WO2010047091A1 - 画像表示装置、色信号補正装置及び色信号補正方法 - Google Patents
画像表示装置、色信号補正装置及び色信号補正方法 Download PDFInfo
- Publication number
- WO2010047091A1 WO2010047091A1 PCT/JP2009/005492 JP2009005492W WO2010047091A1 WO 2010047091 A1 WO2010047091 A1 WO 2010047091A1 JP 2009005492 W JP2009005492 W JP 2009005492W WO 2010047091 A1 WO2010047091 A1 WO 2010047091A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chromaticity
- color
- correction data
- chromaticity correction
- color signal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/28—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
- G09G3/288—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
- G09G3/291—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0209—Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0242—Compensation of deficiencies in the appearance of colours
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0266—Reduction of sub-frame artefacts
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0666—Adjustment of display parameters for control of colour parameters, e.g. colour temperature
Definitions
- the present invention relates to an image display device that displays an image on a display unit such as a plasma display panel (PDP) using a subfield method, a color signal correction device and a color signal correction method used therefor.
- a display unit such as a plasma display panel (PDP) using a subfield method, a color signal correction device and a color signal correction method used therefor.
- PDP plasma display panel
- PDPs are broadly divided into AC and DC types, and there are two types of discharge types: surface discharge type and counter discharge type.
- surface discharge type and counter discharge type are two types of discharge types.
- the current state of the art is due to high definition, large screen, and ease of manufacturing.
- a surface discharge type PDP having a three-electrode structure is the mainstream.
- this surface discharge type panel at least a pair of substrates transparent at least on the front side are arranged to face each other so that a discharge space is formed between the substrates.
- a partition wall for partitioning the discharge space into a plurality is disposed on the substrate.
- an electrode group is arranged on the substrate so that a discharge is generated in a discharge space partitioned by the partition walls.
- a plurality of discharge cells are formed by providing phosphors that emit red, green, and blue light, respectively, by discharge.
- Such a surface discharge type panel emits red, green, and blue visible light from red, green, and blue discharge cells, respectively, by exciting phosphors with vacuum ultraviolet light having a short wavelength generated by discharge. Display is in progress.
- Such a PDP is capable of high-speed display compared to a liquid crystal panel, has a wide viewing angle, is easy to increase in size, and is self-luminous, so that the display quality is high. Recently, it has attracted particular attention among panel displays, and is used for various purposes as a display device at a place where many people gather or a display device for enjoying a large screen image at home.
- the subfield method in which the lighting time is time-divided that is, one field period is divided into a plurality of subfields (hereinafter also simply referred to as “SF”).
- SF subfields
- a method of performing gradation display of each color cell of RGB (Red Green Blue) by using a combination of subfields to emit light is used.
- Each subfield has an initialization period, an address period, and a sustain period.
- initializing period initializing discharge is generated, and wall charges necessary for the subsequent address operation are formed.
- address discharge is selectively generated in the discharge cells in accordance with the image to be displayed to form wall charges.
- a sustain discharge is generated by alternately applying a sustain pulse to the display electrode pair composed of the scan electrode and the sustain electrode, and the phosphor of the corresponding discharge cell is caused to emit light to display an image.
- FIG. 18 shows an example of 8SF.
- FIG. 19 shows an example of 8SF and maximum gradation 135, where a blank in the figure indicates a non-lighting state and “1” indicates a lighting state.
- the PDP when there is a continuous non-lighting SF, there is a case in which the discharge cell is unlit due to the influence of a phenomenon called lateral crosstalk.
- the gradation “4” shown in FIG. 20 is expressed by continuously turning off SF1 and SF2 and turning on SF3.
- SF3 is likely to be unlit due to the influence of lateral crosstalk.
- lateral crosstalk also called “lateral XT”.
- the PDP selects lighting or non-lighting of the SF by generating an address discharge. For example, when address discharge is simultaneously generated in R (red), G (green), and B (blue) discharge cells, priming particles jump from the R and B discharge cells to the G discharge cell, so that the G discharge cell (Lights up). Conversely, when the R, G, B discharge cells are lit in each SF as shown in FIG. 22, the wall charges accumulated in the G discharge cells in SF3 are taken away by the priming particles from the R, B discharge cells. Subsequent SF4 G discharge cells are likely to fail to write (not lit). As described above, the lighting / non-lighting state control may be difficult due to the influence of the horizontal crosstalk.
- the discharge cell that is most affected by such lateral crosstalk is a G discharge cell, and the R and B discharge cells are not significantly affected by lateral crosstalk. This is because G has high visibility and is visually noticeable when a lighting error occurs.
- the G phosphor material is charged with a polarity (negative) different from that of the R • B phosphor material, so that the G discharge is caused by the R and B discharge cells.
- the wall charge state of the cell is easily affected.
- gradations having continuous non-lighting SFs as indicated by hatched portions in FIG. 19 are expressed by a method (for example, dithering or error diffusion) in which excluded gradations (for example, gradations shown in FIG. 23) are mixed temporally or spatially.
- excluded gradations for example, gradations shown in FIG. 23
- gradation “4” is expressed by expressing gradation “3” and gradation “5” alternately in time or space. is doing.
- the luminance with respect to the input gradation is measured for each RGB, and the LUT (Look-Up Table) for each RGB is adjusted.
- the light emission luminance characteristic is corrected.
- the PDP uses the LUT to adjust the relationship between the input luminance and the output luminance for each RGB color, but when the colors are mixed, the discharge cells are more likely to be discharged, resulting in excessive brightness compared to the case of the single color ( From that point of view, it can be said that PDP does not strictly enforce additive color mixing).
- a white color having a color temperature of 9000K has a luminance deviation (difference between a required luminance value and an actually measured luminance value) from an intermediate gradation to a high gradation, but RGB causes a luminance deviation in a balanced manner. Therefore, no chromaticity deviation occurs.
- the lighting state of SF of B is different from that of RG with respect to the input gradation, so that the balance of luminance deviation between B and RG is lost and chromaticity deviation occurs.
- the white chromaticity shift is easy to discriminate, and as shown in FIG. 25, the current chromaticity shift reaches ⁇ 0.003, and the white chromaticity shift is conspicuous, which causes a problem that the PDP cannot be used as a post-pro monitor. There was a case.
- the present invention has been made in view of such a situation, and at the time of displaying an image using the subfield method, at least one of luminance shift and chromaticity shift is greatly suppressed while suppressing the influence of lateral crosstalk. It is an object of the present invention to provide an image display device, a color signal correction device, and the like that can be suppressed.
- an image display device uses a subfield method to add a plurality of pixels each composed of red, green, and blue light emitters in accordance with red, green, and blue color signals.
- An image display device that displays an image by emitting light, and stores SF lighting patterns indicating subfields to be lit among a plurality of subfields in association with luminance indicated by color signals of red, green, and blue
- the SF conversion table storage unit storing the table for each color and the SF conversion table for each color stored in the SF conversion table storage unit, the brightness indicated by the input color signal of each color is obtained.
- a corresponding lighting pattern is acquired, and an SF conversion unit that generates a lighting signal for each color according to the acquired lighting pattern, and the SF conversion unit And an image display unit that displays an image by causing the light emitter to emit light according to a lighting signal, and the number of types of lighting patterns stored in at least one of the blue and red SF conversion tables is the green SF More than the number of types of lighting patterns stored in the conversion table.
- the number of types of at least one of blue and red lighting patterns that are not easily affected by horizontal crosstalk can be increased more than the number of types of green lighting patterns that are easily affected by horizontal crosstalk.
- the number of displayable gradations can be increased while suppressing the occurrence of crosstalk. Therefore, it is possible to effectively suppress the luminance shift and chromaticity shift of the intermediate gradation. Further, by increasing the number of gradations that can be displayed, it is possible to suppress white luminance shift and chromaticity shift.
- a lighting pattern indicating that at least one subfield selected from the plurality of subfields is lit for all luminances greater than a predetermined threshold is stored.
- the image display unit includes a front substrate having a display electrode composed of a scan electrode and a sustain electrode, and a data electrode, and a position facing the front substrate so that the data electrode intersects the display electrode.
- a plurality of discharge cells are formed between the front substrate and the back substrate facing each other, and one TV field in the subfield method initially sets at least one of the plurality of discharge cells. From a plurality of subfields each having an initialization period for performing a discharge, an address period for address discharge of discharge cells to be lit among the plurality of discharge cells, and a sustain period for sustaining discharge of the discharge cells subjected to address discharge And at least one subfield of the plurality of subfields initializes all of the plurality of discharge cells. In the SF conversion table, a subfield having an all-cell initializing discharge period is lit among a plurality of subfields for all luminances greater than a predetermined threshold. It is preferable that the lighting pattern to be shown is stored.
- the subfield to be lit can be controlled according to the initialization discharge method of the PDP, it is possible to more effectively suppress the luminance shift and chromaticity shift.
- red, green, and blue color LUTs look-up tables in which light emission luminance characteristic correction data for correcting the light emission luminance characteristics of the light emitters of the respective colors are stored in association with the luminance indicated by the input color signal of each color.
- a chromaticity correction table in which chromaticity correction data for correcting at least one color signal of blue and red is stored in association with the luminance indicated by the input color signal of the color Luminescence correction characteristic storage data corresponding to the luminance indicated by the input color signal of each color is obtained by referring to the chromaticity correction table storage unit storing each color and the LUT for each color, and the obtained emission luminance characteristic correction data is obtained.
- the light emission characteristic correction unit that corrects the input color signal of each color and the chromaticity correction table stored in the chromaticity correction table storage unit
- blue and red Acquired by the chromaticity correction data acquisition unit for acquiring chromaticity correction data corresponding to at least one input color signal, and the chromaticity correction data acquisition unit among the color signals of each color after being corrected by the light emission characteristic correction unit
- a chromaticity correction unit that corrects the color signal of the color corresponding to the chromaticity correction data using the chromaticity correction data, and the SF conversion unit is corrected by the chromaticity correction unit. It is preferable to obtain a lighting pattern corresponding to the luminance of the color signal.
- the image display is performed according to the color signal after the input color signal of each color is corrected using the LUT for each color.
- the image display is performed according to the color signal after the input color signal of each color is corrected using the LUT for each color.
- the display chromaticity which is the chromaticity of the pixel displayed in the section and the target chromaticity which is the chromaticity of the pixel specified by the input color signal of each color, at least one color of blue and red It is preferable to include a chromaticity correction data calculation unit that calculates chromaticity correction data and stores the calculated chromaticity correction data in the chromaticity correction table.
- the chromaticity correction data calculation unit may calculate a difference value between the y-coordinate or x-coordinate of the target chromaticity and the measured y-coordinate or x-coordinate of the display chromaticity.
- a value multiplied by a luminance level and further multiplied by a predetermined coefficient ⁇ ( ⁇ is a positive real number) is calculated as chromaticity correction data
- the chromaticity correction data acquisition unit refers to the chromaticity correction table.
- the chromaticity correction data corresponding to the luminance indicated by the blue input color signal is acquired, and the chromaticity correction unit converts the blue color signal corrected by the light emission characteristic correction unit into the chromaticity correction data acquisition unit. It is preferable to perform correction using the chromaticity correction data acquired by the above.
- the chromaticity correction data calculation unit may calculate a difference value between the y-coordinate or x-coordinate of the target chromaticity and the measured y-coordinate or x-coordinate of the display chromaticity.
- a value multiplied by a luminance level and further multiplied by a predetermined coefficient ⁇ ( ⁇ is a positive real number) is calculated as chromaticity correction data
- the chromaticity correction data acquisition unit refers to the chromaticity correction table.
- the chromaticity correction data corresponding to the luminance indicated by the red input color signal is acquired, and the chromaticity correction unit converts the red color signal corrected by the light emission characteristic correction unit into the chromaticity correction data acquisition unit. It is preferable to perform correction using the chromaticity correction data acquired by the above.
- the chromaticity correction data calculation unit includes a white luminance level indicated by the target chromaticity and a predetermined coefficient indicating a chromaticity suppression vector from the measured xy coordinate of the display chromaticity to the xy coordinate of the target chromaticity.
- a vector obtained by multiplying ⁇ ( ⁇ is a positive real number) is subjected to vector decomposition in the direction of two line segments connecting the xy coordinates of the target chromaticity and the xy coordinates indicating the blue and red chromaticities, and after the vector decomposition
- the magnitude of each vector is calculated as chromaticity correction data for blue and red
- the chromaticity correction data acquisition unit corresponds to the luminance indicated by the blue and red input color signals by referring to the chromaticity correction table.
- Each of the chromaticity correction data is acquired, and the chromaticity correction unit uses the chromaticity correction data acquired by the chromaticity correction data acquisition unit to correct the blue and red colors after being corrected by the light emission characteristic correction unit. of It is preferable to correct each of the color signals.
- the predetermined coefficient ⁇ is preferably a predetermined value of 100 or less.
- the chromaticity correction data can be calculated using the coefficient ⁇ having an appropriate value, the chromaticity shift can be suppressed with high accuracy.
- the chromaticity correction unit corrects the color signal when the luminance levels indicated by the input color signals of the respective colors substantially match.
- the chromaticity correction unit calculates a predetermined coefficient ⁇ ( ⁇ is a real number from 0 to 1) that gradually increases with the passage of time from when the luminance levels indicated by the input color signals of the respective colors substantially coincide. It is preferable to correct the color signal using a value obtained by multiplying the degree correction data.
- the color signal correction device outputs a plurality of pixels each formed of red, green, and blue light emitters to the image display unit that displays an image by emitting light using the subfield method.
- a color signal correction device for correcting color signals of red, green, and blue colors wherein the emission luminance characteristic correction data for correcting the emission luminance characteristics of the light emitters of the respective colors is associated with the luminance indicated by the input color signal of each color.
- the LUT storage unit storing the stored red, green, and blue color LUTs (look-up tables), and chromaticity correction data for correcting at least one of the blue and red color signals are input to the input color signal of the color.
- a chromaticity correction table storage unit storing a chromaticity correction table for storing in correspondence with the indicated luminance, and when the color of the pixel specified by the input color signal of each color of red, green, and blue is white Identified by the display chromaticity which is the chromaticity of a pixel displayed on the image display unit according to the color signal after the input color signal of each color is corrected using the LUT for each color, and the input color signal of each color
- the emission luminance characteristic correction data corresponding to the luminance indicated by the input color signal of each color is acquired, and the input color of each color is acquired using the acquired emission luminance characteristic correction data
- a light emission characteristic correction unit that corrects
- chromaticity correction data acquisition unit corresponds to the chromaticity correction data acquired by the chromaticity correction data acquisition unit among the color signals of each color after being corrected by the light emission characteristic correction unit, and a chromaticity correction data acquisition unit that acquires chromaticity correction data
- a chromaticity correction unit that corrects the color signal of the color using the chromaticity correction data.
- the color signal can be corrected based on the chromaticity shift when displaying the white color expressed by mixing red, green, and blue. Therefore, when the white color is displayed on the image display device using the subfield method. Chromaticity deviation can be suppressed. Furthermore, since a chromaticity shift can be suppressed by correcting a part of the color signal after correction using each color LUT stored in advance, the change in the LUT can be minimized and the luminance can be reduced. Deviation can also be suppressed.
- the chromaticity correction data calculation unit may calculate a difference value between the y-coordinate or x-coordinate of the target chromaticity and the measured y-coordinate or x-coordinate of the display chromaticity.
- a value multiplied by a luminance level and further multiplied by a predetermined coefficient ⁇ ( ⁇ is a positive real number) is calculated as chromaticity correction data
- the chromaticity correction data acquisition unit refers to the chromaticity correction table.
- the chromaticity correction data corresponding to the luminance indicated by the blue input color signal is acquired, and the chromaticity correction unit converts the blue color signal corrected by the light emission characteristic correction unit into the chromaticity correction data acquisition unit. It is preferable to perform correction using the chromaticity correction data acquired by the above.
- the chromaticity correction data calculation unit may calculate a difference value between the y-coordinate or x-coordinate of the target chromaticity and the measured y-coordinate or x-coordinate of the display chromaticity.
- a value multiplied by a luminance level and further multiplied by a predetermined coefficient ⁇ ( ⁇ is a positive real number) is calculated as chromaticity correction data
- the chromaticity correction data acquisition unit refers to the chromaticity correction table.
- the chromaticity correction data corresponding to the luminance indicated by the red input color signal is acquired, and the chromaticity correction unit converts the red color signal corrected by the light emission characteristic correction unit into the chromaticity correction data acquisition unit. It is preferable to perform correction using the chromaticity correction data acquired by the above.
- the chromaticity correction data calculation unit includes a white luminance level indicated by the target chromaticity and a predetermined coefficient indicating a chromaticity suppression vector from the measured xy coordinate of the display chromaticity to the xy coordinate of the target chromaticity.
- a vector obtained by multiplying ⁇ ( ⁇ is a positive real number) is subjected to vector decomposition in the direction of two line segments connecting the xy coordinates of the target chromaticity and the xy coordinates indicating the blue and red chromaticities, and after the vector decomposition
- the magnitude of each vector is calculated as chromaticity correction data for blue and red
- the chromaticity correction data acquisition unit corresponds to the luminance indicated by the blue and red input color signals by referring to the chromaticity correction table.
- Each of the chromaticity correction data is acquired, and the chromaticity correction unit uses the chromaticity correction data acquired by the chromaticity correction data acquisition unit to correct the blue and red colors after being corrected by the light emission characteristic correction unit. of It is preferable to correct each of the color signals.
- the chromaticity correction unit corrects the color signal when the luminance levels indicated by the input color signals of the respective colors substantially match.
- the chromaticity correction unit calculates a predetermined coefficient ⁇ ( ⁇ is a real number from 0 to 1) that gradually increases with the passage of time from when the luminance levels indicated by the input color signals of the respective colors substantially coincide. It is preferable to correct the color signal using a value obtained by multiplying the degree correction data.
- the color signal correction method is output to an image display unit that displays an image by causing a plurality of pixels formed of red, green, and blue light emitters to emit light using the subfield method.
- An LUT storage unit that stores LUTs (look-up tables) for each color of red, green, and blue in which data is stored in association with the luminance indicated by the input color signal of each color, and at least one of the blue and red color signals is corrected.
- a chromaticity correction table storage unit that stores a chromaticity correction table stored in association with the luminance indicated by the input color signal of the color, and the color signal
- the input color signal of each color is corrected according to the color signal after being corrected using the LUT for each color.
- the chromaticity correction data calculating step of calculating the chromaticity correction data of the color storing the calculated chromaticity correction data in the chromaticity correction table, and referring to the LUT for each color, the input color signals of red, green, and blue are obtained.
- the light emission luminance characteristic correction data corresponding to the indicated luminance is acquired, the light emission characteristic correction step of correcting the input color signal of each color using the acquired light emission luminance characteristic correction data, and the chromaticity correction table storage unit
- the chromaticity correction data acquisition step for acquiring chromaticity correction data corresponding to at least one of the input color signals of blue and red is corrected in the light emission characteristic correction step.
- an image display device capable of significantly suppressing at least one of luminance shift and chromaticity shift while suppressing the influence of lateral crosstalk.
- a color signal correction device and the like can be provided.
- FIG. 1 shows an image according to an embodiment of the present invention, in which an image is displayed by a color signal correction method according to an embodiment of the present invention and a color signal correction apparatus according to an embodiment of the present invention embodying the method. It is a cross-sectional perspective view which shows schematic structure of PDP which is an example of a display apparatus.
- FIG. 2 is a block diagram showing a functional configuration of the color signal correction apparatus according to Embodiment 1 of the present invention.
- FIG. 3 is a diagram showing an example of the chromaticity correction table according to Embodiment 1 of the present invention.
- FIG. 4A is a block diagram illustrating a functional configuration necessary for executing the process of the first step among the functional configurations of the color signal correction apparatus according to Embodiment 1 of the present invention.
- FIG. 4B is a block diagram illustrating a functional configuration necessary for executing the process of the second step among the functional configurations of the color signal correction apparatus according to Embodiment 1 of the present invention.
- FIG. 5A is a flowchart showing a flow of processing of the first step in Embodiment 1 of the present invention.
- FIG. 5B is a flowchart showing a flow of processing of the second step in Embodiment 1 of the present invention.
- FIG. 6 is a diagram showing a correction result of the color signal by the chromaticity correction apparatus according to Embodiment 1 of the present invention.
- FIG. 7 is a block diagram showing a functional configuration of the color signal correction apparatus according to Embodiment 2 of the present invention.
- FIG. 5A is a flowchart showing a flow of processing of the first step in Embodiment 1 of the present invention.
- FIG. 5B is a flowchart showing a flow of processing of the second step in Embodiment 1 of the present invention.
- FIG. 8 is a diagram for explaining correction processing by the color signal correction apparatus according to Embodiment 3 of the present invention.
- FIG. 9 is a block diagram showing a functional configuration of the color signal correction apparatus according to Embodiment 3 of the present invention.
- FIG. 10 is a block diagram showing a functional configuration of the color signal correction apparatus according to Embodiment 4 of the present invention.
- FIG. 11 is a diagram showing a functional configuration of the image display apparatus according to Embodiment 5 of the present invention.
- FIG. 12A is a diagram showing an example of a GSF conversion table according to Embodiment 5 of the present invention.
- FIG. 12B is a diagram showing an example of an RSF conversion table and a BSF conversion table in Embodiment 5 of the present invention.
- FIG. 13 is a diagram for explaining the occurrence of lateral crosstalk due to all-cell initialization.
- FIG. 14 is a diagram showing a functional configuration of the image display apparatus according to Embodiment 6 of the present invention.
- FIG. 15A is a diagram showing an example of a GSF conversion table according to Embodiment 6 of the present invention.
- FIG. 15B is a diagram showing an example of an RSF conversion table and a BSF conversion table in Embodiment 6 of the present invention.
- FIG. 16A is a diagram for explaining a GSF conversion table according to Embodiment 6 of the present invention.
- FIG. 16B is a diagram for explaining an RSF conversion table and a BSF conversion table according to Embodiment 6 of the present invention.
- FIG. 15A is a diagram for explaining a GSF conversion table according to Embodiment 6 of the present invention.
- FIG. 16B is a diagram for explaining an RSF conversion table and a BSF conversion table according to Embodiment 6 of the
- FIG. 17 is a block diagram showing a functional configuration of an image display device according to a modification of the present invention.
- FIG. 18 is a diagram for explaining the configuration of the SF.
- FIG. 19 is a diagram showing an example of a conventional SF conversion table.
- FIG. 20 is a diagram for explaining an SF conversion table used for avoiding a problem due to lateral crosstalk.
- FIG. 21 is a diagram illustrating the principle of lateral crosstalk.
- FIG. 22 is a diagram showing a horizontal crosstalk occurrence pattern.
- FIG. 23 is a diagram illustrating an example of an SF conversion table used to avoid a problem due to horizontal crosstalk.
- FIG. 24 is a diagram illustrating a conventional luminance shift and white chromaticity shift at a color temperature of 9000K.
- FIG. 25 is a diagram illustrating a conventional luminance shift and a white chromaticity shift at a color temperature of 5600K.
- FIG. 1 shows an image according to an embodiment of the present invention, in which an image is displayed by a color signal correction method according to an embodiment of the present invention and a color signal correction apparatus according to an embodiment of the present invention embodying the method. It is a cross-sectional perspective view which shows schematic structure of PDP which is an example of a display apparatus.
- the PDP is configured by arranging a glass front substrate 1 and a back substrate 2 so as to face each other so as to form a discharge space therebetween.
- a plurality of scanning electrodes 3 and sustaining electrodes 4 constituting display electrodes are formed in parallel with each other.
- a dielectric layer 5 is formed so as to cover the scan electrode 3 and the sustain electrode 4, and a protective layer 6 is formed on the dielectric layer 5.
- a plurality of data electrodes 8 covered with an insulator layer 7 are provided on the back substrate 2, and a grid-like partition wall 9 a is provided on the insulator layer 7.
- a phosphor layer 9b is provided on the surface of the insulator layer 7 and on the side surfaces of the partition walls 9a.
- the front substrate 1 and the rear substrate 2 are arranged to face each other so that the scan electrodes 3 and the sustain electrodes 4 and the data electrodes 8 cross each other, and in the discharge space formed between them, for example, neon And a mixed gas of xenon.
- the structure of the panel is not limited to the above-described structure, and for example, a structure having a stripe-shaped partition may be used.
- FIG. 2 is a block diagram showing a functional configuration of the color signal correction apparatus according to Embodiment 1 of the present invention.
- the color signal correction device 10 corrects the light emission luminance characteristics of the light emitters of the respective colors to the color signals (Ra, Ga, Ba) of a plurality of colors corresponding to the light emitters that emit light of different colors. It is a device that performs processing. That is, the color signal correction device 10 corrects the color signals of red, green, and blue that are output to the image display unit. Note that the image display unit displays an image by causing each light emitter to emit light by using a subfield method in which intermediate gradations are displayed by repeatedly turning on and off each color of red, green, and blue.
- the color signal correction apparatus 10 includes an LUT storage unit 11, a light emission characteristic correction unit 12, a chromaticity correction table storage unit 13, a chromaticity correction data acquisition unit 14, a chromaticity correction unit 15, and chromaticity correction data calculation. Part 16.
- the LUT storage unit 11 stores red, green, and blue color LUTs 11a in which light emission luminance characteristic correction data for correcting the light emission luminance characteristics of the light emitters of each color is stored in association with the luminance indicated by the input color signal of each color. Yes.
- the light emission characteristic correcting unit 12 acquires light emission luminance characteristic correction data corresponding to the luminance indicated by the input color signal of each color by referring to the LUT 11a for each color in order to correct the light emission characteristic such as luminance saturation of the light emitter.
- the light emission characteristic correcting unit 12 corrects the input color signal of each color using the acquired light emission luminance characteristic correction data.
- the light emission characteristic correction unit 12 constitutes the display unit with the luminance level (Rd, Gd, Bc) of the output color signal of each color with respect to the luminance level (Ra, Ga, Ba) of the input color signal of red, green, and blue.
- a processing unit that corrects the light emission luminance of the image display unit to be linear with respect to the luminance level of the input color signal by changing according to the light emission luminance of each pixel, and a nonlinear correction circuit is preferably used.
- the light emission characteristic correction unit 12 may have a function of inverse gamma processing or cutoff drive.
- the light emission characteristic correction unit 12 may correct the color signal after being processed by the processing unit having the function of inverse gamma processing or cut-off drive.
- the chromaticity correction table storage unit 13 stores a chromaticity correction table 13a in which chromaticity correction data calculated by the chromaticity correction data calculation unit 16 (hereinafter also referred to as chromaticity correction value) is stored.
- chromaticity correction value chromaticity correction data calculated by the chromaticity correction data calculation unit 16
- chromaticity correction table 13a chromaticity correction values for correcting the blue color signal are stored in association with the luminance level (Ba) indicated by the blue input color signal.
- FIG. 3 is a diagram showing an example of the chromaticity correction table.
- the chromaticity correction table 13a stores a chromaticity correction value (Bb) that is nonlinear with respect to the luminance level (Ba) of the blue input color signal.
- the chromaticity correction data acquisition unit 14 refers to the chromaticity correction table 13a stored in the chromaticity correction table storage unit 13, thereby correcting the chromaticity correction corresponding to the luminance level (Ba) indicated by the blue input color signal. Get the value.
- the chromaticity correction unit 15 is a processing unit for suppressing a change in chromaticity linked to a change in the luminance level of the white input color signal. That is, the chromaticity correction unit 15 uses the chromaticity correction data acquired by the chromaticity correction data acquisition unit 14 for the blue color signal among the color signals of each color after being corrected by the light emission characteristic correction unit 12. to correct. Specifically, the chromaticity correction unit 15 uses the chromaticity correction value (Bb) corresponding to the luminance level (Ba) of the blue input color signal acquired by the chromaticity correction data acquisition unit 14 as a light emission characteristic correction. The luminance level (Bc) is corrected to the luminance level (Bd) by adding (adding) to the luminance level (Bc) of the blue color signal corrected by the unit 12.
- the chromaticity correction data calculation unit 16 is a processing unit that calculates chromaticity correction data to be stored in the chromaticity correction table before the color signal is corrected by the chromaticity correction unit 15 or the like. Specifically, the chromaticity correction data calculation unit 16 multiplies the chromaticity deviation of y by the white luminance level when the white luminance level is changed from 0 to 255, and further multiplies the coefficient ⁇ . A certain chromaticity correction value is calculated. That is, the chromaticity correction data calculation unit 16 multiplies the difference value between the y coordinate of the target chromaticity and the measured y coordinate of the display chromaticity by the white luminance level indicated by the target chromaticity.
- the chromaticity correction data calculation unit 16 calculates a value obtained by further multiplying the multiplied value by a coefficient ⁇ as a chromaticity correction value. Further, the chromaticity correction data calculation unit 16 stores the calculated chromaticity correction value in the chromaticity correction table 13a in association with the luminance level indicated by the blue color signal.
- the coefficient ⁇ is a positive real number.
- the coefficient ⁇ is preferably a predetermined positive fixed value of 100 or less.
- the reason why the chromaticity deviation is multiplied by the white luminance is that even if the value of the same chromaticity deviation is low, the luminance correction of B must be weakened if the luminance is dark, and if the luminance is bright, the luminance correction of B must be increased. It is.
- the chromaticity correction data calculation unit 16 uses the chromaticity deviation x to correct blue chromaticity. Data may be calculated.
- the color signal correction apparatus 10 creates a chromaticity correction table 13 a using the chromaticity correction data calculation unit 16 and stores it in the chromaticity correction table storage unit 13 and stores it in the chromaticity correction table storage unit 13.
- the configuration used in the second step of performing chromaticity correction with reference to the chromaticity correction table 13a is different. Specifically, in the first step, as shown in FIG. 4A, the LUT storage unit 11, the light emission characteristic correction unit 12, the chromaticity correction data calculation unit 16, and the chromaticity correction table storage unit 13 are used. In the second step, as shown in FIG. 4B, the LUT storage unit 11, the light emission characteristic correction unit 12, the chromaticity correction table storage unit 13, the chromaticity correction data acquisition unit 14, and the chromaticity correction unit 15 are provided. use.
- FIG. 5A is a flowchart showing a process flow of the first step in the first embodiment of the present invention. Note that the operator may perform the process of the first step.
- a window area for displaying white color (all or a part of the screen included in the image display unit) is determined (step S101). For example, a rectangular area located in the center of the screen and having an area of 10 to 30% of the entire screen area is determined as a window area for displaying white.
- a white color temperature for generating chromaticity correction data is determined and input to the chromaticity correction data calculation unit 16 (step S102).
- a white color temperature is input by a remote controller or the like. Note that the color temperature may be determined according to the color temperature held in advance.
- the white color temperature displayed in the window area is substantially matched with the input color temperature (step S103).
- the RGB color signal ratio is changed by using the color signal cut-off drive function so that the color temperatures are substantially matched. It should be noted that the LUT for each color of the light emission characteristic correction unit may be directly changed to make the white color temperatures substantially coincide.
- the coefficient ⁇ is determined and input to the chromaticity correction data calculation unit 16 (step S104). For example, an initial value held in advance (for example, “40” or the like) may be determined as the coefficient ⁇ .
- the image display apparatus repeats the following processing from step S105 to step S107 for all the gradations while changing the gradations. Specifically, the image display apparatus executes the process while gradually increasing the gradation from 0 to 255, for example.
- the image display device having the image display unit displays a white image having a substantially matched color temperature in the determined window area (step S105). At this time, the image display device displays an image according to the input color signal after being corrected by the light emission characteristic correcting unit 12.
- the chromaticity correction data calculation unit 16 acquires the chromaticity actually measured in the chromaticity of the white image displayed in the window area as the display chromaticity. Further, the chromaticity correction data calculation unit 16 acquires the luminance level actually measured which is the luminance level of the image displayed in the window area (step S106).
- the chromaticity correction data calculation unit 16 calculates a difference value between the acquired y-coordinate value of the display chromaticity and the y-coordinate value of the chromaticity (target chromaticity) based on the color temperature determined in step S102. The calculation is performed for each gradation (step S107). Further, the chromaticity correction data calculation unit 16 calculates a value obtained by multiplying the calculated difference value, the acquired luminance level, and the determined coefficient ⁇ for each gradation as a chromaticity correction value (step S108).
- the chromaticity correction value calculated in this way is stored in the chromaticity correction table 13a in association with the luminance level indicated by the blue input color signal specified by the corresponding gradation and color temperature (step S109).
- the chromaticity correction data calculation unit 16 has determined one coefficient ⁇ regardless of the gradation, but may determine the coefficient ⁇ for each gradation. In that case, step S104 is included in the loop.
- the chromaticity correction data calculation unit 16 may calculate chromaticity correction value candidates for each of the plurality of coefficients ⁇ and store them in the chromaticity correction table candidates. In this case, the chromaticity correction data calculation unit 16 may select a chromaticity correction table candidate having the smallest difference between the target chromaticity and the display chromaticity as the chromaticity correction table from among the chromaticity correction table candidates. .
- Step S102 white chromaticity (x coordinate and y coordinate) may be determined instead of the color temperature.
- step S103 the white chromaticity displayed in the window area is made to substantially match the input chromaticity.
- the chromaticity correction data calculation unit 16 calculates a difference value between the acquired y-coordinate value of the display chromaticity and the y-coordinate value of the chromaticity (target chromaticity) determined in step S102. Calculate for each gradation.
- the chromaticity correction values are stored in the chromaticity correction table 13a through the above-described processing of steps S101 to S109.
- FIG. 5B is a flowchart showing the flow of processing of the second step in the first embodiment of the present invention.
- the light emission characteristic correction unit 12 refers to the LUT 11a for each color stored in the LUT storage unit 11 to obtain light emission luminance characteristic correction data corresponding to the luminance indicated by the input color signal of each color. Then, the light emission characteristic correction unit 12 corrects the input color signal of each color using the acquired light emission luminance characteristic correction data (step S201). Specifically, the light emission characteristic correction unit 12 stores a light emission luminance characteristic correction value (for example, “95”) corresponding to the luminance level (for example, “100”) indicated by the input color signal of each color stored in the LUT for each color. ) As a corrected color signal.
- a light emission luminance characteristic correction value for example, “95”
- the luminance level for example, “100
- the chromaticity correction data acquisition unit 14 refers to the chromaticity correction table 13a stored in the chromaticity correction table storage unit 13 to acquire a chromaticity correction value corresponding to the blue input color signal (Ste S202).
- the chromaticity correction data acquisition unit 14 acquires the chromaticity correction value “ ⁇ 5” corresponding to the luminance level “100” of the input color signal by referring to the chromaticity correction table 13a shown in FIG.
- the chromaticity correction unit 15 corrects the blue color signal corrected by the light emission characteristic correction unit 12 using the chromaticity correction data acquired by the chromaticity correction data acquisition unit 14 (step S203). Specifically, the chromaticity correction unit 15 adds the chromaticity correction value “ ⁇ 5” to the luminance level “95” of the color signal after correction, for example.
- the color signal correcting apparatus 10 as described above is mounted on an image display apparatus including a PDP (image display unit) and an image is actually displayed, the white tone characteristics which have been a problem in the past are shown in FIG. As shown in FIG. 6, the variation in chromaticity could be suppressed.
- the coefficient ⁇ at this time was 40.
- the image display apparatus was able to display a favorable image also about a natural image. Note that a relatively good effect is obtained when the coefficient ⁇ is a positive real number of 100 or less. In the case of 40 in particular, good experimental results were obtained.
- the color signal correction apparatus 10 can correct a color signal based on a chromaticity shift when displaying white expressed by mixing red, green, and blue. It is possible to suppress a chromaticity shift when displaying white using the method. Furthermore, since the color signal correction apparatus 10 can suppress a chromaticity shift by correcting a part of the color signal after correction using each color LUT stored in advance, the change of the LUT is minimized. And luminance deviation can be suppressed.
- the color signal correction device 10 can easily calculate chromaticity correction data corresponding to the luminance based on the difference between the display chromaticity and the target chromaticity. That is, the color signal correction apparatus 10 can correct the input color signal with low luminance without largely changing the chromaticity and luminance by using the calculated chromaticity correction data. In addition, since the color signal correction apparatus 10 corrects the blue color signal in order to correct the chromaticity shift, for example, it is possible to effectively suppress the chromaticity shift in white having a color temperature of less than 9000K.
- the chromaticity correction unit 15 corrects the red color signal. This is because the influence of blue is large when the white color temperature is lower than 9000K, and the influence of red is large when the white color temperature is higher than 9000K.
- the color signal correcting apparatus 10 may change the blue color when correcting the blue color signal described above to red.
- the color signal correction apparatus 10 includes the chromaticity correction data calculation unit 16, but the color signal correction apparatus 10 does not necessarily include the chromaticity correction data calculation unit 16.
- the color signal correction device 10 may store color signal correction data calculated in advance by a computer or the like in the chromaticity correction table storage unit 13.
- the chromaticity correction table storage unit 13 stores the chromaticity correction table 13a.
- the chromaticity correction data stored in the chromaticity correction table 13a may be reflected in the blue LUT. Good.
- the color signal correction apparatus 10 may not include the chromaticity correction table storage unit 13, the chromaticity correction data acquisition unit 14, and the chromaticity correction unit 15.
- the color signal correction apparatus 10 corrects the B color signal using the chromaticity correction data in order to suppress the variation in white chromaticity.
- the color signal correction apparatus 20 according to the second embodiment further includes a chromaticity correction switching unit 21 as shown in FIG.
- FIG. 7 is a block diagram showing a functional configuration of the color signal correction apparatus according to the second embodiment of the present invention. 7, the same components as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.
- the chromaticity correction switching unit 21 switches whether or not to cause the chromaticity correction unit 22 to correct the color signal according to the balance of the luminance level between the input color signals of each of the RGB colors. Specifically, the chromaticity correction switching unit 21 outputs, for example, a switching signal indicating “1” to the chromaticity correction unit 22 when the luminance levels indicated by the input color signals of RGB colors substantially match. To do. On the other hand, when the luminance levels indicated by the input color signals of the RGB colors do not substantially match, the chromaticity correction switching unit 21 outputs, for example, a switching signal indicating “0” to the chromaticity correction unit 22.
- substantially coincidence indicates not only exact coincidence but also approximation to the extent that it can be regarded as coincident.
- substantially match means that each difference value of the luminance level between the input color signals of each color does not exceed a predetermined reference value.
- the chromaticity correction unit 22 corrects the color signal when the luminance levels indicated by the input color signals of the respective colors substantially match. Specifically, for example, the chromaticity correction unit 22 multiplies the chromaticity correction value Bb acquired by the chromaticity correction data acquisition unit 14 by the value Sel indicated by the switching signal output by the chromaticity correction switching unit 21. To do. Then, the chromaticity correction unit 22 adds the multiplied value to the luminance level Bc of the blue color signal after being corrected by the light emission characteristic correction unit 12.
- the color signal correction apparatus 20 can efficiently suppress the chromaticity deviation only when displaying mixed colors of red, green, and blue.
- the color signal correction device 20 does not perform processing for suppressing the chromaticity deviation and does not perform the luminance deviation when the red, green, and blue colors are not mixed and displayed, that is, when the chromaticity deviation due to the horizontal crosstalk is difficult to occur. Can be suppressed. That is, the color signal correction device 20 can prevent chromaticity deviation when white is displayed and can prevent luminance deviation when any single color of red, green, and blue is displayed.
- the chromaticity correction unit 22 switches between correcting and not correcting the color signal gradually in time.
- the chromaticity correction unit 22 is a coefficient ⁇ ( ⁇ is a real number between 0 and 1 inclusive) that gradually increases from the time when the luminance levels indicated by the input color signals of the respective colors substantially coincide with each other over time. It is preferable to correct the color signal using a value obtained by multiplying the chromaticity correction data by.
- the operation of the color signal correction apparatus 20 in the present embodiment is divided into a first step and a second step, similar to the operation of the color signal correction apparatus 10 in the first embodiment. That is, in the first step, the color signal correction device 20 uses the LUT storage unit 11, the light emission characteristic correction unit 12, the chromaticity correction data calculation unit 16, and the chromaticity correction table storage unit 13 to perform chromaticity. A correction table 13 a is created and stored in the chromaticity correction table storage unit 13. Further, in the second step, the color signal correction device 20 includes the LUT storage unit 11, the light emission characteristic correction unit 12, the chromaticity correction table storage unit 13, the chromaticity correction data acquisition unit 14, and the chromaticity correction switching unit. 21 and the chromaticity correction unit 22 are used to perform chromaticity correction with reference to the chromaticity correction table 13 a stored in the chromaticity correction table storage unit 13.
- the color signal correction apparatus 10 according to Embodiment 1 reduces the chromaticity shift by adjusting the blue luminance level using the value of the chromaticity shift y when the color temperature is low.
- the color signal correction apparatus 10 according to the first embodiment cannot completely reduce the chromaticity shift. Therefore, the color signal correction apparatus 30 according to the present embodiment corrects the chromaticity deviation with high accuracy by correcting the luminance levels of both blue and red from the difference between the target chromaticity and the actually measured display chromaticity. Suppress.
- FIG. 9 is a block diagram showing a functional configuration of the color signal correction apparatus according to Embodiment 3 of the present invention. 9, the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
- the chromaticity deviation vector I1 is obtained from the xy coordinates of the target chromaticity 101 when the chromaticity deviation occurs in the direction from the target chromaticity 101 toward the display chromaticity 102. It is a vector that goes to.
- This chromaticity suppression vector I2 matches the vector from the xy coordinate of the display chromaticity 102 toward the xy coordinate of the target chromaticity 101.
- the chromaticity correction data calculation unit 31 changes the color from the target chromaticity to the chromaticity direction indicating R (for example, wavelength 620 nm) and from the target chromaticity to the chromaticity direction indicating B (for example, wavelength 472 nm).
- the degree suppression vector I2 is subjected to vector decomposition. Then, a value obtained by multiplying the length of each vector after vector decomposition by the white luminance level indicated by the target chromaticity and the coefficient ⁇ is stored in the chromaticity correction table 13b or 13a as R and B chromaticity correction data.
- the order of vector decomposition and multiplication may be either. That is, the chromaticity correction data calculation unit 31 may perform vector decomposition after multiplication.
- the chromaticity correction data calculation unit 31 multiplies the chromaticity suppression vector from the measured display chromaticity xy coordinate to the xy coordinate of the target chromaticity by the white luminance level indicated by the target chromaticity and the coefficient ⁇ . Also good. Then, the chromaticity correction data calculation unit 31 may perform vector decomposition on the vector after multiplication in the direction of two line segments connecting the xy coordinates of the target chromaticity and the xy coordinates indicating the blue and red chromaticities. Further, the chromaticity correction data calculation unit 31 may calculate the magnitude of each vector after vector decomposition as blue and red chromaticity correction data.
- the chromaticity correction unit 33 uses the blue and red chromaticity correction data acquired by the chromaticity correction data acquisition unit 32, and outputs the blue and red color signals corrected by the light emission characteristic correction unit 12, respectively. to correct.
- the color signal correction apparatus 30 calculates blue and red chromaticity correction data using the chromaticity suppression vector from the xy coordinate of the display chromaticity to the xy coordinate of the target chromaticity. can do. Since the color signal correction device 30 corrects both the red and blue input color signals using the blue and red chromaticity correction data calculated in this way, the chromaticity shift can be suppressed with higher accuracy. It becomes possible to do. Therefore, if the color signal correction device 30 according to the present embodiment is mounted on an image display device including a PDP, the image display device can further suppress white chromaticity deviation.
- the operation of the color signal correction apparatus 30 in the present embodiment is divided into a first step and a second step, similar to the operation of the color signal correction apparatus 10 in the first embodiment. That is, in the first step, the color signal correction device 30 uses the LUT storage unit 11, the light emission characteristic correction unit 12, the chromaticity correction data calculation unit 31, and the chromaticity correction table storage unit 13 to use the chromaticity. Correction tables 13 a and 13 b are created and stored in the chromaticity correction table storage unit 13. In the second step, the color signal correction device 30 includes the LUT storage unit 11, the light emission characteristic correction unit 12, the chromaticity correction table storage unit 13, the chromaticity correction data acquisition unit 32, and the chromaticity correction unit 33. The chromaticity correction is performed with reference to the chromaticity correction tables 13 a and 13 b stored in the chromaticity correction table storage unit 13.
- the color signal correction apparatus 30 corrects the R and B color signals using the chromaticity correction data in order to suppress the variation in white chromaticity.
- the color signal correction apparatus 40 according to the fourth embodiment further includes a chromaticity correction switching unit 41 as shown in FIG.
- FIG. 10 is a block diagram showing a functional configuration of the color signal correction apparatus according to Embodiment 4 of the present invention. 10, the same components as those in FIG. 9 are denoted by the same reference numerals, and description thereof is omitted.
- the chromaticity correction switching unit 41 switches whether or not to cause the chromaticity correction unit 42 to correct the color signal according to the balance of the luminance level between the input color signals of RGB colors. Specifically, the chromaticity correction switching unit 41 outputs, for example, a switching signal indicating “1” to the chromaticity correction unit 42 when the luminance levels indicated by the input color signals of each color of RGB substantially match. To do. On the other hand, when the luminance levels indicated by the input color signals of the RGB colors do not substantially match, the chromaticity correction switching unit 41 outputs, for example, a switching signal indicating “0” to the chromaticity correction unit 42.
- the chromaticity correction unit 42 corrects the color signal when the luminance levels indicated by the input color signals of the respective colors substantially match. Specifically, the chromaticity correction unit 42, for example, the value Sel indicated by the switching signal output by the chromaticity correction switching unit 41 to the blue chromaticity correction value Bb acquired by the chromaticity correction data acquisition unit 14. Multiply Then, the chromaticity correction unit 42 adds the multiplied value to the luminance level Bc of the blue color signal after being corrected by the light emission characteristic correction unit 12.
- the chromaticity correction unit 42 multiplies the red chromaticity correction value Rb acquired by the chromaticity correction data acquisition unit 14 by a value Sel indicated by the switching signal output by the chromaticity correction switching unit 41, for example. . Then, the chromaticity correction unit 42 adds the multiplied value to the luminance level Rc of the red color signal after being corrected by the light emission characteristic correction unit 12.
- the color signal correction apparatus 40 can efficiently suppress the chromaticity shift only when displaying red, green, and blue in a mixed color.
- the color signal correcting device 40 does not perform processing for suppressing the chromaticity deviation and does not perform the luminance deviation when the red, green, and blue colors are not mixed and displayed, that is, when the chromaticity deviation due to the horizontal crosstalk is difficult to occur. Can be suppressed. That is, the color signal correction device 40 can prevent a chromaticity shift when white is displayed and prevent a luminance shift when any one of red, green, and blue is displayed.
- the chromaticity correction unit 42 switches between correcting and not correcting the color signal gradually in time.
- the chromaticity correction unit 42 uses a coefficient ⁇ ( ⁇ is a real number of 0 or more and 1 or less) that gradually increases as time elapses after the luminance levels indicated by the input color signals of the respective colors substantially coincide with each other. It is preferable to correct the color signal using a value obtained by multiplying the correction data.
- the operation of the color signal correction apparatus 40 in the present embodiment is divided into a first step and a second step, similar to the operation of the color signal correction apparatus 10 in the first embodiment. That is, in the first step, the color signal correction device 40 uses the LUT storage unit 11, the light emission characteristic correction unit 12, the chromaticity correction data calculation unit 16, and the chromaticity correction table storage unit 13 to use the chromaticity. Correction tables 13 a and 13 b are created and stored in the chromaticity correction table storage unit 13. Further, in the second step, the color signal correction device 40 includes the LUT storage unit 11, the light emission characteristic correction unit 12, the chromaticity correction table storage unit 13, the chromaticity correction data acquisition unit 32, and the chromaticity correction switching unit. 41 and the chromaticity correction unit 42 are used to perform chromaticity correction by referring to the chromaticity correction tables 13a and 13b stored in the chromaticity correction table storage unit 13.
- the color signal correction apparatus suppresses the chromaticity shift by correcting the color signal using the chromaticity correction table and the LUT for each color.
- the color signal correction apparatuses according to Embodiments 1 to 4 can express pure RGB or W with high accuracy, but it is difficult to express intermediate gradations of other colors with high accuracy. In order to express the intermediate gradation with high accuracy, it is necessary to fundamentally suppress the luminance shift at the time of color mixing.
- Luminance shift at the time of color mixture occurs in the gradation part that uses a lot of error diffusion or dither to complement the gradation that cannot be expressed by the lighting pattern of the subfield.
- a gradation that is restricted to be expressed by a combination of subfields is mixed spatially or temporally with a gradation different from the gradation.
- a luminance shift at the time of color mixing occurs.
- the image display device can suppress the chromaticity shift and the luminance shift by increasing the number of gradations that can be expressed by the lighting pattern of the subfield while suppressing the influence of the horizontal crosstalk. It is possible to do.
- FIG. 11 is a block diagram showing a functional configuration of the image display apparatus according to Embodiment 5 of the present invention.
- the image display device 50 includes an SF conversion table storage unit 51, an SF conversion unit 52, and a PDP module 53.
- the SF conversion table storage unit 51 is composed of, for example, a nonvolatile memory.
- the SF conversion table storage unit 51 stores an RSF conversion table 51a, a GSF conversion table 51b, and a BSF conversion table 51c, which are SF conversion tables for each color.
- FIG. 12A is a diagram illustrating an example of the GSF conversion table 51b.
- FIG. 12B is a diagram illustrating an example of the RSF conversion table 51a or the BSF conversion table 51c. Note that the GSF conversion table 51b shown in FIG. 12A is the same as the SF conversion table shown in FIG. 23 for avoiding the influence of lateral crosstalk. Further, the RSF conversion table 51a or the BSF conversion table 51c shown in FIG. 12B is the same as the SF conversion table shown in FIG.
- the number of types of lighting patterns indicated by the RSF conversion table 51a or the BSF conversion table 51c is larger than the number of types of lighting patterns indicated by the GSF conversion table 51b. That is, the number of gradations that can be expressed by the lighting pattern of the subfield is larger in red or blue, which is less susceptible to the influence of lateral crosstalk, than green, which is more susceptible to the influence of lateral crosstalk.
- At least one of the RSF conversion table 51a and the BSF conversion table 51c may be the table shown in FIG. 12B. That is, at least one of the types of lighting patterns stored in each of the RSF conversion table 51a and the BSF conversion table 51c only needs to be larger than the number of types of lighting patterns stored in the GSF conversion table 51b. Even in this case, since the number of types of lighting patterns, that is, the number of gradations that can be expressed, can be increased as compared with the conventional case, the image display device can suppress the influence of lateral crosstalk while suppressing the chromaticity shift and luminance shift. Can be suppressed.
- the SF converter 52 has an RSF converter 52a, a GSF converter 52b, and a BSF converter 52c.
- Each of the RSF conversion unit 52a, the GSF conversion unit 52b, and the BSF conversion unit 52c includes an SF conversion table (RSF conversion table 51a, GSF conversion table 51b, and BSF conversion table) of the corresponding color stored in the SF conversion table storage unit 51.
- SF conversion table 51a, GSF conversion table 51b, and BSF conversion table SF conversion table of the corresponding color stored in the SF conversion table storage unit 51.
- 51c a lighting pattern corresponding to the luminance indicated by the color signal of each color is acquired.
- each of the RSF conversion unit 52a, the GSF conversion unit 52b, and the BSF conversion unit 52c generates a lighting signal (Re, Ge, Be) according to the acquired lighting pattern.
- the SF conversion unit 52 generates an initialization signal, a write signal, a maintenance signal, and the like.
- the PDP module 53 includes a drive circuit for applying a drive waveform to the three electrodes of the AC surface discharge panel and the AC surface discharge panel shown in FIG. 1, for example, and in accordance with the lighting signal generated by the SF conversion unit 52, the PDP module Reference numeral 53 displays an image by causing the light emitter to emit light.
- the PDP module 53 corresponds to an image display unit.
- the same lighting pattern for RGB is used as the lighting pattern for each gradation.
- the lighting pattern is the lighting pattern shown in FIG. 23 for avoiding the influence of the horizontal crosstalk as described above. Therefore, the number of gradations that can be expressed (the number of types of lighting patterns) has decreased from the number of gradations that can be originally expressed by the subfield method as shown in FIG.
- the discharge cell that is most affected by the lateral crosstalk is the G discharge cell, and the R and B discharge cells are not significantly affected by the lateral crosstalk.
- G has high visibility and is visually noticeable when a lighting error occurs.
- R and B are not significantly affected by lateral crosstalk. This is because the surface of the phosphor is negatively charged (-), so that the wall charge is more likely to be lost due to lateral crosstalk than R and B, and writing errors are likely to occur.
- the SF conversion table storage unit 51 in the present embodiment stores an SF conversion table in which the number of types of R and B lighting patterns shown in FIG. 12B is larger than the number of types of G lighting patterns shown in FIG. 12A. ing.
- the PDP module 53 can increase the number of types of R and B lighting patterns as compared with the prior art, the number of gradations that can be expressed by the lighting patterns can be increased without using a large amount of error diffusion or dither. Can do.
- the SF conversion table storage unit 51 stores an SF conversion table in which the number of types of G lighting patterns that are easily affected by lateral crosstalk is reduced from the number of gradation levels that can be originally expressed by a combination of SFs. Yes. Therefore, the image display device 50 can suppress luminance shift and chromaticity shift while maintaining a margin for the horizontal crosstalk.
- the number of types of at least one of the blue and red lighting patterns that are not easily affected by the horizontal crosstalk is changed to the green lighting pattern that is easily affected by the horizontal crosstalk.
- luminance deviation and chromaticity deviation can be further suppressed by combining the image display device 50 according to the fifth embodiment and the color signal correcting device according to the first to fourth embodiments.
- the SF conversion table shown in FIG. 12A or 12B is an example, and the same SF conversion table as the SF conversion table shown in FIG. 12A or FIG. 12B is not necessarily stored in the SF conversion table storage unit 51. . That is, there is a GSF conversion table in which the number of types of lighting patterns is limited in order to suppress the influence of lateral crosstalk, and an RSF conversion table and a BSF conversion table in which at least one has a larger number of types of lighting patterns than the GSF conversion table. It only needs to be stored in the SF conversion table storage unit 51. Even in this case, the number of gradations that can be expressed by the combination of the subfields to be lit can be increased. Therefore, the image display device 50 according to the fifth embodiment can reduce the chromaticity while suppressing the influence of lateral crosstalk. Deviation and luminance deviation can be suppressed.
- the PDP driving method uses a method (subfield method) in which one field period is divided into a plurality of subfields and then gradation display of each RGB color cell is performed by a combination of subfields to emit light.
- Each subfield has an initialization period, an address period, and a sustain period.
- initialization There are two types of initialization. There are two types of initialization: initialization of all cells that initialize and discharge all discharge cells at once, and selective initialization that initializes and discharges only sustain discharge cells. All-cell initialization can surely initialize and discharge all discharge cells, but if all subfields are all-cell initialization, it will float black and image quality contrast will deteriorate. In addition, the initialization time for all the cells is longer than the selective initialization, and therefore the driving time is reduced. Therefore, the image display apparatus generally initializes all cells only once in one field period (for example, only SF1).
- the first address discharge after so-called all-cell initialization has a higher discharge intensity than the discharge after selective initialization. Therefore, in a high-definition panel in which horizontal crosstalk is likely to occur, lighting failure occurs after SF2 due to the address discharge of SF1, and chromaticity deviation occurs.
- the SF lighting pattern as shown in FIG. 13 exists in the SF lighting pattern of the fifth embodiment.
- SF1 when the RB discharge cell among the RGB discharge cells is turned on, the wall charge accumulated in the G discharge cell is taken away by the RB discharge cell.
- the G discharge cell becomes defective in lighting. Since SF2 and later are selective initialization, when the G discharge cell becomes defective in lighting in SF2, the defective lighting is also in and after SF3.
- the image display apparatus uses an SF lighting pattern in which SF1 that is all-cell initialization is always lit when other than black display.
- FIG. 14 is a block diagram showing a functional configuration of the image display apparatus according to Embodiment 6 of the present invention. 14, the same components as those in FIG. 11 are denoted by the same reference numerals, and description thereof is omitted.
- the image display device 60 according to the present embodiment and the image display device 50 according to the fifth embodiment include an SF conversion table for each color stored in the SF conversion table storage unit and a part of the processing of the SF conversion unit. Different.
- the SF conversion table storage unit 61 stores a GSF conversion table 61b shown in FIG. 15A and an RSF conversion table 61a and a BSF conversion table 61c shown in FIG. 15B.
- the GSF conversion table 61b shown in FIG. 15A is based on the SF lighting pattern excluding the SF lighting pattern in which SF1 is not lit in the SF conversion table shown in FIG. 12A (SF lighting pattern including SF1 indicated by the hatched portion in FIG. 16A). This is an SF conversion table.
- the RSF conversion table 61a and the BSF conversion table 61c shown in FIG. 15B are SF lighting patterns in which SF1 is not lit in the SF conversion table shown in FIG. 12B (SF lighting pattern including SF1 indicated by hatching in FIG. 16B). It is SF conversion table which consists of SF lighting pattern which excluded.
- SF1 is a predetermined threshold as at least one subfield selected from among a plurality of subfields.
- a lighting pattern that always lights up for all luminances greater than “0” is stored.
- the predetermined threshold value does not necessarily have to be “0”, and may be a value indicating very low luminance.
- the gradation reduced by removing the SF lighting pattern including SF indicated by the hatched portion may be expressed by adjusting the weight of the sustain pulse and error diffusion or dithering.
- a gradation that has been reduced by removing the SF lighting pattern including SF indicated by the hatched portion alternately alternates in time with a gradation larger than that gradation and a gradation smaller than that gradation.
- What is necessary is just to express by displaying.
- gradations reduced by removing SF lighting patterns including SF indicated by hatched areas are displayed in a spatially alternating manner with gradations larger than the gradations and gradations smaller than the gradations. It may be expressed by.
- the SF conversion unit 62 acquires a lighting pattern corresponding to the luminance indicated by the color signal of each color by referring to the SF conversion table. Specifically, the RSF conversion unit 62a, the GSF conversion unit 62b, and the BSF conversion unit 62c included in the SF conversion unit 62 correspond to the luminance indicated by the color signal of each color by referring to the SF conversion table of the corresponding color. Get the lighting pattern.
- the image display device 60 can always light the PDP module 53 in a sub-field that is easily affected by lateral crosstalk when the display is not black. Therefore, the image display device 60 can suppress the luminance shift and the chromaticity shift while suppressing the influence of the horizontal crosstalk even in the high-definition panel which is easily affected by the horizontal crosstalk. In particular, the image display device 60 always turns on the PDP module 53 in a sub-field that is susceptible to the influence of the horizontal crosstalk due to the all-cell initializing discharge, when the black display is not performed. It becomes possible to further suppress the influence of.
- the image display device 60 can increase the number of gradations that can be expressed while suppressing the influence of lateral crosstalk, it goes without saying that white luminance shift and chromaticity shift can also be suppressed. Absent.
- the SF conversion table shown in FIG. 15A or 15B is an example, and the same SF conversion table as the SF conversion table shown in FIG. 15A or FIG. 15B is not necessarily stored in the SF conversion table storage unit 61. . That is, the SF conversion table modified with respect to the SF conversion table in the fifth embodiment may be stored in the SF conversion table storage unit 61 so that at least one selected subfield is lit. Even in this case, the image display device 60 according to the sixth embodiment can reduce the influence of lateral crosstalk more than the image display device 50 according to the fifth embodiment when displaying an image.
- the color signal correction device or the image display device has been described based on the embodiments.
- the present invention is not limited to these embodiments. Unless it deviates from the meaning of this invention, the form which carried out various deformation
- the image display device in the fifth or sixth embodiment may include the color signal correction device in any one of the first to fourth embodiments.
- the image display device 50 according to the fifth embodiment includes the color signal correction device 10 according to the first embodiment
- the image display device has a configuration as shown in FIG. In FIG. 17, the same reference numerals are given to components having the same functions as those in FIG.
- the image display device 80 includes a color signal correction device 10, an SF conversion table storage unit 51, an SF conversion unit 52, and a PDP module 53.
- the SF conversion unit 52 acquires a lighting pattern corresponding to the color signal of each color corrected by the color signal correction device 10.
- the image display device 80 can achieve the effects of both the first embodiment and the fifth embodiment, and can further suppress the occurrence of luminance shift and chromaticity shift.
- the combination of any of the other embodiments (a combination of any one of Embodiments 1 to 4 and Embodiment 5 or 6) can provide the same effects as described above.
- the color signal corrected by the chromaticity correction unit is a blue color signal, but a red color signal may be corrected. Accordingly, for example, when white having a color temperature of 9000 K or higher is displayed, it is possible to effectively suppress chromaticity deviation and luminance deviation.
- the system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on one chip. Specifically, a microprocessor, a ROM (Read Only Memory), a RAM (Random Access Memory), etc. It is a computer system comprised including.
- the light emission characteristic correction unit 12, the chromaticity correction data acquisition unit 14, the chromaticity correction unit 15, and the chromaticity correction data calculation unit 16 are configured by one system LSI 70. May be. Further, as shown in FIG.
- the light emission characteristic correction unit 12 the chromaticity correction data acquisition unit 14, the chromaticity correction data calculation unit 16, the chromaticity correction switching unit 21, and the chromaticity correction unit 22
- a single system LSI 71 may be included.
- some of the components constituting the color signal correction apparatus may be composed of one system LSI 72 or system LSI 73.
- the present invention suppresses at least one of chromaticity shift and luminance shift with respect to an input color signal when an image is displayed by causing a plurality of pixels composed of red, green, and blue light emitters to emit light using the subfield method. It is useful for plasma displays that can be used, particularly plasma displays used as professional equipment (master monitors, post-pro monitors, etc.).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Control Of Gas Discharge Display Tubes (AREA)
- Processing Of Color Television Signals (AREA)
Abstract
Description
図1は、本発明の一実施の形態による色信号補正方法及びそれを具現化する本発明の一実施の形態による色信号補正装置により画像表示を行う、本発明の一実施の形態である画像表示装置の一例であるPDPの概略構成を示す断面斜視図である。
図2は、本発明の実施の形態1における色信号補正装置の機能構成を示すブロック図である。
LUT記憶部11は、各色の発光体の発光輝度特性を補正するための発光輝度特性補正データが各色の入力色信号が示す輝度に対応づけて格納された赤緑青の各色用LUT11aを記憶している。
発光特性補正部12は、発光体の輝度飽和などの発光特性を補正するために、各色用LUT11aを参照することにより各色の入力色信号が示す輝度に対応する発光輝度特性補正データを取得する。そして、発光特性補正部12は、取得した発光輝度特性補正データを用いて前記各色の入力色信号を補正する。つまり、発光特性補正部12は、赤緑青の各色の入力色信号の輝度レベル(Ra、Ga、Ba)に対する各色の出力色信号の輝度レベル(Rd、Gd、Bc)を、表示部を構成する各画素の発光輝度に応じて変更することにより、入力色信号の輝度レベルに対する画像表示部の発光輝度が線形になるように補正する処理部であり、非線形補正回路が好適に用いられる。
色度補正テーブル記憶部13は、色度補正データ算出部16によって算出された色度補正データ(以下、色度補正値ともいう。)が格納された色度補正テーブル13aを記憶する。色度補正テーブル13aは、青色の色信号を補正するための色度補正値が、青色の入力色信号の示す輝度レベル(Ba)に対応づけて格納される。
色度補正データ取得部14は、色度補正テーブル記憶部13に記憶されている色度補正テーブル13aを参照することにより、青色の入力色信号が示す輝度レベル(Ba)に対応する色度補正値を取得する。
色度補正部15は、白色の入力色信号の輝度レベルの変化に連動した色度の変動を抑制するための処理部である。つまり、色度補正部15は、発光特性補正部12によって補正された後の各色の色信号のうち青色の色信号を、色度補正データ取得部14によって取得された色度補正データを用いて補正する。具体的には、色度補正部15は、色度補正データ取得部14によって取得された、青色の入力色信号の輝度レベル(Ba)に対応する色度補正値(Bb)を、発光特性補正部12によって補正された後の青色の色信号の輝度レベル(Bc)に付加(加算)することにより、輝度レベル(Bc)を輝度レベル(Bd)に補正する。
色度補正データ算出部16は、色度補正部15などによって色信号が補正される前に、色度補正テーブルに格納する色度補正データを算出する処理部である。具体的には、色度補正データ算出部16は、白色の輝度レベルを0~255まで変えた場合にyの色度ずれと白色の輝度レベルとを乗算し、さらに係数αを乗算した値である色度補正値を算出する。すなわち、色度補正データ算出部16は、目標色度のy座標と、測定された表示色度のy座標との差分値を目標色度が示す白色の輝度レベルと乗算する。そして、色度補正データ算出部16は、乗算した値をさらに係数α倍した値を、色度補正値として算出する。さらに、色度補正データ算出部16は、算出した色度補正値を青色の色信号が示す輝度レベルに対応づけて色度補正テーブル13aへ格納する。
次に、本発明の実施の形態2について説明する。
色度補正切替部21は、RGBの各色の入力色信号間の輝度レベルのバランスに応じて、色度補正部22に色信号の補正をさせるか否かを切り替える。具体的には、RGBの各色の入力色信号が示す輝度レベルが略一致している場合に、色度補正切替部21は、例えば、「1」を示す切替信号を色度補正部22に出力する。一方、RGBの各色の入力色信号が示す輝度レベルが略一致していない場合に、色度補正切替部21は、例えば、「0」を示す切替信号を色度補正部22に出力する。ここで、略一致とは、厳密に一致していることに加えて、一致していると同視できる程度に近似していることを示す。具体的には、略一致とは、各色の入力色信号間の輝度レベルの各差分値があらかじめ定められた基準値を超えないことをいう。
色度補正部22は、各色の入力色信号が示す輝度レベルが略一致している場合に、色信号を補正する。具体的には、色度補正部22は、例えば、色度補正データ取得部14によって取得された色度補正値Bbに、色度補正切替部21によって出力された切替信号が示す値Selを乗算する。そして、色度補正部22は、乗算した後の値を発光特性補正部12によって補正された後の青色の色信号の輝度レベルBcに加算する。
次に、本発明の実施の形態3について説明する。
そこで、色度補正データ算出部31は、目標色度からR(例えば、波長620nm)を示す色度の方向と、目標色度からB(例えば、波長472nm)を示す色度の方向とに色度抑制ベクトルI2をベクトル分解する。そして、ベクトル分解後の各ベクトルの長さに目標色度が示す白色の輝度レベル及び係数αを乗算した値をR及びBの色度補正データとして色度補正テーブル13b又は13aに格納する。なお、上記において、ベクトル分解及び乗算の順番はどちらが先でもよい。つまり、色度補正データ算出部31は、乗算後、ベクトル分解してもよい。
このように色度補正データ算出部31によって色度補正データが格納された色度補正テーブル13a及び13bを参照することにより、色度補正データ取得部32は、青色及び赤色の色度補正データを取得する。
色度補正部33は、色度補正データ取得部32によって取得された青色及び赤色の色度補正データを用いて、発光特性補正部12によって補正された後の青色及び赤色の色信号のそれぞれを補正する。
次に、本発明の実施の形態4について説明する。
色度補正切替部41は、RGBの各色の入力色信号間の輝度レベルのバランスに応じて、色度補正部42に色信号の補正をさせるか否かを切り替える。具体的には、RGBの各色の入力色信号が示す輝度レベルが略一致している場合に、色度補正切替部41は、例えば、「1」を示す切替信号を色度補正部42に出力する。一方、RGBの各色の入力色信号が示す輝度レベルが略一致していない場合に、色度補正切替部41は、例えば、「0」を示す切替信号を色度補正部42に出力する。
色度補正部42は、各色の入力色信号が示す輝度レベルが略一致している場合に、色信号を補正する。具体的には、色度補正部42は、例えば、色度補正データ取得部14によって取得された青色の色度補正値Bbに、色度補正切替部41によって出力された切替信号が示す値Selを乗算する。そして、色度補正部42は、乗算した後の値を発光特性補正部12によって補正された後の青色の色信号の輝度レベルBcに加算する。また、色度補正部42は、例えば、色度補正データ取得部14によって取得された赤色の色度補正値Rbに、色度補正切替部41によって出力された切替信号が示す値Selを乗算する。そして、色度補正部42は、乗算した後の値を発光特性補正部12によって補正された後の赤色の色信号の輝度レベルRcに加算する。
次に、本発明の実施の形態5について説明する。
SF変換テーブル記憶部51は、例えば不揮発性のメモリからなる。SF変換テーブル記憶部51は、色ごとのSF変換テーブルである、RSF変換テーブル51a、GSF変換テーブル51b及びBSF変換テーブル51cを記憶している。
SF変換部52は、RSF変換部52a、GSF変換部52b及びBSF変換部52cを有する。RSF変換部52a、GSF変換部52b及びBSF変換部52cのそれぞれは、SF変換テーブル記憶部51に記憶された、対応する色のSF変換テーブル(RSF変換テーブル51a、GSF変換テーブル51b及びBSF変換テーブル51c)を参照することにより、各色の色信号が示す輝度に対応する点灯パターンを取得する。そして、RSF変換部52a、GSF変換部52b及びBSF変換部52cのそれぞれは、取得した点灯パターンにしたがって点灯信号(Re、Ge、Be)を生成する。また、SF変換部52は、初期化信号、書込み信号及び維持信号などを生成する。
PDPモジュール53は、例えば図1に示す交流面放電パネルと交流面放電パネルの3電極に駆動波形を印加するための駆動回路からなり、SF変換部52によって生成された点灯信号にしたがって、PDPモジュール53は発光体を発光させることにより画像を表示する。なお、PDPモジュール53は、画像表示部に相当する。
実施の形態5で例示したSF点灯パターンを用いて、横クロストークが発生しやすい高精細パネルを点灯させた場合、SFの初期化方法の違いによって点灯不良が発生して輝度ずれ及び色度ずれが発生する。そこで、実施の形態6では、高精細パネルに適用できるSF点灯パターンについて説明する。
SF変換テーブル記憶部61は、図15Aに示すGSF変換テーブル61bと、図15Bに示すRSF変換テーブル61a及びBSF変換テーブル61cとを記憶している。図15Aに示すGSF変換テーブル61bは、図12Aに示したSF変換テーブルにおいてSF1が非点灯であるSF点灯パターン(図16Aにおいて斜線部で示すSF1を含むSF点灯パターン)を除いたSF点灯パターンからなるSF変換テーブルである。また、図15Bに示すRSF変換テーブル61a及びBSF変換テーブル61cは、図12Bに示したSF変換テーブルにおいてSF1が非点灯であるSF点灯パターン(図16Bにおいて斜線部で示すSF1を含むSF点灯パターン)を除いたSF点灯パターンからなるSF変換テーブルである。
SF変換部62は、SF変換テーブルを参照することにより、各色の色信号が示す輝度に対応する点灯パターンを取得する。具体的には、SF変換部62が有するRSF変換部62a、GSF変換部62b及びBSF変換部62cは、対応する色のSF変換テーブルを参照することにより、各色の色信号が示す輝度に対応する点灯パターンを取得する。
11 LUT記憶部
11a 各色用LUT
12 発光特性補正部
13 色度補正テーブル記憶部
13a、13b 色度補正テーブル
14、32 色度補正データ取得部
15、22、33、42 色度補正部
16、31 色度補正データ算出部
21、41 色度補正切替部
50、60、80 画像表示装置
51、61 SF変換テーブル記憶部
51a、61a RSF変換テーブル
51b、61b GSF変換テーブル
51c、61c BSF変換テーブル
52、62 SF変換部
52a、62a RSF変換部
52b、62b GSF変換部
52c、62c BSF変換部
53 PDPモジュール
70 システムLSI
Claims (19)
- 赤緑青の各色の色信号にしたがって、赤緑青の各色の発光体からそれぞれなる複数の画素をサブフィールド法を用いて発光させることにより画像を表示する画像表示装置であって、
赤緑青の各色の色信号が示す輝度に対応づけて、複数のサブフィールドのうち点灯させるサブフィールドを示す点灯パターンが格納されたSF変換テーブルを、色ごとに記憶しているSF変換テーブル記憶部と、
前記SF変換テーブル記憶部に記憶された色ごとのSF変換テーブルを参照することにより、入力された各色の色信号が示す輝度に対応する点灯パターンを取得し、取得した点灯パターンにしたがって色ごとに点灯信号を生成するSF変換部と、
前記SF変換部によって生成された点灯信号にしたがって、前記発光体を発光させることにより画像を表示する画像表示部とを備え、
青色及び赤色の少なくとも一方の前記SF変換テーブルに格納される点灯パターンの種類数は、緑色の前記SF変換テーブルに格納される点灯パターンの種類数よりも多い
画像表示装置。 - 前記SF変換テーブルには、複数のサブフィールドのうち選択された少なくとも1つのサブフィールドが所定の閾値より大きいすべての輝度に対して点灯することを示す点灯パターンが格納される
請求項1に記載の画像表示装置。 - 前記画像表示部は、
走査電極及び維持電極からなる表示電極を有する前面基板と、
データ電極を有し、前記表示電極に対して前記データ電極が交差するように前記前面基板と対向する位置に配置された背面基板とを備え、
対向する前記前面基板及び前記背面基板の間に複数の放電セルが構成され、
前記サブフィールド法における1TVフィールドは、前記複数の放電セルの少なくとも1つを初期化放電する初期化期間と、前記複数の放電セルのうち点灯すべき放電セルをアドレス放電する書込み期間と、アドレス放電された前記放電セルを維持放電する維持期間とをそれぞれ有する複数のサブフィールドから構成され、
前記複数のサブフィールドのうち少なくとも1つのサブフィールドは、前記複数の放電セルのすべてを初期化放電する全セル初期化放電期間を有し、
前記SF変換テーブルには、所定の閾値より大きいすべての輝度に対して複数のサブフィールドのうち全セル初期化放電期間を有するサブフィールドが点灯することを示す点灯パターンが格納される
請求項1又は2に記載の画像表示装置。 - さらに、
前記各色の発光体の発光輝度特性を補正するための発光輝度特性補正データが各色の入力色信号が示す輝度に対応づけて格納された赤緑青の各色用LUT(ルックアップテーブル)を記憶しているLUT記憶部と、
青色及び赤色の少なくとも一方の色信号を補正するための色度補正データが、当該色の入力色信号の示す輝度に対応づけて格納された色度補正テーブルを記憶している色度補正テーブル記憶部と、
前記各色用LUTを参照することにより各色の入力色信号が示す輝度に対応する発光輝度特性補正データを取得し、取得した発光輝度特性補正データを用いて前記各色の入力色信号を補正する発光特性補正部と、
前記色度補正テーブル記憶部に記憶されている色度補正テーブルを参照することにより、青色及び赤色の少なくとも一方の入力色信号に対応する色度補正データを取得する色度補正データ取得部と、
前記発光特性補正部によって補正された後の各色の色信号のうち前記色度補正データ取得部によって取得された色度補正データに対応する色の色信号を、当該色度補正データを用いて補正する色度補正部とを備え、
前記SF変換部は、前記色度補正部によって補正された後の色信号の輝度に対応する点灯パターンを取得する
請求項1~3のいずれか1項に記載の画像表示装置。 - さらに、
前記各色の入力色信号によって特定される画素の色が白色である場合に、前記各色の入力色信号が前記各色用LUTを用いて補正された後の色信号にしたがって前記画像表示部に表示される画素の色度である表示色度と、前記各色の入力色信号によって特定される画素の色度である目標色度との差分に基づいて、青色及び赤色の少なくとも一方の色度補正データを算出し、算出した色度補正データを前記色度補正テーブルに格納する色度補正データ算出部を備える
請求項4に記載の画像表示装置。 - 前記色度補正データ算出部は、前記目標色度のy座標又はx座標と、測定された前記表示色度のy座標又はx座標との差分値を、前記目標色度が示す白色の輝度レベルと乗算し、さらに所定の係数α(αは正の実数)倍した値を、色度補正データとして算出し、
前記色度補正データ取得部は、前記色度補正テーブルを参照することにより青色の入力色信号が示す輝度に対応する色度補正データを取得し、
前記色度補正部は、前記発光特性補正部によって補正された後の青色の色信号を、前記色度補正データ取得部によって取得された色度補正データを用いて補正する
請求項5に記載の画像表示装置。 - 前記色度補正データ算出部は、前記目標色度のy座標又はx座標と、測定された前記表示色度のy座標又はx座標との差分値を、前記目標色度が示す白色の輝度レベルと乗算し、さらに所定の係数α(αは正の実数)倍した値を、色度補正データとして算出し、
前記色度補正データ取得部は、前記色度補正テーブルを参照することにより赤色の入力色信号が示す輝度に対応する色度補正データを取得し、
前記色度補正部は、前記発光特性補正部によって補正された後の赤色の色信号を、前記色度補正データ取得部によって取得された色度補正データを用いて補正する
請求項5に記載の画像表示装置。 - 前記色度補正データ算出部は、測定された前記表示色度のxy座標から前記目標色度のxy座標へ向かう色度抑制ベクトルを前記目標色度が示す白色の輝度レベル及び所定の係数α(αは正の実数)と乗算したベクトルを、前記目標色度のxy座標と青色及び赤色の色度を示すxy座標とを結ぶ2つの線分の方向にベクトル分解し、ベクトル分解後の各ベクトルの大きさを青色及び赤色の色度補正データとして算出し、
前記色度補正データ取得部は、前記色度補正テーブルを参照することにより青色及び赤色の入力色信号が示す輝度に対応する色度補正データのそれぞれを取得し、
前記色度補正部は、前記色度補正データ取得部によって取得された色度補正データを用いて、前記発光特性補正部によって補正された後の青色及び赤色の色信号のそれぞれを補正する
請求項5に記載の画像表示装置。 - 前記所定の係数αは、100以下のあらかじめ定められた値である
請求項6~8のいずれか1項に記載の画像表示装置。 - 前記色度補正部は、前記各色の入力色信号が示す輝度レベルが略一致している場合に、色信号を補正する
請求項4~9のいずれか1項に記載の画像表示装置。 - 前記色度補正部は、前記各色の入力色信号が示す輝度レベルが略一致したときから時間の経過とともに徐々に大きくなる所定の係数β(βは0以上1以下の実数)を前記色度補正データに乗算した値を用いて色信号を補正する
請求項4~10のいずれか1項に記載の画像表示装置。 - 赤緑青の各色の発光体からそれぞれなる複数の画素をサブフィールド法を用いて発光させることにより画像を表示する画像表示部へ出力される赤緑青の各色の色信号を補正する色信号補正装置であって、
前記各色の発光体の発光輝度特性を補正するための発光輝度特性補正データが各色の入力色信号が示す輝度に対応づけて格納された赤緑青の各色用LUT(ルックアップテーブル)を記憶しているLUT記憶部と、
青色及び赤色の少なくとも一方の色信号を補正するための色度補正データを当該色の入力色信号の示す輝度に対応づけて格納するための色度補正テーブルを記憶している色度補正テーブル記憶部と、
赤緑青の各色の入力色信号によって特定される画素の色が白色である場合に、前記各色の入力色信号が前記各色用LUTを用いて補正された後の色信号にしたがって前記画像表示部に表示される画素の色度である表示色度と、前記各色の入力色信号によって特定される画素の色度である目標色度との差分に基づいて、青色及び赤色の少なくとも一方の色度補正データを算出し、算出した色度補正データを前記色度補正テーブルに格納する色度補正データ算出部と、
前記各色用LUTを参照することにより赤緑青の各色の入力色信号が示す輝度に対応する発光輝度特性補正データを取得し、取得した発光輝度特性補正データを用いて前記各色の入力色信号を補正する発光特性補正部と、
前記色度補正テーブル記憶部に記憶されている色度補正テーブルを参照することにより、青色及び赤色の少なくとも一方の入力色信号に対応する色度補正データを取得する色度補正データ取得部と、
前記発光特性補正部によって補正された後の各色の色信号のうち前記色度補正データ取得部によって取得された色度補正データに対応する色の色信号を、当該色度補正データを用いて補正する色度補正部とを備える
色信号補正装置。 - 前記色度補正データ算出部は、前記目標色度のy座標又はx座標と、測定された前記表示色度のy座標又はx座標との差分値を、前記目標色度が示す白色の輝度レベルと乗算し、さらに所定の係数α(αは正の実数)倍した値を、色度補正データとして算出し、
前記色度補正データ取得部は、前記色度補正テーブルを参照することにより青色の入力色信号が示す輝度に対応する色度補正データを取得し、
前記色度補正部は、前記発光特性補正部によって補正された後の青色の色信号を、前記色度補正データ取得部によって取得された色度補正データを用いて補正する
請求項12に記載の色信号補正装置。 - 前記色度補正データ算出部は、前記目標色度のy座標又はx座標と、測定された前記表示色度のy座標又はx座標との差分値を、前記目標色度が示す白色の輝度レベルと乗算し、さらに所定の係数α(αは正の実数)倍した値を、色度補正データとして算出し、
前記色度補正データ取得部は、前記色度補正テーブルを参照することにより赤色の入力色信号が示す輝度に対応する色度補正データを取得し、
前記色度補正部は、前記発光特性補正部によって補正された後の赤色の色信号を、前記色度補正データ取得部によって取得された色度補正データを用いて補正する
請求項12に記載の色信号補正装置。 - 前記色度補正データ算出部は、測定された前記表示色度のxy座標から前記目標色度のxy座標へ向かう色度抑制ベクトルを前記目標色度が示す白色の輝度レベル及び所定の係数α(αは正の実数)と乗算したベクトルを、前記目標色度のxy座標と青色及び赤色の色度を示すxy座標とを結ぶ2つの線分の方向にベクトル分解し、ベクトル分解後の各ベクトルの大きさを青色及び赤色の色度補正データとして算出し、
前記色度補正データ取得部は、前記色度補正テーブルを参照することにより青色及び赤色の入力色信号が示す輝度に対応する色度補正データのそれぞれを取得し、
前記色度補正部は、前記色度補正データ取得部によって取得された色度補正データを用いて、前記発光特性補正部によって補正された後の青色及び赤色の色信号のそれぞれを補正する
請求項12に記載の色信号補正装置。 - 前記所定の係数αは、100以下のあらかじめ定められた値である
請求項13~15のいずれか1項に記載の色信号補正装置。 - 前記色度補正部は、前記各色の入力色信号が示す輝度レベルが略一致している場合に、色信号を補正する
請求項12~16のいずれか1項に記載の色信号補正装置。 - 前記色度補正部は、前記各色の入力色信号が示す輝度レベルが略一致したときから時間の経過とともに徐々に大きくなる所定の係数β(βは0以上1以下の実数)を前記色度補正データに乗算した値を用いて色信号を補正する
請求項12~17のいずれか1項に記載の色信号補正装置。 - 赤緑青の各色の発光体からそれぞれなる複数の画素をサブフィールド法を用いて発光させることにより画像を表示する画像表示部へ出力される赤緑青の各色の色信号を補正する色信号補正装置において用いられる色信号補正方法あって、
前記色信号補正装置は、
前記各色の発光体の発光輝度特性を補正するための発光輝度特性補正データが各色の入力色信号が示す輝度に対応づけて格納された赤緑青の各色用LUT(ルックアップテーブル)を記憶しているLUT記憶部と、
青色及び赤色の少なくとも一方の色信号を補正するための色度補正データを当該色の入力色信号の示す輝度に対応づけて格納するための色度補正テーブルを記憶している色度補正テーブル記憶部とを備え、
前記色信号補正方法は、
赤緑青の各色の入力色信号によって特定される画素の色が白色である場合に、前記各色の入力色信号が前記各色用LUTを用いて補正された後の色信号にしたがって前記画像表示部に表示される画素の色度である表示色度と、前記各色の入力色信号によって特定される画素の色度である目標色度との差分に基づいて、青色及び赤色の少なくとも一方の色度補正データを算出し、算出した色度補正データを前記色度補正テーブルに格納する色度補正データ算出ステップと、
前記各色用LUTを参照することにより赤緑青の各色の入力色信号が示す輝度に対応する発光輝度特性補正データを取得し、取得した発光輝度特性補正データを用いて前記各色の入力色信号を補正する発光特性補正ステップと、
前記色度補正テーブル記憶部に記憶されている色度補正テーブルを参照することにより、青色及び赤色の少なくとも一方の入力色信号に対応する色度補正データを取得する色度補正データ取得ステップと、
前記発光特性補正ステップにおいて補正された後の各色の色信号のうち前記色度補正データ取得ステップにおいて取得された色度補正データに対応する色の色信号を、当該色度補正データを用いて補正する色度補正ステップとを含む
色信号補正方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010534686A JPWO2010047091A1 (ja) | 2008-10-20 | 2009-10-20 | 画像表示装置、色信号補正装置及び色信号補正方法 |
US12/809,230 US20100271409A1 (en) | 2008-10-20 | 2009-10-20 | Image display apparatus, color signal correction apparatus, and color signal correction method |
CN2009801014085A CN101903931A (zh) | 2008-10-20 | 2009-10-20 | 图像显示装置、色信号修正装置及色信号修正方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008269421 | 2008-10-20 | ||
JP2008-269421 | 2008-10-20 | ||
JP2009135497 | 2009-06-04 | ||
JP2009-135497 | 2009-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010047091A1 true WO2010047091A1 (ja) | 2010-04-29 |
Family
ID=42119146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/005492 WO2010047091A1 (ja) | 2008-10-20 | 2009-10-20 | 画像表示装置、色信号補正装置及び色信号補正方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20100271409A1 (ja) |
JP (1) | JPWO2010047091A1 (ja) |
KR (1) | KR101097639B1 (ja) |
CN (1) | CN101903931A (ja) |
WO (1) | WO2010047091A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013046430A1 (ja) * | 2011-09-30 | 2013-04-04 | Necディスプレイソリューションズ株式会社 | 色度補正装置、色度補正方法および表示装置 |
CN103680449B (zh) * | 2013-12-17 | 2017-02-22 | Tcl集团股份有限公司 | 一种消除液晶显示器mura的方法及装置 |
TWI529693B (zh) * | 2014-08-18 | 2016-04-11 | 友達光電股份有限公司 | 顯示裝置及其色彩轉換方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08123366A (ja) * | 1994-10-28 | 1996-05-17 | Matsushita Electric Ind Co Ltd | プラズマディスプレイ |
JPH10288974A (ja) * | 1997-04-15 | 1998-10-27 | Nec Corp | カラープラズマディスプレイパネルおよびその駆動方法 |
JP2003288056A (ja) * | 2002-03-27 | 2003-10-10 | Sharp Corp | カラー表示装置およびカラー表示補正方法 |
JP2004274175A (ja) * | 2003-03-05 | 2004-09-30 | Canon Inc | 色信号補正装置,色信号補正方法及び画像表示装置 |
JP2005173429A (ja) * | 2003-12-15 | 2005-06-30 | Sankyo Kk | 平面型表示装置および平面型表示装置の調整方法 |
WO2008035648A1 (fr) * | 2006-09-20 | 2008-03-27 | Panasonic Corporation | Procédé de commande d'écran plasma et dispositif d'écran plasma |
JP2008070488A (ja) * | 2006-09-12 | 2008-03-27 | Fujitsu Hitachi Plasma Display Ltd | ガス放電表示装置 |
JP2008209590A (ja) * | 2007-02-26 | 2008-09-11 | Pioneer Electronic Corp | 表示パネルの駆動装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3853105B2 (ja) * | 1999-05-24 | 2006-12-06 | 富士写真フイルム株式会社 | カラーモニタのモノクロ画像表示方法およびこれに用いる画像表示装置 |
JP3632505B2 (ja) * | 1999-06-18 | 2005-03-23 | セイコーエプソン株式会社 | 画像表示装置 |
JP2004212559A (ja) * | 2002-12-27 | 2004-07-29 | Fujitsu Hitachi Plasma Display Ltd | プラズマディスプレイパネルの駆動方法及びプラズマディスプレイ装置 |
US7768487B2 (en) * | 2004-12-31 | 2010-08-03 | Lg. Display Co., Ltd. | Driving system for an electro-luminescence display device |
EP2031573A1 (en) * | 2006-05-24 | 2009-03-04 | Panasonic Corporation | Color temperature correction device and display device |
-
2009
- 2009-10-20 CN CN2009801014085A patent/CN101903931A/zh active Pending
- 2009-10-20 US US12/809,230 patent/US20100271409A1/en not_active Abandoned
- 2009-10-20 KR KR1020107013405A patent/KR101097639B1/ko not_active IP Right Cessation
- 2009-10-20 WO PCT/JP2009/005492 patent/WO2010047091A1/ja active Application Filing
- 2009-10-20 JP JP2010534686A patent/JPWO2010047091A1/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08123366A (ja) * | 1994-10-28 | 1996-05-17 | Matsushita Electric Ind Co Ltd | プラズマディスプレイ |
JPH10288974A (ja) * | 1997-04-15 | 1998-10-27 | Nec Corp | カラープラズマディスプレイパネルおよびその駆動方法 |
JP2003288056A (ja) * | 2002-03-27 | 2003-10-10 | Sharp Corp | カラー表示装置およびカラー表示補正方法 |
JP2004274175A (ja) * | 2003-03-05 | 2004-09-30 | Canon Inc | 色信号補正装置,色信号補正方法及び画像表示装置 |
JP2005173429A (ja) * | 2003-12-15 | 2005-06-30 | Sankyo Kk | 平面型表示装置および平面型表示装置の調整方法 |
JP2008070488A (ja) * | 2006-09-12 | 2008-03-27 | Fujitsu Hitachi Plasma Display Ltd | ガス放電表示装置 |
WO2008035648A1 (fr) * | 2006-09-20 | 2008-03-27 | Panasonic Corporation | Procédé de commande d'écran plasma et dispositif d'écran plasma |
JP2008209590A (ja) * | 2007-02-26 | 2008-09-11 | Pioneer Electronic Corp | 表示パネルの駆動装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010047091A1 (ja) | 2012-03-22 |
KR101097639B1 (ko) | 2011-12-22 |
CN101903931A (zh) | 2010-12-01 |
KR20100087750A (ko) | 2010-08-05 |
US20100271409A1 (en) | 2010-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7907103B2 (en) | Plasma display apparatus and driving method thereof | |
JP4925576B2 (ja) | プラズマディスプレイパネルの駆動装置及び方法 | |
US8471786B2 (en) | Plasma display device and plasma display panel driving method | |
JP2009186715A (ja) | プラズマディスプレイ装置 | |
JP4160575B2 (ja) | プラズマディスプレイ装置及びその駆動方法 | |
JP4248572B2 (ja) | ガス放電表示装置 | |
JP2005157367A (ja) | 表示装置の階調処理方法および装置 | |
JP2000259110A (ja) | 画像データ積算方法及び画像データ積算回路並びに表示装置 | |
WO2010047091A1 (ja) | 画像表示装置、色信号補正装置及び色信号補正方法 | |
US20020175922A1 (en) | Method and apparatus for eliminating flicker in plasma display panel | |
US20050083253A1 (en) | Panel driving method and apparatus | |
US20100033509A1 (en) | Image display device | |
KR20060085061A (ko) | 플라즈마 디스플레이 패널의 구동 장치 및 구동 방법 | |
KR100482345B1 (ko) | 액정을 이용한 플라즈마 디스플레이 패널의 구동방법 | |
KR100800526B1 (ko) | 플라즈마 디스플레이 장치 | |
US20120299981A1 (en) | Plasma display device and method for driving a plasma display panel | |
JP2012242593A (ja) | プラズマディスプレイ装置およびプラズマディスプレイパネルの駆動方法 | |
KR100516941B1 (ko) | 플라즈마 디스플레이 패널의 구동방법 및 장치 | |
KR100692042B1 (ko) | 플라즈마 디스플레이 패널 | |
JP2014089226A (ja) | 駆動制御装置及び駆動制御方法 | |
JP2011248268A (ja) | プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置 | |
WO2013035216A1 (ja) | プラズマディスプレイ装置およびプラズマディスプレイパネルの駆動方法 | |
KR20060102012A (ko) | 플라즈마 디스플레이 패널의 구동방법 | |
KR20070095710A (ko) | 플라즈마 디스플레이 장치 | |
KR20070104812A (ko) | 플라즈마 디스플레이 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980101408.5 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20107013405 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010534686 Country of ref document: JP Ref document number: 12809230 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09821791 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09821791 Country of ref document: EP Kind code of ref document: A1 |