路第m次调整该第一个光载波的中心频率后,该第一个光载波的中心频率为f C1-m=f C1-0+m×Δf Step。该m为不大于M的正整数。
或者,该功率检测电路01还可以按照中心频率由高到低的顺序,调整该梳状光源发射的本振光信号中每个光载波的中心频率,进而使得该中心频率能够遍历对应的一个频谱范围内的多个待检测的频点。
在该调整方式中,每个光载波的中心频率的初始值,可以等于对应的一个频谱范围的中心频率与该频谱范围的宽度的一半之和。假设被测光信号为波分复用信号,该波分复用信号包括N个频谱宽度均为Δf BW的业务光信号,且每个光载波的中心频率对应一个业务光信号的频谱范围,则第i个光载波的中心频率的初始值f Ci-0可以满足:f Ci-0=f Si+Δf BW/2。
当然,该功率检测电路01也可以按照其他顺序调整该本振光信号中每个光载波的中心频 率,只要使得该中心频率能够遍历对应的一个频谱范围内的多个待检测的频点即可。
在本申请实施例中,该相干接收机02输出的混合光信号可以包括四个分量,该四个分量分别为第一偏振分量的同相分量I x、第一偏振分量的正交分量Q x、第二偏振分量的同相分量I y以及第二偏振分量的正交分量Q y
可选地,如图7所示,该功率检测电路01可以包括:低通滤波器011、运算器012、梳状滤波器013以及功率检测子电路014。
该低通滤波器011,用于分别对该四个分量进行低通滤波。由于能够对四个分量分别进行低通滤波,因此该低通滤波器011也可以称为四通道低通滤波器。该低通滤波器011对四个分量进行低通滤波后,可以使得该被测光信号中与该本振光信号中各中心频率相同频率的分量被滤出,其余分量则均被滤除。由于在本申请实施例中,调顶信号的中心频率均为低频,小于低通滤波器时的截止频率,因此该低通滤波的操作对调顶无影响。
该低通滤波器011对该四个分量I x、Q x、I y以及Q y进行低通滤波后,该四个分量可以分别表示为:
Figure PCTCN2021095345-appb-000008
其中,I x-LP(t)为低通滤波后的分量I x,Q x-LP(t)为低通滤波后的分量Q x,I y-LP(t)为低通滤波后的分量I y,Q y-LP(t)为低通滤波后的分量Q y。f Pi表示对第i个光信号(该光信号可以为业务光信号、切片信号或光载波)进行调顶时采用的调制频率,即第i个调制频率。a i表示对该第i个光信号进行调顶时的调顶深度,即第i个调制深度,不同光信号的调顶深度可以相同,也可以不同。A Si-x(f Ci)表示被测光信号中频率为f Ci(即第i个光载波的中心频率)的频率分量的x偏振分量的强度,A Si-y(f Ci)表示被测光信号中频率为f Ci的频率分量的y偏振分量的强度。
Figure PCTCN2021095345-appb-000009
表示被测光信号中频率为f Ci的频率分量的x偏振分量的相位,
Figure PCTCN2021095345-appb-000010
表示被测光信号中频率为f Ci的频率分量的y偏振分量的相位。
该运算器012,用于确定低通滤波后的该四个分量的功率。例如,该运算器012可以先确定低通滤波后的每个分量的平方,然后再对该四个分量的平方进行求和,从而得到该四个分量的功率。也即是,该四个分量的功率是指该四个分量的总功率。该运算器012也可以称为平方和运算器。低通滤波后的该四个分量的功率随时间t变化的公式可以表示为:
Figure PCTCN2021095345-appb-000011
其中,
Figure PCTCN2021095345-appb-000012
Figure PCTCN2021095345-appb-000013
Figure PCTCN2021095345-appb-000014
Figure PCTCN2021095345-appb-000015
上述表达式中,k为不大于N的正整数,且k≠i。f Ck为第k个光载波的中心频率。由于
Figure PCTCN2021095345-appb-000016
Figure PCTCN2021095345-appb-000017
均是随机的,故该功率的表达式中的第二项和第三项均可以理解为随机噪声。
该梳状滤波器013,用于对该四个分量的功率进行梳状滤波。其中,该梳状滤波器013的通带的数量可以大于或等于N,且每个通带的中心频率等于一个调制频率。也即是,该梳状 滤波器013的至少N个通带的中心频率分别为f P1、f P2...f PN。采用该梳状滤波器013对该四个分量的功率进行梳状滤波后,即可滤除该功率中的随机噪声。该梳状滤波器013的输出可以表示为:
Figure PCTCN2021095345-appb-000018
该功率检测子电路014,用于确定梳状滤波后的该四个分量的功率在每个调制频率处的功率,得到每个调制频率对应的调顶功率,以及根据每个调制频率对应的调顶功率、该调制频率对应的光载波的强度,以及该调制频率对应的调顶深度,确定该被测光信号在该光载波的中心频率处的功率。该被测光信号在该光载波的中心频率处的功率,与该调顶功率正相关,与该光载波的强度以及该调顶深度均负相关。
其中,在被测光信号为波分复用信号,且对该波分复用信号包括的N个业务光信号分别进行调顶的场景,调制频率对应的光载波是指:中心频率在采用该调制频率调顶的业务光信号的频谱范围内变化的光载波。例如,假设第i个光载波的中心频率在第i个业务光信号的频谱范围内变化,且对该第i个业务光信号进行调顶时采用的调制频率为f Pi,则该调制频率f Pi对应的光载波即为该第i个光载波。
在被测光信号为波分复用信号,且对该波分复用信号包括的N个切片信号分别进行调顶的场景,调制频率对应的光载波是指:中心频率在采用该调制频率调顶的切片信号的频谱范围内变化的光载波。例如,假设第i个光载波的中心频率在第i个切片信号的频谱范围内变化,且对该第i个切片信号进行调顶时采用的调制频率为f Pi,则该调制频率f Pi对应的光载波即为该第i个光载波。
在对N个光载波分别进行调顶的场景,调制频率对应的光载波是指:采用该调制频率调顶的光载波。例如,假设对第i个光载波进行调顶时采用的调制频率为f Pi,则该调制频率f Pi对应的光载波即为该第i个光载波。
可选地,如图7所示,该功率检测子电路014可以包括:功率检测模块0141、谱形恢复模块0142以及控制器0143。其中,该功率检测模块0141的输入端与该梳状滤波器013的输出端连接,该功率检测模块0141能够先对梳状滤波后的该四个分量的功率做FFT变换,以将该梳状滤波后的功率转换至频域。之后,该功率检测模块0141即可检测出频域上频率分别为f P1、f P2...f PN处的功率,即检测出频域上每个调制频率处的功率。其中,每个调制频率处的功率即为该调制频率对应的调顶功率。该功率检测模块0141检测出的N个调顶功率分别为P P1、P P2...P PN。该N个调顶功率中的第i个调顶功率P Pi可以表示为:
Figure PCTCN2021095345-appb-000019
该谱形恢复模块0142可以从控制器0143中获取梳状光源10输出的本振光信号中N个光载波的中心频率f C1、f C2...f CN,以及该N个光载波的强度A C1、A C2...A CN。并且,该谱形恢复模块0142可以根据获取到的光载波的中心频率和强度,对该功率检测模块0141输出的N个调顶功率P P1、P P2...P PN分别进行计算,从而得到被测光信号在每个光载波的中心频率处出的功率。例如,该谱形恢复模块0142采用第i个调制频率对应的调顶深度a i以及该第i个光载波的强度A Ci,对该第i个调顶功率P Pi进行计算,即可得到被测光信号在该第i光载波的中心频率f Ci处出的功率P S(f Ci):
Figure PCTCN2021095345-appb-000020
该谱形恢复模块0142基于上述方式确定出被测光信号在每个光载波的中心频率处的功率后,可以记录该N个光载波的中心频率f C1、f C2...f CN,与该N个功率P S(f C1)、P S(f C2)、...P S(f CN)的对应关系。例如,该谱形恢复模块0142可以生成二维数组以记录上述中心频率与功率的对 应关系。
图8是本申请实施例提供的再一种功率检测系统的结构示意图,结合图7和图8可以看出,该功率检测电路01中的运算器012、该梳状滤波器013和该功率检测子电路014可以均集成在微处理器中。例如,参考图8,该微处理器可以为微控制单元(micro controller unit,MCU)。
可选地,如图8所示,该功率检测设备还可以包括模数转换器(analog-to-digital converter,ADC)03和存储器04。其中,该ADC 03分别与该低通滤波器011和该MCU连接,用于对该低通滤波器011输出的各个分量进行模数转换,并将模数转换后的数据传输至该MCU。该存储器04可以用于存储梳状光源10发射的本振光中各个光载波的中心频率和强度,以及各个光载波与各个业务光信号的对应关系。
在本申请实施例中,该存储器04可以独立于该MCU设置,或者,也可以集成在该MCU中,即该存储器04可以为MCU的内部存储器。
可选地,在本申请实施例中,该低通滤波器011、该运算器012、该ADC 03、该梳状滤波器013以及该功率检测子电路014也可以均集成在微处理器中。即该功率检测电路01可以为集成电路。例如,该功率检测电路01可以为数字信号处理器(digital signal processor,DSP)。
在本申请实施例中,如图8所示,该梳状光源10可以包括一个可调频率的频率梳光源101。或者,如图9所示,该梳状光源10可以包括波段互不相同的多个频率梳光源101,以及合波器102。例如,图9中示出了两个频率梳光源101。该合波器102用于对该多个频率梳光源101发射的不同波段的光载波进行合波,得到该本振光信号。
可选地,若被测光信号所占用的波段较窄,则该梳状光源10可以仅包括一个可调频率的频率梳光源101,以降低该梳状光源10的成本和体积。例如,若该被测光信号的波长属于C波段,则该梳状光源10可以包括一个C波段的频率梳光源101。若该被测光信号的波长属于L波段,则该梳状光源10可以包括一个L波段的频率梳光源101。
若被测光信号所占用的波段较宽,则该梳状光源10可以包括波段互不相同的多个频率梳光源101,以覆盖该被测光信号所占用的波段,进而实现对该被测光信号的功率的有效检测。例如,若该被测光信号占用了C波段和L波段,则如图9所示,该梳状光源10可以包括一个C波段的频率梳光源101和一个L波段的频率梳光源101。
图10是本申请实施例提供的再一种功率检测系统的结构示意图。对于该N个光载波为调顶后的信号的场景,如图10所示,该梳状光源10可以包括至少一个频率梳光源101,以及调顶电路103。图10中仅示意性示出了一个频率梳光源101。其中,该调顶电路103用于对该至少一个频率梳光源101输出的每个光载波分别进行调顶。
可选地,如图10所示,该调顶电路103可以包括分波器1031、N个强度调制器1032以及合波器1033。该分波器1031用于对该至少一个频率梳光源101输出的N个光载波进行分波,以将每个光载波输出至一个强度调制器1032。每个强度调制器1032用于采用一个调制频率对接收到的一路光载波进行调顶,且不同强度调制器1032所采用的调制频率不同。该合波器1033用于对N个强度调制器1032输出的经过调顶的光载波进行合波,并将合波后的N个光载波(即本振光信号L0)输出至该相干接收机02。
本申请实施例提供的功率检测电路及系统,可以通过梳状光源输出的N个光载波,实现对被测光信号在该N个中心频率处的功率的并行检测。因此,有效缩短了功率检测所需的时长,提高了功率检测的效率。当被测光信号所占用的波段较宽,即频谱宽度较宽(例如达到100nm)时,本申请实施例提供的功率检测电路及系统的功率检测速度,能够满足对突发谱形事件的检测需求。
其中,该突发谱形事件是指业务光信号的频谱在较短的时间内发生变化后又恢复正常。由于该突发谱形事件的持续时长较短,因此若功率检测系统的功率检测速度较慢,则无法有效检测到该突发谱形事件。
例如,若被测光信号为波分复用信号,且该波分复用信号包括波长互不相同的N(N可以为100或者200)个业务光信号,其中每个波长的业务光信号中存在M+1个待检测的频点。则采用本申请实施例提供的功率检测系统,需要重复M+1次功率检测流程即可完成对该N个业务光信号的功率检测。而采用相关技术中的方法,则需要重复N×(M+1)次功率检测流程才可以完成对该N个业务光信号的功率检测。由此可知,相比于相关技术中的功率检测方法,本申请实施例提供的功率检测电路及系统能够将功率检测速度提升N倍。
综上所述,本申请实施例提供了一种光信号的功率检测系统,该功率检测系统中的梳状光源输出的本振光信号中包括N个光载波,该N个光载波中至少两个光载波的中心频率不同。将该本振光信号与被测光信号进行相干混合后,即可实现对该被测光信号在至少两个不同频点处的功率的并行检测,从而有效提高了功率检测的效率。并且,该功率检测系统中的功率检测电路还可以在每个光载波对应的一个频谱范围内调整该光载波的中心频率,从而可以实现对被测光信号在每个频谱范围内的多个频点的功率的检测,由此可以有效提高对被测光信号的功率检测精度,实现对被测光信号的谱形检测。
本申请实施例还提供了一种光信号的功率检测方法,该方法可以应用于上述实施例所提供的光信号的功率检测电路01中。参考图11,该方法可以包括:
步骤201、接收混合光信号。
其中,该混合光信号是对被测光信号和本振光信号进行相干混合后得到的。该本振光信号包括N个光载波,该N个光载波中至少两个光载波的中心频率不同,N为大于1的整数。该被测光信号可以为包括波长互不相同的多个业务光信号的波分复用信号,或者也可以为单一波长的业务光信号。参考图1,该被测光信号是该光信号的功率检测系统000所连接的目标器件发射的。
参考图2,该光信号的功率检测系统包括相干接收机02,该相干接收机02可以用于对被测光信号和本振光信号进行相干混合,得到混合光信号,并将该混合光信号发送至该功率检测电路01。也即是,该功率检测电路01可以接收相干接收机02发送的混合光信号。
步骤202、对该混合光信号进行滤波。
对混合光信号进行滤波后,可以滤出该被测光信号中与该本振光信号中各中心频率相同频率的分量,其余分量则均被滤除。
步骤203、根据滤波后的该混合光信号,确定该被测光信号在每个光载波的中心频率处的功率。
由于该本振光信号包括N个光载波,且该N个光载波中至少两个光载波的中心频率不同,因此基于上述步骤201至步骤203的方法,可以实现对被测光信号在至少两个不同的中心频率处的功率的并行检测。
步骤204、检测该本振光信号中,每个光载波的中心频率是否遍历对应的一个频谱范围内的多个待检测的频点。
在本申请实施例中,该功率检测电路01还可以调整每个光载波的中心频率,使每个光载波的中心频率能够遍历对应的一个频谱范围内的多个待检测的频点。其中,不同光载波的中心频率对应的频谱范围不同。
若功率检测电路01检测到每个光载波的中心频率已遍历对应的一个频谱范围内的多个待检测的频点,则可以确定已完成对该被测光信号的功率检测,并结束操作。若功率检测电路01检测到每个光载波的中心频率还未遍历对应的一个频谱范围内的多个待检测的频点,则可以执行步骤205。
步骤205、在每个光载波对应的一个频谱范围内调整该光载波的中心频率。
若功率检测电路01检测到每个光载波的中心频率还未遍历对应的一个频谱范围内的多个待检测的频点,则功率检测电路01可以在每个光载波对应的一个频谱范围内调整该光载波的中心频率。之后,可以继续执行上述步骤201。也即是,在本申请实施例中,该光信号的功率检测电路01可以重复执行上述步骤201至步骤205,直至每个光载波的中心频率遍历对应的一个频谱范围内的多个待检测的频点。
示例的,假设每个光载波的中心频率对应的一个频谱范围内均包括M+1个待检测的频点,则该光信号的功率检测电路01可以将上述步骤201至步骤205重复执行M+1次,从而实现对被测光信号的谱形检测。
上述步骤201至步骤205的实现过程可以参考上文对该功率检测电路01的相关描述。
作为一种可选的实现方式,该被测光信号为波分复用信号,该波分复用信号包括频谱宽度相同,但波长互不相同的N个业务光信号。其中,每个业务光信号均为经过调顶得到的信号,且不同的业务光信号的调制频率不同。相应的,上述步骤205可以包括:
按照目标频率间隔,调整该本振光信号中每个光载波的中心频率,使每个光载波的中心频率在一个业务光信号的频谱范围内变化。其中,该目标频率间隔小于该业务光信号的频谱宽度。
作为另一种可选的实现方式,该被测光信号为波分复用信号,该波分复用信号包括多个波长互不相同的业务光信号,且该多个业务光信号中至少两个业务光信号的频谱宽度不同。其中,每个业务光信号包括至少一个切片信号,且每个切片信号为经过调顶得到的信号。该N个切片信号的频谱宽度相同,且不同切片信号的调制频率不同。在该实现方式中,N为该波分复用信号包括的切片信号的总数。相应的,上述步骤205可以包括:
按照目标频率间隔,调整每个光载波的中心频率,使每个光载波的中心频率在一个切片信号的频谱范围内变化。其中,该目标频率间隔小于该切片信号的频谱宽度。
作为再一种可选的实现方式,每个光载波为经过调顶得到的信号,且不同光载波的调制频率不同;相应的,上述步骤205可以包括:
按照目标频率间隔,调整每个光载波的中心频率,该目标频率间隔小于相邻两个光载波的中心频率的频率差。
可选地,该混合光信号包括四个分量,该四个分量分别为第一偏振分量的正交分量、第一偏振分量的同相分量、第二偏振分量的正交分量以及第二偏振分量的同相分量。
上述步骤202可以包括:分别对该四个分量进行低通滤波。参考图7,该功率检测电路01可以包括低通滤波器011,该低通滤波器011用于执行该步骤201和步骤202,因此该步骤201和步骤202的实现过程可以参考上文对该低通滤波器011的相关描述。
图12是本申请实施例提供的一种确定被测光信号在光载波的中心频率处的功率的方法流程图。如图12所示,上述步骤203可以包括:
步骤2031、确定低通滤波后的四个分量的功率。
在本申请实施例中,该功率检测电路01可以计算该低通滤波后的四个分量的平方和,作为该四个分量的功率。即该四个分量的功率是指该四个分量的总功率。参考图7,该功率检测 电路01还可以包括运算器012,该运算器012用于执行该步骤2031,因此该步骤2031的实现过程可以参考上文对运算器012的相关描述。
步骤2032、通过梳状滤波器对该四个分量的功率进行梳状滤波,该梳状滤波器具有多个通带,每个通带的中心频率等于一个调制频率。
通过梳状滤波器对该四个分量的功率进行梳状滤波后,可以滤除该功率中的随机噪声。该步骤2032的实现过程可以参考上文对梳状滤波器013的相关描述。
步骤2033、确定梳状滤波后的该四个分量的功率在每个调制频率处的功率,得到每个调制频率对应的调顶功率。
在本申请实施例中,可以先对梳状滤波后的该四个分量的功率做FFT变换,以将该梳状滤波后的功率转换至频域,之后,即可检测出频域上频率分别为f P1、f P2...f PN处的功率,即检测出频域上每个调制频率处的功率。参考图7,该功率检测电路01还包括功率检测子电路014,该功率检测子电路014包括功率检测模块0141。该步骤2033的实现过程可以参考上文对该功率检测模块0141的相关描述。
步骤2034、根据每个调制频率对应的调顶功率、该调制频率对应的光载波的强度,以及该调制频率对应的调顶深度,确定被测光信号在该光载波的中心频率处的功率。
该被测光信号在该光载波的中心频率处的功率,与该调顶功率正相关,与该光载波的强度以及该调顶深度均负相关。参考图7,该功率检测子电路014还包括谱形恢复模块0142。该步骤2034的实现过程可以参考上文对该谱形恢复模块0142的相关描述。
可选地,该N个调制频率中的第i个调制频率与N个光载波中的第i个光载波对应,则该被测光信号在该第i个光载波的中心频率f Ci处的功率满足:
Figure PCTCN2021095345-appb-000021
其中,P Pi为第i个调制频率对应的调顶功率,A Ci为该第i个光载波的强度,a i为第i个调制频率对应的调顶深度。
可选地,本申请实施例提供的光信号的功率检测方法的步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减。例如,上述步骤204和步骤205可以根据情况删除。任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
综上所述,本申请实施例提供了一种光信号的功率检测方法,该方法可以接收将本振光信号与被测光信号进行相干混合得到的混合光信号。由于该本振光信号包括的N个光载波中至少两个光载波的中心频率不同,因此基于该混合光信号可以实现对该被测光信号在至少两个不同频点处的功率的并行检测,有效提高了功率检测的效率。
并且,该方法还可以在每个光载波对应的一个频谱范围内调整该光载波的中心频率,从而可以实现对被测光信号在每个频谱范围内的多个频点的功率的检测,由此可以有效提高对被测光信号的功率检测精度,实现对被测光信号的谱形检测。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的光信号的功率检测方法的具体实现过程,可以参考前述光信号的功率检测系统以及功率检测电路实施例中的相关描述,在此不再赘述。
应理解的是,本申请实施例提供的光信号的功率检测电路还可以用专用集成电路(application-specific integrated circuit,ASIC)实现,或可编程逻辑器件(programmable logic device,PLD)实现,上述PLD可以是复杂程序逻辑器件(complex programmable logical device,CPLD),现场可编程门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic  array logic,GAL)或其任意组合。也可以通过软件实现上述方法实施例提供的功率检测方法,当通过软件实现上述方法实施例提供的功率检测方法时,该功率检测电路中的各个器件和子电路也可以为软件模块。
本申请实施例还提供了一种光通信系统,如图1所示,该系统包括:至少一个如上述实施例提供的光信号的功率检测系统000,第一光收发设备100,第二光收发设备200,以及连接在该第一光收发设备100和该第二光收发设备200之间的至少一个OA。
该功率检测系统000中的相干接收机02与目标器件连接,该目标器件包括该至少一个OA、该第一光收发设备100和该第二光收发设备200中的至少一个,该相干接收机02用于接收该目标器件发射的被测光信号。
可选地,该光通信系统可以为WDM或DWDM系统。
图13是本申请实施例提供的一种功率检测电路的结构示意图,该功率检测电路可以应用于上述实施例所提供的光信号的功率检测系统中。参考图13,该功率检测电路可以包括:处理器1301、存储器1302、收发器1303和总线1304。其中,总线1304用于连接处理器1301、存储器1302和收发器1303。通过收发器1303(可以是有线或者无线)可以实现与其他设备之间的通信连接。存储器1302中存储有计算机程序,该计算机程序用于实现各种应用功能。
应理解,在本申请实施例中,处理器1301可以是中央处理器(central processing unit,CPU),该处理器1301还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、GPU或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者是任何常规的处理器等。
存储器1302可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data date SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
总线1304除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线1304。
处理器1301被配置为执行存储器1302中存储的计算机程序。处理器1301通过执行该计算机程序来实现上述实施例提供的功率检测方法。例如,可以实现上述方法实施例中步骤201至步骤205所示的方法,以及步骤2031至步骤2034所示的方法。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该计算机可读存储介质在计算机上运行时,使得计算机实现如上述实施例提供的功率检测方法。例如,可以执行上述方法实施例中步骤201至步骤205所示的方法,以及步骤2031至步 骤2034所示的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机实现如上述实施例提供的功率检测方法。例如,可以执行上述方法实施例中步骤201至步骤205所示的方法,以及步骤2031至步骤2034所示的方法。
本申请实施例还提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时,用于实现如上述实施例提供的功率检测方法。例如,可以执行上述方法实施例中步骤201至步骤205所示的方法,以及步骤2031至步骤2034所示的方法。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘(solid state drive,SSD)。
应当理解的是,本文提及的“至少一个”是指一个或多个,“多个”是指两个或两个以上。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
以上所述,仅为本申请的可选实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种光信号的功率检测电路,其特征在于,所述功率检测电路,用于:
    接收混合光信号,所述混合光信号是对被测光信号和本振光信号进行相干混合得到的,所述本振光信号包括N个光载波,所述N个光载波中至少两个光载波的中心频率不同,N为大于1的整数;
    对所述混合光信号进行滤波,根据滤波后的所述混合光信号,确定所述被测光信号在每个所述光载波的中心频率处的功率。
  2. 根据权利要求1所述的功率检测电路,其特征在于,所述功率检测电路还用于:
    调整所述本振光信号中每个所述光载波的中心频率,使每个所述光载波的中心频率在对应的一个频谱范围内变化,且不同所述光载波的中心频率对应的频谱范围不同。
  3. 根据权利要求2所述的功率检测电路,其特征在于,所述被测光信号为波分复用信号,所述波分复用信号包括N个业务光信号,所述N个业务光信号的频谱宽度相同,每个所述业务光信号为经过调顶得到的信号,且不同所述业务光信号的调制频率不同;
    所述功率检测电路,用于按照目标频率间隔,调整每个所述光载波的中心频率,使每个所述光载波的中心频率在一个所述业务光信号的频谱范围内变化;
    其中,所述目标频率间隔小于所述业务光信号的频谱宽度。
  4. 根据权利要求2所述的功率检测电路,其特征在于,所述被测光信号为波分复用信号,所述波分复用信号包括多个业务光信号,所述多个业务光信号中至少两个所述业务光信号的频谱宽度不同,每个所述业务光信号包括至少一个切片信号,每个所述切片信号为经过调顶得到的信号,不同切片信号的调制频率不同,且不同切片信号的频谱宽度相同,N为所述波分复用信号包括的切片信号的总数;
    所述功率检测电路,用于按照目标频率间隔,调整每个所述光载波的中心频率,使每个所述光载波的中心频率在一个所述切片信号的频谱范围内变化;
    其中,所述目标频率间隔小于所述切片信号的频谱宽度。
  5. 根据权利要求2所述的功率检测电路,其特征在于,每个所述光载波为经过调顶得到的信号,且不同所述光载波的调制频率不同;
    所述功率检测电路,用于按照目标频率间隔,调整每个所述光载波的中心频率,所述目标频率间隔小于相邻两个所述光载波的中心频率的频率差。
  6. 根据权利要求1至5任一所述的功率检测电路,其特征在于,所述混合光信号包括四个分量,所述四个分量分别为第一偏振分量的正交分量、第一偏振分量的同相分量、第二偏振分量的正交分量以及第二偏振分量的同相分量;
    所述功率检测电路包括:低通滤波器、运算器、梳状滤波器以及功率检测子电路;
    所述低通滤波器,用于分别对所述四个分量进行低通滤波;
    所述运算器,用于确定低通滤波后的所述四个分量的功率;
    所述梳状滤波器,用于对所述四个分量的功率进行梳状滤波,其中,所述梳状滤波器的通带的数量大于或等于N,每个所述通带的中心频率等于一个所述调制频率;
    所述功率检测子电路,用于确定梳状滤波后的所述四个分量的功率在每个所述调制频率处的功率,得到每个所述调制频率对应的调顶功率,以及根据每个所述调制频率对应的调顶功率、所述调制频率对应的光载波的强度,以及所述调制频率对应的调顶深度,确定所述被测光信号在所述光载波的中心频率处的功率。
  7. 根据权利要求6所述的功率检测电路,其特征在于,第i个所述调制频率与第i个所述光载波对应,i为不大于N的正整数;
    所述被测光信号在第i个所述光载波的中心频率f Ci处的功率满足:
    Figure PCTCN2021095345-appb-100001
    其中,P Pi为第i个所述调制频率对应的调顶功率,A Ci为第i个所述光载波的强度,a i为第i个所述调制频率对应的调顶深度。
  8. 一种光信号的功率检测系统,其特征在于,所述系统包括:梳状光源,相干接收机,以及功率检测电路;
    所述梳状光源,用于发射本振光信号,所述本振光信号包括N个光载波,所述N个光载波中至少两个光载波的中心频率不同,N为大于1的整数;
    所述相干接收机,用于对被测光信号和所述本振光信号进行相干混合,得到混合光信号,以及将所述混合光信号发送至所述功率检测电路;
    所述功率检测电路,用于对所述混合光信号进行滤波,根据滤波后的所述混合光信号,确定所述被测光信号在每个所述光载波的中心频率处的功率。
  9. 根据权利要求8所述的系统,其特征在于,所述功率检测电路还用于:
    调整所述本振光信号中每个所述光载波的中心频率,使每个所述光载波的中心频率在对应的一个频谱范围内变化,且不同所述光载波的中心频率对应的频谱范围不同。
  10. 根据权利要求9所述的系统,其特征在于,所述被测光信号为波分复用信号,所述波分复用信号包括N个业务光信号,所述N个业务光信号的频谱宽度相同,每个所述业务光信号为经过调顶得到的信号,且不同所述业务光信号的调制频率不同;
    所述功率检测电路,用于按照目标频率间隔,调整每个所述光载波的中心频率,使每个所述光载波的中心频率在一个所述业务光信号的频谱范围内变化;
    其中,所述目标频率间隔小于所述业务光信号的频谱宽度。
  11. 根据权利要求9所述的系统,其特征在于,所述被测光信号为波分复用信号,所述波分复用信号包括多个业务光信号,所述多个业务光信号中至少两个所述业务光信号的频谱宽度不同,每个所述业务光信号包括至少一个切片信号,每个所述切片信号为经过调顶得到的信号,不同切片信号的调制频率不同,且不同切片信号的频谱宽度相同,N为所述波分复用信号包括的切片信号的总数;
    所述功率检测电路,用于按照目标频率间隔,调整每个所述光载波的中心频率,使每个所述光载波的中心频率在一个所述切片信号的频谱范围内变化;
    其中,所述目标频率间隔小于所述切片信号的频谱宽度。
  12. 根据权利要求9所述的系统,其特征在于,每个所述光载波为经过调顶得到的信号,且不同所述光载波的调制频率不同;
    所述功率检测电路,用于按照目标频率间隔,调整每个所述光载波的中心频率,所述目标频率间隔小于相邻两个所述光载波的中心频率的频率差。
  13. 根据权利要求8至12任一所述的系统,其特征在于,所述混合光信号包括四个分量,所述四个分量分别为第一偏振分量的正交分量、第一偏振分量的同相分量、第二偏振分量的正交分量以及第二偏振分量的同相分量;
    所述功率检测电路包括:低通滤波器、运算器、梳状滤波器以及功率检测子电路;
    所述低通滤波器,用于分别对所述四个分量进行低通滤波;
    所述运算器,用于确定低通滤波后的所述四个分量的功率;
    所述梳状滤波器,用于对所述四个分量的功率进行梳状滤波,其中,所述梳状滤波器的通带的数量大于或等于N,每个所述通带的中心频率等于一个所述调制频率;
    所述功率检测子电路,用于确定梳状滤波后的所述四个分量的功率在每个所述调制频率处的功率,得到每个所述调制频率对应的调顶功率,以及根据每个所述调制频率对应的调顶功率、所述调制频率对应的光载波的强度,以及所述调制频率对应的调顶深度,确定所述被测光信号在所述光载波的中心频率处的功率。
  14. 根据权利要求13所述的系统,其特征在于,第i个所述调制频率与第i个所述光载波对应,i为不大于N的正整数;
    所述被测光信号在第i个所述光载波的中心频率f Ci处的功率满足:
    Figure PCTCN2021095345-appb-100002
    其中,P Pi为第i个所述调制频率对应的调顶功率,A Ci为第i个所述光载波的强度,a i为第i个所述调制频率对应的调顶深度。
  15. 根据权利要求8至14任一所述的系统,其特征在于,所述梳状光源包括一个频率梳光源;
    或者,所述梳状光源包括合波器,以及波段互不相同的多个频率梳光源,所述合波器用于对所述多个频率梳光源发射的光载波进行合波得到本振光信号。
  16. 一种光通信系统,其特征在于,所述系统包括:如权利要求8至15任一所述的光信号的功率检测系统,第一光收发设备,第二光收发设备,以及连接在所述第一光收发设备和所述第二光收发设备之间的至少一个光放大器;
    所述功率检测系统中的相干接收机与目标器件连接,所述相干接收机用于接收所述目标器件发射的被测光信号,其中,所述目标器件包括所述至少一个光放大器、所述第一光收发设备和所述第二光收发设备中的至少一个。
  17. 一种光信号的功率检测方法,其特征在于,所述方法包括:
    接收混合光信号,所述混合光信号是对被测光信号和本振光信号进行相干混合得到的, 所述本振光信号包括N个光载波,所述N个光载波中至少两个光载波的中心频率不同,N为大于1的整数;
    对所述混合光信号进行滤波;
    根据滤波后的所述混合光信号,确定所述被测光信号在每个所述光载波的中心频率处的功率。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    调整所述本振光信号中每个所述光载波的中心频率,使每个所述光载波的中心频率在一个频谱范围内变化,且不同所述光载波的中心频率在不同的频谱范围内变化。
  19. 根据权利要求18所述的方法,其特征在于,所述被测光信号为波分复用信号,所述波分复用信号包括N个业务光信号,所述N个业务光信号的频谱宽度相同,每个所述业务光信号为经过调顶得到的信号,且不同所述业务光信号的调制频率不同;
    所述调整所述本振光信号中每个所述光载波的中心频率,包括:
    按照目标频率间隔,调整所述本振光信号中每个所述光载波的中心频率,使每个所述光载波的中心频率在一个所述业务光信号的频谱范围内变化;
    其中,所述目标频率间隔小于所述业务光信号的频谱宽度。
  20. 根据权利要求18所述的方法,其特征在于,所述被测光信号为波分复用信号,所述波分复用信号包括多个业务光信号,所述多个业务光信号中至少两个所述业务光信号的频谱宽度不同,每个所述业务光信号包括至少一个切片信号,每个所述切片信号为经过调顶得到的信号,不同切片信号的调制频率不同,且不同切片信号的频谱宽度相同,N为所述波分复用信号包括的切片信号的总数;
    所述调整所述本振光信号中每个所述光载波的中心频率,包括:
    按照目标频率间隔,调整每个所述光载波的中心频率,使每个所述光载波的中心频率在一个所述切片信号的频谱范围内变化;
    其中,所述目标频率间隔小于所述切片信号的频谱宽度。
  21. 根据权利要求18所述的方法,其特征在于,每个所述光载波为经过调顶得到的信号,且不同所述光载波的调制频率不同;
    所述调整所述本振光信号中每个所述光载波的中心频率,包括:
    按照目标频率间隔,调整每个所述光载波的中心频率,所述目标频率间隔小于相邻两个所述光载波的中心频率的频率差。
  22. 根据权利要求17至21任一所述的方法,其特征在于,所述混合光信号包括四个分量,所述四个分量分别为第一偏振分量的正交分量、第一偏振分量的同相分量、第二偏振分量的正交分量以及第二偏振分量的同相分量;
    所述对所述混合光信号进行滤波,包括:分别对所述四个分量进行低通滤波;
    所述根据滤波后的所述混合光信号,确定每个所述业务光信号在一个所述光载波的中心频率处的功率,包括:
    确定低通滤波后的所述四个分量的功率;
    通过梳状滤波器对所述四个分量的功率进行梳状滤波,其中,所述梳状滤波器具有多个通带,每个所述通带的中心频率等于一个所述调制频率;
    确定梳状滤波后的所述四个分量的功率在每个所述调制频率处的功率,得到每个所述调制频率对应的调顶功率;
    根据每个所述调制频率对应的调顶功率、所述调制频率对应的光载波的强度,以及所述调制频率对应的调顶深度,确定所述被测光信号在所述光载波的中心频率处的功率。
  23. 根据权利要求22所述的方法,其特征在于,第i个所述调制频率与第i个所述光载波对应,i为不大于N的正整数;
    所述被测光信号在第i个所述光载波的中心频率f Ci处的功率满足:
    Figure PCTCN2021095345-appb-100003
    其中,P Pi为第i个所述调制频率对应的调顶功率,A Ci为第i个所述光载波的强度,a i为第i个所述调制频率对应的调顶深度。
  24. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现如权利要求17至23任一所述的光信号的功率检测方法。
PCT/CN2021/095345 2020-08-19 2021-05-21 光信号的功率检测电路、系统、方法以及芯片 WO2022037154A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010839817.3 2020-08-19
CN202010839817.3A CN114079505B (zh) 2020-08-19 2020-08-19 光信号的功率检测电路、系统、方法以及芯片

Publications (1)

Publication Number Publication Date
WO2022037154A1 true WO2022037154A1 (zh) 2022-02-24

Family

ID=80281783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095345 WO2022037154A1 (zh) 2020-08-19 2021-05-21 光信号的功率检测电路、系统、方法以及芯片

Country Status (2)

Country Link
CN (1) CN114079505B (zh)
WO (1) WO2022037154A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115001592B (zh) * 2022-05-26 2024-01-30 江苏科大亨芯半导体技术有限公司 一种多载频调顶的解调方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326777A (zh) * 2012-03-23 2013-09-25 富士通株式会社 光功率监测器、光功率控制系统和光功率监测方法
EP3113390B1 (en) * 2014-03-27 2019-05-08 Huawei Technologies Co., Ltd. Device and method for monitoring optical performance parameter, and optical transmission system
CN110383714A (zh) * 2017-04-26 2019-10-25 爱斯福公司 使用频谱相关性对已调制信号的频谱形状进行无噪声测量

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6349696B2 (ja) * 2013-11-26 2018-07-04 日本電気株式会社 光送信装置、光受信装置および光通信方法
FR3039947A1 (fr) * 2015-08-05 2017-02-10 Orange Reception de signaux optiques multi-longueurs d'onde composes de rafales optiques mono-bandes
CN105763253A (zh) * 2015-12-24 2016-07-13 暨南大学 一种基于相干接收机扫频的光功率监测方法
CN107026693A (zh) * 2016-02-02 2017-08-08 华为技术有限公司 相干接收机、用于光信息检测的方法
US10651820B2 (en) * 2016-09-16 2020-05-12 Ecole Polytechnique Federale De Lausanne (Epfl) Signal processing apparatus and method for transmitting and receiving coherent parallel optical signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326777A (zh) * 2012-03-23 2013-09-25 富士通株式会社 光功率监测器、光功率控制系统和光功率监测方法
EP3113390B1 (en) * 2014-03-27 2019-05-08 Huawei Technologies Co., Ltd. Device and method for monitoring optical performance parameter, and optical transmission system
CN110383714A (zh) * 2017-04-26 2019-10-25 爱斯福公司 使用频谱相关性对已调制信号的频谱形状进行无噪声测量

Also Published As

Publication number Publication date
CN114079505B (zh) 2023-07-18
CN114079505A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
US10574351B2 (en) Monitoring performance of optical network equipment using pilot tones
US9287993B1 (en) RF channelizer based on parametrically generated combs derived from a single master seed
WO2018184461A1 (en) Systems and method of multi-band pilot tone based optical performance monitoring
KR101392794B1 (ko) Ofdm을 사용한 광 전송 방법 및 장치
JP5441191B2 (ja) 波長を調整する方法、装置、およびシステム
US8891976B2 (en) Interferometer configured for signal processing in an interference path
US9312962B2 (en) Intensity-based modulator
US8483575B2 (en) Apparatus and method for generating frequency-locked optical comb sources
US20120263474A1 (en) Method for Arbitrary Optical Microwave and MM-Wave Generation
WO2022037154A1 (zh) 光信号的功率检测电路、系统、方法以及芯片
WO2013097384A1 (zh) 一种超密集波分复用系统及方法
Song et al. Noise comparison of RF photonic filters based on coherent and incoherent multiwavelength sources
EP3119017A1 (en) Optical comb based roadm uplink/downlink transceiving system, method and terminal
JP2010041707A (ja) 100ギガビット/秒以上の光伝送チャネルの生成方法
CN215956390U (zh) 微波光子单光频率梳注入锁定的信道化接收装置
CN113612543B (zh) 微波光子单光频率梳注入锁定的信道化接收装置及方法
US9020339B2 (en) Optical transmission system and control method
US10135532B2 (en) Optical receiver and method of receiving an optical communications signal
JP2015216437A (ja) Wdmコヒーレント伝送方式
Deng et al. Experimental demonstration and performance evaluation of flexible add/drop operations of DSP-switched ROADMs for cloud access networks
Wei et al. Ultra-selective flexible add-drop multiplexer using rectangular stimulated brillouin scattering filters
KR101802615B1 (ko) 딜레이라인 기반의 광 필터링을 통한 광비팅간섭잡음 경감 시스템 및 방법
CN104639276A (zh) 一种快速实现400g多载波复用的系统及方法
Fan et al. Toward terabit optical access network using spectrally-efficient, polarization-interleaved orthogonal wavelength-division-multiplexing
CN114024620A (zh) 一种双光频梳信道化接收机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857255

Country of ref document: EP

Kind code of ref document: A1