WO2010047042A1 - 微粉炭燃焼ボイラを用いたバイオマスの利用装置およびそれを用いたバイオマスの利用方法 - Google Patents

微粉炭燃焼ボイラを用いたバイオマスの利用装置およびそれを用いたバイオマスの利用方法 Download PDF

Info

Publication number
WO2010047042A1
WO2010047042A1 PCT/JP2009/004928 JP2009004928W WO2010047042A1 WO 2010047042 A1 WO2010047042 A1 WO 2010047042A1 JP 2009004928 W JP2009004928 W JP 2009004928W WO 2010047042 A1 WO2010047042 A1 WO 2010047042A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
biomass
pulverized coal
tar
carbide
Prior art date
Application number
PCT/JP2009/004928
Other languages
English (en)
French (fr)
Inventor
橋本茂
石田吉浩
栗田雅也
加藤也寸彦
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to CN2009801416596A priority Critical patent/CN102187152A/zh
Priority to JP2010534664A priority patent/JP4855539B2/ja
Priority to BRPI0919765-6A priority patent/BRPI0919765B1/pt
Publication of WO2010047042A1 publication Critical patent/WO2010047042A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/303Burning pyrogases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/304Burning pyrosolids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/10Waste heat recuperation reintroducing the heat in the same process, e.g. for predrying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/203Waste heat recuperation using the heat in association with another installation with a power/heat generating installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/26Biowaste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention relates to a biomass utilization method and apparatus for efficiently pyrolyzing biomass and using gas, tar and carbide in a pulverized coal combustion boiler.
  • a typical example of biomass and waste treatment is a waste incineration power generation system that collects electric power by combining steam power generation with incineration facilities.
  • a waste incineration power generation system that collects electric power by combining steam power generation with incineration facilities.
  • a lot of water and a low calorific value for example, biomass, general garbage
  • a high calorific value but a high-efficiency operation for example, a waste plastic containing chlorine
  • III For the reason that the amount that can be collected economically is limited, the power transmission efficiency by waste power generation is generally only 10-15%.
  • the transmission end efficiency by pulverized coal combustion power generation using fossil fuel is generally 41 to 42%.
  • High-efficiency incinerator technology that generates electricity with power transmission efficiency of 20% to 30% by improving boiler materials, adjusting raw materials (using RDF), and improving efficiency by using external fuel (super garbage power generation).
  • these high-efficiency equipments require additional elements such as pretreatment of raw materials, improvement of boiler materials, introduction of external fuel (fossil fuel), etc., and chlorine in waste (mainly from waste plastic)
  • the increase in operating energy such as increased use of electric power, increased water treatment energy, and increased energy related to equipment manufacturing and construction, including the carbon dioxide generated in these processes, the reduction of carbon dioxide due to the use of waste is considered. Even so, there are many cases in which carbon dioxide reduction is not necessarily achieved and energy is often increased, and as a result, it is easy to become a facility that only “treats” waste.
  • the steam is converted into electric power by a steam turbine or used as heat as it is.
  • a steam turbine When using biomass, if it is put directly into a coal crusher for the purpose of crushing to the same particle size as coal for airflow conveyance, productivity may be reduced due to deterioration of crushability (eg wood), drying, granulation, Pre-treatment such as carbonization is necessary (for example, sewage sludge), or the boiler efficiency is reduced by burning low-reactivity, low-calorific raw materials in the boiler (for example, wood, sewage sludge). ), Etc., and the disadvantage is that the mixing rate of biomass cannot be increased.
  • Patent Document 1 discloses that a pulverized coal combustion boiler has a dedicated pulverization and drying device for supplying wood to the pulverized coal combustion boiler. Disclosed are facilities and methods that make it possible to keep energy low. Patent Document 2 discloses that wood that is poorly combustible (biomass) that has been directly put into the boiler is recovered and dropped into the lower part of the boiler and is put into a coal-side mill (wood is dried). ⁇ It is heated and improves crushability), and discloses a facility and a method capable of suppressing the total crushing power.
  • Both (A) and (B) are converted into another form (gas or carbide) once, and the effect of improving the overall efficiency rather than simply burning is expected. ) It has the effect of being able to enjoy the merits of increasing the degree of freedom such as removal and handling (because it can be basically handled by piping because it is gas).
  • the present invention mainly has the former effect and belongs to the type (A).
  • Patent Literature 3 and Patent Literature 4 have the latter effect.
  • Patent document 3 belongs to the type (A), and focuses on carbonization, and discloses a system in which carbide is burned together with coal in a business boiler (gas is burned and used as a thermal decomposition heat source by indirect heating).
  • Patent Document 4 belongs to the type (B), and discloses a system in which chlorine in partially burned gas is removed and burned in a boiler (the char in the gas is mixed with coal and used in the boiler). Yes. In the system disclosed in Patent Document 4, most of the inorganic chlorine that occupies about half of the total chlorine remains in the char, but it can be processed twice or more by removing chlorine in the gas.
  • Japanese Unexamined Patent Publication No. 2005-291526 Japanese Unexamined Patent Publication No. 2005-291531 Japanese Unexamined Patent Publication No. 2000-283431 Japanese Unexamined Patent Publication No. 2000-283434
  • Patent Document 1 the use of sensible heat of combustion exhaust gas suppresses a decrease in energy used in crushing / drying wood pretreatment.
  • only drying can prevent a decrease in boiler efficiency due to moisture, but cannot prevent a decrease in boiler efficiency due to low reactivity and low calorific value of wood (compared to coal).
  • Patent Document 2 can reduce the overall crushing power, there is energy that is lost when recovering wood that is not sufficiently reacted (sensible heat loss, power for transportation), which is very advantageous. It's not a method.
  • Patent Document 3 and Patent Document 4 are technologies mainly aimed at suppressing the disadvantages caused by chlorine (hydrochloric acid corrosion), and are not focused on improving efficiency.
  • a gasification furnace (partial combustion type using air in a fluidized bed in the embodiment) is an air ratio (that is, a ratio between an actual air amount and a theoretical air amount, and the theoretical air amount is Operates at 1.0 to 1.3 (the amount of air supplying the amount of oxygen necessary for complete combustion of the fuel being supplied) to produce combustible gases and carbides including carbon monoxide
  • the air ratio is 1 or more and carbides are also generated, the main components of the gas are carbon dioxide, water vapor, and nitrogen (derived from combustion air).
  • the present invention solves these problems of the prior art, utilizes the features of the shaft-type pyrolysis furnace, pyrolyzes waste with high efficiency, and burns and uses gas, tar, and carbide in a boiler.
  • An object of the present invention is to provide an efficient biomass utilization method and apparatus in a pulverized coal combustion boiler.
  • the present invention employs the following means in order to solve the above problems.
  • the biomass utilization apparatus of the present invention pyrolyzes or partially oxidizes biomass to produce pyrolysis gas, pyrolysis tar, and carbide, and the pyrolysis gas and pyrolysis tar from the top of the furnace.
  • a shaft-type pyrolysis furnace that discharges and discharges the carbide from the furnace bottom; a pulverized coal combustion boiler that burns pulverized coal to generate steam; and the shaft-type pyrolysis furnace that removes the pyrolysis gas and the pyrolysis tar And a pipe for feeding to the pulverized coal combustion boiler.
  • the pulverized coal combustion boiler includes a coal pulverizer that finely carbonizes coal as fuel; the coal pulverizer is the shaft-type pyrolysis furnace. You may have the 1st conveying apparatus which conveys the produced
  • the pulverized coal combustion boiler conveys the carbide generated in the shaft-type pyrolysis furnace to the pulverized coal combustion boiler. You may have a 2nd conveying apparatus.
  • the piping separates the pyrolysis gas and the pyrolysis tar generated in the shaft-type pyrolysis furnace. And a tar separation device that collects the pyrolysis tar; and a pyrolysis gas pipe that sends the pyrolysis gas separated by the tar separation device to the pulverized coal combustion boiler.
  • the biomass utilization method using the biomass utilization apparatus according to (1), (2), (3), or (4) thermally decomposes the biomass from a lower portion of the shaft-type pyrolysis furnace.
  • a pyrolysis gas having sensible heat for thermal decomposition of the biomass in the shaft-type pyrolysis furnace or by introducing an oxygen-containing gas from the lower part of the shaft-type pyrolysis furnace
  • the biomass in the shaft-type pyrolysis furnace is partially oxidized to produce the pyrolysis gas, the pyrolysis tar, and the carbide; the pyrolysis tar from the top of the shaft-type pyrolysis furnace
  • the pyrolysis gas and the pyrolysis tar are discharged at a temperature at which the temperature does not condense; the carbide is discharged from the bottom of the furnace; the pyrolysis gas, or both the pyrolysis gas and the pyrolysis tar, Pulverized coal To introduce into the baked boiler.
  • (6) The method for using biomass according to (5) described
  • FIG. 1 shows a typical flow diagram of a biomass utilization apparatus using a shaft-type pyrolysis furnace and a pulverized coal combustion boiler 9 according to the first embodiment and the second embodiment of the present invention.
  • the difference between the first embodiment and the second embodiment is that the pyrolysis tar 4 is not separated from the mixture of the pyrolysis gas 3 and the pyrolysis tar 4 generated together in the shaft-type pyrolysis furnace 2 (first Embodiment) and the case of separation (second embodiment), FIG. 1 clearly shows the flow of the second embodiment when tar is separated by the tar separation device 8 (the first embodiment is , Case excluding tar separation device 8).
  • the biomass in the present embodiment refers to agricultural biomass (straw, sugarcane, rice straw, vegetation, etc.), forestry biomass (paper waste, sawn timber, thinned wood, wood charcoal, etc.), livestock biomass (livestock waste) Product), fishery biomass (fishery processing residue), waste biomass (raw garbage, RDF: solid waste fuel; Refused Fuel, garden trees, construction waste wood, sewage sludge), and the like.
  • Biomass 1 is input from the upper part of the shaft type pyrolysis furnace 2 and descends in the furnace (moving bed).
  • the size of the biomass 1 may be a size that enters the shaft-type pyrolysis furnace 2.
  • biomass such as thinned thinned wood, construction waste, and garden trees is input in a size of about 300 mm square or less, and if necessary, roughly crushed and input.
  • other waste biomass, forestry biomass, livestock biomass, and fishery biomass are input as they are.
  • the biomass 1 While the biomass 1 is gradually lowered, the biomass 1 is dried and heated by the pyrolysis gas 6 rising inside the shaft-type pyrolysis furnace 2, and pyrolyzed to produce pyrolysis gas 3 and pyrolysis tar 4 to form a carbide 5. It becomes.
  • the carbide 5 is discharged from the bottom of the shaft type pyrolysis furnace 2.
  • the pyrolysis gas 6 as a pyrolysis heat source is largely supplied in two ways.
  • One method is a method of introducing an oxygen-containing gas, which will be described later in an example.
  • a part of the carbide 5 in the shaft-type pyrolysis furnace 2 is burned to form a heat source.
  • the oxygen-containing gas may be air or oxygen-enriched air, and may be selected in consideration of both the oxygen production equipment cost and the gas processing equipment cost.
  • oxygen-containing gas is introduced, for example, when pyrolyzing wood at a pace of 100 tons / day, the air ratio (that is, the ratio of the actual amount of air to be introduced and the theoretical amount of air, the theoretical air
  • the amount is the amount of air that supplies the amount of oxygen necessary for complete combustion of the supplied fuel) and may be about 0.2.
  • the temperature of the shaft-type pyrolysis furnace 2 may be managed by controlling the temperatures of the pyrolysis gas 3 and pyrolysis tar 4 discharged from the top of the furnace. This temperature should just be more than the temperature which the pyrolysis tar 4 does not condense, and it is preferable to manage to the temperature which does not condense even in the middle of conveyance to the pulverized coal combustion boiler 9 or the tar separation apparatus 8 of the latter stage. Although it depends on the type of biomass to be treated, it can be managed at a temperature of 300 to 600 ° C., for example.
  • oxygen-enriched air that is, oxygen + air
  • the concept of the air ratio is the same, and the supplied fuel is completely
  • the amount of oxygen-enriched air supplying the amount of oxygen necessary for combustion is defined as the theoretical oxygen-enriched air amount, and the ratio with the supplied oxygen-enriched air is taken.
  • the notation here is the air ratio.
  • fuel is burned outside the shaft-type pyrolysis furnace 2 to produce a high-temperature gas of 1000 ° C. to 1200 ° C. and supplied as the pyrolysis gas 6.
  • the pyrolysis gas 3 discharged from the top of the shaft-type pyrolysis furnace 2 (gas purification is performed if necessary) or the bottom of the shaft-type pyrolysis furnace 2 is discharged.
  • Carbide 5 is assumed. When the pyrolysis gas 3 or the carbide 5 is used as a fuel, a cooling (separation) and supply process (equipment) is required.
  • an external fuel such as fossil fuel may be used separately (the product gas or carbide increases correspondingly).
  • the product gas or carbide increases correspondingly.
  • the lower limit is 1000 ° C., and when it exceeds 1200 ° C., the clinker (melt agglomerates, The upper limit is set to 1200 ° C.
  • the pyrolysis gas 3 and pyrolysis tar 4 are discharged from the upper outlet (top of the furnace) of the shaft type pyrolysis furnace 2 at 300 ° C. to 600 ° C. and proceed to the subsequent process via the pyrolysis gas delivery pipe 7.
  • the pyrolysis gas 3 and pyrolysis tar 4 are directly blown into the pulverized coal combustion boiler 9.
  • the pyrolysis gas 3 and pyrolysis tar 4 are blown into the pulverized coal combustion boiler 9 after the pyrolysis tar 4 is separated and recovered by the tar separator 8.
  • biomass-derived pyrolysis gas 3 and pyrolysis tar 4 existing mixed combustion types (mixed combustion of pulverized coal and iron-producing gas, mixed pulverized coal and heavy oil, or mixed combustion of pulverized coal, iron-producing gas and heavy oil) Etc.), the pyrolysis gas 3 can be used without problems because it has many common components with the coke oven gas and has similar properties. Even when pyrolysis tar 4 is included, it can be supplied without any problem as a gas if condensation due to temperature drop is prevented (pipe temperature is not lowered to 300 ° C. or lower).
  • the pyrolysis gas 3 and the pyrolysis tar 4 are likely to occur many times when the temperature falls to 300 ° C. or less.
  • tar becomes a binder, and dust may adhere to and grow on the flue (delivery piping 7 such as pyrolysis gas).
  • delivery piping 7 such as pyrolysis gas
  • the temperature at the upper outlet of the shaft-type pyrolysis furnace 2 is less than 300 ° C., part of the pyrolysis tar 4 is likely to condense (particularly tar derived from wood), which is unsuitable because there is concern about clogging problems due to adhesion. .
  • the temperature at the upper outlet of the shaft-type pyrolysis furnace 2 exceeds 600 ° C., the heat necessary for the shaft-type pyrolysis furnace 2 increases (it burns away from the carbide), which is inappropriate.
  • an appropriate temperature is 300 ° C. to 600 ° C.
  • tar separation device 8 There are two types of tar separation device 8: a separation method with a high temperature, and a separation method in which the gas temperature is once lowered to the tar condensation temperature.
  • a separation method with a high temperature for example, a high-temperature filter (ceramic or metal) is used, and the dust is separated by condensing tar with the dust.
  • the advantages are that there is no heat loss due to the temperature drop and that there is no need for a water treatment system, and the disadvantages are that the separation efficiency is as low as about 80% at most.
  • direct quenching water circulation
  • water spray or the like is used.
  • the advantage is that the pyrolysis tar 4 can be separated efficiently (only about 100 mg / Nm 3 remains when lowered to 40 ° C. or lower). Disadvantages include heat loss due to temperature drop and the need for a water treatment system. In any system, since the separated tar has a large amount of heat, it is returned to the shaft-type pyrolysis furnace 2 as fuel for the pyrolysis gas 6 or as a pyrolysis raw material, or introduced into the pulverized coal combustion boiler 9 to generate heat. It is desirable to recover.
  • the pyrolysis gas 3 and pyrolysis tar 4 or the sole pyrolysis gas 3 is fed into the pulverized coal combustion boiler 9 and combusted. After the heat is recovered by the heat recovery section 10 (steam 11 generation), the gas After detoxification in the processing unit 12, it is diffused into the atmosphere as a diffused gas 13.
  • the pulverized coal combustion boiler 9 is separately charged with pulverized coal from the coal pulverization facility 14 and combusted. A part of the generated steam 11 is used in the system, but most of the steam is supplied to a steam turbine (not shown) and used for power generation.
  • FIG. 1 The flow of the biomass utilization apparatus using the shaft-type pyrolysis furnace 2 and the pulverized coal combustion boiler 9 including the carbide utilization process according to the third embodiment and the fourth embodiment of the present invention is shown in FIG.
  • the difference between the third embodiment and the fourth embodiment is that the generated carbide 5 is introduced into the coal crushing facility 14 (third embodiment: A), or the generated carbide 5 is directly pulverized coal combustion boiler 9. (Fourth embodiment: B).
  • the carbide 5 generated in the shaft-type pyrolysis furnace 2 is processed by the carbide processing device 15 and finally charged into the pulverized coal combustion boiler 9.
  • the carbide treatment device 15 includes a coarse crushing device and an inappropriate material separation device, but the coarse crushing device may be omitted depending on the state of the carbide 5.
  • the unsuitable material separation device has a function of separating unsuitable materials 16 such as debris, stones and metals, which have no heat, and are not suitable for combustion in the pulverized coal combustion boiler 9, and screens, vibrating sieves, and magnetic separators. Have a machine.
  • the coarse crushing device is installed for the purpose of improving the efficiency of sieving of the unsuitable material separating device (by making simple crushing, for example, so that nails digging into the carbide can be screened only by vibration). Crush to a size of about several tens of mm square.
  • the crushed carbide is separated into the combustion inadequate material 16 and then introduced into the coal pulverization facility 14 through the route A by the carbide conveying device 17 and finely pulverized coal. Is burned in the pulverized coal combustion boiler 9.
  • the crushed carbide is separated into the combustion inappropriate material 16 and then directly blown into the pulverized coal combustion boiler 9 through the B route.
  • the carbide treatment device 15 includes a coarse crushing device, an inappropriate material separating device, and a fine crushing device.
  • the rough crushing apparatus may be omitted for the reason described above.
  • the carbide 5 is crushed to about several tens of ⁇ m, which is the same size as pulverized coal, and blown into the pulverized coal combustion boiler 9.
  • route B since efficient combustion by direct blowing is required, an air current conveying system such as nitrogen is usually adopted as the carbide conveying device 17 after the carbide processing device 15 to the pulverized coal combustion boiler 9. Insufflation may be performed.
  • the coal 5 may be fed into the coal crushing facility 14 by the carbide conveying device 17 including a bucket conveyor and the like.
  • Example 1 which concerns on the 1st Embodiment of this invention which does not isolate
  • Wood construction waste wood 100 tons / day (4167 kg / hr) is used as biomass, and the air ratio (supply is oxygen-enriched air of 10% by volume of oxygen, and 1 when complete combustion) is 0.18
  • the shaft type pyrolysis furnace 2 the biomass 1 was partially burned with oxygen in oxygen-enriched air, and the shaft type pyrolysis furnace 2 was operated at a pyrolysis gas temperature of 400 ° C at the furnace outlet.
  • pyrolysis gas 7986 Nm 3 / h, pyrolysis tar 389 kg / h, and carbide 395 kg / h (including dust) were generated.
  • external fuel was almost unnecessary, but when starting up with insufficient heat, some LPG (+ oxygen-enriched air) was used.
  • the pyrolysis gas 3 is composed of 14.7% by volume of CO, 14.5% by volume of H 2 , 3.9% by volume of CH 4 as a main combustible component, and 24.7% by volume of CO as other gas components. 2 and 33.4% by volume of H 2 O (water vapor), a trace amount of hydrocarbons having C 2 (carbon number of 2) or more, and the remainder was N 2 .
  • the pyrolysis gas 3 and pyrolysis tar 4 were directly supplied to the pulverized coal combustion boiler 9. Different from the pulverized coal nozzle (burner), a dedicated blowing nozzle was installed, and the pyrolysis gas 3 and pyrolysis tar 4 were mixed with air immediately before the pulverized coal combustion boiler 9 and injected from four locations. 66% of the calorific value of the construction waste wood used as raw material was supplied to the pulverized coal combustion boiler 9 in the form of gas and tar. The remaining amount of heat is 10% carbide (taken outside and processed), about 9 to 11% is consumed by combustion in the shaft-type pyrolysis furnace 2, and the rest is composed of carbon adhering to unsuitable materials and heat dissipated. It was done. At this time, the amount of coal treated in the pulverized coal combustion boiler 9 was about 800 tons / day.
  • Example 2 according to the third embodiment in which the carbide 5 is charged into the coal crushing facility 14 (A route) is shown below.
  • Wood construction waste wood
  • the air ratio supply is oxygen-enriched air with 10% by volume of oxygen, and 1 when complete combustion
  • the biomass 1 was partially burned with oxygen in oxygen-enriched air in the shaft-type pyrolysis furnace 2, and the pyrolysis furnace was operated at a pyrolysis gas temperature of 400 ° C at the furnace outlet.
  • the separated carbide contained almost no metal (1% by weight or less), and the carbon in the unsuitable material was 5% by mass or less, so that the separability was good. 61% by mass (about 240 kg / h) of carbide 395 kg / h is charged as product carbide into the coal crushing facility 14 of the pulverized coal combustion boiler 9 via the carbide conveying device 17 constituted by a bucket conveyor, together with other coal It was pulverized and blown into the pulverized coal combustion boiler 9 by airflow conveyance.
  • the pyrolysis gas 3 is composed of 14.7% by volume of CO, 14.5% by volume of H 2 , 3.9% by volume of CH 4 as a main combustible component, and 24.7% by volume of CO as other gas components. 2 and 33.4% by volume of H 2 O (water vapor), a trace amount of hydrocarbons having C 2 (carbon number of 2) or more, and the remainder was N 2 .
  • the pyrolysis gas 3 and pyrolysis tar 4 were directly supplied to the pulverized coal combustion boiler 9. Also in the case of this embodiment, a dedicated blowing nozzle is installed separately from the pulverized coal nozzle (burner), and the pyrolysis gas 3 and pyrolysis tar 4 are mixed with air immediately before the pulverized coal combustion boiler 9.
  • Example 3 will be described below.
  • Wood construction waste wood
  • the air ratio supply is oxygen-enriched air with 10% by volume of oxygen, and 1 when complete combustion
  • the biomass 1 was partially burned with oxygen in oxygen-enriched air in the shaft-type pyrolysis furnace 2, and the pyrolysis furnace was operated at a pyrolysis gas temperature of 400 ° C at the furnace outlet.
  • the separated carbide contained almost no metal (1% by weight or less), and the carbon in the unsuitable material was 5% by mass or less, so that the separability was good.
  • About 59% by mass (about 235 kg / h, loss of 5 kg / h in hammer type mill) of 395 kg / h of carbide is a pulverized coal combustion boiler via a carbide conveying device 17 composed of an air current conveying facility using nitrogen as product carbide. 9 was blown directly.
  • the pyrolysis gas 3 is composed of 14.7% by volume of CO, 14.5% by volume of H 2 , 3.9% by volume of CH 4 as a main combustible component, and 24.7% by volume of CO as other gas components. 2 and 33.4% by volume of H 2 O (water vapor), a trace amount of hydrocarbons having C 2 (carbon number of 2) or more, and the remainder was N 2 .
  • the pyrolysis gas 3 and pyrolysis tar 4 were directly supplied to the pulverized coal combustion boiler 9. Also in the case of this embodiment, a dedicated blowing nozzle is installed separately from the pulverized coal nozzle (burner), and the pyrolysis gas 3 and pyrolysis tar 4 are mixed with air immediately before the pulverized coal combustion boiler 9.
  • separates a tar among the flows shown by FIG. 1 is shown below.
  • the carbide was processed in the apparatus according to the third embodiment of the present invention that is fed into the coal crushing apparatus 14.
  • Wood construction waste wood
  • the air ratio supply is oxygen-enriched air with 10% by volume of oxygen, and 1 when complete combustion
  • the biomass 1 was partially burned with oxygen in oxygen-enriched air in the shaft-type pyrolysis furnace 2, and the pyrolysis furnace was operated at a pyrolysis gas temperature of 400 ° C at the furnace outlet.
  • the separated carbide contained almost no metal (1% by weight or less), and the carbon in the unsuitable material was 5% by mass or less, so that the separability was good. 61% by mass (about 240 kg / h) of carbide 395 kg / h is charged as product carbide into the coal crushing facility 14 of the pulverized coal combustion boiler 9 via the carbide conveying device 17 constituted by a bucket conveyor, together with other coal It was pulverized and blown into the pulverized coal combustion boiler 9 by airflow conveyance.
  • the pyrolysis gas 3 is composed of 14.7% by volume of CO, 14.5% by volume of H 2 , 3.9% by volume of CH 4 as a main combustible component, and 24.7% by volume of CO as other gas components. 2 and 33.4% by volume of H 2 O (water vapor), a trace amount of hydrocarbons having C 2 (carbon number of 2) or more, and the remainder was N 2 .
  • the pyrolysis tar 4 is separated by a tar separation device 8 composed of a high-temperature metal filter (20 pieces) (82% by mass of tar is collected together with dust), and the remaining light tar (a light light that avoids physical condensation). Min) was supplied to the pulverized coal combustion boiler 9 along with the pyrolysis gas 3.
  • the separated tar-mixed dust was again charged into the shaft-type pyrolysis furnace 2 from an inlet different from the raw material.
  • a dedicated blowing nozzle is installed separately from the pulverized coal nozzle (burner), and the pyrolysis gas 3 and light tar are mixed with air immediately before the pulverized coal combustion boiler 9 4. Blowed from the place.
  • the biomass can be pyrolyzed with high efficiency and can be burned and used in a boiler without leaving any gas, tar, and carbide, so the industrial applicability is great.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

 本発明のバイオマスの利用装置は、バイオマスを熱分解又は部分酸化して、熱分解ガス、熱分解タール、及び炭化物を生成すると共に、前記熱分解ガス及び前記熱分解タールを炉頂から排出し、前記炭化物を炉底から排出するシャフト型熱分解炉と;微粉炭を燃焼して蒸気を生成する微粉炭燃焼ボイラと;前記熱分解ガス及び前記熱分解タールを前記シャフト型熱分解炉から前記微粉炭燃焼ボイラへと送る配管と;を含む。

Description

微粉炭燃焼ボイラを用いたバイオマスの利用装置およびそれを用いたバイオマスの利用方法
 本発明は、バイオマスを効率よく熱分解し、ガス、タールおよび炭化物を微粉炭燃焼ボイラで使用する、バイオマス利用方法および装置に関するものである。
 本願は、2008年10月22日に、日本に出願された特願2008-272155号に基づき優先権を主張し、その内容をここに援用する。
 近年、化石系燃料(石炭、石油、重油、天然ガス、液化石油ガス等)のエネルギーを利用している分野では、地球温暖化の防止(特に二酸化炭素削減)を狙いとする多くの具体的提案がある。主な方法としては、燃焼バーナーを高効率タイプの燃焼バーナーに変更するなどしてエネルギー転換効率を上げることで、化石系燃料の使用量自体を減らす方法と、主に炭素を含み、発熱量を持つ廃棄物(バイオマスや廃プラスティックなど)を代替エネルギー源として使用して従来使用していた化石系燃料の使用量を削減することで、トータルとして二酸化炭素を削減する方法と、がある。後者の方法においては基本的には二酸化炭素の発生量自体は変わらない。しかし、カーボンニュートラルである後者の方法によれば、地球的にみて二酸化炭素発生をカウントしなくてよい。また、燃焼処分等で無駄に熱と二酸化炭素を発生する廃棄物をエネルギーとして有効に使用することで、使用する予定だった化石系燃料を削減できる。従って、後者の方法は3R(Reduce,Reuse,Recycle)のコンセプトにも合致し、地球規模での化石系燃料の利用削減に貢献する。
 バイオマスや廃棄物の処理の代表的な例としては、焼却設備に蒸気発電を組み合わせて電力を回収するゴミ焼却発電方式が挙げられる。しかし、(I)水分が多く発熱量が低い(例えばバイオマス、一般ゴミ等の場合)、(II)発熱量は高いが高効率操業ができない(例えば塩素を含有する廃プラスティック等の場合)、(III)経済的収集可能な量が限られる、等の理由で、廃棄物発電による送電端効率は、10~15%に留まることが一般的である。因みに、たとえば化石系燃料を使用した微粉炭燃焼発電による送電端効率は、41~42%が一般的である。これを解決する技術として、ボイラ材質改良、原料調整(RDF化)、外部燃料使用による効率向上(スーパーゴミ発電)等により、20%~30%近くの送電端効率で発電する高効率焼却炉技術が提案され、実機化されている。しかし、これら高効率型の設備は、原料の事前処理やボイラ材質の向上、外部燃料(化石燃料)導入等の追加要素が必要であり、また廃棄物中の塩素(主に廃プラスティック由来)の対処にコストがかかる等、設備コスト高・運用コスト高、原料適用制限(対象原料の限定等)等で問題がある。電力使用増、水処理エネルギー増等操業エネルギーの増加や設備製造・工事にかかるエネルギーの増加等を考えた場合、これらの過程で発生する二酸化炭素を含めると、廃棄物利用による二酸化炭素削減を考慮しても、必ずしも二酸化炭素削減とならない場合や、エネルギーとしては増エネルギーになる場合が多くみられ、結果的に、廃棄物を「処理するだけ」の設備となりやすい。
 一方、発電や熱・蒸気の生成を行なう微粉炭燃焼ボイラにバイオマス(木材、下水汚泥など)を混焼させる方式も開発されている。大量の石炭に少量(数%以下)のバイオマスを混合し、大規模石炭燃焼の高効率を享受しながら石炭を代替することで二酸化炭素削減を実現するこの方式は、現実的な技術として確立した。ここで言う微粉炭燃焼ボイラは、気流搬送可能なサイズに石炭破砕機で破砕されて、搬送ガスとともに燃焼ボイラに吹き込まれた石炭を、酸素含有ガス(空気、酸素富化空気等)で燃焼する。そして、燃焼熱がボイラの熱交換機で蒸気として回収される。蒸気は、蒸気タービンで電力に変換されたり、そのまま蒸気として熱利用されたりする。バイオマスを利用するとき、気流搬送のため石炭と同様な粒度に破砕する目的で石炭破砕機に直接入れた場合、破砕性の悪化から生産性を低下させたり(例えば木材)、乾燥・造粒・炭化などの前処理が必要だったり(例えば下水汚泥)、石炭に比べ水分が多く、低反応性・低発熱量の原料がボイラで燃焼することでボイラ効率を低下させたり(例えば木材、下水汚泥)する等の影響があり、バイオマスの混合率を高くできないという欠点を持つ。
 これらの欠点に対する改善手段として、特許文献1は、微粉炭燃焼ボイラに木材を投入するにあたり、専用の粉砕、乾燥装置を持ち、乾燥をボイラ燃焼排ガスの熱で行うことでボイラ効率の低下や増エネルギーを低く抑えることを可能にした設備、方法を開示している。また特許文献2は、直接ボイラに投入された燃焼性の悪い木材(バイオマス)のうち、反応が不十分でボイラ下部へ落下した木材を回収して石炭側ミルに投入することで(木材が乾燥・加熱され、破砕性が改善させる)、総合的な粉砕動力を抑えることを可能にした設備、方法を開示している。
 また、近年提案されている技術の中には、バイオマスを直接燃焼して熱利用するのではなく、熱分解(炭化)や部分燃焼して利用する方法がある。この方法は、前述の欠点に対する対応策というより、廃棄物中の特に廃プラスティックに含まれる塩素分の除去による生産性向上等の効果を狙ったものであるが、本発明を含む、熱分解工程を持つプロセスの一つであるため、参考技術として示す。このタイプは、(A)最低限の熱で熱分解し、生成するガス、炭化物を原燃料として使用するタイプと、(B)部分燃焼させてガス燃料として使用するタイプと、に大別される。
 (A)(B)とも、一度別の形(ガスや炭化物)に転換することで、単に燃焼するより総合効率の向上が見込まれるという効果や、ガスという形にすることで不適物(塩酸等)除去やハンドリング等自由度増加(ガスなので基本的に配管で取り回せる)によるメリットを享受できるという効果を有する。
 本発明は主に前者の効果が大きく、且つ、(A)のタイプに属する。特許文献3、特許文献4は後者の効果が大きい。特許文献3は(A)のタイプに属し、炭化に主眼を置き、炭化物を石炭とともに事業用ボイラで燃焼するシステム(ガスは燃焼して間接加熱により熱分解熱源とする)を開示する。この特許文献3が開示するシステムにおいては、熱分解して発生する塩素分をボイラに入れないようにすることで(加熱により炭化物には塩素はほとんど残らず、またガスはボイラに入らず燃焼熱利用されるとしている)、処理廃棄物利用時のボイラトラブル(腐食等)を回避している。さらに特許文献4は(B)のタイプに属し、部分燃焼したガス中の塩素を除去し、ボイラで燃焼するシステム(ガス中のチャーは、石炭と混合してボイラで利用する)を開示している。この特許文献4が開示するシステムにおいては、塩素分に関しては、全塩素の半分ほどを占める無機系塩素の大部分がチャーに残留するが、ガス中塩素を除去することで二倍以上処理できる。
日本国特開2005-291526号公報 日本国特開2005-291531号公報 日本国特開2000-283431号公報 日本国特開2000-283434号公報
 特許文献1では、燃焼排ガスの顕熱利用によって、破砕・乾燥の木材前処理で使用するエネルギーの低下を抑えている。しかし、乾燥しただけでは水分によるボイラ効率低下分は防げるものの、木材の低反応性・低発熱量(石炭と比較)によるボイラ効率低下分は防げない。特許文献2の技術では、全体の破砕動力の低減は可能であるものの、反応が不十分な木材を回収するときにロスするエネルギー(持ち出し顕熱ロス、輸送にかかる動力)があり、あまり有利な方法とはいえない。特許文献3、特許文献4に関しては、塩素(塩酸腐食)によるデメリットを抑える目的が主である技術であり、効率向上に主眼をおいていない技術である。たとえば特許文献3の技術では、わずかな炭化物(概略発熱量ベースで、プラスティック、紙類で数%、木材で15%、都市ゴミで30%程度)を得るために、熱分解生成した揮発分を燃焼して熱分解熱源としており、燃焼ボイラ側の効率低下はほとんどないものの(投入するのは炭化物)、廃棄物熱量の数%~約30%しか使えない。特許文献4の技術では、ガス化炉(実施例では流動床で空気による部分燃焼タイプ)を空気比(即ち、実際に投入する空気量と理論空気量との比であり、理論空気量は、供給している燃料が完全燃焼するのに必要な酸素量を供給している空気量である)1.0~1.3で操業し、一酸化炭素などを含んだ可燃性ガスと炭化物を製造し、ガスと炭化物を分離後、各々ボイラに投入している。空気比が1以上であり、炭化物も生成することから、ガスの主成分は二酸化炭素と水蒸気と窒素(燃焼用空気由来)である。そのガス中には数%以下の一酸化炭素が含まれると推測されるため、ガス発熱量は500kcal/Nm―dry以下と見積もられる。従って、この方法は燃焼ボイラの効率低下を伴ってしまう。
 本発明は、これら従来技術の課題点を解決し、シャフト型熱分解炉の特長を活かして廃棄物を高効率で熱分解し、ガス、タール、炭化物を余すところなくボイラで燃焼使用することで、効率的な、微粉炭燃焼ボイラでのバイオマス利用方法および装置を提供することを目的とする。
 本発明は、上記課題を解決するために以下の手段を採用した。
(1)本発明のバイオマスの利用装置は、バイオマスを熱分解又は部分酸化して、熱分解ガス、熱分解タール、及び炭化物を生成すると共に、前記熱分解ガス及び前記熱分解タールを炉頂から排出し、前記炭化物を炉底から排出するシャフト型熱分解炉と;微粉炭を燃焼して蒸気を生成する微粉炭燃焼ボイラと;前記熱分解ガス及び前記熱分解タールを前記シャフト型熱分解炉から前記微粉炭燃焼ボイラへと送る配管と;を含む。
(2)前記(1)に記載のバイオマスの利用装置では、前記微粉炭燃焼ボイラが、燃料となる石炭を微粉炭化する石炭粉砕装置を備え;前記石炭粉砕装置は、前記シャフト型熱分解炉で生成された前記炭化物を、前記石炭粉砕装置へと搬送する第1の搬送装置を有しても良い。
(3)前記(1)、(2)に記載のバイオマスの利用装置では、前記微粉炭燃焼ボイラが、前記シャフト型熱分解炉で生成された前記炭化物を、前記微粉炭燃焼ボイラへと搬送する第2の搬送装置を有しても良い。
(4)前記(1)、(2)、(3)に記載のバイオマスの利用装置では、前記配管が、前記シャフト型熱分解炉で生成された前記熱分解ガスと前記熱分解タールとを分離して前記熱分解タールを回収するタール分離装置と;前記タール分離装置で分離された前記熱分解ガスを、前記微粉炭燃焼ボイラへと送る熱分解ガス配管と;を有しても良い。
(5)前記(1)、(2)、(3)、(4)に記載のバイオマスの利用装置を用いたバイオマスの利用方法は、前記シャフト型熱分解炉の下部から前記バイオマスを熱分解するための顕熱を有する熱分解用ガスを投入して、前記シャフト型熱分解炉内の前記バイオマスを熱分解することで、又は、前記シャフト型熱分解炉の下部から酸素含有ガスを投入して、前記シャフト型熱分解炉内の前記バイオマスを部分酸化することで、前記熱分解ガス、前記熱分解タール、及び前記炭化物を生成し;前記シャフト型熱分解炉の前記炉頂から前記熱分解タールが凝縮しない温度以上で前記熱分解ガス及び前記熱分解タールを排出し;前記炭化物を前記炉底から排出し;前記熱分解ガス又は、前記熱分解ガスと前記熱分解タールとの両方を、前記微粉炭燃焼ボイラへと投入する。
(6)前記(5)に記載のバイオマスの利用方法は、前記炉底から排出された前記炭化物から燃焼不適物を除去し;前記燃焼不適物が除去された前記炭化物を、前記微粉炭燃焼ボイラに投入しても良い。
 上記(1)乃至(6)の発明によれば、バイオマスを微粉炭燃焼ボイラに使用するにあたり、立ち上げ時等の非定常操業の場合を除き、外部燃料を使用しないプロセスとすることが可能で、かつ原料発熱量の大半をボイラで効率的に利用できる。
本発明の第2の実施形態の一例を示した微粉炭燃焼ボイラを用いたバイオマスの利用装置のフロー図である。 本発明の第3の実施形態及び第4の実施形態の一例を示した微粉炭燃焼ボイラを用いたバイオマスの利用装置のフロー図である。
 本発明の第1の実施形態及び第2の実施形態に係る、シャフト型熱分解炉と微粉炭燃焼ボイラ9を用いたバイオマス利用装置の代表的フロー図を図1に示す。第1の実施形態と第2の実施形態の違いは、シャフト型熱分解炉2で一緒に発生する熱分解ガス3と熱分解タール4の混合物から熱分解タール4を分離しない場合(第1の実施形態)と分離する場合(第2の実施形態)の違いであり、図1ではタールをタール分離装置8で分離する場合の第2の実施形態のフローを明示した(第1の実施形態は、タール分離装置8を除いたケース)。尚、本実施形態におけるバイオマスとは、農業系バイオマス(麦わら、サトウキビ、米糠、草木等)、林業系バイオマス(製紙廃棄物、製材廃材、除間伐材、薪炭林等)、畜産系バイオマス(家畜廃棄物)、水産系バイオマス(水産加工残滓)、廃棄物系バイオマス(生ゴミ、RDF:ゴミ固形化燃料;Refused Derived Fuel、庭木、建設廃木材、下水汚泥)、等を指す。
 バイオマス1はシャフト型熱分解炉2の上部より投入され、炉内(移動層)を下降する。バイオマス1のサイズは、シャフト型熱分解炉2に入るサイズであれば良い。通常、除間伐材、建設廃材や庭木等のバイオマスは300mm角以下程度のサイズで投入され、必要があれば粗破砕されて投入される。また、その他の廃棄物系バイオマス、林業系バイオマスや、畜産系バイオマス、水産系バイオマスは、そのまま投入される。
 バイオマス1は徐々に下降しながら、シャフト型熱分解炉2内部を上昇する熱分解用ガス6により乾燥、昇温され、熱分解して熱分解ガス3および熱分解タール4を生成して炭化物5となる。炭化物5はシャフト型熱分解炉2の炉底から排出される。熱分解熱源である熱分解用ガス6は、大きく二つの方式で供給される。
 一つの方式は、後述の実施例で示される、酸素含有ガスを投入する方法である。この方法においては、シャフト型熱分解炉2内にある炭化物5の一部を燃焼させて、熱源とする。酸素含有ガスは、空気または酸素富化空気であれば良く、酸素製造設備コストと、ガス処理設備コストの両方を勘案して選択すれば良い。酸素含有ガスを投入する時には、たとえば木材100トン/日規模のペースで木材を熱分解する場合には、空気比(即ち、実際に投入する空気量と理論空気量との比であり、理論空気量は、供給している燃料が完全燃焼するのに必要な酸素量を供給している空気量である)は0.2程度であれば良い。特許文献4でのガス化(実施例では流動床で空気による部分燃焼タイプが採用されている)時の空気比は1.0~1.3であるため、この方法では非常に少ない空気比での操業が可能であることがわかる。
 この要因として、シャフト型熱分解炉2の熱交換方式が非常に高効率であること(即ち、対向流直接熱交換方式)、熱分解に必要な最小限の熱のみ与える方式であること(熱分解ガス3の一部は炭化水素のまま後段工程へ進むこと)とが挙げられる。
 シャフト型熱分解炉2の温度は、炉頂から排出される熱分解ガス3と、熱分解タール4と、の温度を制御して管理すれば良い。この温度は、熱分解タール4が凝縮しない温度以上とすれば良く、後段の微粉炭燃焼ボイラ9又はタール分離装置8への搬送途中でも凝縮しない温度に管理することが好ましい。処理するバイオマスの種類等によっても異なるが、例えば、300~600℃の温度で管理することができる。
 尚、本実施形態では、熱分解用ガス6として空気の代わりに酸素富化空気(即ち、酸素+空気)を使用しているが、空気比の考え方は同じで、供給している燃料が完全燃焼するのに必要な酸素量を供給している酸素富化空気量を理論酸素富化空気量とし、供給した酸素富化空気との比をとる。ここでの表記は空気比とする。
 もう一つの方式では、シャフト型熱分解炉2の外部で燃料を燃焼させて1000℃~1200℃の高温ガスを製造し、熱分解用ガス6として供給する。熱分解用ガス6の燃料としては、シャフト型熱分解炉2の炉頂から排出される熱分解ガス3(必要に応じガス精製を実施する)や、シャフト型熱分解炉2の炉底から排出される炭化物5が想定される。
 熱分解ガス3または炭化物5を燃料として利用する際には、冷却、分離、供給のプロセス(設備)が必要になるので、設備コスト等で比較して適宜選択する。また、二酸化炭素削減の手段としては好ましくないが、別途化石燃料等の外部燃料を使用してもよい(その分、製品ガスまたは炭化物が増加することになる)。
 前述した高温ガスの温度範囲に関しては、1000℃未満では未反応炭化物が多くなることから1000℃を下限値とし、1200℃を超える場合には、クリンカ(溶融した灰の凝集物であり、物流を阻害する)が発生しやすくなることから1200℃を上限値とした。
 熱分解ガス3及び熱分解タール4は、300℃~600℃でシャフト型熱分解炉2の上部出口(炉頂)から排出されて熱分解ガス等配送配管7を経由して後工程に進む。本発明の第1の実施形態においては、熱分解ガス3及び熱分解タール4は、直接微粉炭燃焼ボイラ9に吹き込まれる。本発明の第2の実施形態においては、熱分解ガス3及び熱分解タール4は、タール分離装置8で熱分解タール4が分離・回収されて、微粉炭燃焼ボイラ9に吹き込まれる。尚、バイオマス由来の熱分解ガス3や熱分解タール4に関しては、既存の混焼型(微粉炭と製鉄発生ガスの混焼、微粉炭と重油の混消、あるいは微粉炭、製鉄発生ガス、重油の混焼等)の燃焼ボイラシステムを考え合わせると、熱分解ガス3に関してはコークス炉ガスと共通成分が多く性状が似ているため問題なく利用可能である。また、熱分解タール4が含まれる場合でも、降温による凝縮を防止すれば(配管温度を300℃以下に下げない)ガスとして問題なく供給可能である。
 シャフト型熱分解炉2の操業が安定しないような状況(例えば、原料水分や発熱量のバラツキが大きく、シャフト型熱分解炉2の上部出口ガス温度変動が大きい場合等)においては、熱分解ガス3及び熱分解タール4の温度が300℃以下に下がる時間帯が多く発生しやすい。この場合、タールがバインダーとなり、煙道(熱分解ガス等配送配管7)にダストが付着、成長する虞がある。これを解決するために、第2の実施形態ではタールを分離している。
 シャフト型熱分解炉2の上部出口温度が300℃未満の場合、熱分解タール4の一部が凝縮しやすくなり(特に木材由来のタール)、付着による閉塞トラブルが懸念されるため不適当である。一方、シャフト型熱分解炉2の上部出口温度が600℃を超えると、シャフト型熱分解炉2で必要な熱が多くなり(炭化物をよけいに燃焼する)経済性が下がるため不適当であり、また、微粉炭燃焼ボイラ9に吹き込む際の配管内壁を耐火物で構成する必要があるため、流量調整の精度維持の観点からも、やはり不適当である。従って、300℃~600℃が適切な温度である。
 タール分離装置8の方式は、高温のまま分離する方式と、一旦タール凝縮温度までガス温度を下げて分離する方式がある。前者の方式では、例えば高温型フィルタ(セラミックや金属)を使用し、ダストにタールを同伴凝縮させて分離する。この場合、長所は温度降下の分の熱ロスがないこと、水処理系を持たなくてよいこと等であり、短所は分離効率が多くとも80%程度と低いこと等である。後者の方式では、例えば水スプレー等による直接急冷(水循環)が用いられる。長所は、熱分解タール4を効率よく分離(40℃以下まで下げると100mg/Nm程度しか残存しない)可能であることである。短所は温度降下分の熱ロスがあること、水処理系が必要になること、等である。いずれの方式でも、分離したタールは多くの熱量を保有するため、シャフト型熱分解炉2に熱分解用ガス6の燃料や熱分解原料として戻すか、微粉炭燃焼ボイラ9に投入して発熱量を回収することが望ましい。
 熱分解ガス3および熱分解タール4、または単独の熱分解ガス3は、微粉炭燃焼ボイラ9内に送入されて燃焼し、熱回収部10で熱を回収した後(蒸気11生成)、ガス処理部12で無害化後、放散ガス13として大気放散される。微粉炭燃焼ボイラ9には、別途石炭粉砕設備14から微粉炭が投入され、燃焼が行なわれる。これにより生成された蒸気11は、一部の蒸気は系内で使用されるが、ほとんどの蒸気は蒸気タービン(図示せず)に供給され、発電用に使用される。
 本発明の第3の実施形態及び第4の実施形態に係る炭化物利用工程を含んだシャフト型熱分解炉2と微粉炭燃焼ボイラ9を用いたバイオマス利用装置のフローを図2に示す。第3の実施形態と第4の実施形態との違いは、発生した炭化物5を石炭粉砕設備14へ投入するか(第3の実施形態:A)、発生した炭化物5を直接微粉炭燃焼ボイラ9に投入するか(第4の実施形態:B)、による。また、炭化物5を石炭粉砕設備14と微粉炭燃焼ボイラ9との両方に投入しても良い。
 シャフト型熱分解炉2で生成された炭化物5は、炭化物処理装置15で処理され、最終的に微粉炭燃焼ボイラ9に投入される。炭化物処理装置15は粗破砕装置と不適物分離装置とを有するが、粗破砕装置は炭化物5の状態によっては省略しても良い。不適物分離装置は、がれき、石や金属のような、熱量を持たず、微粉炭燃焼ボイラ9で燃焼するのに適さない燃焼不適物16を分離する機能を持ち、スクリーンや振動篩、磁力選別機等を有する。粗破砕装置は、不適物分離装置の篩分けを効率化する(簡単な破砕をすることで、たとえば炭化物に食い込んだ釘等が振動のみで篩い分けられるようにする)目的で設置され、炭化物を数10mm角程度のサイズへ破砕する。
 本発明の第3の実施形態による炭化物の投入方法では、破砕された炭化物は、燃焼不適物16を分離後石炭粉砕設備14に炭化物搬送装置17によりAルートを通り投入され、微粉砕された石炭を後微粉炭燃焼ボイラ9で燃焼する。
 炭化物のもう一つの投入方法である本発明の第4の実施形態においては、破砕された炭化物は、燃焼不適物16を分離後、Bルートを通り直接微粉炭燃焼ボイラ9に吹き込まれる。このとき炭化物処理装置15は粗破砕装置と不適物分離装置と微破砕装置とを有する。ただし、粗破砕装置は前述の理由で省略しても良い。微破砕装置では、微粉炭と同等のサイズである数10μm程度まで炭化物5が破砕されて、微粉炭燃焼ボイラ9に吹き込まれる。Bルートの場合、直接吹き込みによる効率的な燃焼が必要になることから、炭化物搬送装置17として、通常は炭化物処理装置15後から窒素等の気流搬送方式を採用し、微粉炭燃焼ボイラ9への吹き込みを行なっても良い。Aルートの場合、Bルートと同じ方式に加え、バケットコンベア等を含む炭化物搬送装置17により石炭粉砕設備14に石炭5を投入しても良い。
 図1で示されたフローの内、熱分解タール4を分離しない本発明の第1の実施形態に係る実施例1を以下に示す。
 バイオマスとして木材(建設廃木材)100トン/日(4167kg/hr)を使用し、空気比(供給は酸素10体積%の酸素富化空気で、完全燃焼時を1とする)0.18とし、シャフト型熱分解炉2内でバイオマス1を酸素富化空気中の酸素で部分燃焼させて、炉出口の熱分解ガス温度400℃でシャフト型熱分解炉2を操業した。
 その結果、熱分解ガス7986Nm/h、熱分解タール389kg/h、炭化物395kg/h(ダスト含む)が生成した。このとき外部燃料はほぼ不要であったが、熱が不十分な立ち上げ時には、若干のLPG(+酸素富化空気)を使用した。
 熱分解ガス3は、14.7体積%のCO、14.5体積%のH、3.9体積%のCHを主可燃成分とし、その他のガス成分として、24.7体積%のCO、33.4体積%のHO(水蒸気)、微量のC(炭素数が2)以上の炭化水素類等を含み、残りはNであった。熱分解ガス3および熱分解タール4は、直接微粉炭燃焼ボイラ9に供給された。なお微粉炭用ノズル(バーナ)とは区別して、専用の吹き込み用ノズルを設置し、微粉炭燃焼ボイラ9直前で熱分解ガス3および熱分解タール4を空気と混合して4カ所から吹き込んだ。
 原料の建設廃木材の発熱量の66%が、ガス、タールの形で微粉炭燃焼ボイラ9に投入された。残りの熱量は、炭化物10%(外部搬出して処理)と、9~11%程度はシャフト型熱分解炉2内の燃焼で消費され、残りは不適物に付着した炭素と放散熱等で構成された。このとき、微粉炭燃焼ボイラ9での石炭処理量は、約800トン/日であった。
 図2で示されたフローの内、炭化物5を石炭粉砕設備14に投入する(Aルート)第3の実施形態に係る実施例2を以下に示す。
 バイオマスとして木材(建設廃木材)を100トン/日(4167kg/hr)で使用し、空気比(供給は酸素10体積%の酸素富化空気で、完全燃焼時を1とする)0.18とし、シャフト型熱分解炉2内でバイオマス1を酸素富化空気中の酸素で部分燃焼させて、炉出口の熱分解ガス温度400℃で熱分解炉を操業した。
 その結果、熱分解ガス7986Nm/h、熱分解タール389kg/h、炭化物395kg/h(ダスト含む)が生成した。このとき外部燃料はほぼ不要であったが、熱が不十分な立ち上げ時には、若干のLPG(+酸素富化空気)を使用した。炭化物処理装置15に関しては、建設廃木材は釘等の金属を含むことから、50mmサイズの幅の刃を備えた二軸破砕機(粗破砕機)と、比重選別と振動を組み合わせた風力選別装置(不適物分離装置)と、を設置し、処理を行った。分離した炭化物中には金属はほとんど含まれず(1重量%以下)、また不適物中の炭素は5質量%以下と分離性も良好であった。炭化物395kg/hの61質量%(約240kg/h)が製品炭化物としてバケットコンベアで構成される炭化物搬送装置17を経由して微粉炭燃焼ボイラ9の石炭粉砕設備14に投入され、他の石炭とともに粉砕され、気流搬送により微粉炭燃焼ボイラ9に吹き込まれた。
 熱分解ガス3は、14.7体積%のCO、14.5体積%のH、3.9体積%のCHを主可燃成分とし、その他のガス成分として、24.7体積%のCO、33.4体積%のHO(水蒸気)、微量のC(炭素数が2)以上の炭化水素類等を含み、残りはNであった。熱分解ガス3および熱分解タール4は、直接微粉炭燃焼ボイラ9に供給された。本実施例の場合も、微粉炭用ノズル(バーナ)とは区別して、専用の吹き込み用ノズルを設置し、微粉炭燃焼ボイラ9直前で熱分解ガス3および熱分解タール4を空気と混合して4カ所から吹き込んだ。
 原料の建設廃木材の発熱量の76%が、ガス、タール、炭化物の形で微粉炭燃焼ボイラ9に投入された。残りの熱量は、9~11%程度はシャフト型熱分解炉2内の燃焼で消費され、残りは不適物に付着した炭素と放散熱等で構成される。このとき、微粉炭燃焼ボイラ9での石炭処理量は、約800トン/日であった。破砕時のミルの電流値は、石炭単独の時と本発明の炭化物を混合したときでの差は検知できず(1%未満)、生産性や動力に対する影響は軽微と考えられる。
 図2で示されたフローの内、炭化物を直接微粉炭ボイラに投入する(Bルート)本発明の第4の実施形態に係る実施例3を以下に示す。
 バイオマスとして木材(建設廃木材)を100トン/日(4167kg/hr)で使用し、空気比(供給は酸素10体積%の酸素富化空気で、完全燃焼時を1とする)0.18とし、シャフト型熱分解炉2内でバイオマス1を酸素富化空気中の酸素で部分燃焼させて、炉出口の熱分解ガス温度400℃で熱分解炉を操業した。
 その結果、熱分解ガス7986Nm/h、熱分解タール389kg/h、炭化物395kg/h(ダスト含む)が生成した。このとき外部燃料はほぼ不要であったが、熱の不十分な立ち上げ時には、若干のLPG(+酸素富化空気)を使用した。炭化物処理装置15に関しては、建設廃木材は釘等の金属を含むことから、実施例2と同様の50mmサイズの幅の刃を備えた二軸破砕機(粗破砕機)と、比重選別と振動を組み合わせた風力選別装置(不適物分離装置)と、に加え、10mm角のスクリーンを持つハンマー型ミルを設置し、処理を行った。分離した炭化物中には金属はほとんど含まれず(1重量%以下)、また不適物中の炭素は5質量%以下と分離性も良好であった。炭化物395kg/hの約59質量%(約235kg/h、ハンマー型ミルでのロス5kg/h)が製品炭化物として窒素による気流搬送設備で構成される炭化物搬送装置17を経由して微粉炭燃焼ボイラ9に直接吹き込まれた。
 熱分解ガス3は、14.7体積%のCO、14.5体積%のH、3.9体積%のCHを主可燃成分とし、その他のガス成分として、24.7体積%のCO、33.4体積%のHO(水蒸気)、微量のC(炭素数が2)以上の炭化水素類等を含み、残りはNであった。熱分解ガス3および熱分解タール4は、直接微粉炭燃焼ボイラ9に供給された。本実施例の場合も、微粉炭用ノズル(バーナ)とは区別して、専用の吹き込み用ノズルを設置し、微粉炭燃焼ボイラ9直前で熱分解ガス3および熱分解タール4を空気と混合して4カ所から吹き込んだ。
 原料の建設廃木材の発熱量の74%が、ガス、タール、炭化物の形で微粉炭燃焼ボイラ9に投入された。残りの熱量は、9~11%程度はシャフト型熱分解炉2内の燃焼で消費され、残りは不適物に付着した炭素、微粉砕時ロスと放散熱等で構成される。このとき、微粉炭燃焼ボイラ9での石炭処理量は、約800トン/日であった。
 図1で示されたフローの内、タールを分離する本発明の第2の実施形態に係る実施例4を以下に示す。炭化物は、石炭破砕装置14に投入する本発明の第3の実施形態に係る装置での処理を行った。
 バイオマスとして木材(建設廃木材)を100トン/日(4167kg/hr)で使用し、空気比(供給は酸素10体積%の酸素富化空気で、完全燃焼時を1とする)0.18とし、シャフト型熱分解炉2内でバイオマス1を酸素富化空気中の酸素で部分燃焼させて、炉出口の熱分解ガス温度400℃で熱分解炉を操業した。
 その結果、熱分解ガス7986Nm/h、熱分解タール389kg/h、炭化物395kg/h(ダスト含む)が生成した。このとき外部燃料はほぼ不要であったが、熱が不十分な立ち上げ時には、若干のLPG(+酸素富化空気)を使用した。炭化物処理装置15に関しては、建設廃木材は釘等の金属を含むことから、50mmサイズの幅の刃を備えた二軸破砕機(粗破砕機)と、比重選別と振動を組み合わせた風力選別装置(不適物分離装置)と、を設置した。分離した炭化物中には金属はほとんど含まれず(1重量%以下)、また不適物中の炭素は5質量%以下と分離性も良好であった。炭化物395kg/hの61質量%(約240kg/h)が製品炭化物としてバケットコンベアで構成される炭化物搬送装置17を経由して微粉炭燃焼ボイラ9の石炭粉砕設備14に投入され、他の石炭とともに粉砕され、気流搬送にて微粉炭燃焼ボイラ9に吹き込まれた。
 熱分解ガス3は、14.7体積%のCO、14.5体積%のH、3.9体積%のCHを主可燃成分とし、その他のガス成分として、24.7体積%のCO、33.4体積%のHO(水蒸気)、微量のC(炭素数が2)以上の炭化水素類等を含み、残りはNであった。熱分解タール4は、高温の金属フィルタ(20本)からなるタール分離装置8で分離され(ダストと共に82質量%のタール分を回収)、残った軽質のタール(物理的な凝縮を免れる、軽質分)は熱分解ガス3に同伴して微粉炭燃焼ボイラ9に供給された。また分離したタール混じりのダストは、再度シャフト型熱分解炉2に原料とは別の投入口から投入した。本実施例の場合も、微粉炭用ノズル(バーナ)とは区別して、専用の吹き込み用ノズルを設置し、微粉炭燃焼ボイラ9直前で熱分解ガス3及び軽質のタールを空気と混合して4カ所から吹き込んだ。
 原料の建設廃木材の発熱量の76%が、ガス、タール、炭化物の形で微粉炭燃焼ボイラ9に投入された。一旦熱分解されたタールは、2%分(分離出来なかった分)がそのまま微粉炭燃焼ボイラ9に投入され、分離されたタール4は、再度シャフト型熱分解炉2に投入されことで、繰り返し加熱されて反応(炭化物とガスに)が起こり、ガスと炭化物に転換されて微粉炭ボイラ9に投入される。トータルとしては実施例2の場合と同じ76%が投入された。残りの熱量は、9~11%程度はシャフト型熱分解炉2内の燃焼で消費され、残りは不適物に付着した炭素と放散熱等で構成される。このとき、微粉炭燃焼ボイラ9での石炭処理量は、約800トン/日であった。破砕時のミルの電流値は、石炭単独の時と本実施例の炭化物を混合したときでの差は検知できず(1%未満)、生産性や動力に対する影響は軽微と考えられる。
 実施例2の結果から計算すると、微粉炭燃焼ボイラ9に投入される発熱量が76%であることから、ボイラ熱回収及び蒸気タービンによる発電の効率38%を積算するとバイオマスを原料とした場合の発電効率は28.9%(発電端:原料ベース)であり、所内率10%を考慮すると、26%の送電端効率となった。元の微粉炭燃焼ボイラ発電の規模(バイオマス処理規模の約8倍)の効果が蒸気タービン効率に影響しているものの、一般の廃棄物燃焼発電の10~15%に比べ非常に高効率を得られることが確認できた。
 また、特許文献4においては、流動床を用いた実施例において、空気比1.0~1.3でガス化操業を実施している。具体的な各種数値の提示はないが、このとき、本実施例と同じ建設廃木材(バイオマス)を同じ量使用したと仮定すると、約20%の熱量を持つ炭化物が発生するが、ガスとタールは空気比が1以上であることからほぼ燃焼に使用され、ガス発熱量の回収は期待できない。仮に酸素が使われないで残る計算で5%分の発熱量分のCO、Hの形で残存したとすれば、合計25%の熱量が微粉炭ボイラに投入されることになる。同等のボイラ熱回収及び蒸気タービンによる効率(38%)を想定すると、発電効率9.5%の発電端効率、8.6%の送電端効率が推定できる。
 本発明の効果が高い理由は、主に、熱分解部(特許文献4では流動床ガス化)の熱効率の違いと、低空気比/高空気比の操業前提の差によるものと考えられる。
 本発明によれば、バイオマスを高効率で熱分解し、ガス、タール、炭化物を余すところなくボイラで燃焼使用することができるため、産業上の利用可能性は大きい。
 1  バイオマス
 2  シャフト型熱分解炉
 3  熱分解ガス
 4  熱分解タール
 5  炭化物
 6  熱分解用ガス
 7  熱分解ガス等配送配管
 8  タール分離装置
 9  微粉炭燃焼ボイラ
 10  熱回収部
 11  蒸気
 12  ガス処理部
 13  放散ガス
 14  石炭粉砕設備
 15  炭化物処理装置
 16  燃焼不適物
 17  炭化物搬送装置

Claims (6)

  1.  バイオマスを熱分解又は部分酸化して、熱分解ガス、熱分解タール、及び炭化物を生成すると共に、前記熱分解ガス及び前記熱分解タールを炉頂から排出し、前記炭化物を炉底から排出するシャフト型熱分解炉と;
     微粉炭を燃焼して蒸気を生成する微粉炭燃焼ボイラと;
     前記熱分解ガス及び前記熱分解タールを前記シャフト型熱分解炉から前記微粉炭燃焼ボイラへと送る配管と;
     を備えることを特徴とする、バイオマスの利用装置。
  2.  前記微粉炭燃焼ボイラは、燃料となる石炭を微粉炭化する石炭粉砕装置を備え;
     前記石炭粉砕装置は、前記シャフト型熱分解炉で生成された前記炭化物を、前記石炭粉砕装置へと搬送する第1の搬送装置を有する;
     ことを特徴とする請求項1に記載のバイオマスの利用装置。
  3.  前記微粉炭燃焼ボイラは、前記シャフト型熱分解炉で生成された前記炭化物を、前記微粉炭燃焼ボイラへと搬送する第2の搬送装置を備えることを特徴とする請求項1に記載のバイオマスの利用装置。
  4.  前記配管は:
     前記シャフト型熱分解炉で生成された前記熱分解ガスと前記熱分解タールとを分離して前記熱分解タールを回収するタール分離装置と;
     前記タール分離装置で分離された前記熱分解ガスを、前記微粉炭燃焼ボイラへと送る熱分解ガス配管と;
     を備えることを特徴とする請求項1~3のいずれか1項に記載のバイオマスの利用装置。
  5.  請求項1に記載のバイオマスの利用装置を用いたバイオマスの利用方法であって、
     前記シャフト型熱分解炉の下部から前記バイオマスを熱分解するための顕熱を有する熱分解用ガスを投入して、前記シャフト型熱分解炉内の前記バイオマスを熱分解することで、又は、前記シャフト型熱分解炉の下部から酸素含有ガスを投入して、前記シャフト型熱分解炉内の前記バイオマスを部分酸化することで、前記熱分解ガス、前記熱分解タール、及び前記炭化物を生成し;
     前記シャフト型熱分解炉の前記炉頂から前記熱分解タールが凝縮しない温度以上で前記熱分解ガス及び前記熱分解タールを排出し;
     前記炭化物を前記炉底から排出し;
     前記熱分解ガス又は、前記熱分解ガスと前記熱分解タールとの両方を、前記微粉炭燃焼ボイラへと投入する;
     工程を有することを特徴とするバイオマスの利用方法。
  6.  前記炉底から排出された前記炭化物から燃焼不適物を除去し;
     前記燃焼不適物が除去された前記炭化物を、前記微粉炭燃焼ボイラに投入する;
     ことを特徴とする請求項5に記載のバイオマスの利用方法。
PCT/JP2009/004928 2008-10-22 2009-09-28 微粉炭燃焼ボイラを用いたバイオマスの利用装置およびそれを用いたバイオマスの利用方法 WO2010047042A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801416596A CN102187152A (zh) 2008-10-22 2009-09-28 采用微粉炭燃烧锅炉的生物质的利用装置及采用其的生物质的利用方法
JP2010534664A JP4855539B2 (ja) 2008-10-22 2009-09-28 微粉炭燃焼ボイラを用いたバイオマスの利用装置およびそれを用いたバイオマスの利用方法
BRPI0919765-6A BRPI0919765B1 (pt) 2008-10-22 2009-09-28 dispositivo de utilização de biomassa que utiliza uma caldeira inflamada por carvão pulverizado e método de utilização de biomassa que utiliza o mesmo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-272155 2008-10-22
JP2008272155 2008-10-22

Publications (1)

Publication Number Publication Date
WO2010047042A1 true WO2010047042A1 (ja) 2010-04-29

Family

ID=42119099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004928 WO2010047042A1 (ja) 2008-10-22 2009-09-28 微粉炭燃焼ボイラを用いたバイオマスの利用装置およびそれを用いたバイオマスの利用方法

Country Status (4)

Country Link
JP (1) JP4855539B2 (ja)
CN (1) CN102187152A (ja)
BR (1) BRPI0919765B1 (ja)
WO (1) WO2010047042A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534340A (zh) * 2011-05-04 2014-01-22 奥图泰有限公司 用于燃料气体的生产和进一步处理的方法和设备
KR101598575B1 (ko) * 2014-10-30 2016-03-02 한국생산기술연구원 혼소형 연소장치를 포함하는 혼소형 연소 시스템 및 이의 제어 방법
CN107056106A (zh) * 2017-05-31 2017-08-18 长沙紫宸科技开发有限公司 一种含湿生物质燃料的悬浮催化氧化无焰燃烧装备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470412B (zh) * 2011-11-23 2015-01-21 Via Tech Inc 橋接裝置以及橋接裝置的省電操作方法
CN103438460A (zh) * 2013-09-24 2013-12-11 李先强 垃圾处理系统
CN110452754B (zh) * 2019-07-15 2021-05-18 华中科技大学 一种利用生物质焦减排燃烧颗粒物的方法
CN112628748A (zh) * 2020-12-24 2021-04-09 华中科技大学 一种烘焙碳化耦合等离子体焚烧有机固废处置工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283434A (ja) * 1999-03-31 2000-10-13 Ishikawajima Harima Heavy Ind Co Ltd 廃棄物処理方法及び廃棄物処理システム
JP2005024193A (ja) * 2003-07-03 2005-01-27 Nippon Steel Corp 廃棄物処理炉の生成ガス処理方法
JP2005211719A (ja) * 2004-01-27 2005-08-11 Kusukusu:Kk 有機物処理方法及びそのシステム
JP2007091893A (ja) * 2005-09-29 2007-04-12 Ube Machinery Corporation Ltd 木質系バイオマスの燃料供給システム
JP2008104973A (ja) * 2006-10-26 2008-05-08 Kangen Yoyu Gijutsu Kenkyusho:Kk バイオマス廃棄物の処理方法および処理システム
JP2008120882A (ja) * 2006-11-09 2008-05-29 Nippon Steel Corp シャフト型熱分解炉及びその安定操業方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4051329B2 (ja) * 2003-10-03 2008-02-20 新日鉄エンジニアリング株式会社 廃棄物ガス化溶融処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283434A (ja) * 1999-03-31 2000-10-13 Ishikawajima Harima Heavy Ind Co Ltd 廃棄物処理方法及び廃棄物処理システム
JP2005024193A (ja) * 2003-07-03 2005-01-27 Nippon Steel Corp 廃棄物処理炉の生成ガス処理方法
JP2005211719A (ja) * 2004-01-27 2005-08-11 Kusukusu:Kk 有機物処理方法及びそのシステム
JP2007091893A (ja) * 2005-09-29 2007-04-12 Ube Machinery Corporation Ltd 木質系バイオマスの燃料供給システム
JP2008104973A (ja) * 2006-10-26 2008-05-08 Kangen Yoyu Gijutsu Kenkyusho:Kk バイオマス廃棄物の処理方法および処理システム
JP2008120882A (ja) * 2006-11-09 2008-05-29 Nippon Steel Corp シャフト型熱分解炉及びその安定操業方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534340A (zh) * 2011-05-04 2014-01-22 奥图泰有限公司 用于燃料气体的生产和进一步处理的方法和设备
CN105820844A (zh) * 2011-05-04 2016-08-03 奥图泰有限公司 用于燃料气体的生产和进一步处理的方法和设备
KR101598575B1 (ko) * 2014-10-30 2016-03-02 한국생산기술연구원 혼소형 연소장치를 포함하는 혼소형 연소 시스템 및 이의 제어 방법
CN107056106A (zh) * 2017-05-31 2017-08-18 长沙紫宸科技开发有限公司 一种含湿生物质燃料的悬浮催化氧化无焰燃烧装备

Also Published As

Publication number Publication date
JPWO2010047042A1 (ja) 2012-03-15
BRPI0919765B1 (pt) 2020-10-20
BRPI0919765A2 (pt) 2015-12-08
CN102187152A (zh) 2011-09-14
JP4855539B2 (ja) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4855539B2 (ja) 微粉炭燃焼ボイラを用いたバイオマスの利用装置およびそれを用いたバイオマスの利用方法
KR101356177B1 (ko) 폐기물 처리 방법 및 장치
US20190276757A1 (en) SYSTEM AND METHOD FOR REDUCING NOx EMISSIONS FROM GASIFICATION POWER PLANTS
JP4267968B2 (ja) バイオマス処理法
EP2716970B1 (en) Waste-melting method
KR20080031152A (ko) 폐기물 처리 방법 및 장치
WO1997049953A1 (fr) Procedes pour le traitement par fusion de dechets solides en vue de leur gazeification
WO2008120109A1 (en) Method and plant for manufacturing cement clinker
JP4731988B2 (ja) 炭素質資源のガス化方法及びその装置
JP2012087222A (ja) 炭素質原料の処理方法及び処理装置
JP4276559B2 (ja) バイオマスを利用する廃棄物溶融処理方法
JP4191636B2 (ja) 塊状バイオマスを利用する廃棄物溶融処理方法
JP5020779B2 (ja) 炭素質原料のガス化装置およびガス化方法
JP4486377B2 (ja) 粉状バイオマスを利用する廃棄物溶融処理方法
JP5945929B2 (ja) 廃棄物ガス化溶融装置
JP2007238782A (ja) 炭素質原料の熱分解方法
JP3914474B2 (ja) 炭素質資源のガス化方法及びその装置
JP4589226B2 (ja) 燃料用炭化物および燃料ガスの製造方法
JP2009235189A (ja) 木質系または農業系バイオマスのガス化方法
JP2012163260A (ja) 廃棄物ガス化溶融装置
JP2004075852A (ja) 炭素質資源のガス化方法及びその装置
JP2012145272A (ja) 廃棄物ガス化溶融処理方法
JP2023088137A (ja) シャフト炉式ガス化溶融システムにおける下水汚泥固形燃料の供給設備及び供給方法
JP2005283073A (ja) ガス化溶融炉ガスの利用方法
JP2005281649A (ja) ガス化溶融炉ガスの利用方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141659.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534664

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2903/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0919765

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110420