WO2010046342A1 - Composition pour les soins menagers comprenant un nanogel cationique - Google Patents

Composition pour les soins menagers comprenant un nanogel cationique Download PDF

Info

Publication number
WO2010046342A1
WO2010046342A1 PCT/EP2009/063670 EP2009063670W WO2010046342A1 WO 2010046342 A1 WO2010046342 A1 WO 2010046342A1 EP 2009063670 W EP2009063670 W EP 2009063670W WO 2010046342 A1 WO2010046342 A1 WO 2010046342A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
monomer
nanogel
units
cationic
Prior art date
Application number
PCT/EP2009/063670
Other languages
English (en)
Inventor
Katerina Karagianni
Iñigo GONZALEZ
David James Wilson
Original Assignee
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations filed Critical Rhodia Operations
Priority to BRPI0919642A priority Critical patent/BRPI0919642A2/pt
Priority to CN2009801478573A priority patent/CN102227496A/zh
Priority to US13/125,769 priority patent/US8791058B2/en
Priority to EP09740106.1A priority patent/EP2346974B1/fr
Publication of WO2010046342A1 publication Critical patent/WO2010046342A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3773(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/003Colloidal solutions, e.g. gels; Thixotropic solutions or pastes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0026Low foaming or foam regulating compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents

Definitions

  • composition for household care comprising a cationic nanogel
  • the present invention relates to compositions for household care comprising a cationic nanogel, especially for the treatment and / or modification of hard surfaces or textiles.
  • the composition makes it possible in particular to hydrophilize hard surfaces, which are particularly useful in cleaning or rinsing operations.
  • the household care compositions comprise various ingredients which, individually or in combination, confer on said compositions the properties of uses for the application for which they are intended, or modify certain properties.
  • Cleaning compositions often include, for example, surfactants.
  • Some compositions include polymers for example to give them particular rheological properties (for example to thicken) or to modify surface properties including deposition.
  • WO 2007/071591 describes the implementation of nanogels for the treatment of hard surfaces.
  • This document teaches, in Examples 3.1 and 3.2, that star copolymers having cationic peripheral branches make it possible to facilitate the cleaning of bathroom surfaces.
  • These copolymers require multistage sequential polymerization processes, which make them expensive.
  • star copolymers there is a need for simpler compounds to be prepared and / or for compounds having application advantages at least of the same order of magnitude, if not higher, and / or having in addition to other advantages.
  • polymers providing a more durable treatment, for example providing a cleaning even after more time and / or submitting to water passages, for example during rinsing, splashing or cleaning in the absence of polymer.
  • Example 6.1 that nanogels consisting of a neutral core C, without peripheral branches, provides good hydrophilization.
  • polymers providing a more durable treatment, for example providing an easy cleaning even after more time and / or submission to passages to water for example during rinsing, splashing or cleaning in the absence of polymer.
  • nanogels or microgels and processes for their preparation have been described in the literature.
  • WO2004048429 discloses a process for preparing monofunctional and multifunctional monomer-based microgels where the reactivity of these two types of monomers is appropriately selected to produce discrete particles of average molecular weight of at least 10 5 .
  • non-cationic nanogels especially based on (meth) acrylate are prepared.
  • WO2004048428 discloses microgels characterized by certain rheological properties.
  • non-cationic nanogels especially based on (meth) acrylate are prepared.
  • WO0056792 discloses gels prepared from triethylenically unsaturated monomers.
  • non-cationic nanogels based in particular on acrylamide are prepared.
  • WO9831739 describes the preparation of nanogels by controlled radical polymerization using nitroxides.
  • non-cationic nanogels based in particular on styrene monomers are prepared.
  • composition for household care comprising a cationic nanogel, consisting of chemically crosslinked macromolecules having a core C comprising:
  • crosslinking units R derived from a crosslinking monomer R comprising at least two polymerizable groups, and core units C derived from at least one monomer C comprising a single polymerizable group, comprising: - cationic or potentially cationic units C cat derived from at least one monomer C cat cationic or potentially cationic, and
  • nanogel optionally neutral C N hydrophilic or hydrophobic units derived from at least one hydrophilic or hydrophobic neutral C N monomer, the nanogel being different from a star copolymer comprising macromolecular branches at the periphery of the core
  • the average size of the macromolecules being preferably from 5 to 500 ⁇ m, preferably from 30 to 170 nm.
  • the invention also relates to the use of cationic nanogel in household care compositions.
  • the cationic nanogel may in particular be used as a foam stabilizing agent, preferably with the addition of soil, and / or as an anti-redeposition agent or as a hydrophilizing agent and / or as an anti-fouling agent.
  • the invention also relates to the use of the compositions in the context of household care, for example in the context of treatment, preferably cleaning, hard surfaces or textile surfaces.
  • the nanogels used for the invention are macromolecules. They are sometimes referred to as "the polymer (s)” or “the copolymer (s)” in the present application.
  • the average size of the macromolecules is defined as the mean hydrodynamic diameter measured by light scattering (Dynamic Light Scattering).
  • nanogel is understood to mean a macromolecular compound, copolymer, having a core.
  • a core is a chemically crosslinked macromolecule comprising units derived from a monomer comprising a single polymerizable function and units comprising at least two polymerizable functions.
  • the nanogel of the invention is different from a nanogel comprising at the periphery of the heart of the macromolecular branches, linked to the heart.
  • the term heart is used as opposed to macromolecular branches at the periphery.
  • Nanogels having a core and no branches on the periphery are macromolecular architectures known to those skilled in the art.
  • star copolymer is sometimes also used to designate nanogels comprising the macromolecular branches at the periphery of the core.
  • core C a nanogel comprising a polymer core chemically crosslinked, but not comprising macromolecular branches at the periphery of the heart. This is microscopic macromolecules with intra-chain crosslinking.
  • Such cores C can be obtained by copolymerization of a monomer C having a single polymerizable group and a crosslinking monomer R having at least two polymerizable groups (crosslinking monomer), in the absence of a surfactant, or in the presence of a small amount surfactant (eg less than 10% by weight, preferably less than 5% by weight, or even less than 1% by weight or not at all).
  • a surfactant eg less than 10% by weight, preferably less than 5% by weight, or even less than 1% by weight or not at all.
  • they are distinguished from “nanolatex" polymers obtained by emulsion polymerization in the presence of high amounts of surfactants at thermodynamic equilibrium or near.
  • the unit derived from a monomer denotes a unit that can be obtained directly from said monomer by polymerization.
  • a unit derived from an acrylic or methacrylic acid ester does not cover a unit of the formula -CH 2 -CH (COOH) -, -CH 2 -C (CH 3 ) (COOH) -, - CH 2 - CH (OH) -, respectively, obtained for example by polymerizing an ester of acrylic or methacrylic acid, or vinyl acetate, respectively, and then hydrolyzing.
  • a unit derived from acrylic or methacrylic acid for example covers a unit obtained by polymerizing a monomer (for example an acrylic or methacrylic acid ester), then reacting (for example by hydrolysis) the polymer obtained so as to obtain units of formula -CH 2 -CH (COOH) -, or - CH 2 -C (CH 3 ) (COOH) -.
  • a unit derived from a vinyl alcohol for example covers a unit obtained by polymerizing a monomer (for example a vinyl ester), then reacting (for example by hydrolysis) the polymer obtained so as to obtain units of formula -CH 2 -CH (OH) -.
  • N R is the number of polymerizable functions (typically of ethylenically unsaturated functions) in a crosslinking monomer
  • n R is the number of moles of monomer (s) crosslinking (s) R
  • n ⁇ is the total number of moles of monomers (monomer (s) C + monomer (s) R)
  • Nco n t r oi is the number of control groups in a control agent if such an agent is used in the polymerization
  • hydrophobic for a monomer is used in its usual sense of "which has no affinity for water”; this means that the monomer can form a two-phase macroscopic solution in distilled water at 25 ° C, at a concentration greater than or equal to 1% by weight, or that it has been categorized as hydrophobic in the present application.
  • hydrophilic for a monomer, is also used in its usual sense of "which has affinity for water”, that is to say is not likely to form a two-phase macroscopic solution in distilled water at 25 ° C at a concentration greater than or equal to 1% by weight, or that it has been categorized as hydrophilic in the present application.
  • cationic or potentially cationic units units which comprise a cationic or potentially cationic group.
  • Cationic units or groups are units or groups that have at least one positive charge (usually associated with one or more anions such as chloride ion, bromide ion, sulfate group, methylsulfate group), regardless of pH the medium in which the nanogel is introduced.
  • the potentially cationic units or groups are units or groups that can be neutral or have at least one positive charge depending on the pH of the medium the nanogel is introduced. In this case, we will speak of potentially cationic units in neutral form or in cationic form. By extension we can speak of cationic or potentially cationic monomers.
  • anionic or potentially anionic units are meant units which comprise an anionic or potentially anionic group.
  • the units or anionic groups are units or groups which have at least one negative charge (generally associated with one or more cations such as cations of alkaline or alkaline earth compounds, for example sodium, or with one or more cationic compounds such as ammonium), regardless of the pH of the medium where the nanogel is present.
  • the potentially anionic units or groups are units or groups that can be neutral or have at least one negative charge depending on the pH of the medium where the nanogel is present. In this case we will speak of potentially anionic units in neutral form or in anionic form. By extension we can speak of anionic or potentially anionic monomers.
  • Neutral units are units that do not have a charge, regardless of the pH of the medium where the nanogel is present.
  • anti-deposition and / or non-sticking properties is meant that the treated surface retains these properties over time, even after subsequent contacts with soiling (eg rain water, water from the distribution network, added rinse water or not rinsing products, splashing oils, soaps ). This property of remanence can be observed beyond three cycles of rinsing, even in some particular cases where the rinsings are numerous (case of toilets for example), beyond 6, 10 or 100 cycles of rinsing.
  • soiling eg rain water, water from the distribution network, added rinse water or not rinsing products, splashing oils, soaps .
  • the presence of the nanogel allows to "improve the cleaning capacity" of a formulation, it means that for the same amount of cleaning formulation (including a dishwashing formulation by hand), the formulation containing the nanogel can clean more soiled objects than a formulation that is free of it.
  • the deposition on a hard surface of the nanogel makes it possible to add antistatic properties to this surface; this property is particularly interesting in the case of synthetic surfaces.
  • the presence of the nanogel in the hard surface treatment formulations makes it possible to render the surface hydrophilic or to improve its hydrophilicity.
  • the surface-freeze-drying property further reduces fogging of the surface; this benefit can be exploited in cleaning formulas for windows and mirrors, especially in bathrooms.
  • the rate of drying of the surface, immediately after its treatment by the application of the polymer but also after repeated and repeated contacts with an aqueous medium is significantly improved.
  • hard surfaces are non-textile surfaces, which can be household, community or industrial. They may be of any material, including: ceramic (surfaces such as washbasin, bathtubs, wall or floor tiles, toilet bowls ”) glass (surfaces such as interior and exterior windows of buildings or vehicles, mirrors , - metal (surfaces such as internal or external walls of reactors, blades, panels, pipes .%) synthetic resins (eg bodywork or interior surfaces of motorized vehicles (cars, trucks, buses, trains, airplanes ...) melamine or formica surfaces for office interiors, kitchens, Among) plastics (for example polyvinyl chloride, polyamide, for the interior of vehicles, including cars)
  • the "hard surfaces” according to the invention are non-porous and non-fibrillar surfaces; they are thus distinguished from textile surfaces (fabrics, carpets, clothing ... in natural, artificial or synthetic materials).
  • the nanogel of the invention (Heart C) comprises:
  • crosslinking units R derived from a crosslinking monomer R comprising at least two polymerizable groups
  • core units C derived from at least one monomer C comprising a single polymerizable group, comprising
  • neutral C N hydrophilic or hydrophobic units derived from at least one hydrophilic or hydrophobic neutral C N monomer.
  • the polymerizable groups of the monomers C and R are preferably ethylenically unsaturated groups, preferably alpha-ethylenically unsaturated groups.
  • the monomers C are thus preferably monoethylenically unsaturated monomers, preferably mono-alpha-ethylenically unsaturated monomers.
  • the monomers R are thus preferably multiethylenically unsaturated monomers, preferably di- or tri-ethylenically unsaturated, for example di-alpha-ethylenically unsaturated or tri-alpha-ethylenically unsaturated monomers.
  • the C units and the C monomers comprise several different units or derive from several different monomers. It is not excluded that the C ca units and the C ca monomers comprise several different units or derive from several different monomers. It is noted that the C units or the C monomers can comprise both C ca units and C N OR units can derive from both C ca and C N monomers.
  • the C units and the monomers C may further optionally include other types of units, or may optionally derive other monomers.
  • the units C may in particular comprise, in addition, zwitterionic units C z , derived from zwitterionic monomers C z , and / or anionic or potentially anionic units C A derived from anionic or potentially anionic monomers C A.
  • the nanogel is likely to be obtained by a method implementing a controlled radical polymerization process, as explained below.
  • the nanogel is different from a star copolymer comprising a core C and at the periphery of the core of the macromolecular branches.
  • the nanogel may have a control group or a residue of such a group at ends of the polymeric molecules.
  • the nanogel may be presented in particular in the form of a powder, in the form of a dispersion in a liquid or in the form of a solution in a solvent. These last two forms can be assimilated to forms in dispersed environments.
  • the nanogel may for example be included in an aqueous medium (comprising water), for example in an aqueous medium or the like.
  • the form generally depends on the requirements related to the use of the nanogel. It can also be related to the nanogel preparation process.
  • the nanogel may especially consist of crosslinked macromolecules of average size ranging from 5 to 500 nm, preferably from 30 to 170 nm. Sizes can be determined conventionally by light scattering or X-ray diffraction techniques in dispersed media.
  • the nanogel, and its method of preparation is preferably such that it does not form a macroscopic macromolecular crosslinked network (inter-chain crosslinking). If it is in a dispersed medium, for example in an aqueous medium, the nanogel advantageously has a viscosity (Brookfield) of less than 20000 cP, preferably less than 10000 cP, at 25 ° C., at a shear of 100 s -1 or less , or preferably at a shear of 10 s -1 .
  • Brookfield Brookfield
  • nanogels having cationic or potentially cationic units C ca could have particularly small sizes, and that processes employing monomers C ca could make it possible to reduce the size of the nanogels substantially.
  • the invention can make it possible to reduce the sizes in a simple manner.
  • the nanogel (Heart C), comprises polymerized units. All the units mentioned below are possible, as well as their combinations. Certain combinations are the subject of particular embodiments.
  • N, N (dialkylaminoalkyl) amides of ⁇ - ⁇ monoethylenically unsaturated carboxylic acids such as N, N-dimethylaminomethyl-acrylamide or methacrylamide, 2 (N, N-dimethylamino) ethyl-acrylamide or methacrylamide, 3 ( N, N-dimethylamino) propyl-acrylamide or methacrylamide, 4 (N, N-dimethylamino) butyl-acrylamide or
  • ⁇ - ⁇ monoethylenically unsaturated amino esters such as 2 (dimethylamino) ethyl acrylate (ADAM), 2 (dimethylamino) ethyl methacrylate (DMAM or MADAM), 3 (dimethylamino) propyl methacrylate, 2 (tert-butylamino) ethyl methacrylate 2 (dipentylamino) ethyl methacrylate, 2 (diethylamino) ethyl methacrylate
  • Vinylimidazolines amino-precursor monomers such as N-vinyl formamide, N-vinyl acetamide, which generate primary amine functions by simple acid or basic hydrolysis
  • cationic monomers Cn 51 which may be derived cationic units C cat may be mentioned: - ammoniumacryloyl or acryloyloxy monomers as
  • acryloyloxyethyltrimethylammonium salts such as acryloyloxyethyltrimethylammonium chloride; or acryloyloxyethyltrimethylammonium methylsulphate (ADAMQUAT Cl or ADAMQUAT MeS), methylmethylldiethylammonium methylethyl acrylate (ADAEQUAT MeS), benzyldimethylammonium ethyl acrylate chloride or methyl sulfate (ADAMQUAT BZ 80),
  • DADMAC N-dimethyldiallylammonium chloride
  • DIQUAT chloride Dimethylaminopropylmethacrylamide, N- (3-chloro-2-hydroxypropyl) trimethylammonium chloride (DIQUAT chloride), dimethylaminopropylmethacrylamide methylsulfate, N- (3-methylsulfate-2-hydroxypropyl) trimethylammonium (DIQUAT methylsulfate)
  • X " is an anion, preferably chloride or methylsulfate - their mixtures or combinations.
  • Hydroxyalkyl esters of ⁇ - ⁇ ethylenically unsaturated acids such as hydroxyethyl acrylate, hydroxypropyl acrylate and methacrylate, glycerol monomethacrylate, etc.
  • ⁇ - ⁇ ethylenically unsaturated amides such as acrylamide, methacrylamide, N, N-dimethyl methacrylamide, N-methylolacrylamide, etc.
  • Ethylenically unsaturated ⁇ - ⁇ monomers bearing a water-soluble polyoxyalkylene segment of the polyethylene oxide type such as polyethylene oxide ⁇ -methacrylates (BISOMER S20W, S10W, ... from LAPORTE) or ⁇ , ⁇ -dimethacrylates, SIPOMER RHODIA BEM (polyoxyethylene ⁇ -behenyl methacrylate), the RHODIA SI PO MERSE M-25 (polyoxyethylene ⁇ -tristyrylphenyl methacrylate) ...
  • Vinyl alcohol ⁇ - ⁇ ethylenically unsaturated monomers precursors of hydrophilic units or segments such as vinyl acetate which, once polymerized, can be hydrolysed to generate vinyl alcohol units or polyvinyl alcohol segments;
  • Vinyllactams such as vinylpyrrolidones, or N-vinylcaprolactam, ⁇ - ⁇ -ethylenically unsaturated monomers of the ureido type and in particular 2-imidazolidinone ethyl methacrylamido (Sipomer WAM II from RHODIA)
  • Nonethyleneglycolmethyletheracrylate or nonethyleneglycolmethylethermethacrylate • mixtures or combinations thereof.
  • hydrophobic neutral monomers CiMnhnhR from which hydrophobic neutral units C Np hobe can be derived, mention may be made of:
  • Vinylaromatic monomers such as styrene, alpha-methylstyrene, vinyltoluene, etc.
  • vinyl or vinylidene halides such as vinyl chloride, vinylidene chloride
  • C 1 -C 12 alkyl esters of ⁇ - ⁇ monoethylenically unsaturated acids such as methyl, ethyl, butyl acrylates and methacrylates, 2-ethylhexyl acrylate, and the vinyl or allyl esters of carboxylic acids; saturated such as acetates, propionates, versatates, stearates ... vinyl or allyl
  • ⁇ -olefins such as ethylene ... conjugated dienes, such as butadiene, isoprene, chloroprene,
  • part B may be a silicone, for example a polydimethylsiloxane chain or a copolymer comprising dimethylsiloxy units,
  • diethylene glycol ethyl ether acrylate or diethylene glycol ethyl ether methacrylate • their mixtures or combinations.
  • anionic or potentially anionic monomers CA from which anionic or potentially anionic units C A may be derived, mention may be made of: monomers having at least one carboxylic function, such as ⁇ - ⁇ ethylenically unsaturated carboxylic acids or anhydrides corresponding, such as acrylic, methacrylic, maleic acid, fumaric acid, itaconic acid, N-methacroyl alanine, N-acryloylglycine and their water-soluble salts Monomers precursors of carboxylate functions, such as tert-butyl acrylate, which generate, after polymerization, carboxylic functions by hydrolysis.
  • carboxylic function such as ⁇ - ⁇ ethylenically unsaturated carboxylic acids or anhydrides corresponding, such as acrylic, methacrylic, maleic acid, fumaric acid, itaconic acid, N-methacroyl alanine, N-acryloylglycine and their water-soluble salts
  • Monomers having at least one sulphate or sulphonate function such as 2-sulphooxyethyl methacrylate, vinylbenzene sulphonic acid, allyl sulphonic acid, 2-acrylamido-2-methylpropanesulphonic acid, sulphoethyl acrylate or methacrylate, acrylate or sulfopropyl methacrylate and their water-soluble salts
  • Monomers having at least one phosphonate or phosphate function such as vinylphosphonic acid, esters of ethylenically unsaturated phosphates such as phosphates derived from hydroxyethyl methacrylate (Empicryl
  • sulphobetaine group for example sulphopropyl dimethyl ammonium ethyl methacrylate (SPE), sulphoethyl dimethyl ammonium ethyl methacrylate, sulphobutyl dimethyl ammonium ethyl methacrylate, sulphohydroxypropyl dimethyl ammonium ethyl methacrylate (SHPE), sulphopropyl dimethylammonium propyl acrylamide, sulfopropyl dimethylammonium propyl methacrylamide (SPP), sulfohydroxypropyl dimethyl ammonium propyl methacrylamido (SHPP), sulfopropyl diethyl ammonium ethyl methacrylate, or sulfohydroxypropyl diethyl ammonium ethyl methacrylate,
  • SPE sulphopropyl dimethyl ammonium ethyl methacrylate
  • the crosslinking monomers R from which R crosslinking units may be derived may in particular be chosen from organic compounds comprising at least two ethylenic unsaturations and at most 10 unsaturations and known to be reactive by a radical route. Preferably, these monomers have two or three ethylenic unsaturations. Thus, mention may in particular be made of acrylic, methacrylic, acrylamido, methacrylamido, vinyl ester, vinyl ether, diene, styrenic and alpha-methyl derivatives. styrenic and allylic.
  • These monomers may also contain functional groups other than ethylenic unsaturations, for example hydroxyl, carboxyl, ester, amide, amino or substituted amino, mercapto, silane, epoxy or halogen functions.
  • the monomers belonging to these families are divinylbenzene and derivatives of divinylbenzene, vinyl methacrylate, methacrylic acid anhydride, allyl methacrylate, ethylene glycol dimethacrylate, phenylene dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol 200 dimethacrylate, polyethylene glycol 400 dimethacrylate, butanediol 1,3-dimethacrylate, 1,4-butanediol imethacrylate, 1, 6 hexanediol dimethacrylate, dodecanediol 1,12-dimethacrylate, glycerol 1,
  • vinyl acrylate epoxy bisphenol A diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, polyethylene glycol 600 diacrylate, ethylene glycol diacrylate, diacrylate diethylene glycol, triethylene glycol diacrylate, tetraethylene glycol diacrylate, ethoxylated neopentyl glycol diacrylate, butanediol diacrylate, hexanediol diacrylate, aliphatic urethane diacrylate, trimethylolpropane triacrylate, trimethylolpropane triacrylate ethoxylated, propoxylated trimethylolpropane triacrylate, propoxylated glycerol triacrylate, aliphatic urethane triacrylate, trimethylolpropane tetraacrylate, dipentaerythritol pentaacrylate.
  • vinyl ethers there may be mentioned vinyl crotonate, diethylene glycoldivinyl ether, butanediol-1,4-divinyl ether, and triethylene glycol divinyl ether.
  • allyl derivatives there may be mentioned diallyl phthalate, diallyldimethylammonium chloride, diallyl maleate, sodium diallyloxyacetate, diallylphenylphosphine, diallylpyrocarbonate, diallyl succinate, N, N'-diallyltartardiamide, N, N-diallyl- 2,2,2-trifluoroacetamide, allyl ester of diallyloxy acetic acid, 1,3-diallylurea, triallylamine, triallyl trimesate, triallyl cyanurate, triallyl trimellitate, triallyl-1,3,5-triazine- 2,4,6 (1H, 3H, 5H) -trione.
  • acrylamido derivatives mention may especially be made of N, N'-methylenebisacrylamide, N, N'-methylenebismethacrylamide, glyoxal bisacrylamide and diacrylamidoacetic acid.
  • styrenic derivatives there may be mentioned divinylbenzene and 1,3-diisopropenylbenzene.
  • diene monomers there may be mentioned butadiene, chloroprene and isoprene.
  • N, N'-methylenebisacrylamide (MBA), divinylbenzene (DVB), ethylene glycol diacrylate, triallycyanurate (TAC) or trimethylolpropane triacrylate are preferred.
  • These multiethylenically unsaturated monomers can be used alone or in mixtures.
  • the nanogel comprises C N units
  • it may advantageously be Cnphiie units derived from a hydrophilic neutral monomer C Np h ⁇ ie-mol ratio between Ccat units and C N units, preferably C Np h ⁇ ie, may in particular be between 1/99 and 99/1, preferably between 1/99 and 50/50, preferably between 1/99 and 40/60, preferably between 1/99 and 25/75, for example between 2 / 99 and 10/90.
  • Nanogels whose composition in C units is as follows can in particular be prepared:
  • APTAC / AM for example with an APTAC / AM mole ratio of 1/99 to 40/60, preferably 5/95 to 30/70.
  • DIQUAT / AM for example with a molar ratio DIQUAT / AM of 1/99 to 10/90
  • MAPTAC / AM for example with a MAPTAC / AM mole ratio of 1/99 to 10/90
  • Particularly advantageous processes use a controlled (or "living") polymerization, using an agent or a control group (sometimes referred to as a transfer group), for example by a controlled radical polymerization process ( or “living”).
  • a controlled radical polymerization process or "living”
  • Such methods are known to those skilled in the art. It is mentioned that it is not excluded to use other methods, including ring-opening polymerizations (especially anionic or cationic), anionic or cationic polymerizations.
  • copolymers obtained as above by controlled radical polymerization can undergo a purification reaction of their sulfur chain end, for example by hydrolysis, oxidation, reduction, pyrolysis or substitution type processes
  • the method of the WO application 99/03894 which implements a polymerization in the presence of nitroxide precursors
  • the method of the application WO 96/30421 which uses a radical polymerization by atom transfer (ATRP)
  • ATRP radical polymerization by atom transfer
  • agents or control groups having a group -S-CS- (Xanthates, dithioesters, trithiocarbonates, dithiocabamates, dithiocarbazates, etc.) are particularly interesting.
  • a practical process for the preparation of the nanogel is a preparation process comprising the following step a): step a) polymerization, preferably controlled radical polymerization, of a monomer mixture comprising: at least one multiethylenically unsaturated crosslinking R monomer, and at least one monoethylenically unsaturated C monomer, comprising:
  • the process preferably not comprising a subsequent polymerization step which can lead to the formation of macromolecular branches at the periphery.
  • the ratio between the units C and the units R can be identical.
  • the nanogel is obtained by a method implementing a controlled radical polymerization process using control groups.
  • the molar ratio between the number of control groups i.e., the amount of control agent multiplied by the number of control groups carried by an agent
  • the number of control groups i.e., the amount of control agent multiplied by the number of control groups carried by an agent
  • the number of control groups i.e., the amount of control agent multiplied by the number of control groups carried by an agent
  • the number of control groups of polymerizable groups of the crosslinking monomer R i.e. half of the amount by mole of monomer multiplied by the number of unsaturated groups of the monomer
  • the crosslinking monomer R i.e. half of the amount by mole of monomer multiplied by the number of unsaturated groups of the monomer
  • 0.05 and 0.5 for example between 0 , 05 and less than 0.1 or between 0.1 and less than 0.2, or between 0.2 and less than 0.3, or
  • the nanogel may in particular have a molar mass (typically a weight average molar mass, typically determined by GPC coupled gas phase chromatography technique MALS or by MALS coupled Steric Exclusion Chromatography technique) greater than or equal to 100,000 g / mol. preferably greater than or equal to 350000 g / mol, for example between 500000 and 3500000 g / mol, for example between 1000000 and 2000000 g / mol.
  • a molar mass typically a weight average molar mass, typically determined by GPC coupled gas phase chromatography technique MALS or by MALS coupled Steric Exclusion Chromatography technique
  • step a) may in particular be carried out by bringing into the presence: the monomers, a control agent, for example an agent comprising a group -S-CS-, and a source of free radicals.
  • a control agent for example an agent comprising a group -S-CS-
  • a source of free radicals Such typologies of polymerizations are known to those skilled in the art and have been the subject of numerous publications. In particular, reference is made to the list established above.
  • step a) can be followed by an optional step b) of chemical modification of the macromolecular chains and / or deactivation of transfer groups carried by macromolecular chains, destruction or purification of by-products of the modification. chemical and / or deactivation.
  • Chemical modification steps of the macromolecular chains are aimed at adding functional groups to the chains, removing groups from the macromolecular chains or substituting groups of macromolecular chains. These groups may in particular be carried by units derived from monomers or worn in macromolecular chain ends. Such processes are known to those skilled in the art. Examples include complete or partial hydrolysis steps, or complete or partial crosslinking steps.
  • the polymerization step a) will generally be carried out in the presence of a control agent (or transfer agent) having a control group (or transfer group).
  • the control group is preferably a group of formula -S-CS-. It is preferably a non-polymeric transfer agent comprising a control group of formula -S-CS-.
  • Control groups of the formula -S-CS- and compounds comprising these groups, in particular control agents, are known to those skilled in the art and are described in the literature. In particular, reference is made to the list established above. They can in particular be selected according to their reactivity with respect to certain monomers, and / or according to their solubility in the reaction medium.
  • the control group can in particular comprise a group of formula -S-CS-Z- where Z is an oxygen atom, a carbon atom, a sulfur atom, a phosphorus atom or a silicon atom, these atoms being where appropriate substituted so as to have an appropriate valence.
  • Z is an oxygen atom, a carbon atom, a sulfur atom, a phosphorus atom or a silicon atom, these atoms being where appropriate substituted so as to have an appropriate valence.
  • an agent of Xanthate type having a control group of formula -S-CS-O-.
  • the polymerization step a) will generally be carried out in the presence of a source of free radicals.
  • a source of free radicals for certain monomers, such as styrene, the free radicals for initiating the polymerization can be generated by a monoethylenically unsaturated monomer, at sufficiently high temperatures generally above 100 ° C. In this case, it is not , necessary to add a source of additional free radicals.
  • the source of free radicals is usually a radical polymerization initiator.
  • the radical polymerization initiator may be chosen from initiators conventionally used in radical polymerization. It can be for example one of the following initiators:
  • hydrogen peroxides such as tertiary butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyacetate, t-butyl peroxybenzoate, t-butylperoxyoctoate, t-butylperoxynethodecanoate and t-butylperoxyisobutarate; , lauroyl peroxide, t-amylperoxypivalte, t-butylperoxypivalate, dicumyl peroxide, benzoyl peroxide, potassium persulfate, ammonium persulfate,
  • azo compounds such as: 2-2'-azobis (isobutyronitrile), 2,2'-azobis (2-butanenitrile), 4,4'-azobis (4-pentanoic acid), 1,1'-azobis (isobutyronitrile), azobis (cyclohexane-carbonitrile), 2- (t-butylazo) -2-cyano opropa, 2,2'-azobis [2-methyl-N- (1,1) -bis (hydroxymethyl) - 2 ', 2-methyl-N-hydroxyethyl] -propionamide, 2,2'-azobis (N, N'-dimethyleneisobutyramidine) dichloride, 2,2'-azobis (N, N'-dimethyl- 2,2'-azobis (2-amidinopropane) dichloride, 2,2'-azobis (N, N '-dimethyleneisobutyramide), 2,2'-azobis (2-methyl-N- [1,1-bis] (2,2-hydroxyethyl
  • alkali metal persulfates in combination with an arylphosphinic acid, such as benzene phosphonic acid and the like, and reducing sugars.
  • an arylphosphinic acid such as benzene phosphonic acid and the like
  • the amount of initiator to be used is preferably determined so that the amount of radicals generated is at most 50 mol%, preferably at most 20 mol%, based on the amount of the agent. control or transfer.
  • the polymerization can be carried out by heating, in known manner, so as to initiate and / or maintain the polymerization process.
  • the degree of polymerization, and the masses, can be controlled by controlling the polymerization time. In particular, it is possible to stop the polymerization by lowering the temperature.
  • the polymerizations may be carried out in any appropriate physical form, for example by solution polymerization in an aqueous medium (comprising water), for example in water or in an aqueous-alcoholic medium (for example, hydro-ethanol) or in a solvent for example an alcohol (for example ethanol) or THF, or by emulsion polymerization, preferably in inverse emulsion, if necessary by controlling the temperature and / or the pH in order to make liquid and / or soluble species or insoluble.
  • the polymerization is preferably carried out in solution, as opposed to dispersed phase polymerizations (emulsion, microemulsion, polymerization with precipitation of the polymer formed). It is preferred to keep the nanogel in solution after such polymerization. It is specified that the nanogels are preferably obtained directly after the polymerization and the possible deactivation, elimination or destruction of transfer groups, without a functionalization step after the polymerization.
  • the respective and relative amounts of monomer (s) C, crosslinking monomer (s), and control agent may be varied so as to control the size of the macromolecules generated, and / or to control the non-formation of a macroscopic macromolecular network.
  • Some indications are given below: at constant amounts of monomer (s) C and control agent, when the amount of monomer (s) R is increased, the molecular masses and the polydispersity index are increased, and macroscopic macromolecular networks can be formed.
  • at constant amounts of monomer (s) C and monomer (s) R when the amount of control agent is reduced, the molecular weights are increased and the polydispersity index macroscopic macromolecular networks can be formed.
  • the polymerization is performed in the presence of a control agent in an amount such that (N * n C ⁇ ntroi C ⁇ ntroi / ⁇ n) is from 0.05 to 10%, preferably from 0.1 to 10%, preferably from 0.2 to 5%.
  • the polymerization is carried out in the presence of crosslinking monomers R in an amount such that (N R / 2) * (n R / n ⁇ ) is from 0.01 to 40 mol%, preferably from 0.1 to 40% by weight. in moles, preferably from 1 to 40 mol%, for example from 5 to 20%.
  • the polymerization is preferably carried out in the presence of a control agent and R-crosslinking monomer (s) in amounts such that r ⁇ 0.05, especially in one or both of the ranges mentioned above. preferably r ⁇ 0.1, preferably r ⁇ 0.2, preferably r ⁇ 0.25, preferably r ⁇ 0.3.
  • a control agent and R-crosslinking monomer s
  • r ⁇ 0.05 especially in one or both of the ranges mentioned above.
  • the higher r the further away from a potential zone of macroscopic unwanted macromolecular lattice formation. It is not excluded that the number r is greater than or equal to 0.5 or 1.
  • the household care composition may include treatment, preferably cleaning, hard surfaces or textile surfaces.
  • Household care operations include care in the sphere of the private home, and in the public institutional or industrial sphere, for example in offices, hotels, restaurants, schools, where appropriate by service companies.
  • Textile surface treatments include laundry operations on finished textile articles.
  • the composition is a laundry composition, in a machine or by hand, advantageously by hand or in a semi-automatic machine, the nanogel being used as:
  • the composition is a hard surface cleaning composition, the nanogel being used as a hydrophilizing agent and / or as an antifouling agent.
  • the invention also relates to a method of implementing household care, comprising a step of contacting a household surface, preferably a textile surface or a hard surface household, with the composition where appropriate after prior dilution.
  • the composition is preferably a liquid composition, comprising a liquid application vector, for example water, an alcohol or a mixture. It most often includes a surfactant.
  • composition according to the invention is particularly capable of providing the surface of the surface to be treated with hydrophilic, antideposition and / or antiadhesion properties. It can be for example:
  • a cleaning or rinsing composition for household use may be universal or may be more specific, such as a composition for cleaning or rinsing a bathroom; said composition prevents, in particular, the deposition of the soap salts around the baths and on the washbasins, and / or prevents the growth and / or deposition of limestone crystals on these surfaces, and / or facilitates the direct or subsequent cleaning of soap stains (soap scum in English) and / or delays the appearance of subsequent soap scum tasks. of the kitchen ; said composition makes it possible to improve the cleaning of the worktops when they are soiled by unsaturated fatty soils that may crosslink over time; the greasy stains leave the water without rubbing.
  • said composition makes it possible to improve the removal of dust, soils of clay-limestone types (earth, sand, mud, etc.); the tasks on the floor can be cleaned effortlessly by simply sweeping, without brushing; in addition, said composition provides anti-slip properties. toilets ; said composition prevents the adhesion of traces of excrement on the surface; the only flow of flush is enough to remove these traces; the use of a brush is useless.
  • said composition makes it possible to prevent the deposit of particulate mineral or organic dirt on the surface, of the dishes, by hand or with the aid of an automatic machine; said composition makes it possible, in the case of hand washing, to facilitate the removal of residual stains from dry foods, and to wash a greater number of cutlery or utensils with the same volume of bath; the surface of cutlery and utensils still wet is no longer slippery and thus does not escape the hands of the user; it has also been found a "squeaky clean" effect, namely that the surface "crunch” under the effect of a rub with the finger.
  • said composition allows the anti-redeposition of food stains and insoluble mineral salts of calcium, and brings brilliance to utensils and cutlery; the composition also makes it possible to no longer have to "pre-wash” cutlery or utensils before they are introduced into the dishwasher.
  • a cleaning or rinsing composition for industrial or community use can be universal or more specific, such as a composition for the cleaning of reactors, steel blades, sinks, vats, dishes on the outer or inner surfaces of glass buildings and buildings - bottles
  • composition according to the invention can be in any form and can be used in many ways. So, it can be in the form
  • a gelled liquid or not to be deposited as it is, especially by spraying, - directly on the surfaces to be cleaned or rinsed, or on a sponge or other support (cellulose article for example, woven or non-woven) before to be applied on the surface to be treated
  • composition • a liquid absorbed on an absorbent support in a woven or nonwoven article including (wipe) • a solid, especially tablet, optionally trapped in a water-soluble bag, said composition may represent all or part of the tablet.
  • the nanogel is present in the composition subject of the invention in an amount effective to modify and / or treat the surface.
  • it may be an effective amount to supply said surfaces of hydrophilic properties and / or anti-deposition and / or anti-adhesion of dirt likely to be deposited on said surfaces.
  • Said composition subject of the invention may contain, according to its application, from 0.001 to 10% of its weight of the nanogel.
  • the pH of the composition or the pH of use of the composition according to the invention may vary, depending on the applications and the surfaces to be treated, from 1 to 14, or even from 0.5 to 14.
  • the extreme pH are conventional in industrial or community cleaning type applications. In the field of household applications, the pH range from 1 to 13 depending on the applications.
  • Said composition may be used for cleaning or rinsing hard surfaces, in an amount such that, after possible rinsing and drying, the amount of polybetaine (B) deposited on the surface is from 0.0001 to 10 mg / m 2 preferably from 0.001 to 5 mg / m 2 of treated surface.
  • composition preferably cleaning or rinsing according to the invention, may further comprise at least one surfactant.
  • This may be nonionic, anionic, amphoteric, zwitterionic or cationic. It may also be a mixture or combination of surfactants.
  • the alkyl ester sulphonates of formula R-CH (SO 3 M) -COOR ' where R represents a C 8-20 alkyl radical, preferably C 0 - Ci 6 , R 'is an alkyl radical in dC 6 , preferably in C 1 -C 3 and M is an alkali metal cation (sodium, potassium, lithium), substituted or unsubstituted ammonium (methyl-, dimethyl-, trimethyl-, tetramethylammonium, dimethylpiperidinium). .) or derivative of an alkanolamine (monoethanolamine, diethanolamine, triethanolamine ).
  • the alkylamide sulphates of formula RCONHR'OSO 3 M O ⁇ R represents a C 2 -C 22 alkyl radical, preferably C 6 -C 20 radical, R 'a C 2 -C 3 alkyl radical, M representing an atom of hydrogen or a cation of the same definition as above, as well as their
  • alkylphosphates alkylated or alkylarylated ester phosphates such as RHODAFAC RA600, RHODAFAC PA15 or RHODAFAC PA23 marketed by RHODIA
  • the cation can be an alkali metal (sodium, potassium, lithium), a substituted or unsubstituted ammonium residue (methyl-, dimethyl-, trimethyl-, tetramethylammonium, dimethylpiperidinium ”) or an alkanolamine derivative (monoethanolamine, diethanolamine, triethanolamine ).
  • Alkylene oxide condensates especially ethylene oxide and optionally propylene condensates with alcohols, polyols, alkylphenols, fatty acid esters, fatty acid amides and fatty amines; amine oxides, sugar derivatives such as alkylpolyglycosides or esters of fatty acids and sugars, especially sucrose monopalmitate; long-chain tertiary phosphine oxides (8 to 28 carbon atoms); dialkyl sulfoxides; block copolymers of polyoxyethylene and polyoxypropylene; polyalkoxylated sorbitan esters; fatty esters of sorbitan, poly (ethylene oxide) and fatty acid amides modified to give them a hydrophobic character (for example, mono- and diethanolamides of fatty acids containing from 10 to 18 carbon atoms ).
  • alcohols polyols, alkylphenols, fatty acid esters, fatty acid amides and fatty amines
  • amine oxides
  • alkylamphoacetates or alkylamphodiacetates in which the alkyl group contains from 6 to 20 carbon atoms, such as Miranol C2M Conc NP marketed by RHODIA, the amphoteric derivatives of the alkylpolyamines such as AM PHIONIC XL® marketed by RHO DIA, AM P HOLAC 7T / X® and AMPHOLAC 7C / X® marketed by BEROL NOBEL.
  • zwitterionic surfactants include those described in U.S. 5,108,660,
  • Preferred zwitterionic surfactants are alkyldimethyl betaines, alkylamidopropyldimethylbetaines, alkyldimethylsulfobetaines or alkylamidopropyldimethylsulfobetaines, such as Mirataine JCHA or H2CHA, and Mirataine CBS marketed by Rhodia, or those of the same type marketed by Sherex Company. under the name "Varion CADG Betaine” and "Varion CAS Sulfobetaine", the condensation products of fatty acids and protein hydrolysates.
  • Other zwitterionic surfactants are also disclosed in US-A-4,287,080, and in US-A-4,557,853.
  • R, R and R which are identical or different, represent H or an alkyl group containing less than 4 carbon atoms, preferably 1 or 2 carbon atoms, optionally substituted with one or more hydroxyl function (s), or may together with the nitrogen atom N form at least one aromatic or heterocyclic ring
  • R 4 represents a C 8 -C 22 alkyl or alkenyl group. preferably C-12-C22. an aryl or benzyl group, and X is a solubilizing anion such as halide (eg chloride, bromide, iodide), sulfate or alkylsulfate (methylsulfate), carboxylate (acetate, propionate, benzoate), alkyl or arylsulfonate.
  • halide eg chloride, bromide, iodide
  • sulfate or alkylsulfate methylsulfate
  • carboxylate acetate, propionate, benzoate
  • alkyl or arylsulfonate e.g chloride, bromide, iodide
  • Other cationic surfactants such as:
  • R 2 and R 3 which may be identical or different, represent H or an alkyl group containing less than 4 carbon atoms, preferably 1 or 2 carbon atoms, optionally substituted by one or more hydroxyl functional groups (s). ), or can form together with the nitrogen atom N a heterocyclic ring
  • R 'and R' are C8-C22 alkyl or alkenyl. preferably in
  • - X ' is an anion such as halide (e.g. chloride, bromide, iodide), sulfate or alkylsulfate (methylsulfate), carboxylate (acetate, propionate, benzoate), alkyl or arylsulfonate.
  • halide e.g. chloride, bromide, iodide
  • sulfate or alkylsulfate methylsulfate
  • carboxylate acetate, propionate, benzoate
  • alkyl or arylsulfonate alkyl or arylsulfonate.
  • dialkyldimethylammonium chlorides such as ditallow dimethylammonium chloride or methylsulphate, etc.
  • alkylbenzyldimethylammonium chlorides alkylbenzyldimethylammonium chlorides.
  • C 1 -C -alkylimidazolium salts such as C 1 -C 25 alkyl klyimidazolinium methyl sulphates
  • Substituted polyamine salts such as N-tallow-N, N ', N', triethanol-1,3-propylenediamine dichloride or dimethylsulphate, N-tallow-N, N, N ', N', N'- pentamethyl-1,3-propylene diamine dichloride.
  • surfactants are compounds generally used as surfactants referred to in the well-known "Surface Active Agents” manuals, Volume I by Schwartz and Perry and “Surface Active Agents and Detergents", Volume II by Schwartz, Perry and Berch.
  • the surfactants may represent from 0.005 to 60%, in particular from 0.5 to
  • the weight ratio nanogel / surfactant (s) is between 1/1 and 1/1000, advantageously 1/2 and 1/200.
  • composition preferably cleaning or rinsing according to the invention, may further comprise at least one other additive, in particular chosen from the usual addites present in the cleaning or rinsing compositions of the hard surfaces.
  • chelating agents especially of the type organic phosphonates and water-soluble aminophosphonates such as ethane 1-hydroxy-1,1-diphosphonates, aminotri (methylene diphosphonate) vinyldiphosphonates salts of the oligomers or polymers of vinylphosphonic acid or vinyldiphosphonic acid salts of random oligomers or copolymers of vinylphosphonic acid or vinyldiphosphonic acid and acrylic acid and / or maleic anhydride and / or vinylsulfonic acid and / or acrylamidomethylpropanesulfonic acid salts of polycarboxylic acids phosphonated polyacrylates terminated (s) phosphonate (s) salts of cotelomers of vinylphosphonic acid or vinyldiphosphonic acid and of acrylic acid such as those of the range BRIQUEST® or MIRAPOL A300 or 400 of RHODIA (at a rate of 0 to 10%, preferably from 0 to 5% of the total weight of cleaning composition);
  • Polycarboxylic acids or their water-soluble salts and the water-soluble salts of carboxylic polymers or copolymers such as polyacrylic acid polycarboxylate ethers or hydroxypolycarboxylates or their salts (nitriloacetic acid, N, N-dicarboxymethyl-2-aminopentane dioic acid, ethylenediamine acid) tetraacetic acid, diethylenetriamine pentaacetic acid, ethylenediaminetetraacetates, nitrilotriacetates, N- (2-hydroxyethyl) nitrilodiacetates), salts of C 5 -C 2 O alkyl succinic polyacetal carboxylic esters salts of polyaspartic or polyglutamic acids - citric acid, adipic acid, acid gluconic or tartaric acid or their salts Copolymers of acrylic acid and maleic anhydride or homopolymers of acrylic acid, such as Rhodoline DP
  • RHODIAPHOS HD7 marketed by RHODIA, (from 0 to 70% of the total weight of cleaning composition);
  • Alkali metal silicates with SiO 2 / M 2 O ratio ranging from 1 to 4, preferably from 1.5 to 3.5, especially from 1.7 to 2.8; it may be amorphous silicates or lamellar silicates sold under the references NaSKS-5, NaSKS-7, NaSKS-1 and NaSKS-6 by Clariant;
  • polymers used to control the viscosity of the mixture and / or the stability of the foams formed during use such as cellulose or guar derivatives (carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylguar, carboxymethylguar, carboxymethylhydroxypropylguar, etc.), xanthan gum, succinoglycan (RHEOZAN® marketed by RHODIA), carob gum, carrageenan (at a level of 0 to 2% of the total weight of said cleaning composition)
  • hydrotropic agents such as short C 2 -C 8 alcohols, in particular ethanol, diols and glycols such as diethylene glycol, dipropylene glycol, sodium xylene sulphonate, sodium naptalene sulphonate (at the rate of 0 to 10 g per 100 g of said cleaning composition)
  • moisturizing agents or humectants for the skin such as glycerol, urea or skin-protecting agents, such as proteins or protein hydrolysates, vegetable oils such as soybean oil, cationic polymers such as cationic derivatives of the skin, guar (Jaguar C13S®, Jaguar C162®, HICARE 1000® sold by the company Rhodia, (at a rate of 0 to 40% of the total weight of said cleaning composition) * biocides or disinfectants as cationic biocides, for example
  • Quaternary monoammonium salts such as - chlorides coco-alkyl dimethyl benzyl, C-
  • amino heterocyclic monoquaternary salts such as laurylpyridinium chloride, cetylpyridinium, C-
  • triphenyl phosphonium alkyl fatty salts such as myristyl triphenyl phosphonium bromide
  • Polymer biocides such as those derived from the reaction of epichlorohydrin and dimethylamine or diethylamine - epichlorohydrin and imidazole from 1, 3-dichoro-2-propanol and dimethylamine 1, 3-dichloro-2-propanol and 1,3-bis-dimethylamino-2-propanol of ethylene dichloride and 1,3-bis-dimethylamino-2-propanol of bis (2-chloroethyl) ether and N , N'-bis (dimethylaminopropyl) urea or thiourea - the biguanidine polymer hydrochlorides, such as VANTOCIL IB
  • Amphoteric biocides such as N- (N'-C8-C- ⁇ -alkyl-3-aminopropyl) -glycine derivatives of N- (N '- (N "-C8-C-) alkyl-2-aminoethyl) 2-aminoethyl) glycine, N, N-bis (N'-C8-C8alkyl-2-aminoethyl) -glycine, such as (dodecyl) (aminopropyl) glycine, (dodecyl) (diethylenediamine) glycine • amines such as N- (3-aminopropyl) -N-dodecyl-1,3-propanediamine
  • Halogenated biocides such as iodophors and hypochlorite salts, such as sodium dichloroisocyanurate
  • Phenolic biocides such as phenol, resorcinol, cresols, salicylic acid, hydrophobic biocides such as parachlorometaxylenol, dichlorometaxylenol, 4-chloro-m-cresol, resorcinol monoacetate, mono- or polyalkyl or aryl phenols, cresols or resorcinols, such as o-phenylphenol, p-tert-butyl-phenol, 6-n-amyl-m-cresol, alkyl and / or aryl chloro or bromophenols, such as o-benzyl- p-chlorophenol halogenated diphenyl ethers such as 2 ', 4,4'-trichloro-2-hydroxy-diphenyl ether
  • solvents before a good cleaning or degreasing activity as octyl benzene alkylbenzenes, olefins having a boiling point of at least 100 ° C., such as alpha-olefins, preferably 1-decene or 1-dodecene, glycol ethers of general formula, R 1 0 (R 20 where R1 is an alkyl group having from 3 to 8 carbons and each R2 is either ethylene or propylene and m is a number ranging from 1 to 3; mention may be made of monopropylene glycol monopropyl ether, dipropylene glycol monobutyl ether, monopropylene glycol monobutyl ether, diethylene glycol monohexyl ether, monoethylene glycol monohexyl ether, monoethylene glycol monobutyl ether and mixtures thereof.
  • octyl benzene alkylbenzenes olefins having a boiling point of at least
  • diols having from 6 to 16 carbon atoms in their molecular structure; diols are particularly interesting because in addition to their degreasing properties, they can help eliminate calcium salts (soaps); diols containing from 8 to 12 carbon atoms are preferred, most preferably 2,2,4-trimethyl-1,3-pentanediol. other solvents such as pine oil, orange terpenes, benzyl alcohol, n-hexanol, phatlic esters of alcohols having 1 to 4 carbon atoms, butoxy propanol, butyl carbitol and the like.
  • solvents such as pine oil, orange terpenes, benzyl alcohol, n-hexanol, phatlic esters of alcohols having 1 to 4 carbon atoms, butoxy propanol, butyl carbitol and the like.
  • (2-n-butoxy-1-methylethoxy) propan-2-ol also called butoxy propoxy propanol or dipropylene glycol monobutyl ether, diglycol hexyl (Hexyl Carbitol), butyl triglycol, diols such as 2,2,4-trimethyl- 1,3-pentanediol, and mixtures thereof (at 0 to 30% of the total weight of said cleaning composition)
  • non-cleaning, water-soluble organic solvents such as methanol, ethanol, isopropanol, ethylene glycol, propylene glycol, and mixtures thereof (from 0 to 40% of the total weight of said cleaning composition); co-solvents such as monoethanolamide and / or beta-aminoalkanols, which are particularly useful in compositions with a pH greater than 1 1, especially greater than 11.7, since they help reduce the formation of films and traces on hard surfaces ( they can be used at a rate of 0.05 to 5% of the weight of the cleaning composition); solvent systems comprising monoethanolamide and / or beta-aminoalkanols are described in US 5,108,660. defoamers, such as soaps.
  • Soaps are alkaline salts of fatty acids, including sodium, potassium, ammonium and higher alkanol ammonium salts of fatty acids containing from about 8 to 24 carbon atoms, and preferably from about 10 to about 20 carbon atoms. carbon atoms; mention may especially be made of sodium and potassium mono-, di- and triethanolamine salts or mixtures of fatty acids derived from coconut oil and ground walnut oil.
  • the amount of soap may be at least 0.005% by weight, preferably from 0.5% to 2% by weight relative to the total weight of the composition.
  • Additional examples of foam control materials are organic solvents, hydrophobic silica, silicone oil and hydrocarbons.
  • abrasives such as silica, calcium carbonate
  • additives such as enzymes, perfumes, dyes, metal corrosion inhibitors, preservatives, optical brighteners, opacifying or pearling agents, etc.
  • the pH of the composition which is the subject of the invention or the pH of use of said composition can range from 0.5 to 14, preferably from 1 to 14.
  • Alkaline-type compositions with a pH greater than or equal to 7.5, preferably greater than 8.5 for household applications (especially pH of 8.5 to
  • the alkaline compositions generally comprise, in addition to the nanogel, at least one additive chosen from
  • a sequestering or antiscaling agent in an amount ranging from 0 to 40%, preferably from 1 to 40%, more preferably from 2 to 30% and most preferably from 5 to 20% by weight of the composition
  • a biocide or disinfectant cationic, especially quaternary ammonium such as N-alkyl benzyl dimethyl ammonium chloride, N-alkyl dimethyl ethylbenzyl ammonium chloride, N-didecydimethylammonium halide, and di-N-alkyl dimethyl ammonium chloride (in an amount ranging from 0 to 60%, preferably 0 to 40%, more preferably 0 to 15% and most preferably 0 to 5% of the weight of the composition)
  • a pH regulating agent in an amount to reach, optionally after dilution or dissolution of the composition, a pH of use ranging from 7.5 to 13;
  • the pH-regulating agent can in particular be a buffer system comprising monoethanolamine and / or a beta-aminoalkanol and potentially but preferably alkaline materials "co-buffer" of the ammonia group, C2-C4 alkanolamines, hydroxides of alkalis, silicates, borates, carbonates, bicarbonates and mixtures thereof.
  • Preferred cotampons are alkali hydroxides. From 0.5 to 98%, preferably from 25 to 95%, especially from 45 to 90% by weight of water
  • a cleaning or degreasing organic solvent in an amount which may represent from 0 to 60%, preferably from 1 to 45%, especially from 2 to 15% by weight of said composition, a co-solvent such as monoethanolamine and / or beta-aminoalkanols, in an amount which can represent from 0 to 10%, preferably from 0.05 to 10%, more particularly from 0.05 to 5% by weight of said composition
  • a water-soluble organic solvent with little cleaning in a quantity which can represent from 0 to 25%, preferably from 1 to 20%, especially from 2 to 15% by weight of said composition
  • alkaline compositions may be in the form of a ready-to-use formula or of a dry or concentrated formula to be diluted in water in particular, before use; they can be diluted 1 to 1000.000 times, preferably 1 to 1000 times before use.
  • a formulation for cleaning kitchens comprises:
  • non-cationic surfactant preferably amphoteric or nonionic
  • At least one cationic surfactant with a disinfecting property in particular a mixture of n-alkyl dimethylethylbenzyl ammonium chloride and n-alkyl dimethyl benzylammonium chloride, the total amount of surfactant (s) (s) representative of 1 to 50% by weight
  • the pH of such a formulation is preferably from 7.5 to 13, more preferably from 8 to 12.
  • Acid-like compositions having a pH of less than 5 are particularly useful for the removal of mineral-type soils; they are particularly well suited for cleaning toilet bowls. They can comprise from 0.001 to 5%, preferably from 0.01 to 2% of their weight of the nanogel.
  • the acidic compositions generally comprise, in addition to the nanogel,
  • a mineral or organic acidic agent (in an amount ranging from 0.1 to 40%, preferably from 0.5 to 20% and more preferably from 0.5 to 15% by weight of the composition)
  • a cationic biocide or disinfectant especially of quaternary ammonium type, such as N-alkyl benzyl dimethyl ammonium chloride, N-alkyl dimethyl ethylbenzyl ammonium chloride, N-didecydimethylammonium halide, and di-N-alkyl dimethyl ammonium chloride; (in an amount ranging from 0.01 to 2%, preferably from 0.1 to 1% by weight of the composition) • optionally a thickening agent (in an amount ranging from 0.1 to 3%, by weight of the composition)
  • a bleaching agent in an amount ranging from 1 to 10%, by weight of the composition
  • compositions From 0.5 to 99%, preferably from 50 to 98% by weight of water, a solvent, such as glycol or an alcohol, (in an amount ranging from 0 to 10%, preferably from 1 to 5% by weight), weight of the composition) • optionally a perfume, a preservative, an abrasive or other usual additives.
  • a solvent such as glycol or an alcohol
  • Said acid compositions are preferably in the form of a ready-to-use formula.
  • a formulation for cleaning the toilet bowls comprises:
  • a quantity of cleaning acidic agent such that the final pH of the composition is from 0.5 to 4, preferably from 1 to 4; this amount is generally from 0.1 to about 40%, and preferably from 0.5 to about 15% by weight based on the weight of the composition;
  • the acidic agent may in particular be a mineral acid such as phosphoric acid, sulfamic acid, hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, chromic acid and mixtures thereof or an organic acid, especially acetic, hydroxyacetic or adipic acid, citric, formic, fumaric, gluconic, glutaric, glycolic, malic, maleic, lactic, malonic, oxalic, succinic and tartaric acid as well as mixtures thereof, acid salts such as sodium bisulfate and mixtures of those -this ; the preferred amount depends on the type of acid cleaner used: for example with sulfamic acid, it is between 0.2 and 10%, with hydrochloric acid between 1 and
  • At least one cationic surfactant with a disinfecting property in particular a mixture of n-alkyl dimethyl ethylbenzyl ammonium chloride and n-alkyl dimethyl benzyl ammonium chloride
  • a thickening agent in an amount ranging from 0.1 to 3%, weight of composition, of the gum type, especially a xanthan gum or a succinoglycan (Rheozan)
  • a bleaching agent in an amount ranging from 1 to 10%, the weight of the composition
  • composition according to the invention can be implemented for the easy cleaning treatment of glass surfaces, in particular windows.
  • This treatment can be performed by the various known techniques.
  • techniques for cleaning windows by spraying a jet of water using devices of the Karcher® type can be mentioned.
  • the amount of nanogel introduced will generally be such that, when using the cleaning composition, after dilution, the nanogel concentration is between 0.001 g / l and 2 g / l, preferably 0.005 g / l and 0.5 g / l.
  • the cleaning composition of the panes according to the invention comprises: from 0.001 to 10%, preferably from 0.005 to 3% by weight of the nanogel; from 0.005 to 20%, preferably from 0.5 to 10% by weight, of at least one nonionic surfactant (for example an amine oxide or an alkyl polyglucoside) and / or anionic surfactant; and the remainder being water and / or various additives customary in the field.
  • the glass cleaning formulations comprising said polymer may also contain: from 0 to 10%, advantageously from 0.5 to 5% of amphoteric surfactant, from 0 to 30%, advantageously from 0.5 to 15% of solvent, such as alcohols, and the remainder consisting of water and usual additives (perfumes in particular).
  • the pH of the composition is advantageously between 6 and 11.
  • the composition of the invention is also interesting for the easy cleaning of the dishes in automatic machine.
  • the composition may be either a detergent (cleaning) formula used in the wash cycle or a rinse formula.
  • the dishwashing detergent compositions in automatic dishwashers according to the invention preferably comprise from 0.01 to 5%, preferably 0.1 to 3% by weight of the nanogel.
  • Said detergent compositions for dishwashers also comprise at least one surfactant, preferably nonionic in an amount ranging from 0.2 to 10%, preferably from 0.5 to 5% by weight, of the said detergent composition, the remainder being by various additives and fillers, as already mentioned above. Thus they may further comprise up to 90% by weight of at least one sodium silicate or tripolyphosphate builder.
  • a copolymer of acrylic acid and methyl propane sulfonic acid (AMPS) preferably up to 30% by weight of at least one bleaching agent, preferably perborate or percarbonate, whether or not associated with a bleach activator
  • AMPS methyl propane sulfonic acid
  • the pH is advantageously between 8 and 13.
  • compositions for easy rinsing of automatic dishwashing dishes according to the invention may advantageously comprise from 0.02 to 10%, preferably from 0.1 to 5% by weight of the nanogel relative to the total weight of the composition.
  • compositions may also comprise from 0.1 to 20%, preferably from 0.2 to 15% by weight relative to the total weight of said composition of a surfactant, preferably a nonionic surfactant.
  • nonionic surfactants mention may be made of polyoxyethylenated C 6 -C 12 alkylphenol-type surfactants, polyoxyethylenated and / or polyoxypropylenated C 8 -C 22 aliphatic alcohols, ethylene oxide-oxide block copolymers, and the like.
  • Said compositions may further comprise from 0 to 10%, preferably from 0.5 to 5% by weight relative to the total weight of the composition of an organic acid sequestering calcium preferably citric acid.
  • They may also comprise a copolymer auxiliary agent of acrylic acid and maleic anhydride or homopolymers of acrylic acid in a proportion of 0 to 15%, preferably 0.5 to 10% by weight relative to the weight total of said composition.
  • the pH is advantageously between 4 and 7.
  • the invention also relates to a cleaning composition for the easy washing of dishes by hand.
  • Preferred detergent formulations of this type comprise from 0.1 to 10 parts by weight of the nanogel per 100 parts by weight of said composition and contain from 3 to 50, preferably from 10 to 40 parts by weight of at least one surfactant , preferably anionic, chosen in particular from sulphates of aliphatic saturated alcohols C 5 -C 40, preferably C 1 -C 4, optionally condensed with about 0.5 to 30, preferably 0.5 at 8, in particular 0.5 to 5 moles of ethylene oxide, in acid form or in the form of a salt, in particular alkaline (sodium), alkaline earth metal
  • surfactant preferably anionic, chosen in particular from sulphates of aliphatic saturated alcohols C 5 -C 40, preferably C 1 -C 4, optionally condensed with about 0.5 to 30, preferably 0.5 at 8, in particular 0.5 to 5 moles of ethylene oxide, in acid form or in the form of a salt, in particular al
  • a foamy liquid detergent aqueous formulations for the hand-washed washing of dishes.
  • Said formulations may further contain other additives, including other surfactants, such as: nonionic surfactants such as amine oxides, alkylglucamides, alkyl polyglucosides, oxyalkylenated fatty alcohol derivatives, alkylamides, alkanolamides, amphoteric or zwitterionic surfactants.
  • nonionic surfactants such as amine oxides, alkylglucamides, alkyl polyglucosides, oxyalkylenated fatty alcohol derivatives, alkylamides, alkanolamides, amphoteric or zwitterionic surfactants.
  • non-cationic bactericidal or disinfecting agents such as triclosan of the synthetic cationic polymers polymers to control the viscosity of the mixture and / or the stability of the foams formed with the use of hydrotropic agents; moisturizing or humectant or protective agents for the skin of the skin; dyes, perfumes, preservatives, divalent salts (in particular magnesium) ...
  • the pH of the composition is advantageously between 5 and 9.
  • Another particular embodiment of the invention consists of an easy external cleaning composition, in particular of the bodywork, of motorized vehicles (cars, trucks, buses, trains, planes, etc.).
  • motorized vehicles cars, trucks, buses, trains, planes, etc.
  • it may be a cleaning composition itself or a rinse composition.
  • the cleaning composition for motor vehicles advantageously comprises from 0.005 to 10% by weight of the nanogel relative to the total weight of said composition, as well as: nonionic surfactants (from 0 to 30%, preferably from 0.1 to 15% of the formulation), amphoteric and / or zwitterionic surfactants (from 0 to 30%, preferably from 0.01 to 10% of the formulation) of the cationic surfactants (from 0 to 30%, preferably from 0.05 to 15% of the formulation); anionic surfactants (from 0 to 30%, preferably from 0.1 to 15% of the formulation); builders (1 to 99%, preferably 40 to 98% of the formulation); hydrotropic agents fillers, pH regulating agents ...
  • the minimum amount of surfactant present in the composition type is preferably at least 0.5% of the formulation.
  • the pH of the composition is advantageously between 8 and 13.
  • the composition of the invention is also particularly suitable for the easy cleaning of ceramic-type hard surfaces (tiles, bathtubs, washbasins, etc.), especially for bathrooms. It can especially facilitate the cleaning of soaps (soap scum in English).
  • the cleaning formulation advantageously comprises from 0.02 to 5% by weight of the nanogel relative to the total weight of said composition as well as at least one surfactant.
  • nonionic surfactants are preferred, in particular compounds produced by condensation of alkylene oxide groups of a hydrophilic nature with a hydrophobic organic compound which may be of aliphatic or alkylaromatic nature.
  • the length of the hydrophilic chain or polyoxyalkylene radical condensed with any hydrophobic group can be easily adjusted to obtain a water-soluble compound having the desired degree of hydrophilic / hydrophobic balance (HLB).
  • the amount of nonionic surfactants in the composition of the invention may be from 0 to 30% by weight, preferably from 0 to 20% by weight.
  • An anionic surfactant may optionally be present in an amount of 0 to 30%, advantageously 0 to 20% by weight.
  • amphoteric, cationic or zwitterionic detergents It is also possible but not mandatory to add amphoteric, cationic or zwitterionic detergents.
  • the total amount of surfactant compounds used in this type of composition is generally between 0.5 and 50%, preferably between 1 and 30% by weight, and more particularly between 2 and 20% by weight relative to the total weight of the composition.
  • Said cleaning composition may also comprise other minority ingredients, such as: builders as mentioned above (in an amount that may be between 0.1 and 25% by weight relative to the total weight of the composition) - an agent for regulating the foam, as mentioned above, in particular of the soap type (in an amount generally of at least 0.005% by weight, preferably from 0.5% to 2% by weight relative to total weight of the composition) pH regulating agents, dyes, optical brighteners, soil-suspending agents, detersive enzymes, compatible bleaching agents, gel-forming control agents, stabilizers, freezing-thawing, bactericides, preservatives, solvents, fungicides, insect repellents, hydrotropic agents, perfumes and opacifiers or pearls.
  • the pH of the composition is advantageously between 2 and 12.
  • composition according to the invention is also suitable for easy rinsing of the walls of the showers.
  • the aqueous shower wall rinsing compositions comprise from 0.02% to 5% by weight, advantageously 0.05 to 1% of the nanogel.
  • the other main active components of the aqueous shower rinse compositions of the present invention are at least one surfactant present in an amount ranging from 0.5 to 5% by weight and optionally a chelating agent of metals as mentioned above, present in an amount of from 0.01 to 5% by weight.
  • the aqueous shower rinse compositions advantageously contain water with optionally at least one lower alcohol in major proportion and additives in a minor proportion (between about 0.1 and about 5% by weight, more preferably between about 0.5% and about 3% by weight, and even more preferably between about 1% and about 2% by weight).
  • surfactants which can be used in this type of application are described in US Pat. Nos. 5,536,452 and 5,587,022, the contents of which are incorporated by reference in the present description.
  • Preferred surfactants are polyethoxylated fatty esters, for example polyethoxylated sorbitan monooloylates and polyethoxylated castor oil.
  • Specific examples of such surfactants are the condensation products of 20 moles of ethylene oxide and sorbitan mono-oleate (marketed by Rhodia Inc. under the name ALKAMULS PSMO-20® with a HLB of 15.0). and 30 or 40 moles of ethylene oxide and castor oil (marketed by RHODIA Inc. under the name ALKAMULS EL-620® (HLB 12.0) and EL-719® (HLB 13.6). ) respectively).
  • the degree of ethoxylation is preferably sufficient to obtain a surfactant having an HLB greater than 13.
  • the pH of the composition is advantageously between 7 and 1 1.
  • the composition according to the invention can also be used for easy cleaning of vitroceramic plates.
  • formulations for the cleaning of vitroceramic plates of the invention comprise:
  • nanogel 0.01 to 5% by weight of the nanogel; 0.1 to 1% by weight of a thickener such as xanthan gum;
  • an abrasive agent such as calcium carbonate or silica
  • a solvent such as butyldiglycol
  • a nonionic surfactant 1 to 10% by weight of a nonionic surfactant; and optionally alkalinizing agents or sequestering agents.
  • the pH of the composition is advantageously between 7 and 12.
  • the composition according to the invention can also be used in the field of industrial cleaning, in particular for easy cleaning of reactors.
  • said compositions comprise: from 0.02 to 5% by weight of the nanogel; from 1 to 50% by weight of alkaline salts (phosphates, carbonates, sodium or potassium silicates); from 1 to 30% by weight of a mixture of surfactants, especially nonionic surfactants such as ethoxylated fatty alcohols and anionic surfactants such as lauryl benzene sulfonate; from 0 to 30% by weight of a solvent such as diisobutyl ester.
  • the pH of such a composition is generally 8 to 14.
  • Another object of the invention is the use, in a composition, preferably comprising at least one surfactant, for the modification and / or treatment of hard surfaces, preferably for cleaning or rinsing in an aqueous medium or hydroalcoholic hard surfaces, nanogel, for example as an agent for providing said surfaces with anti-deposition and / or anti-adhesion properties soils may deposit on said surfaces.
  • Another subject of the invention consists in a process for treating and / or modifying hard surfaces, for improving the properties of compositions optionally comprising at least one surfactant, preferably for cleaning or rinsing in aqueous or aqueous-alcoholic hard surfaces, by adding nanogel to said compositions.
  • Another subject of the invention consists of a process for treating and / or modifying hard surfaces, preferably to facilitate the cleaning or rinsing of hard surfaces, by bringing said surfaces into contact with a composition in an aqueous or aqueous-alcoholic medium, comprising the nanogel and optionally at least one surfactant.
  • the nanogel is preferably used or is present in said composition in an amount effective to provide said surfaces with hydrophilic properties anti-deposition and / or anti-adhesion soils may be deposited on said surfaces.
  • the nature and amounts of the nanogel present or used in said composition, as well as the other additives and different modes of application of said composition have already been mentioned above.
  • compositions of the invention may be foaming compositions. This may include dishwashing compositions by hand or in cases of hand washing or semi-automatic, vehicle cleaning compositions.
  • the nanogel can stabilize the foam, especially with the addition of soiling.
  • it can be used as detergent as an anti-redeposition agent.
  • MBA N, N 'methylenebisacryamide (crosslinking monomer)
  • MAPTAC (3-methacrylamidopropyl) trimethylammonium chloride
  • APTAC (3-acrylamidopropyl) trimethylammonium chloride
  • a linear copolymer is prepared having 95 mol% Acrylamide and 5 mol% MAPTAC, with an average molecular weight of 400 kg / mol.
  • Example 1.3 Preparation of a cationic nanogel based on AM, MAPTAC and MBA - AM / MAPTAC / MBA
  • V50 are added. From this moment, 1.83 g (0.013 mol) of MBA, 19.6 g (0.28 mol) of Am and 3.23 g (0.015 mol) of MAPTAC are added for 4 hours. During this time, at 0 ° + 2 hours, 0.042 (1.54 ⁇ 10 -4 mol) of V 50 are added respectively, at the end of the addition, the reaction is continued for a further 2 hours.
  • compositions are prepared (per 1000 g of composition):
  • Rhodasurf L7 / 90 nonionic surfactant
  • LABS linear alkyl benzene sulfonate, anionic surfactant
  • Rhodasurf L7 / 90 nonionic surfactant
  • the foam index and the persistence of the foam are tested according to the protocol detailed below.
  • the effect of redeposition of dirt on the fabric is tested using the protocol detailed below.
  • Foam Index and Foam Persistence Tests Foam index and foam persistence for a test composition are determined using the following roller apparatus, according to the following protocol.
  • the device has six parallel Plexiglas® cylinders attached to a rotating frame. Each cylinder has an inside diameter of 9cm, and a useful height of 29cm. Each cylinder has a graduated scale for measuring the height of foam.
  • the cylinders are fixed on a rotating frame, each occupying a position equivalent to the others. Moved by an electric motor, the frame is rotated on itself, driving the cylinders in a rotation along an axis perpendicular to their length intersecting said cylinders in the middle of their length in the plane of the frame.
  • the composition in a cylinder flows into the cylinder and strikes its ends (bottom and top) during rotation, thereby generating turbulence resulting in foam formation.
  • Each cylinder is closed by a removable cover, pierced with a hole of 8mm in diameter allowing the addition of additives (dirt ). This hole is closed with a rubber stopper when the rolls are rotated.
  • the Foam Height Unit (FHU) is defined as follows: 10 FHU corresponds to a foam height of 25 mm.
  • the rotation speed is 20 rpm.
  • the cylinders are rotated in sets of 10 rotations (each lasting 30 seconds), followed by 3 minutes of rest between each run, to allow the measurement of foam height (performed at the end of the three minutes) and the possible addition of dirt.
  • Each cylinder contains 500ml of composition to be tested.
  • the composition to be tested has a controlled initial temperature at 20 ° C.
  • test composition 500 ml of test composition are poured into a cylinder, avoiding the formation of foam.
  • the frame carrying the cylinders is then rotated in six series of 10 rotations (total of 60 rotations), each series being followed by 3 minutes of waiting.
  • the foam height is raised in the cylinder after 3 minutes.
  • the foam index is defined as the foam height, given in FHU, after the
  • the rotation / hold / measure / soil addition implementation is repeated until the foam height reaches a value of less than 10 FHU.
  • the foam height can be plotted or reported according to the number of rotations (soiling is only added after 60 rotations). The foam height (persistence of foam) when adding dirt is of particular interest. A slight decrease in the foam indicates stabilization of the foam in the presence of soiling.
  • Soiling composition The soil used in the example is a synthetic sebum simulating greasy soils, for example those originating from human skin, mixed with a clay (bentonite) simulating particulate soils (dust, etc.).
  • the ratio by weight between synthetic sebum and clay is 12/4.
  • composition for 950g of synthetic sebum Composition for 950g of synthetic sebum:
  • the laundry tested, used for washes, is a Brazilian brand laundry
  • ACE to which the polymer to be tested is added.
  • active polymer 0.025 g of active polymer is used per 5 g of lye.
  • a percentage of soil removal is calculated as follows:
  • the software makes it possible to calculate the Delta E '(theoretical maximum detergency) as follows:
  • Mirapol Surf S 500 marketed by Rhodia (quantity expressed as weight of polymer active ingredient of the commercial product)
  • the surface modification is evaluated using the compositions according to the following protocol.
  • the first operation is to prepare the tile. Simply clean it with ethanol with a kimwipe. Half of the surface is treated with the test composition (comprising one polymer) and the other half with the control composition. For this we add 5 drops of product that is spread with a kimwipe. The tile dries for 1 minute then is rinsed with a flow rate of 4.5L / min for 5 seconds on each side. The tile dries again vertically.
  • the soil is prepared from a solution of 13% by weight soap in water and a 35% by weight solution in ethanol of MgCl 2 , 6H 2 O. The soap solution is heated to to make it liquid.
  • composition of the invention allows an effective and durable treatment, resistant to rinsing.
  • Example 4 Adsorption on a surface A composition comprising:
  • the procedure is carried out by comparison using a reference comprising distilled water and KCl 10 " 3 M, according to the method below:
  • compositions comprising:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

La présente invention a pour objet des compositions pour les soins ménagers comprenant un nanogel cationique, notamment pour le traitement et/ou la modification de surfaces dures ou de textiles. La composition permet notamment une hydrophilisation des surfaces dures, utiles notamment dans des opérations de nettoyage ou de rinçage.

Description

Composition pour les soins ménagers comprenant un nanogel cationique
La présente invention a pour objet des compositions pour les soins ménagers comprenant un nanogel cationique, notamment pour le traitement et/ou la modification de surfaces dures ou de textiles. La composition permet notamment une hydrophilisation des surfaces dures, utiles notamment dans des opérations de nettoyage ou de rinçage.
Les compositions de soins ménagers comprennent différents ingrédients qui, individuellement ou en association, confèrent aux dites compositions les propriétés d'usages pour l'application à laquelle elles sont destinées, ou modifient certaines propriétés. Les compositions de nettoyage comprennent par exemple souvent des tensioactifs. Certaines compositions comprennent des polymères par exemple afin de leur conférer des propriétés rhéologiques particulières (pour épaissir par exemple) ou afin de modifier des propriétés de surface notamment par dépôt.
Il existe un besoin constant pour de nouveaux ingrédients, notamment pour des polymères, et pour de nouvelles associations, afin de concevoir des compositions de soins ménagers présentant de nouvelles propriétés, des propriétés améliorées, ou plus simplement pour conserver des mêmes propriétés avec des compositions plus simples et/ou plus économiques.
La demande de brevet déposée à l'Office Européen des Brevets le 20 Septembre 2007 sous le n° 072911 18.3 décrit par exemple la mise en œuvre de certains copolymères statistiques linéaires cationiques pour améliorer la stabilité de la mousse notamment dans des compositions moussantes de soin du linge. Les compositions comprenant ce copolymère ne permettent toutefois pas d'éviter la redéposition de salissures sur le linge. Il existe un besoin pour des polymères permettant d'améliorer la stabilité de la mousse, et d'améliorer la prévention de la redéposition.
Le document WO 2007/071591 décrit la mise en œuvre nanogels pour le traitement de surfaces dures. Ce document enseigne notamment, dans les exemples 3.1 et 3.2, que des copolymères étoiles présentant des branches périphériques cationiques permettent de faciliter le nettoyage de surfaces de salles de bain. Ces copolymères nécessitent toutefois des procédés de polymérisations séquentielles multi étapes, qui les rendent coûteux. Par rapport aux copolymères étoiles il existe un besoin pour des composés plus simples à préparer et/ou pour des composés présentant des avantages applicatifs au moins du même ordre de grandeur, si ce n'est plus élevés, et/ou présentant en plus d'autres avantages. Il existe également un besoin pour des polymères procurant un traitement plus durable, par exemple procurant une facilité de nettoyage même après davantage de temps et/ou de soumissions à des passages à l'eau par exemple lors de rinçages, éclaboussures ou nettoyages en l'absence de polymère. Le document enseigne également, dans l'exemple 6.1 , que des nanogels constitués d'un cœur C neutre, sans branches périphériques, procure une bonne hydrophilisation. Là aussi, il existe également un besoin pour des polymères procurant un traitement plus durable, par exemple procurant une facilité de nettoyage même après davantage de temps et/ou de soumission à des passages à l'eau par exemple lors de rinçages, éclaboussures ou nettoyages en l'absence de polymère.
Par ailleurs, des nanogels ou microgels et des procédés pour les préparer ont été décrits dans la littérature.
Le document WO2004048429 décrit un procédé de préparation de microgels à base de monomères monofonctionnel et multifonctionnels où la réactivité de ces deux types de monomères est choisie de manière appropriée pour produire de particules discrètes de masse moléculaire moyenne d'au moins 105. Dans les exemples des nanogels non cationiques, à base notamment de (meth)acrylate de méthyle sont préparés.
Le document WO2004048428 décrit des microgels caractérisés par certaines propriétés rhéologiques. Dans les exemples des nanogels non cationiques, à base notamment de (meth)acrylate de méthyle sont préparés. Le document WO0056792 décrit des gels préparés à partir de monomères tri- éthylèniquement insaturés. Dans les exemples des nanogels non cationiques, à base notamment d'acrylamide sont préparés.
Le document WO9831739 décrit la préparation de nanogels par polymérisation radicalaire contrôlée à l'aide de nitroxydes. Dans les exemples des nanogels non cationiques, à base notamment de monomères styréniques sont préparés.
Il existe un besoin pour d'autres polymères, pouvant trouver une utilité dans des compositions pour les soins ménagers.
La présente invention répond à au moins un des besoins mentionnés ci-dessus, en proposant une composition pour les soins ménagers comprenant un nanogel cationique, constitué de macromolécules réticulées chimiquement présentant un cœur C comprenant:
- des unités réticulantes R dérivant d'un monomère R réticulant comprenant au moins deux groupes polymérisables, et - des unités de cœur C dérivant d'au moins un monomère C comprenant un seul groupe polymérisable, comprenant : - des unités cationiques ou potentiellement cationiques Ccat dérivant d'au moins un monomère Ccat cationique ou potentiellement cationique, et
- éventuellement des unités neutres CN, hydrophiles ou hydrophobes dérivant d'au moins un monomère CN neutre hydrophile ou hydrophobe, - le nanogel étant différent d'un copolymère étoile comprenant des branches macromoléculaires en périphérie du cœur
- la taille moyenne des macromolécules étant de préférence de 5 à 500 n m , de préférence de 30 à 170 nm.
L'invention concerne aussi l'utilisation du nanogel cationique dans des compositions de soins ménagers. Le nanogel cationique peut notamment être utilisé à titre d'agent de stabilisation de mousse, de préférence à l'ajout de salissures, et/ou à titre d'agent anti-redéposition ou à titre d'agent d'hydrophilisation et/ou à titre d'agent anti-salissures. L'invention concerne aussi l'utilisation des compositions dans le cadre de soins ménagers, par exemple dans le cadre de traitement, de préférence de nettoyage, de surfaces dures ou de surfaces textiles.
Définitions
Les nanogels utilisés pour l'invention sont des macromolécules. Ils sont parfois désignés par "le(s) polymère(s)" ou "le(s) copolymère(s)" dans la présente demande.
Dans la présente demande la taille moyenne des macromolécules est définie comme le diamètre hydrodynamique moyen mesuré par diffusion de la lumière (Dynamic Light Scattering).
Dans la présente demande, on entend par nanogel un composé macromoléculaire, copolymère, présentant un cœur. Un cœur est une macromolécule réticulée chimiquement comprenant des unités dérivant d'un monomère comprenant une seule fonction polymérisable et des unités comprenant au moins deux fonctions polymérisables. Le nanogel de l'invention est différent d'un nanogel comprenant en périphérie du cœur des branches macromoléculaires, liées au cœur. Le terme cœur est utilisé par opposition à des branches macromoléculaires en périphérie. Des nanogels présentant un cœur et pas de branches en périphéries sont des architectures macromoléculaires connues de l'homme du métier. On utilise parfois aussi le mot "copolymère étoile" pour désigner des nanogels comprenant les branches macromoléculaires en périphérie du cœur. Dans la présente demande, on note "Cœur C" un nanogel comprenant un cœur polymérique réticulé chimiquement, mais ne comprenant pas de branches macromoléculaires en périphérie du cœur. Il s'agit de macromolécules microscopiques avec des réticulations intra chaines. De tels cœurs C peuvent être obtenus par copolymérisation d'un monomère C présentant un seul groupe polymérisable et d'un monomère réticulant R présentent au moins deux groupes polymérisables (monomère réticulant), en absence de tensioactif, ou en présence d'une faible quantité de tensioactif (par exemple moins de 10% en poids, de préférence moins de 5% en poids, voire même moins de 1% en poids ou pas du tout). Ils se distinguent notamment en cela des "nanolatex", polymères obtenus par polymérisation en émulsion en présence de fortes quantités de tensioactifs à l'équilibre thermodynamique ou proche.
Dans la présente demande, on désigne par unité dérivant d'un monomère une unité qui peut être obtenue directement à partir dudit monomère par polymérisation. Ainsi, par exemple, une unité dérivant d'un ester d'acide acrylique ou méthacrylique ne couvre pas une unité de formule -CH2-CH(COOH)-, -CH2-C(CH3)(COOH)-, -CH2- CH(OH)-, respectivement, obtenue par exemple en polymérisant un ester d'acide acrylique ou méthacrylique, ou de l'acétate de vinyle, respectivement, puis en hydrolysant. Une unité dérivant d'acide acrylique ou méthacrylique couvre par exemple une unité obtenue en polymérisant un monomère (par exemple un ester d'acide acrylique ou méthacrylique), puis en faisant réagir (par exemple par hydrolyse) le polymère obtenu de manière à obtenir des unités de formule -CH2-CH(COOH)-, ou - CH2-C(CH3)(COOH)-. Une unité dérivant d'un alcool vinylique couvre par exemple une unité obtenue en polymérisant un monomère (par exemple un ester vinylique), puis en faisant réagir (par exemple par hydrolyse) le polymère obtenu de manière à obtenir des unités de formule -CH2-CH(OH)-.
On définit les symboles suivants:
NR est le nombre de fonctions polymérisables (typiquement de fonctions éthylèniquement insaturées) dans un monomère réticulant R nR est le nombre de moles de monomère(s) réticulant(s) R, nτ est le nombre de moles total de monomères (monomère(s) C + monomère(s) R),
Ncontroi est le nombre de groupes de control dans un agent de control si un tel agent est utilisé lors de la polymérisation ncontroi est le nombre de moles d'agent de control si un tel agent utilisé lors de la polymérisation - r = (Ncontroi * nControi / nτ) / (NR/2) * (nR / nτ) = 2 * (Nntroi * ncontroi) / (NR * nR)
Dans la présente demande, le terme «hvdrophobe», pour un monomère, est utilisé dans son sens usuel de «qui n'a pas d'affinité pour l'eau»; cela signifie que le monomère peut former une solution macroscopique diphasique dans de l'eau distillée à 25°C, à une concentration supérieure ou égale à 1 % en poids, ou qu'il a été catégorisé comme hydrophobe dans la présente demande.
Dans la présente demande, le terme «hydrophile», pour un monomère, est également utilisé dans son sens usuel de «qui a de l'affinité pour l'eau», c'est-à-dire n'est pas susceptible de former une solution macroscopique diphasique dans de l'eau distillée à 25°C à une concentration supérieure ou égale à 1 % en poids, ou qu'il a été catégorisé comme hydrophile dans la présente demande.
Par unités cationiques ou potentiellement cationiques, on entend des unités qui comprennent un groupe cationique ou potentiellement cationique. Les unités ou groupes cationiques sont des unités ou groupes qui présentent au moins une charge positive (généralement associée à un ou plusieurs anions comme l'ion chlorure, l'ion bromure, un groupe sulfate, un groupe méthylsulfate), quel que soit le pH du milieu dans lequel le nanogel est introduit. Les unités ou groupes potentiellement cationiques sont des unités ou groupes qui peuvent être neutres ou présenter au moins une charge positive selon le pH du milieu le nanogel est introduit. Dans ce cas on parlera d'unités potentiellement cationiques sous forme neutre ou sous forme cationique. Par extension on peut parler de monomères cationiques ou potentiellement cationiques.
Par unités anioniques ou potentiellement anioniques, on entend des unités qui comprennent un groupe anionique ou potentiellement anionique. Les unités ou groupes anioniques sont des unités ou groupes qui présentent au moins une charge négative (généralement associée à un ou plusieurs cations comme des cations de composés alcalins ou alcalino-terreux, par exemple le sodium, ou à un ou plusieurs composés cationiques comme l'ammonium), quel que soit le pH du milieu où est présent le nanogel. Les unités ou groupes potentiellement anioniques sont des unités ou groupes qui peuvent être neutres ou présenter au moins une charge négative selon le pH du milieu où est présent le nanogel. Dans ce cas on parlera de d'unités potentiellement anioniques sous forme neutre ou sous forme anionique. Par extension on peut parler de monomères anioniques ou potentiellement anioniques.
Par unités neutres, on entend des unités qui ne présentent pas de charge, quel que soit le pH du milieu où est présent le nanogel.
Par «propriétés rémanentes antidéposition et/ou antiadhésion», on entend que la surface traitée conserve ces propriétés au cours du temps, y compris après des contacts ultérieurs avec une salissure (par exemple eau de pluie, eau du réseau de distribution eau de rinçage additionnée ou non de produits de rinçage, éclaboussures grasses, savons...). Cette propriété de rémanence peut être observée au delà de trois cycles de rinçage, voire dans certains cas particuliers où les rinçages sont nombreux (cas des toilettes par exemple), au delà de 6, 10 ou 100 cycles de rinçage. L'expression ci-dessus de «conférer à la surface des propriétés antidéposition» signifie plus particulièrement que la surface traitée, mise en contact avec une salissure dans un milieu majoritairement aqueux, n'aura pas tendance à « capter » ladite salissure, ce qui diminue ainsi significativement le dépôt de la salissure sur la surface. L'expression ci-dessus de «conférer à la surface des propriétés antiadhésion» signifie plus particulièrement que la surface traitée n'est susceptible d'interagir que très faiblement avec la salissure qui s'y est déposée, ce qui permet un enlèvement facile des salissures de la surface traitée salie ; en effet lors du séchage de la salissure mise au contact de la surface traitée, les liaisons développées entre la salissure et la surface sont très faibles ; ainsi, casser ces liaisons demande moins d'énergie (donc d'efforts) lors de l'opération de nettoyage.
Lorsqu'il est dit que la présence du nanogel permet «d'améliorer la capacité nettoyante» d'une formulation, cela signifie que pour une même quantité de formulation nettoyante (notamment une formulation de lavage de la vaisselle à la main), la formulation contenant le nanogel permet de nettoyer un plus grand nombre d'objets souillés qu'une formulation qui en est exempte.
En outre le dépôt sur une surface dure du nanogel permet d'apporter à cette surface des propriétés d'antistatisme; cette propriété est particulièrement intéressante dans le cas de surfaces synthétiques. La présence du nanogel dans les formulations de traitement d'une surface dure permet de rendre la surface hydrophile ou d'améliorer son hydrophilie.
La propriété d'hvdrophilisation de la surface permet de plus de réduire la formation de buée sur la surface ; ce bénéfice peut être exploité dans les formules de nettoyage pour les vitres et les miroirs, en particulier en salles de bain. De plus, la vitesse de séchage de la surface, immédiatement après son traitement par l'application du polymère mais également après des contacts ultérieurs et répétés avec un milieu aqueux est améliorée de manière très significative.
Le terme «surfaces dures» est à prendre au sens large ; il s'agit de surfaces non- textiles, qui peuvent être aussi bien ménagères, de collectivité, qu'industrielles. Elles peuvent être en un matériau quelconque, notamment du type : céramique (surfaces telles que lavabo, baignoires, carrelages muraux ou au sol, cuvettes des toilettes...) verre (surfaces telles que vitres intérieures et extérieures de bâtiments ou de véhicules, miroirs, - métal (surfaces telles que parois internes ou externes de réacteurs, lames, panneaux, tuyaux....) résines synthétiques (par exemple carrosseries ou surfaces intérieures de véhicules motorisés (voitures, camions, bus, trains, avions ...) surfaces en mélamine ou formica pour l'intérieur de bureaux, cuisines, ...)) matières plastiques (par exemple polychlorure de vinyle, polyamide, pour l'intérieur des véhicules, voitures notamment)
Les «surfaces dures», selon l'invention, sont des surfaces peu poreuses et non fibrillaires ; elles sont ainsi à distinguer des surfaces textiles (tissus, moquettes, vêtements ... en matériaux naturels, artificiels ou synthétiques).
Nanogel
Le nanogel de l'invention (Cœur C) comprend:
- des unités réticulantes R dérivant d'un monomère R réticulant comprenant au moins deux groupes polymérisables, et
- des unités de cœur C dérivant d'au moins un monomère C comprenant un seul groupe polymérisable, comprenant
- des unités cationiques ou potentiellement cationiques Ccat dérivant d'au moins un monomère Ccat cationique ou potentiellement cationique, et
- éventuellement des unités neutres CN, hydrophiles ou hydrophobes dérivant d'au moins un monomère CN neutre hydrophile ou hydrophobe.
Les groupes polymérisables des monomères C et R sont de préférence des groupes éthylèniquement insaturés, de préférence alpha-éthylèniquement insaturés. Les monomères C sont ainsi de préférence des monomères mono éthylèniquement insaturés, de préférence mono-alpha-éthylèniquement insaturés. Les monomères R sont ainsi de préférence des monomères multiéthylèniquement insaturés, de préférence di- ou tri-éthylèniquement insaturés, par exemple di-alpha-éthylèniquement insaturés ou tri-alpha-éthylèniquement insaturés.
Il n'est pas exclu que les unités C et les monomères C comprennent plusieurs unités différentes ou dérivent des plusieurs monomères différents. Il n'est pas exclu que les unités Ccat et les monomères Ccat comprennent plusieurs unités différentes ou dérivent des plusieurs monomères différents. On note que les unités C ou les monomères C peuvent comprendre à la fois des unités Ccat et des unités CN OU peuvent dériver à la fois de monomères Ccat et CN. Les unités C et les monomères C peuvent comprendre en plus, optionnellement, d'autres types d'unités, ou peuvent dériver, optionnellement, d'autres monomères. Les unités C peuvent notamment comprendre en plus des unités zwitterioniques Cz, dérivant de monomères zwitterioniques Cz, et/ou des unités anioniques ou potentiellement anioniques CA dérivant de monomères anioniques ou potentiellement anioniques CA.
Le nanogel est susceptible d'être obtenu par un procédé mettant en œuvre un procédé de polymérisation radicalaire contrôlée, comme exposé plus bas.
Le nanogel est différent d'un copolymère étoile comprenant un cœur C et en périphérie du cœur des branches macromoléculaires. Le nanogel peut présenter un groupe de control ou un résidu d'un tel groupe à des extrémités des molécules polymériques. Le nanogel peut être présenté notamment sous forme de poudre, sous forme de dispersion dans un liquide ou sous forme de solution dans un solvant. Ces deux dernières formes peuvent être assimilées à des formes en milieux dispersés. Le nanogel peut être par exemple compris dans un milieu aqueux (comprenant de l'eau) par exemple en milieu aqueux ou autre. La forme dépend généralement des exigences liées à l'utilisation du nanogel. Elle peut être aussi liée au procédé de préparation du nanogel.
Le nanogel peut notamment être constitué de macromolécules réticulées de taille moyenne allant de 5 à 500 nm, de préférence de 30 à 170 nm. Les tailles peuvent être déterminées de manière classique par des techniques de diffusion de la lumière ou de diffraction des rayons-X, dans des milieux dispersés.
Le nanogel, et son procédé de préparation, est de préférence tel qu'il ne forme pas de réseau macromoléculaire macroscopique réticulé (réticulation inter chaines). S'il est en milieu dispersé, par exemple en milieu aqueux, le nanogel présente avantageusement une viscosité (Brookfield) inférieure à 20000 cP, de préférence inférieure à 10000 cP, à 25°C, à un cisaillement de 100 s"1 ou inférieur, ou de préférence à un cisaillement de 10 s"1.
On a notamment remarqué que des nanogels présentant des unités cationiques ou potentiellement cationiques Ccat pouvaient présenter des tailles particulièrement petites, et que des procédés mettant en œuvre des monomères Ccat pouvaient permettre de réduire sensiblement la taille des nanogels. L'invention peut permettre de réduire les tailles de manière simple.
Le nanogel (Cœur C), comprend des unités polymérisées. Toutes les unités mentionnées ci-dessous sont envisageables, ainsi que leurs combinaisons. Certaines combinaisons sont l'objet de modes de réalisations particuliers.
A titre d'exemples de monomères potentiellement cationiques Cn51 dont peuvent dériver les unités potentiellement cationiques Ccat, on peut mentionner: • les N,N(dialkylaminoωalkyl)amides d'acides carboxyliques α-β monoéthyléniquement insaturés comme le N,N-diméthylaminométhyl -acrylamide ou -méthacrylamide, le 2(N,N-diméthylamino)éthyl-acrylamide ou - méthacrylamide, le 3(N,N-diméthylamino)propyl-acrylamide ou -méthacrylamide, le 4(N,N-diméthylamino)butyl-acrylamide ou
-méthacrylamide
• les aminoesters α-β monoéthyléniquement insaturés comme le 2(diméthyl amino)éthyl acrylate (ADAM), 2(diméthyl amino)éthyl méthacrylate (DMAM ou MADAM), le 3(diméthyl amino)propyl méthacrylate, le 2(tertiobutylamino)éthyl méthacrylate, le 2(dipentylamino)éthyl méthacrylate, le 2(diéthylamino)éthyl méthacrylate
• les vinylpyridines
• la vinyl aminé
• les vinylimidazolines • des monomères précurseurs de fonctions aminés tels que le N-vinyl formamide, le N-vinyl acétamide, ... qui engendrent des fonctions aminés primaires par simple hydrolyse acide ou basique
• leurs mélanges ou associations.
A titre d'exemples de monomères cationiques Cn51 dont peuvent dériver les unités cationiques Ccat on peut mentionner: - les monomères ammoniumacryloyles ou acryloyloxy comme
- les sels de triméthylammoniumpropylméthacrylate, en particulier le chlorure
- le chlorure ou le bromure de triméthylammoniuméthylacrylamide ou méthacrylamide,
- le méthylsulfate de triméthylammoniumbutylacrylamide ou méthacrylamide,
- le méthylsulfate de triméthylammoniumpropylméthacrylamide (MAPTA MeS),
- le chlorure de (3-méthacrylamidopropyl)triméthylammonium (MAPTAC),
- le chlorure ou méthylsulfate de (3-acrylamidopropyl)triméthylammonium (APTAC ou APTA MeS),
- le chlorure ou le méthylsulfate de méthacryloyloxyéthyl triméthylammonium,
- les sels d'acryloyloxyéthyl triméthylammonium (ADAMQUAT) comme le chlorure d'acryloyloxyéthyl triméthylammonium ; ou le méthylsulfate d'acryloyloxyéthyl triméthylammonium (ADAMQUAT Cl ou ADAMQUAT MeS), - le méthyle sulfate de méthyldiethylammonium éthyle acrylate (ADAEQUAT MeS), - le chlorure ou méthyle sulfate de benzyldimethylammonium éthyle acrylate (ADAMQUAT BZ 80),
- le bromure, chlorure ou méthylsulfate de 1-éthyl 2-vinylpyridinium, de 1-éthyl 4- vinylpyridinium ; - l es m o n om è res N , N-dialkyldiallylamines comme le chlorure de N, N- diméthyldiallylammonium (DADMAC) ;
- le ch lorure de diméthylaminopropylméthacrylamide,N-(3-chloro-2-hydroxypropyl) triméthylammonium (DIQUAT chlorure), le méthylsulfate de diméthylaminopropylméthacrylamide,N-(3-methylsulfate-2- hydroxypropyl) triméthylammonium (DIQUAT méthylsulfate)
- le monomère de formule
Figure imgf000011_0001
où X" est un anion, de préférence chlorure ou méthylsulfate - leurs mélanges ou associations.
A titre d'exemples de monomères neutres hydrophiles CNnhιiR dont peuvent dériver les unités neutres hydrophiles CNphιie on peut mentionner: on peut mentionner:
• les hydroxyalkylesters d'acides α-β éthyléniquement insaturés comme les acrylates et méthacrylates d'hydroxyéthyle, d'hydroxypropyle, le glycérol monométhacrylate...
• les amides α-β éthyléniquement insaturés comme l'acrylamide, le méthacrylamide, le N,N-diméthyl méthacrylamide, le N-méthylolacrylamide ...
• les monomères α-β éthyléniquement insaturés portant un segment polyoxyalkyléné hydrosoluble du type polyoxyde d'éthylène, comme les polyoxyde d'éthylène α- méthacrylates (BISOMER S20W, S10W, ... de LAPORTE) ou α,ω-diméthacrylates, le SIPOMER BEM de RHODIA (méthacrylate de polyoxyéthylène ω-béhényle), le S I PO M E R S E M-25 de RHODIA (méthacrylate de polyoxyéthylène ω- tristyrylphényle) ...
• l'alcool vinylique, • les monomères α-β éthyléniquement insaturés précurseurs d'unités ou de segments hydrophiles tels que l'acétate de vinyle qui, une fois polymérisés, peuvent être hydrolyses pour engendrer des unités alcool vinylique ou des segments alcool polyvinylique
• les vinyllactmaes, comme les vinylpyrrolidones, ou le N-vinylcaprolactame, • les monomères α-β éthyléniquement insaturés de type uréido et en particulier le méthacrylamido de 2-imidazolidinone éthyle (Sipomer WAM II de RHODIA)
• le nonethyleneglycolmethyletheracrylate ou le nonethyleneglycolmethylethermethacrylate • leurs mélanges ou associations.
A titre d'exemples de monomères neutres hydrophobes CiMnhnhR dont peuvent dériver des unités neutres hydrophobes CNphobe, on peut mentionner:
• les monomères vinylaromatiques tels que styrène, alpha-méthylstyrène, vinyltoluène...
• les halogénures de vinyle ou de vinylidène, comme le chlorure de vinyle, chlorure de vinylidène
• les C1-C12 alkylesters d'acides α-β monoéthyléniquement insaturés tels que les acrylates et méthacrylates de méthyle, éthyle, butyle, acrylate de 2-éthylhexyle ... « les esters de vinyle ou d'allyle d'acides carboxyliques saturés tels que les acétates, propionates, versatates, stéarates ... de vinyle ou d'allyle
• les nitriles α-β monoéthyléniquement insaturés contenant de 3 à 12 atomes de carbone, comme l'acrylonitrile, le methacrylonitrile ...
• les α-oléfines comme l'éthylène ... • les diènes conjugués, comme le butadiène, l'isoprène, le chloroprène,
• les monomères susceptibles de générer des chaînes polydiméthylsiloxane (PDMS). Ainsi la partie B peut être un silicone, par exemple une chaîne polydiméthylsiloxane ou un copolymère comprenant des unités diméthylsiloxy,
• le diethyleneglycolethyletheracrylate ou le diethyleneglycolethylethermethacrylate • leurs mélanges ou associations.
A titre d'exemples de monomères anioniques ou potentiellement anioniques CA dont peuvent dériver des unités anioniques ou potentiellement anioniques CA, on peut mentionner : • des monomères possédant au moins une fonction carboxylique, comme les acides carboxyliques α-β éthyléniquement insaturés ou les anhydrides correspondants, tels que les acides ou anhydrides acrylique, méthacrylique, maleique, l'acide fumarique, l'acide itaconique, le N-méthacroyl alanine, le N-acryloylglycine et leurs sels hydrosolubles • des monomères précurseurs de fonctions carboxylates, comme l'acrylate de tertiobutyle, qui engendrent, après polymérisation, des fonctions carboxyliques par hydrolyse.
• des monomères possédant au moins une fonction sulfate ou sulfonate, comme le 2- sulfooxyethyl méthacrylate, l'acide vinylbenzène sulfonique, l'acide allyl sulfonique, l e 2-acrylamido-2méthylpropane sulfonique, l'acrylate ou le méthacrylate de sulfoethyle , l'acrylate ou le méthacrylate de sulfopropyle et leurs sels hydrosolubles
• des monomères possédant au moins une fonction phosphonate ou phosphate, comme l'acide vinylphosphonique,... les esters de phosphates éthyléniquement insaturés tels que les phosphates dérivés du méthacrylate d'hydroxyéthyle (Empicryl
6835 de RHODIA) et ceux dérivés des méthacrylates de polyoxyalkylènes et leurs sels hydrosolubles
• leurs mélanges ou associations.
A titre d'exemples de monomères zwitterioniques Cz dont peuvent dériver des unités zwitterioniques Cz, on peut mentionner:
- les monomères portant un groupe carboxybétaïne,
- les monomères portant un groupe sulfobétaïne, par exemple le sulfopropyl diméthyl ammonium éthyl méthacrylate (SPE), le sulfoéthyl diméthyl ammonium éthyl méthacrylate, le sulfobutyl diméthyl ammonium éthyl méthacrylate, le sulfohydroxypropyl diméthyl ammonium éthyl méthacrylate (SHPE), le sulfopropyl diméthylammonium propyl acrylamide, le sulfopropyl diméthylammonium propyl méthacrylamide (SPP), le sulfohydroxypropyl diméthyl ammonium propyl méthacrylamido (SHPP), le sulfopropyl diéthyl ammonium éthyl méthacrylate, ou le sulfohydroxypropyl diéthyl ammonium éthyl méthacrylate,
- les monomères portant un groupe phosphobétaïnes, comme le phosphatoéthyl triméthylammonium éthyl méthacrylate.
- leurs mélanges ou associations.
Les monomères R réticulants dont peuvent dériver des unités réticulantes R, peuvent notamment être choisis parmi des composés organiques comportant au moins deux insaturations éthyléniques et au plus 10 insaturations et connus comme étant réactifs par voie radicalaire. De préférence, ces monomères présentent deux ou trois insaturations éthyléniques. Ainsi, on peut notamment citer les dérivés acryliques, méthacryliques, acrylamido, méthacrylamido, ester vinylique, éther vinylique, diénique, styrénique, alpha-méthyl styrénique et allylique. Ces monomères peuvent aussi renfermer des groupements fonctionnels autres que les insaturations éthyléniques, par exemple des fonctions hydroxyle, carboxyle, ester, amide, amino ou amino substitués, mercapto, silane, epoxy ou halogéno. Les monomères appartenant à ces familles sont le divinylbenzène et les dérivés du divinylbenzène, le méthacrylate de vinyle, l'anhydride d'acide méthacrylique, le méthacrylate d'allyle, le diméthacrylate d'éthylèneglycol, le phénylène diméthacrylate, le diméthacrylate de diéthylène glycol, le diméthacrylate de triéthylène glycol, le diméthacrylate de tétraéthylène glycol, le diméthacrylate de polyéthylène glycol 200, le diméthacrylate de polyéthylène glycol 400, le 1 ,3-diméthacrylate de butanediol, le 1 ,4- d iméthacrylate de butaned iol , le 1 ,6-diméthacrylate de hexanediol, le 1 ,12- diméthacrylate de dodécanediol, le 1 ,3-diméthacrylate de glycérol, le diméthacrylate de diuréthane, le triméthacrylate de triméthylolpropane. Pour la famille des acrylates multifonctionnels, on peut notamment citer l'acrylate de vinyle, le diacrylate de bisphénol A époxy, le diacrylate de dipropylèneglycol, le diacrylate de tripropylèneglycol, le diacrylate de polyéthylène glycol 600, le diacrylate d'éthylène glycol, le diacrylate de diéthylène glycol, le diacrylate de triéthylène glycol, le diacrylate de tétraéthylène glycol, le diacrylate de néopentyl glycol éthoxylé, le diacrylate de butanediol, le diacrylate d'hexanediol, le diacrylate d'uréthane aliphatique, le triacrylate de triméthylolpropane, le triacrylate de triméthylolpropane éthoxylé, le triacrylate de triméthylolpropane propoxylé, le triacrylate de glycérol propoxylé, le triacrylate d'uréthane aliphatique, le tétraacrylate de triméthylolpropane, le pentaacrylate de dipentaérytritol. Concernant les éthers vinyliques, on peut notamment citer le vinyl crotonate, le diéthylène glycoldivinyléther, l'ether divinylique de butanediol-1 ,4, le triéthylèneglycol divinyl éther. Pour les dérivés allyliques, on peut notamment citer le diallyl phtalate, le diallyldiméthylammonium chloride, le diallyl malléate, le sodium diallyloxyacetate, le diallylphenylphosphine, le diallylpyrocarbonate, le diallyl succinate, le N,N'-diallyltartardiamide, le N,N-diallyl-2,2,2- trifluoroacétamide, l'ester allylique du diallyloxy acide acétique, le 1 ,3-diallylurée, la triallylamine, le triallyl trimesate, le triallyl cyanurate, le triallyl trimellitate, le triallyl-1 ,3,5- triazine-2,4,6(1 H, 3H, 5H)-trione. Pour les dérivés acrylamido, on peut notamment citer l e N , N '-méthylènebisacrylamide, le N,N'-méthylènebismethacrylamide, le glyoxal bisacrylamide, le diacrylamido acide acétique. En ce qui concerne les dérivés styréniques, on peut notamment citer le divinylbenzène et le 1 ,3-diisopropénylbenzène. Dans le cas des monomères diéniques, on peut notamment citer le butadiène, le chloroprène et l'isoprène. Comme monomères multiéthyléniquement insaturés, on préfère le N, N'- méthylènebisacrylamide (MBA), le divinylbenzène (DVB), le diacrylate d'éthylène glycol, le triallycyanurate (TAC) ou le triacrylate de triméthylolpropane.
Ces monomères multiéthyléniquement insaturés peuvent être utilisés seuls ou en mélanges.
Si le nanogel comprend des unités CN, il peut avantageusement s'agir d'unités Cnphiie dérivant d'un monomère neutre hydrophile CNphιie- Le rapport en moles entre les unités Ccat et les unités CN, de préférence CNphιie, peut notamment être compris entre 1/99 et 99/1 , de préférence entre 1/99 et 50/50, de préférence entre 1/99 et 40/60, de préférence entre 1/99 et 25/75, par exemple entre 2/99 et 10/90.
Des nanogels dont la composition en unités C est la suivante peuvent notamment être préparés:
APTAC/AM, par exemple avec un rapport en moles APTAC/AM de 1/99 à 40/60 de préférence de 5/95 à 30/70.
DIQUAT/AM, par exemple avec un rapport en moles DIQUAT/AM de 1/99 à 10/90
MAPTAC/AM, par exemple avec un rapport en moles MAPTAC/AM de 1/99 à 10/90
Procédés utiles pour la préparation du nanogel
Tous les procédés permettant de préparer des nanogels tels que décrits ci-dessus peuvent être utilisés.
Des procédés particulièrement avantageux mettent en œuvre une polymérisation contrôlée (ou «vivante»), à l'aide d'un agent ou d'un groupe de control (parfois dénommé groupe de transfert), par exemple par un procédé de polymérisation radicalaire contrôlée (ou «vivante»). De tels procédés sont connus de l'homme du métier. On mentionne qu'il n'est pas exclu d'utiliser d'autres méthodes, notamment les polymérisations par ouverture de cycle (notamment anionique ou cationique), les polymérisations anioniques ou cationiques.
A titre d'exemples de procédés de polymérisation radicalaire dite vivante ou contrôlée, on peut notamment se référer aux procédés suivants:
- les procédés des demandes WO 98/58974, WO 00/75207 et WO 01/42312 qui mettent en œuvre une polymérisation radicalaire contrôlée par des agents de control de type xanthates, le procédé de polymérisation radicalaire contrôlée par des agents de control de type dithioesters ou trithiocarbonates de la demande WO 98/01478, le procédé de polymérisation radicalaire contrôlée par des agents de control de type dithiocarbamates de la demande WO 99/31144, le procédé de polymérisation radicalaire contrôlée par des agents de control de type dithiocarbazates de la demande WO 02/26836, - le procédé de polymérisation radicalaire contrôlée par des agents de control de type dithiophosphoroesters de la demande WO 02/10223,
(éventuellement les copolymères obtenus comme ci-dessus par polymérisation radicalaire contrôlée, peuvent subir une réaction de purification de leur extrémité de chaîne soufrée, par exemple par des procédés de type hydrolyse, oxydation, réduction, pyrolyse ou substitution) le procédé de la demande WO 99/03894 qui met en œuvre une polymérisation en présence de précurseurs nitroxydes, le procédé de la demande WO 96/30421 qui utilise une polymérisation radicalaire par transfert d'atome (ATRP), - le procédé de polymérisation radicalaire contrôlée par des agents de control de type iniferters selon l'enseignement de Otu et al., Makromol. Chem. Rapid. Commun., 3, 127 (1982), le procédé de polymérisation radicalaire contrôlée par transfert dégénératif d'iode selon l'enseignement de Tatemoto et al., Jap. 50, 127, 991 (1975), Daikin Kogyo Co Itd Japan et Matyjaszewski et al., Macromolecules, 28, 2093 (1995), le procédé de polymérisation radicalaire contrôlée par les dérivés du tetraphényléthane, divulgué par D. Braun et al. Dans Macromol. Symp. 1 11 ,63 (1996), ou encore, le procédé de polymérisation radicalaire contrôlée par des complexes organocobalt décrit par Wayland et al. Dans J.Am. Chem. Soc. 116,7973 (1994) le procédé de polymérisation radicalaire contrôlée par du diphénylethylène (WO 00/39169 ou WO 00/37507).
Les polymérisations radicalaires contrôlées ou vivantes mettant un œuvre des agents ou groupes de control (ou «agents ou groupes de transfert») présentant un groupe -S-CS- (Xanthates, dithioesters, trithiocarbonates, dithiocabamates, dithiocarbazates..) sont particulièrement intéressantes.
Un procédé pratique pour la préparation du nanogel est un procédé de préparation comprenant l'étape a) suivante: étape a) polymérisation, de préférence polymérisation radicalaire contrôlée, d'un mélange de monomères comprenant: - au moins un monomère R réticulant multiéthyléniquement insaturé, et - au moins un monomère C monoéthyléniquement insaturé, comprenant:
- au moins un monomère Ccatcationique ou potentiellement cationique, et
- éventuellement un monomère CN neutre hydrophile ou hydrophobe, le procédé ne comprenant de préférence pas d'étape subséquente de polymérisation pouvant mener à la formation de branches macromoléculaires en périphérie.
Le rapport molaire entre le(s) monomère(s) C et le(s) monomère(s) R est de préférence supérieur ou égal à 50/50 (=1 ), de préférence supérieur à 60/40, par exemple de 60/40 à 99,99 / 0,01 , par exemple de 60/40 à 99,9 / 0,1 , de préférence de 60/40 à 99/1 , de préférence de 80/20 à 99/1 , de préférence compris entre 90/10 et 95/5.
Le rapport entre les unités C et les unités R peut être identique.
Selon un mode de réalisation le nanogel est obtenu par un procédé mettant en œuvre un procédé de polymérisation radicalaire contrôlée mettant en œuvre des groupes de control. Dans ce cas le rapport molaire entre le nombre de groupes de contrôle (c'est-à-dire la quantité en mole d'agent de control multipliée par le nombre de grou pes de control porté par u n agent) et la moitié du nom bre de grou pes polymérisables du monomère R réticulant (c'est-à-dire la moitié de la quantité en mole de monomère multipliée par le nombre de groupes insaturé du monomère) est compris entre 0,05 et 0,5, par exemple entre 0,05 et moins de 0,1 ou entre 0,1 et moins de 0,2, ou entre 0,2 et moins de 0,3, ou entre 0,3 et moins de 0,4, ou entre 0,4 et 0,5.
Le nanogel peut notamment présenter une masse molaire (typiquement une masse molaire moyenne en poids, typiquement déterminée par technique de Chromatographie en Phase Gazeuse GPC couplée MALS ou par technique de Chromatographie d'Exclusion Stérique couplée MALS), supérieure ou égale à 100000 g/mol, de préférence supérieure ou égale à 350000 g/mol, par exemple entre 500000 et 3500000 g/mol, par exemple entre 1000000 et 2000000 g/mol.
La polymérisation de l'étape a) peut notamment être opérée, en mettant en présence: les monomères, un agent de control, par exemple un agent comprenant un groupe -S-CS-, et une source de radicaux libre. De telles typologies de polymérisations sont connues de l'homme du métier et ont fait l'objet de nombreuses publications. On se réfère notamment à la liste établie ci-dessus. On mentionne que l'étape a) peut être suivie d'une étape b) optionnelle de modification chimique des chaînes macromoléculaires et/ou de désactivation de groupes de transfert portés par des chaînes macromoléculaires, de destruction ou purification de sous-produits de la modification chimique et/ou désactivation.
Des étapes de modification chimique des chaînes macromoléculaires visent à ajouter aux chaînes des groupes fonctionnels, à supprimer des groupes des chaînes macromoléculaires ou à substituer des groupes de chaînes macromoléculaires. Ces groupes peuvent notamment être portés par des unités dérivant de monomères ou portés en des bouts de chaîne macromoléculaire. De tels processus sont connus de l'homme du métier. On cite par exemple des étapes d'hydrolyse complète ou partielle, ou des étapes de réticulation complète ou partielle.
On peut opérer la désactivation de groupes de transfert portés par les chaînes macromoléculaires, et/ou purification et/ou destruction de sous-produits de modification chimique et/ou de désactivation. Il peut s'agir d'une réaction de purification ou de destruction de certaines espèces, par exemple par des procédés de type hydrolyse, oxydation, réduction, pyrolyse, ozonolyse ou substitution. Une étape d'oxydation avec de l'eau oxygénée est particulièrement appropriée pour traiter des espèces soufrées. On mentionne que certaines de ces réactions ou opérations peuvent avoir lieu en tout ou partie lors d'une étape de modification chimique.
L'étape a) de polymérisation sera généralement opérée en présence d'un agent de control (ou agent de transfert), présentant un groupe de control (ou groupe de transfert). Le groupe de control est de préférence un groupe de formule -S-CS-. Il s'agit de préférence d'un agent de transfert non polymérique comprenant un groupe de control de formule -S-CS-. Des groupes de control de formule -S-CS- et des composés comprenant ces groupes, notamment des agents de control sont connus de l'homme du métier et sont décrits dans la littérature. On se réfère notamment à la liste établie ci- dessus. On peut notamment les sélectionner selon leur réactivité vis-à-vis de certains monomères, et/ou selon leur solubilité dans le milieu réactionnel.
Le groupe de control peut notamment comprendre un groupe de formule -S-CS-Z- où Z est un atome d'oxygène, un atome de carbone, un atome de souffre, un atome de phosphore ou un atome de silicium, ces atomes étant le cas échéant substitués de manière à avoir une valence appropriée. On peut notamment mettre en œuvre un agent de type Xanthate, présentant un groupe de control de formule -S-CS-O- .
A titre d'agents de control particulièrement utiles, on cite: - le O-ethyl-S-(1-methoxycarbonyl ethyl) xanthate de formule
(CH3CH(CO2CHs))S(C=S)OEt
- le dibenzyltrithiocarbonate de formule φ-CH2-S-CS-S-CH2- φ
- le phénylbenzyldithiocarbonate de formule φ-S-CS- CH2-φ - le N,N-diethyl S-benzyldithiocarbamate de formule (CH3-CH2)2N-CS-S-CH2- φ.
L'étape a) de polymérisation sera généralement opérée en présence d'une source de radicaux libres. Cependant, pour certains monomères, tels que le styrène, les radicaux libres permettant d'initier la polymérisation peuvent être générés par un monomère monoéthyléniquement insaturé, à des températures suffisamment élevées généralement supérieures à 10O0C. Il n'est pas, dans ce cas, nécessaire d'ajouter une source de radicaux libres supplémentaires.
La sou rce de rad icaux li bres uti le est généralement u n initiateur de polymérisation radicalaire. L'initiateur de polymérisation radicalaire peut être choisi parmi les initiateurs classiquement utilisés en polymérisation radicalaire. Il peut s'agir par exemple d'un des initiateurs suivants :
- les peroxydes d'hydrogène tels que : l'hydroperoxyde de butyle tertiaire, l'hydroperoxyde de cumène, le t-butyl-peroxyacétate, le t-butyl-peroxybenzoate, le t- butylperoxyoctoate, le t-butylperoxynéodécanoate, le t-butylperoxyisobutarate, le peroxyde de lauroyle, le t-amylperoxypivalte, le t-butylperoxypivalate, le peroxyde de dicumyl , le peroxyde de benzoyle, le persu lfate de potassium , le persulfate d'ammonium,
- les composés azoïques tels que : le 2-2'-azobis(isobutyronitrile), le 2,2'-azobis(2- butanen itrile), le 4,4'-azobis(4-acide pentanoïque), le 1 ,1 '-azobis(cyclohexane- carbonitrile), le 2-(t-butylazo)-2-cya n opropa n e, l e 2 ,2'-azobis[2-méthyl-N-(1 ,1 )- bis(hydroxyméthyl)-2-h yd roxyét h y I ] p ro p i o n a m i d e , l e 2 , 2 '-azobis(2-méthyl-N- hydroxyéthyl]-propionamide, le dichlorure de 2,2'-azobis(N,N'- diméthylèneisobutyramidine), le dichlorure de 2,2'-azobis (2-amidinopropane), le 2,2'- a z o b i s ( N , N '-diméthylèneisobutyramide), le 2,2'-azobis(2-méthyl-N-[1 ,1-bis (hydroxyméthyl)-2-hydroxyéthyl] propionamide), le 2,2'-azobis(2-méthyl-N-[1 ,1-bis (hyd roxyméthyl)éthyl] propionam ide), le 2 ,2'-azobis[2-méthyl-N-(2-hydroxyéthyl) propionamide], le 2,2'-azobis(isobutyramide) dihydrate,
- les systèmes redox comportant des combinaisons telles que :
- les mélanges de peroxyde d'hydrogène, d'alkyle, peresters, percarbonates et similaires et de n'importe lequel des sels de fer, de sels titaneux, formaldéhyde sulfoxylate de zinc ou formaldéhyde sulfoxylate de sodium, et des sucres réducteurs, - les persulfates, perborate ou perchlorate de métaux alcalins ou d'ammonium en association avec un bisulfite de métal alcalin, tel que le métabisulfite de sodium, et des sucres réducteurs, et
- les persulfates de métal alcalin en association avec un acide arylphosphinique, tel que l'acide benzène phosphonique et autres similaires, et des sucres réducteurs.
La quantité d'initiateur à utiliser est déterminée de préférence de manière à ce que la quantité de radicaux générés soit d'au plus 50 % en mole, de préférence d'au plus 20 % en mole, par rapport à la quantité d'agent de control ou de transfert.
On mentionne que la polymérisation peut être opérée en chauffant, de manière connue, de manière et initier et/ou à maintenir le processus de polymérisation. On peut par exemple opérer à des températures de 500C à 1000C. Le degré de polymérisation, et les masses, peuvent être contrôlés en contrôlant de temps de polymérisation. On peut notamment stopper la polymérisation en baissant la température.
Les polymérisations peuvent être effectuées sous toute forme physique appropriée, par exemple par polymérisation en solution dans un milieu aqueux (comprenant de l'eau) par exemple dans l'eau ou dans un milieu hydro-alcoolique (hydro-éthanolique par exemple) ou dans un solvant par exemple un alcool (éthanol par exemple) ou le THF, ou par polymérisation en émulsion, de préférence en émulsion inverse, le cas échéant en contrôlant la température et/ou le pH afin de rendre des espèces liquides et/ou solubles ou insolubles. La polymérisation est de préférence opérée en solution, par opposition à des polymérisations en phase dispersée (émulsion, microémulsion, polymérisation avec précipitation du polymère formé). On préfère conserver le nanogel en solution après une telle polymérisation. On précise que les nanogels sont de préférence obtenus directement après la polymérisation et l'éventuelle désactivation, élimination ou destruction de groupes de transfert, sans étape de fonctionnalisation après la polymérisation.
Les quantités respectives et relatives de monomère(s) C, de monomère(s) R réticulant(s), et d'agent de control peuvent être variées de manière à contrôler la taille des macromolécules générées, et/ou de manière à contrôler la non formation d'un réseau macromoléculaire macroscopique. On donne quelques indications ci-dessous: - à quantités constantes de monomère(s) C et d'agent de control, lorsqu'on augmente la quantité de monomère(s) R, on augmente les masses moléculaires et l'indice de polydispersité, et on peut former des réseaux macromoléculaires macroscopiques. - à quantités constantes de monomère(s) C et de monomère(s) R, lorsqu'on diminue la quantité d'agent de control, on augmente les masses moléculaires et l'indice de polydispersité on peut former des réseaux macromoléculaires macroscopiques.
- à quantités constantes d'agent de control et de monomère(s) R, si des unités CN sont présentes, lorsqu'on diminue le rapport molaire CWCN, on peut former des réseaux macromoléculaires macroscopiques.
De préférence la polymérisation est opérée en présence d'un agent de control en quantité telle que (Nntroi * nntroi / nτ) est de 0,05 à 10%, de préférence de 0,1 à 10% de préférence de 0,2 à 5%. De préférence la polymérisation est opérée en présence de monomères R réticulants en quantité telle que (NR/2) * (nR / nτ) est de 0,01 à 40% en moles, de préférence de 0,1 à 40% en moles, de préférence de 1 à 40% en moles par exemple de 5 à 20%.
La polymérisation est de préférence, notamment dans l'une ou les deux gammes mentionnées ci-dessus, opérée de en présence d'un agent de control et de monomère(s) R réticulant(s) en quantités telles que r ≥ 0,05, de préférence r ≥ 0,1 , de préférence r ≥ 0,2, de préférence r ≥ 0,25, de préférence r ≥ 0,3. Plus r est élevé, plus on s'éloigne d'une zone potentielle de formation de réseaux macromoléculaires macroscopiques non désirés. Il n'est pas exclu que le nombre r soit supérieur ou égal à 0,5 ou 1.
Composition
La composition de soins ménagers peut notamment être de traitement, de préférence de nettoyage, de surfaces dures ou de surfaces textiles. Les opérations de soins ménagers incluent des soins opérés dans la sphère du domicile privé, et dans la sphère publique institutionnelle ou industrielle, par exemple dans les bureaux, hôtels, restaurants, écoles, le cas échéant par des sociétés de services. Les traitements de surfaces textiles incluent les opérations de lessives, sur des articles textiles finis. Selon un mode de réalisation la composition est une composition de lavage du linge, en machine ou à la main, avantageusement à la main ou en machine semi automatique, le nanogel étant utilisé à titre:
- d'agent de stabilisation de mousse, de préférence à l'ajout de salissures, et/ou
- à titre d'agent anti-redéposition. Selon un autre mode de réalisation la composition est une composition de nettoyage de surfaces dures, le nanogel étant utilisé à titre d'agent d'hydrophilisation et/ou à titre d'agent anti-salissures. L'invention concerne aussi une méthode de mise en œuvre de soins ménagers, comprenant une étape de mise en contact d'une surface ménagère, de préférence une surface textile ou une surface dure ménager, avec la composition le cas échéant après une dilution préalable. La composition est de préférence une composition liquide, comprenant un vecteur d'application liquide, par exemple de l'eau, un alcool ou un mélange. Elle comprend le plus souvent un tensioactif.
La composition selon l'invention est notamment susceptible d'apporter aux su rfaces d ures à traiter des propriétés d'hydrophilie, d'antidéposition et/ou antiadhésion des salissures. Elle peut être par exemple:
- Une composition nettoyante ou rinçante à usage ménager ; elle peut être universelle ou peut être plus spécifique, comme une composition pour le nettoyage ou le rinçage de salle de bain ; ladite composition empêche notamment le dépôt des sels de savon autour des baignoires et sur les lavabos, et/ou prévient la croissance et/ou le dépôt de cristaux de calcaire sur ces surfaces, et/ou facilite le nettoyage direct ou subséquent de tâches de savon (soap scum en anglais) et/ou retarde l'apparition de tâches de savon (soap scum en anglais) ultérieures. de cuisine ; ladite composition permet d'améliorer le nettoyage des plans de travail lorsque ceux-ci sont souillés par des salissures grasses insaturées susceptibles de réticuler dans le temps ; les tâches grasses partent à l'eau sans frotter. des sols (en linoléum, carrelage ou ciment) ; ladite composition permet d'améliorer l'enlèvement des poussières, des salissures de types argilo- calcaires (terre, sable, boue...) ; les tâches sur le sol peuvent être nettoyées sans effort par simple balayage, sans brossage ; en outre ladite composition apporte des propriétés antidérapantes. des toilettes ; ladite composition permet d'éviter l'adhésion de traces d'excréments sur la surface ; le seul flux de la chasse d'eau est suffisant pour éliminer ces traces ; l'utilisation dune brosse est inutile. des vitres ou miroirs ; ladite composition permet d'éviter le dépôt de salissures particulaires minérales ou organiques sur la surface, de la vaisselle, à la main ou à l'aide d'une machine automatique ; ladite composition permet, dans le cas du lavage à la main, de faciliter l'enlèvement des tâches résiduelles d'aliments sèches, et de laver un plus grand nombre de couverts ou ustensiles avec un même volume de bain ; la surface des couverts et ustensiles encore mouillés n'est plus glissante et ainsi n'échappe pas des mains de l'utilisateur ; il a également été constaté un effet « squeaky clean », à savoir que la surface « crisse » sous l'effet d'un frottement avec le doigt. Dans le cas du lavage ou du rinçage en lave- vaisselle, ladite composition permet l'anti-redéposition des salissures alimentaires et des sels minéraux insolubles du calcium, et apporte de la brillance aux ustensiles et couverts ; la composition permet également de ne plus avoir à « prélaver » les couverts ou ustensiles avant leur introduction dans le lave-vaisselle.
- Une composition nettoyante ou rinçante à usage industriel ou de collectivité ; elle peut être universelle ou plus spécifique, comme une composition pour le nettoyage des réacteurs, des lames en acier, des éviers, des cuves, de la vaisselle des surfaces extérieures ou intérieures des bâtiments des vitres des bâtiments et immeubles - des bouteilles
La composition selon l'invention peut se présenter sous une forme quelconque et peut être utilisée de multiples façons. Ainsi, elle peut être sous la forme
• d'un liquide gélifié ou non, à déposer tel quel, notamment par pulvérisation, - directement sur les surfaces à nettoyer ou rincer, ou sur une éponge ou un autre support (article en cellulose par exemple, tissé ou non-tissé) avant d'être appliqué sur la surface à traiter
• d'un liquide gélifié ou non, à diluer dans de l'eau (éventuellement additionnée d'un autre solvant) avant d'être appliqué sur la surface à traiter • d'un liquide gélifié ou non, emprisonné dans un sachet hydrosoluble
• d'une mousse
• d'un aérosol
• d'un liquide absorbé sur un support absorbant en un article tissé ou non-tissé notamment (lingette) • d'un solide, tablette notamment, éventuellement emprisonnée dans un sachet hydrosoluble, ladite composition pouvant représenter tout ou partie de la tablette.
Pour une bonne réalisation de l'invention, le nanogel est présent dans la composition faisant l'objet de l'invention en quantité efficace pour modifier et/ou traiter la surface. Il peut par exemple s'agir d'une quantité efficace pour apporter auxdites surfaces des propriétés d'hydrophilie et/ou antidéposition et/ou antiadhésion des salissures susceptibles de se déposer sur lesdites surfaces.
Ladite composition faisant l'objet de l'invention peut contenir, selon son application, de 0,001 à 10% de son poids du nanogel. Le pH de la composition ou le pH d'utilisation de la composition selon l'invention, peut varier, selon les applications et les surfaces à traiter, de 1 à 14, voire même de 0,5 à 14. Les pH extrêmes sont classiques dans les applications de type nettoyage industriel ou de collectivité. Dans le domaine des applications ménagères, les pH vont plutôt de 1 à 13 suivant les applications. Ladite composition peut être mise en œuvre pour le nettoyage ou le rinçage des surfaces dures, en quantité telle que, après rinçage éventuel et séchage, la quantité de polybétaïne (B) déposée sur la surface soit de 0,0001 à 10 mg/m2, de préférence de 0,001 à 5 mg/m2 de surface traitée.
La composition, de préférence nettoyante ou rinçante selon l'invention, peut comprendre en outre au moins un tensioactif. Celui-ci peut être non-ionique, anionique, amphotère, zwitterionique ou cationique. Il peut s'agir également d'un mélange ou d'une association de tensioactifs.
Parmi les agents tensioactifs anioniques, on peut citer à titre d'exemple : les alkylesters sulfonates de formule R-CH(SO3M)-COOR', où R représente un radical alkyle en C8-20, de préférence en Ci0-Ci6, R' un radical alkyle en d-C6, de préférence en CrC3 et M un cation alcalin (sodium, potassium, lithium), ammonium substitué ou non substitué (méthyl-, diméthyl-, triméthyl-, tetraméthylammonium, diméthylpiperidinium ...) ou dérivé d'une alcanolamine (monoéthanolamine, diéthanolamine, triéthanolamine ...). On peut citer tout particulièrement les méthyl ester sulfonates dont les radical R est en Ci4-Ci6 ; les alkylsulfates de formule ROSO3M , où R représente un radical alkyle ou hydroxyalkyle en C5-C24, de préférence en Ci0-Ci8 (tels que les sels d'acides gras dérivés du coprah et du suif), M représentant un atome d'hydrogène ou un cation de même définition que ci-dessus, ainsi que leurs dérivés éthoxylénés (OE) et/ou propoxylénés (OP), présentant en moyenne de 0,5 à 30 motifs, de préférence de 0,5 à 10 motifs OE et/ou OP ; les alkylamides sulfates de formule RCONHR'OSO3M OÙ R représente un radical alkyle en C2-C22, de préférence en C6-C20, R' un radical alkyle en C2-C3, M représentant un atome d'hydrogène ou un cation de même définition que ci-dessus, ainsi que leurs dérivés éthoxylénés (OE) et/ou propoxylénés (OP), présentant en moyenne de 0,5 à 60 motifs OE et/ou OP ; les sels d'acides gras saturés ou insaturés en C8-C24, de préférence en Ci4-C2O, les alkylbenzènesulfonates en C9-C20, les alkylsulfonates primaires ou secondaires en C8-C22, les alkylglycérol sulfonates, les acides polycarboxyliques sulfonés décrits dans GB-A-1 082 179, les sulfonates de paraffine, les N-acyl N-alkyltaurates, les iséthionates, les alkylsuccinamates les alkylsulfosuccinates, les monoesters ou diesters de sulfosuccinates, les N-acyl sarcosinates, les sulfates d'alkylglycosides, les polyéthoxycarboxylates, les monoglycérides sulfates, et les condensats de chlorure d'acides gras avec des hydroxyalkylsulfonat.es ; le cation peut être un métal alcalin (sodium, potassium, lithium), un reste ammonium substitué ou non substitué (méthyl-, diméthyl-, triméthyl-, tetraméthylammonium, diméthylpiperidinium ...) ou dérivé d'une alcanolamine (monoéthanolamine, diéthanolamine, triéthanolamine ...). -les alkylphosphates, les phosphates esters alkylés ou alkylarylés comme les RHODAFAC RA600, RHODAFAC PA15 ou RHODAFAC PA23 commercialisés par la société RHODIA ; le cation peur être un métal alcalin (sodium, potassium, lithium), un reste ammonium substitué ou non substitué (méthyl-, diméthyl-, triméthyl-, tetraméthylammonium, diméthylpiperidinium ...) ou dérivé d'une alcanolamine (monoéthanolamine, diéthanolamine, triéthanolamine ...).
Une description d'agents tensioactifs non-ioniques est donnée dans US-A-
4,287,080 et US-A-4,470,923. On peut citer en particulier les condensats d'oxyde d'alkylène, notamment d'oxyde d'éthylène et éventuellement de propylène avec des alcools, des polyols, des alkylphénols, des esters d'acides gras, des amides d'acides gras et des aminés grasses ; les amines-oxydes, les dérivés de sucre tels que les alkylpolyglycosides ou les esters d'acides gras et de sucres, notamment le monopalmitate de saccharose ; les oxydes de phosphine tertiaire à longue chaîne (de 8 à 28 atomes de carbone) ; les dialkylsulfoxydes ; les copolymères séquences de polyoxyéthylène et de polyoxypropylène ; les esters de sorbitan polyalkoxylés ; les esters gras de sorbitan, les poly(oxyde d'éthylène) et amides d'acides gras modifiés de manière à leur conférer un caractère hydrophobe (par exemple, les mono- et diéthanolamides d'acides gras contenant de 10 à 18 atomes de carbone). On peut citer tout notamment les acides carboxyliques aliphatiques en C8-Ci8 polyoxyalkylénés contenant de 2 à 50 motifs oxyalkylènes (oxyéthylène et/ou oxypropylène), en particulier ceux en Ci2 (moyenne) ou en Ci8 (moyenne) les alcools aliphatiques en C6-C24 polyoxyalkylénés contenant de 2 à 50 motifs oxyalkylènes (oxyéthylène et/ou oxypropylène), en particulier ceux en Ci2
(moyenne) ou en Ci8 (moyenne) ; on peut mentionner les Antarox B12DF , Antarox
FM33 , Antarox FM63 , Antarox V74 de Rhodia, Plurafac LF 400 , Plurafac LF 220 de BASF, Rhodasurf I D 060 , Rhodasurf I D 070, Rhodasurf LA 42 de Rhodia, Synperonic A5, A7, A9 de ICI les aminé oxydes comme le dodécyl di(2-hydroxyéthyl)amine oxyde les phosphine oxydes, comme le tetradécyl diméthyl phosphine oxyde Parmi les agents tensioactifs amphotères, on peut mentionner les alkyl iminopropionates ou iminodipropionates de sodium, comme les Mirataine H2C HA et Mirataine JC HA de Rhodia. les alkylamphoacétates ou alkylamphodiacétates dont le groupe alkyle contient de 6 à 20 atomes de carbone, comme le Miranol C2M Conc NP commercialisé par RHODIA les dérivés am photères des al kylpolyam ines com me l'AM P H I O N I C XL® commercialisé par RHO DIA, AM P HOLAC 7T/X® et AMPHOLAC 7C/X® commercialisés par BEROL NOBEL.
Parmi les agents tensioactifs zwitterioniques on peut citer ceux décrits dans U.S. 5,108,660,
Les ten sioactifs zwitterion iq ues préférés sont a l kyld i méthyl bétaïn es , les alkylamidopropyldiméthyl-bétaïnes, les alkyldiméthylsulfobétaïnes ou les alkylamidopropyldiméthyl-sulfobétaïnes comme le Mirataine JCHA ou H2CHA, le Mirataine CBS commercialisés par Rhodia ou des ceux du même type commercialisés par Sherex Company sous le nom de "Varion CADG Betaine" et "Varion CAS Sulfobetaine", les produits de condensation d'acides gras et d'hydrolysats de protéines. D'autres tensioactifs zwitterioniques sont également décrits dans US-A-4,287,080, et dans US-A- 4,557,853.
Parmi les agents tensioactifs cationiques, on peut citer notamment les sels d'ammonium quaternaires de formule
R ' Rz Rύ Rq N X où
1 2 3
R , R et R , semblables ou différents, représentent H ou un groupe alkyle contenant moins de 4 atomes de carbone, de préférence 1 ou 2 atome(s) de carbone, éventuellement substitué par une plusieurs fonction(s) hydroxyle(s), ou peuvent former ensemble avec l'atome d'azote N au moins un cycle aromatique ou hétérocyclique
4 R représente un groupe alkyle ou alkényle en C8-C22. de préférence en C-I2-C22. un groupe aryle ou benzyle, et X est un anion solubilisant tel que halogénure (par exemple chlorure, bromure, iodure), sulfate ou alkylsulfate (méthylsulfate), carboxylate (acétate, propionate, benzoate), alkyl ou arylsulfonate.
On peut mentionner en particulier les bromures de dodécyltriméthylammonium, de tetradécyltriméthylammonium, de cétyltriméthylammonium, le chlorure de stéaryl pyridinium, le RHODAQUAT ® TFR et le RHODAMINE ® C15 commercialisés par RHODIA, le chlorure de cétyltriméthylammonium (Dehyquart ACA et/ou AOR de Cognis), le chlorure de cocobis(2-hydroxyéthyl)éthylammonium (Ethoquad C12 de Akso Nobel). Peuvent également être cités d'autres agents tensioactifs cationiques comme :
• les sels d'ammonium quaternaires de formule
R 1 Rz Rύ Rq N X où
1 ' 2' R et R , semblables ou différents, représentent H ou un groupe alkyle contenant moins de 4 atomes de carbone, de préférence 1 ou 2 atome(s) de carbone, éventuellement substitué par une plusieurs fonction(s) hydroxyle(s), ou peuvent former ensemble avec l'atome d'azote N un cycle hétérocyclique
3' 4' R et R représentent un groupe alkyle ou alkényle en C8-C22. de préférence en
C10-C22. un groupe aryle ou benzyle, et - X" est un anion tel que halogénure (par exemple chlorure, bromure, iodure), sulfate ou alkylsulfate (méthylsulfate), carboxylate (acétate, propionate, benzoate), alkyl ou arylsulfonate.
On peut mentionner en particulier : les chlorures de dialkyldiméthyl ammonium comme le ditallow diméthyl ammonium chlorure ou méthylsulfate ..., les chlorures d'alkylbenzyldiméthylammonium.
• l es se l s d e C"io-C25alkylimidazolium comme les méthylsulfates de Ci fj- C253lkylimidazolinium
• les sels de polyamines substituées comme le N-tallow-N,N',N',tri-éthanol-1 ,3- propylènediamine dichlorure ou diméthylsulfate, N-tallow-N,N,N',N',N'- pentaméthyl-1 ,3-propylène diamine dichlorure.
Des exemples supplémentaires de tensioactifs appropriés sont des composés généralement utilisés en tant qu'agents tensioactifs désignés dans les manuels bien connus "Surface Active Agents", volume I par Schwartz et Perry et "Surface Active Agents and Détergents", volume II par Schwartz, Perry et Berch. Les agents tensioactifs peuvent représenter de 0,005 à 60 %, notamment de 0,5 à
40% du poids de la composition de l'invention, ce en fonction de la nature du ou des agent(s) tensioactif(s) et de la destination de la composition nettoyante. Avantageusement, le rapport pondéral nanogel / tensioactif(s), est compris entre 1/1 et 1/1000, avantageusement 1/2 et 1/200.
La composition, de préférence nettoyante ou rinçante selon l'invention, peut en outre comprendre au moins un additif autre, notamment choisi parmi les additis usuels présents dans les compositions de nettoyage ou de rinçage des surfaces dures.
On peut notamment citer :
* des agents chélatants, notamment du type phosphonates organiques et aminophosphonates hydrosolubles tels que les éthane 1-hydroxy-1 , 1-diphosphonates, - aminotri(méthylène diphosphonate) vinyldiphosphonates sels des oligomères ou polymères de l'acide vinylphosphonique ou vinyldiphosphonique sels de co-oligomères ou copolymères statistiques de l'acide vinylphosphonique ou vinyldiphosphonique et de l'acide acrylique et/ou de l'anhydride maleïque et/ou de l'acide vinylsulfonique et/ou de l'acrylamidométhylpropane sulfonique sels d'acides polycarboxyliques phosphonés polyacrylates à terminaison(s) phosphonate(s) sels de cotélomères de l'acide vinylphosphonique ou vinyldiphosphonique et d'acide acrylique comme ceux de la gamme BRIQUEST® ou MIRAPOL A300 ou 400 de RHODIA (à raison de 0 à 10 %, de préférence de 0 à 5% du poids total de composition nettoyante);
* des agents séquestrants ou antitartre comme
• les acides polycarboxyliques ou leurs sels hydrosolubles et les sels hydrosolubles de polymères ou de copolymères carboxyliques tels que les éthers polycarboxylates ou hydroxypolycarboxylat.es acides polyacétiques ou leurs sels (acide nitriloacétique, acide N, N- dicarboxyméthyl-2-aminopentane dioïque, acide éthylènediamine tétraacétique, acide diéthylènetriamine pentaacétique, éthylènediaminetetraacétates, nitrilotriacétates, N-(2 hydroxyéthyl)- nitrilodiacétates ), sels d'acides alkyl C5-C2O succiniques esters polyacétals carboxyliques sels d'acides polyaspartiques ou polyglutamiques - acide citrique, acide adipique, acide gluconique ou acide tartrique ou leurs sels • des copolymères d'acide acrylique et d'anhydride maléïque ou des homopolymères d'acide acrylique, tels que le Rhodoline DP 226 35 de Rhodia et le Sokalan CP5 de BASF (à raison de 0 à 10 %, du poids total de ladite composition nettoyante) ; • des polyvinylstyrènes sulfonés ou leurs copolymères avec l'acide acrylique, méthacrylique ...
(à raison de 0 à 10 %, du poids total de composition nettoyante); * des "builders" (adjuvants de détergence améliorant les propriétés de surface des tensioactifs) minéraux du type : • polyphosphates de métaux alcalins, d'ammonium ou d'alcanolamines tels que le
RHODIAPHOS HD7 commercialisé par la société RHODIA, (à raison de 0 à 70 % du poids total de composition nettoyante) ;
• pyrophosphates de métaux alcalins
• silicates de métaux alcalins, de rapport SiO2/M2O pouvant aller de 1 à 4, de préférence de 1 ,5 à 3,5, tout particulièrement de 1 ,7 à 2,8 ; il peut s'agir de silicates amorphes ou de silicates lamellaires commercialisées sous les références NaSKS-5, NaSKS-7, NaSKS-1 1 et NaSKS-6 par CLARIANT ;
• borates, carbonates, bicarbonates, sesquicarbonates alcalins ou alcalino- terreux (en quantité pouvant aller jusqu'à 50 % environ du poids total de ladite composition nettoyante);
• cogranulés de silicates hydratés de métaux alcalins de rapport SiO2/M2O pouvant aller de 1 ,5 à 3,5, et de carbonates de métaux alcalins (sodium ou de potassium) ; on peut citer en particulier les cogranulés dans lesquels la teneur pondérale en eau associée au silicate par rapport au silicate sec est d'au moins 33/100, le rapport pondéral du silicate au carbonate pouvant aller de 5/95 à
45/55, de préférence de 15/85 à 35/65, tels que décrits dans EP-A-488 868 et EP-A-561 656, comme le NABION 15 commercialisé par la société RHODIA ; (la quantité totale de "builders" pouvant représenter jusqu'à 90% du poids total de ladite composition nettoyante ou rinçante) ; * des agents de blanchiment du type perborates, percarbonates associés ou non à des activateurs de blanchiment acétylés comme la N , N , N', N '-tétraacétyl- éthylènediamine (TAED) ou des produits chlorés du type chloroisocyanurates, ou des produits chlorés du type hypochlorites de métaux alcalins, ou de l'eau oxygénée (à raison de 0 à 30 % du poids total de ladite composition nettoyante) * des charges du type sulfate de sodium, chlorure de sodium, carbonate de sodium ou de calcium, kaolin, silice, à raison de 0 à 50 % du poids total de ladite composition; * des catalyseurs de blanchiment contenant un métal de transition, les complexes de fer, manganèse et cobalt notamment, comme ceux décrits dans US-A-4, 728,455 , 5,114,606, 5,280,1 17 , EP-A-909 809, US-A-5,559,261 , WO 96/23859, 96/23860 et 96/23861 (à raison de 0 à 5 % du poids total de ladite composition nettoyante) * des agents influant sur le pH de la composition, solubles dans le milieu nettoyant ou rinçant, notamment des additifs alcalinisants phosphates de métaux alcalins, carbonates, perborates, hydroxydes de métaux alcalins) ou des additifs acidifiants éventuellement nettoyants comme les acides minéraux (acide phosphoriques, polyphosphoriques, sulfamique, chlorhydrique, fluorhydrique, sulfurique, nitrique, chromique), les acides carboxyliques ou polycarboxyliques (acide acétique, hydroxyacétique, adipique, citrique, formique, fumarique, gluconique, glutarique, glycolique, malique, maléique, lactique, malonique, oxalique, succinique et tartrique) ou des sels d'acides comme le bisulfate de sodium, bicarbonates et sesquicarbonates de métaux alcalins.
* des polymères utilisés pour contrôler la viscosité du mélange et/ou la stabilité des mousses formées à l'utilisation, comme les dérivés de cellulose ou de guar (carboxyméthylcellulose, hydroxyéthylcellulose, hydroxypropylguar, carboxy- méthylguar, carboxyméthylhydroxypropyl-guar...), la gomme xanthane, le succinoglycane (RHEOZAN® commercialisé par RHODIA), la gomme caroube, les carragénanes (à raison de 0 à 2 % du poids total de ladite composition nettoyante)
* des agents hydrotropes, comme les alcools courts en C2-C8, en particulier l'éthanol, les diols et glycols comme le diéthylène glycol, dipropylène-glycol, le xylène sulfonate de sodium, le naptalène sulfonate de sodium (à raison de 0 à 10g pour 100g de ladite composition nettoyante)
* des agents hydratants ou humectants pour la peau comme le glycérol, l'urée ou des agents protecteurs de la peau, comme les protéines ou hydrolysats de protéines, les huiles végétales comme l'huile de soja, les polymères cationiques comme les dérivés cationiques du guar (JAGUAR C13S®, JAGUAR C162®, HICARE 1000® commercialisés par la société RHODIA, (à raison de 0 à 40% du poids total de ladite composition nettoyante) * des biocides ou désinfectants comme • les biocides cationiques, par exemple
* les sels de monoammonium quaternaire tels que - les chlorures de coco-alkyl benzyl diméthylammonium, de C-|2-C-|4 alkyl benzyl diméthylammonium, de coco-alkyl dichlorobenzyl diméthylammonium, de tetradecyl benzyl diméthylammonium, de didécyl diméthylammonium, de dioctyl diméthylammonium les bromures de myristyl triméthylammonium, de cétyl triméthylammonium
* les sels d'aminés hétérocycliques monoquaternaires tels que les chlorures de laurylpyridinium, de cétylpyridinium, de C-|2-Ci4 alkyl benzyl imidazolium
* les sels d'alkyl gras triphényl phosphonium comme le bromure de myristyl triphényl phosphonium
* les biocides polymères, comme ceux dérivés de la réaction de l'épichlorhydrine et de la diméthylamine ou de la diéthylamine - de l'épichlorhydrine et de l'imidazole du 1 ,3-dichoro-2-propanol et de la diméthylamine du 1 ,3-dichoro-2-propanol et du 1 ,3-bis-diméthylamino-2-propanol du dichlorure d'éthylène et du 1 ,3-bis-diméthylamino-2-propanol du bis (2-chloroéthyl)ether et de la N,N'-bis(diméthylaminopropyl) urée ou thiourée - les chlorhydrates de polymère de biguanidine, comme le VANTOCIL IB
• les biocides amphotères comme les dérivés de N-(N'-C8-C-| 8alkyl-3- aminopropyl)-glycine, de N-(N'-(N"-C8-C-| 8alkyl-2-aminoéthyl)-2-aminoéthyl)- glycine, de N,N-bis(N'-C8-C-|8alkyl-2-aminoéthyl)-glycine, tels que le (dodécyl) (aminopropyl) glycine, le (dodécyl) (diéthylènediamine) glycine • les aminés comme la N-(3-aminopropyl)-N-dodecvl-1 ,3-propanediamine
• les biocides halogènes comme les iodophores et sels d'hypochlorites, tels que le dichloroisocyanurate de sodium
• les biocides phénoliques comme le phénol, le résorcinol, les crésols, l'acide salicylique • les biocides hvdrophobes comme le parachlorométaxylenol, le dichlorométaxylenol le 4-chloro-m-crésol le résorcinol monoacétate les mono- ou poly-alkyl ou aryl phénols, crésols ou résorcinols, comme l'o-phenyl- phénol, le p-tert-butyl-phénol, le 6-n-amyl-m-crésol, les alkyl et/ou aryl chloro ou bromophénols, comme l'o-benzyl-p-chlorophénol les diphényléthers halogènes, comme le 2',4,4'-trichloro-2-hydroxy-diphényl éther
(triclosan), le 2,2'-dihydroxy-5,5'-dibromo-diphényl éther. le chlorophénésine (éther p-chloro-phénylglycérique). à raison de 0 à 5% du poids total de ladite composition nettoyante.
* des solvants avant une bonne activité nettoyante ou dégraissante, comme les alkylbenzenes de type octyl benzène, les oléfines ayant un point d'ébullition d'au moins 1000C, comme les alpha- olefines, preferentiellement le 1-decene or 1-dodecene les éthers de glycol de formule générale, R1 0(R20)mH où R1 est un groupe alkyle présentant de 3 à 8 carbones et chaque R2 est soit un ethylene ou propylene et m est un nombre qui varie de 1 à 3 ; on peut citer les monopropyleneglycol monopropyl ether, dipropyleneglycol monobutyl ether, monopropyleneglycol monobutyl ether, diethyleneglycol monohexyl ether, monoethyleneglycol monohexyl ether, monoethyleneglycol monobutyl ether et leurs mélanges. les diols présentant de 6 à 16 atomes de carbone dans leur structure moléculaire ; les diols sont particulièrement intéressants car en plus de leur propriétés dégraissantes, ils peuvent aider à éliminer les sels de calcium (savons) ; les diols contenant de 8 à 12 atomes de carbone sont préférés, tout preferentiellement le 2,2,4-trimethyl-1 ,3-pentanediol. d'autres solvants tels que l'huile de pin, les terpenes d'orange, l'alcool benzylique, le n-hexanol, les esters phatliques alcools possédant 1 à 4 atomes de carbone, le butoxy propanol, le Butyl Carbitol et le 1 (2-n-butoxy- 1-methylethoxy)propane-2-ol aussi appelé butoxy propoxy propanol ou dipropylene glycol monobutyl ether, le diglycol hexyl (Hexyl Carbitol), butyl triglycol, les diols comme le 2,2,4-trimethyl-1 ,3-pentanediol, et leurs mélanges, (à raison de 0 à 30% du poids total de ladite composition nettoyante)
* des nettoyants industriels comme les solutions de sels alcalins du type phosphates, carbonates, silicates ... de sodium, potassium, (à raison de 0 à 50% du poids total de ladite composition nettoyante)
* les solvants organiques hvdrosolubles peu nettoyants comme le methanol, l'ethanol, l'isopropanol, l'ethylene glycol, le propylene glycol, et leur mélanges, (à raison de 0 à 40% du poids total de ladite composition nettoyante) * des cosolvants comme la monoéthanolamide et/ou l es béta-aminoalcanols, particulièrement intéressants dans les compositions de pH supérieur à 1 1 , tout particulièrement supérieur à 11 ,7 , car ils aident à réduire la formation de films et de traces sur les surfaces dures (ils peuvent être mis en œuvre à raison de 0,05 à 5% du poids de la composition nettoyante) ; des systèmes solvants comprenant de la monoéthanolamide et/ou des béta-aminoalcanols sont décrits dans US 5,108,660. * des agents antimousses comme les savons notamment. Les savons sont des sels alcalins d'acides gras, notamment les sels de sodium, potassium, ammonium et d'alcanol ammonium d'acides gras supérieurs contenant environ de 8 à 24 atomes de carbone, et de préférence d'environ 10 à environ 20 atomes de carbone ; on peut notamment citer les sels de mono-, di- et triéthanolamine de sodium et de potassium ou de mélanges d'acides gras dérivés de l'huile de coprah et d'huile de noix broyée. La quantité de savon peut être d'au moins 0,005 % en poids, de préférence de 0,5 % à 2 % en poids par rapport au poids total de la composition. Des exemples supplémentaires de matériaux de régulation de la mousse sont les solvants organiques, la silice hydrophobe, l'huile de silicone et les hydrocarbures.
* des abrasifs, comme la silice, le carbonate de calcium
* des additifs divers tels que des enzymes, des parfums, des colorants, des agents inhibiteurs de corrosion des métaux, des conservateurs, des brillanteurs optiques, des agents opacifiants ou perlescents ...
Le pH de la composition faisant l'objet de l'invention ou le pH d'utilisation de ladite composition peut aller de 0,5 à 14, de préférence de 1 à 14.
Les compositions de type alcalin, de pH supérieur ou égal à 7,5, de préférence supérieur à 8,5 pour les applications ménagères (tout particulièrement de pH de 8,5 à
12, notamment de 8,5 à 1 1 ,5) sont particulièrement utiles pour l'enlèvement de salissures grasses et sont particulièrement bien adaptées au nettoyage de cuisine.
Elles peuvent comprendre de 0,001 à 5%, de préférence de 0,005 à 2% de leur poids du nanogel. Les compositions alcalines comprennent généralement, en plus du nanogel, au moins un additif choisi parmi
* un agent séquestrant ou antitartre (en quantité allant de 0 à 40%, de préférence de 1 à 40%, plus préférentiellement de 2 à 30% et tout particulièrement de 5 à 20% du poids de la composition) • un biocide ou désinfectant cationique, notamment de type ammonium quaternaire, comme les chlorures de N-alkyl benzyl dimethyl ammonium, chlorure de N-alkyl dimethyl ethylbenzyl ammonium, halogénure de N-didecydimethylammonium, et chlorure de di- N-alkyl dimethyl ammonium (en quantité pouvant aller de 0 à 60%, de préférence de 0 à 40%, plus préférentiellement de 0 à 15% et tout particulièrement de 0 à 5% du poids de la composition) • au moins un agent tensioactif non-ionique, amphotère, zwitterionique, ou anionique ou leur mélange ; lorsqu'un agent tensioactif cationique est présent, ladite composition comprend en outre préférentiellement un agent tensioactif amphotère et/ou non-ionique (la quantité totale d'agents tensioactifs peut aller de 0 à 80%, de préférence de 0 à 50% , tout particulièrement de 0 à 35% du poids de la composition)
• si nécessaire, un agent de régulation de pH , en une quantité permettant d'atteindre, éventuellement après dilution ou mise en solution de la composition, un pH d'utilisation allant de 7,5 à 13 ; l'agent de régulation de pH peut notamment être un système tampon comprenant de la monoethanolamine et/ou un beta-aminoalkanol et potentiellement mais préférentiellement des matériaux alcalins « co-tampon » du groupe de l'ammoniaque, des C2-C4 alkanolamines, des hydroxydes d'alcalins, silicates, borates, carbonates, bicarbonates et leur mélanges. Les cotampons préférés sont les hydroxydes alcalins. • de 0,5 à 98%, de préférence de 25 à 95%, tout particulièrement de 45 à 90% en poids d'eau
• un solvant organique nettoyant ou dégraissant, en quantité pouvant représenter de 0 à 60%, de préférence de 1 à 45%, tout particulièrement de 2 à 15% du poids de ladite composition • un co-solvant comme la monoethanolamine et/ou les beta-aminoalkanols, en quantité pouvant représenter de 0 à 10%, de préférence de 0,05 à 10%, tout particulièrement de 0,05 à 5% du poids de ladite composition
• un solvant organique hydrosoluble peu nettoyant , en q uantité pouvant représenter de 0 à 25%, de préférence de 1 à 20 %, tout particulièrement de 2 à 15% du poids de ladite composition
• éventuellement un agent de blanchiment, un parfum ou d'autres additifs usuels. Lesdites compositions alcalines peuvent se présenter sous la forme d'une formule prête à l'emploi ou bien d'une formule sèche ou concentrée à diluer dans l'eau notamment, avant emploi ; elles peuvent être diluées de 1 à 1 0 000 fois, de préférence de 1 à 1000 fois avant emploi.
Avantageusement, une formulation pour le nettoyage des cuisines, comprend :
• de 0,001 à 1 % en poids du nanogel
• de 1 à 10 % en poids de solvant hydrosoluble, l'isopropanol notamment
• de 1 à 5 % en poids de solvant nettoyant ou dégraissant, le butoxypropanol notamment
• de 0,1 à 2 % en poids de monoethanolamine • de 0 à 5 % en poids d'au moins un agent tensioactif non cationique, de préférence amphotère ou non-ionique,
• de 0 à 1 % en poids d'au moins un agent tensioactif cationique à propriété désinfectante (notamment mélange de n-alkyl dimethyl ethylbenzyl ammonium chloride et n-alkyl dimethyl benzyl ammonium chloride), la quantité totale d'agent(s) tensioactif(s) représentant de 1 à 50 % en poids
• de 0 à 2 % en poids d'un diacide carboxylique comme agent antitartre
• de 0 à 5 % d'un agent de blanchiment
• et de 70 à 98 % en poids d'eau. Le pH d'une telle formulation est de préférence de 7,5 à 13, plus préférentiellement de 8 à 12.
Les compositions de type acide, de pH inférieur à 5, sont particulièrement utiles pour l'enlèvement de salissures de type minéral ; elles sont particulièrement bien adaptées au nettoyage de cuvettes de toilettes. Elles peuvent comprendre de 0,001 à 5 %, de préférence de 0,01 à 2 % de leur poids du nanogel.
Les compositions acides comprennent généralement, en plus du nanogel,
• un agent acide minéral ou organique (en quantité allant de 0, 1 à 40%, de préférence de 0,5 à 20% et plus préférentiellement de 0,5 à 15% du poids de la composition)
• au moi ns u n agent tensioactif non-ionique, amphotère, zwitterionique, ou anionique ou leur mélange ; (la quantité totale d'agents tensioactifs peut aller de 0,5 à 20%, de préférence de 0,5 à 10 % du poids de la composition)
• éventuellement un biocide ou désinfectant cationique, notamment de type ammonium quaternaire, comme les chlorures de N-alkyl benzyl dimethyl ammonium, chlorure de N-alkyl dimethyl ethylbenzyl ammonium, halogénure de N-didecydimethylammonium, et chlorure de di- N-alkyl dimethyl ammonium (en quantité pouvant aller de 0,01 à 2% de préférence de 0,1 à 1 % du poids de la composition) • éventuellement un agent épaississant (en quantité allant de 0,1 à 3%, du poids de la composition)
• éventuellement un agent de blanchiment (en quantité allant de 1 à 10%, du poids de la composition)
• de 0,5 à 99 %, de préférence de 50 à 98 % en poids d'eau • un solvant, comme le glycol ou un alcool, (en quantité pouvant aller de 0 à 10% de préférence de 1 à 5% du poids de la composition) • éventuellement un parfum, un conservateur, un abrasif ou d'autres additifs usuels. Lesdites compositions acides se présentent de préférence sous la forme d'une formule prête à l'emploi.
Avantageusement, une formulation pour le nettoyage des cuvettes de toilettes , comprend :
• de 0,05 à 5%, de préférence de 0,01 à 2% en poids du nanogel
• une quantité d'agent acide nettoyant telle que le pH final de la composition soit de 0,5 à 4, de préférence de 1 à 4 ; cette quantité est généralement de 0,1 à environ 40 %, et de préférence entre 0,5 et environ 15 % en poids par rapport au poids de la composition ; l'agent acide peut être notamment un acide minéral tel que l'acide phosphorique, sulfamique, chlorhydrique, fluorhydrique, sulfurique, nitrique, chromique et des mélanges de ceux-ci ou un acide organique, notamment l'acide acétique, hydroxyacétique, adipique, citrique, formique, fumarique, gluconique, glutarique, glycolique, malique, maléique, lactique, malonique, oxalique, succinique et tartrique ainsi que des mélanges de ceux-ci, des sels d'acides tels que le bisulfate de sodium et des mélanges de ceux-ci ; la quantité préférée dépend du type du nettoyant acide utilisé : par exemple avec l'acide sulfamique, elle est comprise entre 0,2 et 10%, avec l'acide chlorhydrique entre 1 et 15 %, avec l'acide citrique entre 2 et 15 %, avec l'acide formique, entre 5 et 15 % et avec l'acide phosphorique, entre 2 et 30 % en poids.
• de 0,5 à 10% en poids d'au moins un agent tensioactif, de préférence anionique ou non-ionique
• éventuellement de 0,1 à 2 % en poids d'au moins un agent tensioactif cationique à propriété désinfectante (notamment mélange de n-alkyl dimethyl ethylbenzyl ammonium chloride et n-alkyl dimethyl benzyl ammonium chloride)
• éventuellement un agent épaississant (en quantité allant de 0,1 à 3%, du poids de composition), de type gomme, notamment une gomme xanthane ou un succinoglycane (Rheozan)
• éventuellement un agent de blanchiment (en quantité allant de 1 à 10%, du poids de composition)
• éventuellement un conservateur, un colorant, un parfum ou un abrasif
• et de 50 à 95 % en poids d'eau.
Ci-après sont explicités quelques autres modes particuliers de réalisation et d'application de la composition de l'invention. Ainsi, la composition selon l'invention peut être mise en œuvre pour le traitement nettoyant facilité de surfaces en verre, notamment de vitres. Ce traitement peut être effectué par les diverses techniques connues. On peut citer en particulier les techniques de nettoyage de vitres par pulvérisation d'un jet d'eau à l'aide d'appareils de type Karcher®.
La quantité de nanogel introduite sera généralement telle que, lors de l'utilisation de la composition de nettoyage, après dilution éventuelle, la concentration en nanogel soit comprise entre 0,001 g/l et 2 g/l, de préférence de 0,005 g/l et 0,5 g/l.
La composition de nettoyage des vitres selon l'invention comprend : de 0,001 à 10 %, de préférence 0,005 à 3 % en poids du nanogel; de 0,005 à 20 %, de préférence de 0,5 à 10 % en poids d'au moins un agent tensioactif non-ionique (par exemple un aminé oxyde ou un alkyl polyglucoside) et/ou anionique ; et le reste étant formé d'eau et/ou d'additifs divers usuels dans le domaine. Les formulations nettoyantes pour vitres comprenant ledit polymère peuvent également contenir : - de 0 à 10%, avantageusement de 0,5 à 5 % de tensioactif amphotère, de 0 à 30 %, avantageusement de 0,5 à 15 % de solvant tels que des alcools, et le reste étant constitué par de l'eau et des additifs usuels (parfums notamment). Le pH de la composition est avantageusement compris entre 6 et 11.
La composition de l'invention est également intéressante pour le nettoyage facilité de la vaisselle en machine automatique. Ladite composition peut être soit une formule détergente (nettoyante) utilisée dans le cycle de lavage, soit une formule de rinçage. Les compositions détergentes pour lavage de la vaisselle dans des lave-vaisselle automatiques selon l'invention, comprennent avantageusement de 0,01 à 5 %, de préférence 0,1 à 3 % en poids du nanogel. Lesdites compositions détergentes pour lave-vaisselle comprennent également au moins un agent tensioactif, de préférence non ionique en quantité pouvant aller de 0,2 à 10% de préférence de 0,5 à 5% du poids de ladite composition détergente, le reste étant constitué par des additifs divers et des charges, comme déjà mentionné ci-dessus. Ainsi elles peuvent en outre comprendre • jusqu'à 90% en poids, d'au moins un adjuvant de détergence ("builder") de type silicate ou tripolyphosphate de sodium
• jusqu'à 10%, de préférence de 1 à 10%, tout particulièrement de 2 à 8% en poids, d'au moins un agent auxiliaire de nettoyage, un copolymère d'acide acrylique et d'acide méthyl propane sulfonique (AMPS) de préférence • jusqu'à 30% en poids d'au moins un agent de blanchiment, de préférence perborate ou percarbonate, associé ou non à un activateur de blanchiment • jusqu'à 50% en poids d'au moins une charge, de préférence sulfate de sodium ou chlorure de sodium Le pH est avantageusement compris entre 8 et 13.
Les compositions pour le rinçage facilité de la vaisselle en lave-vaisselle automatique selon l'invention, peuvent comprendre avantageusement de 0,02 à 10 %, de préférence de 0, 1 à 5 % en poids du nanogel par rapport au poids total de la composition.
Lesdites compositions peuvent comprendre également de 0,1 à 20 %, de préférence 0,2 à 15 % en poids par rapport au poids total de ladite composition d'un agent tensioactif, de préférence non ionique.
Parmi les agents tensioactifs non ioniques préférés, on peut citer les agents tensioactifs de type alcoylphénols en C6-C12 polyoxyéthylénés, les alcools aliphatiques en C8-C22 polyoxyéthylénés et/ou polyoxypropylénés, les copolymères bloc oxyde d'éthylène - oxyde de propylène, les amides carboxyliques éventuellement polyoxyéthylénés .... Lesdites compositions peuvent comprendre en outre de 0 à 10 %, de préférence de 0,5 à 5 % en poids par rapport au poids total de la composition d'un acide organique séquestrant du calcium, de préférence de l'acide citrique.
Elles peuvent également comprendre un agent auxiliaire de type copolymère d'acide acrylique et d'anhydride maléïque ou des homo-polymères d'acide acrylique à raison de 0 à 15 %, de préférence 0,5 à 10 % en poids par rapport au poids total de ladite composition. Le pH est avantageusement compris entre 4 et 7.
L'invention a également pour objet une composition nettoyante pour le lavage facilité de la vaisselle à la main. Des formulations détergentes préférées de ce type comprennent de 0,1 à 10 parties en poids du nanogel pour 100 parties en poids de ladite composition et contiennent de 3 à 50, de préférence de 10 à 40 parties en poids d'au moins un agent tensioactif, de préférence anionique, choisi notamment parmi les sulfates d'alcools aliphatiques saturés en C 5-C z.4,, de préférence en C o-C 1.b., éventuellement condensés avec environ 0,5 à 30, de préférence 0,5 à 8, tout particulièrement 0,5 à 5 moles d'oxyde d'éthylène, sous forme acide ou sous forme d'un sel, notamment alcalin (sodium), alcalino-terreux
(calcium, magnésium) ...
D'une manière préférentielle, il s'agit de formulations aqueuses détergentes liquides moussantes pour le lavage facilité à la main de la vaisselle. Lesdites formulations peuvent en outre contenir d'autres additifs, notamment d'autres agents tensioactifs, tels que : des agents tensioactifs non ion iq ues tels q ue les oxydes d'aminés, les alkylglucamides, les alkyl polyglucosides, les dérivés oxyalkylénés d'alcools gras, les alkylamides, les alcanolamides, des agents tensioactifs amphotères ou zwitterioniques. - des agents bactéricides ou désinfectants non cationiques comme le triclosan des polymères cationiques synthétiques des polymères pour contrôler la viscosité du mélange et/ou la stabilité des mousses formées à l'utilisation des agents hydrotropes - des agents hydratants ou humectants ou protecteurs de la peau des colorants, des parfums , des conservateurs, des sels divalents (notamment de magnésium) ... Le pH de la composition est avantageusement compris entre 5 et 9.
Un autre mode de réalisation particulier de l'invention consiste en une composition de nettoyage externe facilité, notamment de la carrosserie, des véhicules motorisés (voitures, camions, autobus, trains, avions ...).
Dans ce cas également, il peut s'agir d'une composition de nettoyage proprement dit ou une composition de rinçage .
La composition nettoyante pour véhicules automobiles comprend avantageusement de 0,005 à 10 % en poids du nanogel par rapport au poids total de ladite composition, ainsi que : des agents tensioactifs non ioniques (à raison de 0 à 30%, de préférence de 0,1 à 15 % de la formulation), des agents tensioactifs amphotères et/ou zwitterioniques (à raison de 0 à 30%, de préférence de 0,01 à 10 % de la formulation) des agents tensioactifs cationiques (à raison de 0 à 30%, de préférence de 0,05 à 15 % de la formulation); des agents tensioactifs anioniques (à raison de 0 à 30%, de préférence de 0,1 à 15 % de la formulation); - des adjuvants de détergence ("builders") (à raison de 1 à 99%, de préférence de 40 à 98 % de la formulation); des agents hydrotropes des charges, des agents régulant le pH ...
La quantité minimum d'agent tensioactif présent dans de type de composition est de préférence d'au moins 0,5% de la formulation.
Le pH de la composition est avantageusement compris entre 8 et 13. La composition de l'invention est aussi particulièrement adaptée pour le nettoyage facilité de surfaces dures de type céramiques (carrelage, baignoires, lavabos, etc.), notamment pour salles de bain. Elle peut notamment faciliter le nettoyage de taches de savons (soap scum en anglais). La formulation nettoyante comprend avantageusement de 0,02 à 5 % en poids du nanogel par rapport au poids total de ladite composition ainsi qu'au moins un agent tensioactif.
Comme agents tensioactifs, on préfère les agents tensioactifs non ioniques, notamment les composés produits par condensation de groupes oxyde d'alkylène de nature hydrophile avec un composé organique hydrophobe qui peut être de nature aliphatique ou alkyl-aromatique.
La longueur de la chaîne hydrophile ou du radical polyoxyalkylène condensée avec un groupe hydrophobe quelconque peut être facilement réglée pour obtenir un composé soluble dans l'eau ayant le degré souhaité d'équilibre hydrophile/hydrophobe (HLB). La quantité d'agents tensioactifs non ioniques dans la composition de l'invention peut être de 0 à 30 % en poids, de préférence de 0 à 20 % en poids.
Un tensioactif anionique peut éventuellement être présent en quantité de 0 à 30%, avantageusement 0 à 20% en poids.
Il est également possible mais non obligatoire d'ajouter des détergents amphotères, cationiques ou zwitterioniques.
La quantité totale de composés tensioactifs employée dans ce type de composition est généralement comprise entre 0,5 et 50 %, de préférence entre 1 et 30 % en poids, et plus particulièrement entre 2 et 20 % en poids par rapport au poids total de la composition. Ladite composition de nettoyage peut également comprendre d'autres ingrédients minoritaires, comme : des adjuvants de détergence ("builders") tels que mentionnés précédemment (en quantité pouvant être comprise entre 0,1 et 25 % en poids par rapport au poids total de la composition) - un agent de régulation de la mousse, tel que mentionné ci-dessus, notamment de type savon (en quantité généralement d'au moins 0,005 % en poids, de préférence de 0,5 % à 2 % en poids par rapport au poids total de la composition) des agents de régulation du pH, des colorants, des brillanteurs optiques, des agents de suspension des salissures, des enzymes détersives, des agents de blanchiment compatibles, des agents de régulation de la formation de gel, des stabilisateurs de congélation-décongélation, des bactéricides, des conservateurs, des solvants, des fongicides, des répulsifs pour insectes, des agents hydrotropes, des parfums et des opacifiants ou perlescents. Le pH de la composition est avantageusement compris entre 2 et 12.
La composition selon l'invention convient également au rinçage facilité des parois des douches.
Les compositions aqueuses de rinçage des parois des douches comprennent de 0,02 % à 5 % en poids, avantageusement de 0,05 à 1 % du nanogel.
Les autres composants actifs principaux des compositions aqueuses de rinçage de douches de la présente invention sont au moins un agent tensioactif présent en une quantité allant de 0,5 à 5 % en poids et éventuellement un agent chélatant de métaux tel que mentionné ci-dessus, présent en une quantité allant de 0,01 à 5 % en poids. Les compositions aqueuses de rinçage pour douches contiennent avantageusement de l'eau avec éventuellement au moins un alcool inférieur en proportion majoritaire et des additifs en proportion minoritaire (entre environ 0,1 et environ 5 % en poids, plus avantageusement entre environ 0,5 % et environ 3 % en poids, et encore plus préférentiellement entre environ 1 % et environ 2 % en poids).
Certains agents tensioactifs utilisables dans ce type d'application sont décrits dans les brevets US 5,536,452 et 5,587,022 dont le contenu est incorporé par référence dans la présente description. Des tensioactifs préférés sont des esters gras polyéthoxylés, par exemple des mono- oléates de sorbitane polyéthoxylés et de l'huile de ricin polyéthoxylée. Des exemples particuliers de tels agents tensioactifs sont les produits de condensation de 20 moles d'oxyde d'éthylène et de mono-oléate de sorbitane (commercialisés par RHODIA Inc. sous la dénomination ALKAMULS PSMO-20® avec une HLB de 15,0) et de 30 ou 40 moles d'oxyde d'éthylène et d'huile de ricin (commercialisés par RHODIA Inc. sous la dénomination ALKAMULS EL-620 ® (HLB de 12,0) et EL-719® (HLB de 13,6) respectivement). Le degré d'éthoxylation est de préférence suffisant pour obtenir un tensioactif ayant une HLB supérieure à 13.
Le pH de la composition est avantageusement compris entre 7 et 1 1. La composition selon l'invention peut également être mise en œuvre pour le nettoyage facilité de plaques vitrocéramiques.
Avantageusement, les formulations pour le nettoyages de plaques vitrocéramiques de l'invention comprennent :
0,01 à 5 % en poids du nanogel; - 0,1 à 1 % en poids d'un épaississant tel qu'une gomme xanthane ;
10 à 60 % en poids d'un agent abrasif tel que le carbonate de calcium ou la silice ; 0 à 7 % en poids d'un solvant tel que le butyldiglycol ;
1 à 10 % en poids d'un agent tensioactif non ionique ; et éventuellement des agents d'alcalinisation ou des séquestrants.
Le pH de la composition est avantageusement compris entre 7 et 12 . Comme mentionné ci-dessus, la composition selon l'invention peut également être mise en oeuvre dans le domaine du nettoyage industriel, notamment pour le nettoyage facilité de réacteurs. Avantageusement, lesdites compositions comprennent : de 0,02 à 5 % en poids du nanogel; - de 1 à 50 % en poids de sels alcalins (phosphates, carbonates, silicates de sodium ou potassium); de 1 à 30 % en poids d'un mélange d'agents tensioactifs, notamment d'agents tensioactifs non-ioniques comme les alcools gras éthoxylés et les agents tensioactifs anioniques comme le lauryl benzène sulfonate ; - de 0 à 30% en poids d'un solvant comme le diisobutyl ester. Le pH d'une telle composition est généralement de 8 à 14 .
Un autre objet de l'invention consiste en l'utilisation, dans une composition, de préférence comprenant au moins un agent tensioactif, pour la modification et/ou de traitement de surfaces dures, de préférence pour le nettoyage ou le rinçage en milieu aqueux ou hydroalcoolique des surfaces dures, du nanogel, par exemple comme agent permettant apporter auxdites surfaces des propriétés antidéposition et/ou antiadhésion des salissures susceptibles de se déposer sur lesdites surfaces.
Un autre objet de l'invention consiste en un procédé de traitement et/ou de modification de surfaces dures, pour améliorer les propriétés de compositions comprenant optionnellement au moins un agent tensioactif, de préférence pour le nettoyage ou le rinçage en milieu aqueux ou hydroalcoolique des surfaces dures, par addition auxdites compositions du nanogel.
Un autre objet de l'invention consiste en un procédé de traitement et/ou de modification de surfaces dures, de préférence pour faciliter le nettoyage ou le rinçage des surfaces dures, par mise en contact desdites surfaces avec une composition en milieu aqueux ou hydroalcoolique, comprenant le nanogel et optionnellement au moins un agent tensioactif.
Le nanogel est de préférence mis en œuvre ou est présent dans ladite composition en quantité efficace pour apporter auxdites surfaces des propriétés d'hydrophilie antidéposition et/ou antiadhésion des salissures susceptibles de se déposer sur lesdites surfaces. La nature et les quantités du nanogel présent ou mis en ouvre dans ladite composition, de même que les autres additifs et différents modes d'application de ladite composition ont déjà été mentionnés ci-dessus.
Les compositions de l'invention peuvent être des compositions moussantes. Il peut notamment s'agir de compositions de lavage de la vaisselle à la main ou dans de cas de lessives à la main ou semi-automatiques, de compositions de nettoyage de véhicules. Le nanogel peut dans ces compositions stabiliser la mousse, notamment à l'ajout de salissures. Par ailleurs, il peut servir dans le cadre de lessives à titre d'agent anti-redéposition.
D'autres détails ou avantages pourront apparaitre au vu des exemples qui suivent.
Exemple 1 - Préparation de polymères et polymères comparatifs
Dans ces exemples, on utilise les abréviations suivantes:
- AM = Acrylamide
- MBA = N, N' méthylène bis acryamide (monomère réticulant)
- MAPTAC = Chlorure de (3-méthacrylamidopropyl)triméthylammonium - APTAC = Chlorure de (3-acrylamidopropyl)triméthylammonium
Les exemples marqués par la lettre C indiquent des exemples comparatifs
Exemple 1.1C - Préparation d'un nanogel non ionique à base d'AM et de MBA MBA = 8 mol% - Xanthate = 2,9 mol%
Dans un ballon bicol surmonté d'un réfrigérant, on ajoute 0,92 g (4,42x10"3 mol) du xanthate EtOC(=S)SCH(CH3)COOCH3 , 13,2 g d éthanol et 66.8g d'eau déionisée. Le mélange réactionnel est porté à 70 0C. A cette température 0,153 g (3,98 x10"4 mol) de V50 sont ajoutés. A partir de ce moment, 2,01g (0.013mol) du MBA et 21 ,22g (0.30mol) de l'Am sont ajoutés pendant 4 heures. Pendant ce temps, a to+2heures et to+4heures 0.052 (1 ,92 x10"4 mol) de V50 sont ajoutés respectivement. A la fin de l'addition, la réaction-est prolongée encore 2h. (CES MALS) Mw = 168000. Conversion des monomères (HPLC) >99%.
Exemple 1.2C - Préparation d'un copolymère linéaire à base d'AM et de MAPTAC
On prépare un copolymère linéaire présentant 95 mol% d'Acrylamide et 5 mol% de MAPTAC, de masse moléculaire moyenne de 400 kg/mol. Exemple 1.3 - Préparation d'un nanogel cationique à base d'AM, de MAPTAC et de MBA - AM/MAPTAC/MBA
AM/MAPAC = 95/5 mol/mol - MBA = 10 mol% - Xanthate = 1 ,1 mol%
Dans un ballon bicol surmonté d'un réfrigérant, on ajoute 0,32 g (1 ,54x10"3 mol) du xanthate EtOC(=S)SCH(CH3)COOCH3 , 35 g d éthanol et 51 .6 g d'eau déionisée. Le mélange réactionnel est porté à 70 0C. A cette température 0,167 g (6,18 x10"4 mol) de V50 sont ajoutés. A partir de ce moment, 1 ,83 g (0.012mol) du MBA, 18,4 g (0.26 mol) de I 'Am et 3.02 g (0.014 mol) du MAPTAC sont ajoutés pendant 4 heures. Pendant ce temps, a to+2heures, 0.042 (1 ,54 x10"4 mol) de V50 sont ajoutés respectivement. A la fin de l'addition, la réaction-est prolongée encore 2h. (CES MALS) Mw = 2900000. Conversion des monomères (CLHP) >99%.
Exemple 1.4 - Préparation d'un nanogel cationique à base d'AM, de MAPTAC et de MBA -AM/MAPTAC/MBA - AM/MAPAC = 95/5 mol/mol - MBA = 8 mol% - Xanthate = 1 ,1 mol%
Dans un ballon bicol surmonté d'un réfrigérant, on ajoute 0,32 g (1 ,54x10"3 mol) du xanthate EtOC(=S)SCH(CH3)COOCH3 , 35 g d éthanol et 51 .6 g d'eau déionisée. Le mélange réactionnel est porté à 70 0C. A cette température 0,162 g (5,99 x10"4 mol) de
V50 sont ajoutés. A partir de ce moment, 1 ,83 g (0.013mol) du MBA, 19,6 g (0.28 mol) de I 'Am et 3.23 g (0.015 mol) du MAPTAC sont ajoutés pendant 4 heures. Pendant ce temps, a to+2heures, 0.042 (1 ,54 x10"4 mol) de V50 sont ajoutés respectivement. A la fin de l'addition, la réaction-est prolongée encore 2h.
(CES MALS) Mw = 1400000. Conversion des monomères (CLHP) >99%.
La taille moyenne des macromolécules, mesurée par la technique "Dynamique Light
Scattering" est de 98 nm.
Exemple 2 - Compositions moussantes de soin du linge
On prépare les compositions suivantes (pour 1000 g de composition):
Formulation 1 - 0,8g LABS (alkyl linéaire benzène sulfonate, tensioactif anionique)
- 0,5g Rhodasurf L7/90 (tensioactif non ionique)
- 2g TriPolyPhosphate de sodium - Polymère à tester: nature et quantités données dans la section résultats - 1 ,5g NA2SO4
- Eau du robinet jusqu'à 100Og.
Formulation 2
- 0,8g LABS (alkyl linéaire benzène sulfonate, tensioactif anionique)
- 0,5g Rhodasurf L7/90 (tensioactif non ionique) - 1 ,5g TriPolyPhosphate de sodium
- Polymère à tester: nature et quantités données dans la section résultats - 2g NA2SO4
- Eau du robinet jusqu'à 1000g.
On teste l'indice de mousse et la persistance de la mousse selon le protocole détaillé ci-dessous. On teste l'effet de redéposition de salissures sur le linge à l'aide protocole détaillé ci- dessous.
Tests d'indice de mousse et de persistance de mousse L'indice de mousse et la persistance de mousse, pour une composition testée, sont déterminés à l'aide du dispositif à cylindres ci-après, selon le protocole ci-après.
Description du dispositif à cylindres
Le dispositif a six cylindres parallèles en Plexiglas® fixés à un cadre rotatif. Chaque cylindre a un diamètre intérieur de 9cm, et une hauteur utile de 29cm. Chaque cylindre comporte une échelle graduée permettant de mesurer la hauteur de mousse. Les cylindres sont fixés sur un cadre rotatif, chacun occupant une position équivalente aux autres. Mû par un moteur électrique, le cadre est mis en rotation sur lui-même, entraînant les cylindres dans une rotation selon un axe perpendiculaire à leur longueur coupant lesdits cylindres au milieu de leur longueur dans le plan du cadre. La composition dans un cylindre s'écoule dans le cylindre et en frappe ses extrémités(le bas et le haut) pendant la rotation, générant ainsi une turbulence entrainant la formation de mousse. Chaque cylindre est fermé par un capot amovible, percé d'un trou de 8mm de diamètre permettant l'ajout d'additifs (salissure...). On bouche ce trou à l'aide d'un bouchon en caoutchouc lorsque les cylindres sont mis en rotation. La hauteur de mousse et détermine par lecture de l'échelle graduée quand les cylindres sont en position verticale après le rotation: Hauteur de mousse = hauteur de (mousse + composition liquide) - hauteur de composition liquide.
L'unité de hauteur de mousse (Foam Height Unit - FHU) est définie comme suit: 10 FHU correspondent à une hauteur de mousse de 25 mm.
La vitesse de rotation est de 20 tours par minute. Les cylindres sont mis en rotation par séries de 10 rotations (qui durent chacune 30 secondes), suivies de 3 minutes de repos entre chaque série, afin de permettre la mesure de hauteur de mousse (effectuée à la fin des trois minutes) et l'éventuel ajout de salissure. Chaque cylindre contient 500ml de composition à tester. La composition à tester a une température initiale contrôlée à 200C.
Protocole de mesure de l'indice de mousse:
On verse 500 ml de composition à tester dans un cylindre, en évitant de former de la mousse. Le cadre portant les cylindres est alors mis en rotation en six séries de 10 roations (total de 60 rotations), chaque série étant suivie de 3 minutes d'attente. On relève la hauteur de mousse dans le cylindre après les 3 minutes.
L'indice de mousse est défini comme la hauteur de mousse, donnée en FHU, après la
6eme période d'attente de 3 minutes. Par soucis de précision, chaque mesure est répétée au moins deux fois, l'indice de mousse est la moyenne.
Protocole de persistance de mouse:
Après la sixième série de (10 rotations + 3 minutes d'attente), on procède à une implémentation d'ajout en ajoutant dans le cylindre 5 gouttes (0,15g calibré avec une balance de laboratoire) de salissure liquide chaude (800C). On impose alors au cylindre 10 rotations subséquentes à 20 tours par minute. La hauteur de mousse est alors mesurée après 3 minutes suivant les 10 rotations (total de 60+10=70 rotations). On peut répéter l'implémentation d'ajout de salissure en ajoutant la salissure juste après la mesure de hauteur de mousse et juste avant la rotation subséquente.
L'implémentation rotations/attente/mesure/addition de salissure est répétée jusqu'à ce que la hauteur de mousse atteigne une valeur de moins de 10 FHU.
Par soucis de précision, chaque mesure est répétée au moins deux fois, on reporte la moyenne. On peur tracer ou reporter la hauteur de mousse en fonction du nombre de rotations (la salissure n'est ajoutée qu'après 60 rotations). La hauteur de mousse (persistance de mousse) lors de l'addition de salissure est d'un intérêt particulier. Une faible diminution de la mousse indique une stabilisation de la mousse en présence de salissure.
Composition de salissure La salissure utilisée dans l'exemple est un sébum synthétique simulant les salissures grasses comme par exemple celles provenant de la peau humaine, mélangé à une argile (bentonite) simulant les salissures particulaires (poussière, ...). Le rapport en poids entre le sébum synthétique et l'argile est 12/4.
Composition pour 950g de sébum synthétique:
Figure imgf000047_0001
Préparation : les ingrédients sont placés dans un bêcher en Pyrex®, et chauffés à 800C durant 15 minutes, sous agitation magnétique sur une plaque chauffante. Le liquide formé est transparent et faiblement coloré. Au refroidissement, il forme une pâte cireuse blanche et opaque qui peut se conservée plusieurs semaines au congélateur. Au moment de l'évaluation de la persistance de mousse, on prépare la salissure finale en fondant 12 de sébum, à 80 0C sous agitation mécanique, et en y ajoutant 4g d'argile. La salissure devenue opaque et légèrement visqueuse est agitée pendant l'opération entière. Un échantillon frais de mélange est préparé pour chaque nouvelle expérience, la salissure n'étant jamais conservée plus d'une heure. Protocole de test de redéposition de salissures sur le linge Le test est réalisé en plusieurs étapes:
- préparation du tissu - Du tissu de coton blanc est utilisé. On supprime l'apprêt en réalisant un lavage à l'eau chaude sans lessive - mesure de la couleur du tissu (blanc)- un lavage du tissu blanc est effectué avec la lessive à tester uniquement. Après séchage, la couleur du tissu est mesurée à l'aide d'une sonde colorimétrique (Réflectomètre LUCI)
- dépôt de la salissure (argile+eau) - La salissure est déposée sur le tissu, celle-ci est constituée d'un mélange eau/bentonite avec 10g de bentonite pour 100g d'eau. Pour déposer la salissure, le tissu est plongé dans le mélange et est agité à l'aide d'un tergomètre pendant 7 minutes
- séchage à température ambiante
- Mesure de la couleur avant lavage
- lavage du tissu - séchage à température ambiante
- mesure de la couleur après lavage
La lessive testée, utilisée pour les lavages, est une lessive brésilienne de la marque
ACE, à laquelle on ajoute le polymère à tester. On utilise 0,025g de polymère actif pour 5g de lessive.
On calcule un pourcentage d'élimination de la salissure comme suit:
"Blanc" = éprouvette seulement prélavée
"Avant lavage" = éprouvette prélavée et tâchée
"Après lavage" = éprouvette prélavée, tâchée et lavée Le réflectomètre est équipé d'un logiciel qui calcule directement le Delta E (détergence expérimentale) à partir des données enregistrées précédemment sur le tissu avant et après lavage. Cette valeur correspond à la variation de couleur enregistrée et est exprimée comme suit :
Delta L = L après lavage - L avant lavage Delta a = a après lavage - a avant lavage
Delta b = b après lavage - b avant lavage
Figure imgf000048_0001
= DETERGENCE EXPERIMENTALE
De la même manière, grâce aux données enregistrées sur le tissu avant et après tâchage, le logiciel permet de calculer le Delta E' (détergence maximale théorique) comme suit:
Delta L' = L blanc - L avant lavage Delta a' = a blanc - a avant lavage Delta b' = b blanc - b avant lavage
|ΔE'=V ΔL' 2+Δa'2+Δb'2| = DETERGENCE THEORIQUE
% ELIMINATION = 100 X DET. EXPERIMENTALE / DET. THEORIQUE
Le pourcentage d'élimination est reporté plus bas comme valeur liée à la redéposition
(plus il est élevé, plus la redéposition à faible).
Résultats
Figure imgf000049_0001
Exemple 3 - Compositions de nettoyage de salle de bain
Figure imgf000050_0001
Mirapol Surf S 500, commercialisé par Rhodia (quantité exprimée en poids d'actif de polymère du produit commercial)
On évalue la modification de surface à l'aide des compositions selon le protocole suivant.
On utilise des petits carreaux noirs de céramique. La première opération consiste à préparer le carreau. Il suffit pour cela de le nettoyer à l'éthanol avec un kimwipe. On traite la moitié de la surface avec la composition à tester (comprenant un polymère) et l'autre moitié avec la composition de contrôle. Pour cela on ajoute 5 gouttes de produit que l'on étale avec un kimwipe. Le carreau sèche pendant 1 minute puis est rincé avec un débit de 4,5L/min pendant 5 secondes de chaque côté. Le carreau sèche à nouveau à la verticale. La salissure est préparée à partir d'une solution de savon à 13% en masse dans l'eau et d'une solution à 35% en masse dans l'éthanol de MgCI2, 6H2O. La solution de savon est chauffée afin de la rendre liquide. 10,5g de cette solution sont ajoutés à 18g d'éthanol, puis on ajoute 1 ,5mL de la solution de MgCI2. On dépose immédiatement (avant précipitation) 5 gouttes de la salissure modèle sur le carreau sur les deux moitiés. La salissure est alors séchée à l'étuve à 400C pendant 25 minutes. Puis elle est rincée avec un débit de 6L/min pendant 3 minutes. Si la salissure part avant le temps imparti, le temps est noté afin de faire des différenciations entre les compositions si cela est nécessaire. Le test consiste à évaluer la quantité de salissure qui est partie à l'aide d'une échelle qui va de 0 à 5. Les meilleures compositions sont celles pour lesquelles la note 5 est obtenue. Pour les cycles consécutifs, on rajoute de la salissure une fois le carreau est sec, sans rajouter de composition. La salissure est alors séchée à l'étuve etc.
Résultats
Figure imgf000051_0001
La composition de l'invention permet un traitement efficace et durable, résistant aux rinçages.
Exemple 4 - Adsorption sur une surface On prépare une composition comprenant:
- eau distillée
- 50 ppm en poids du polymère à tester
- pH 6 (par ajout d'acide chlorhydrique ou NaOH) - KCI 10"3 M On suit par réflectométrie la cinétique adsorption du nanogel de la composition sur une galette de silice oxydée (surface proche d'une surface de verre ou de céramique, disponibles chez Silicon Inc, sous la description "100 mm Silicon Wafers, single side polished, P-type, (100) orientation, thickness 500-550 microns, with 1000(+/-3 %) Angstroms SiO2 applied, clean room processed and packaged"). On opère par comparaison à l'aide d'une référence comprenant de l'eau distillée et KCI 10"3 M, selon la méthode ci-dessous: La technique est basée sur la réflexion de la lumière: un rayon polarisé d'un laser He-Ne (632,8 nm) pénètre dans une cellule par un prisme de verre suivant l'angle Brewster à l'interface eau/silicium (71 °) sur un wafer de silicium recouvert par un film mince du support adsorbant à étudier. Le rayon est réfléchi et ensuite séparé en deux composantes (perpendiculaire Is et parallèle Ip) puis récupéré par des photodiodes. La grandeur enregistrée durant l'adsorption est AS=S-So en volts. So est la valeur de S=lp/ls en présence uniquement du solvant dans la cellule avec le substrat. La mesure s'effectue au point dit "de stagnation". En ce point, aucun flux n'existe afin d'éviter un couplage entre le mécanisme de transport de la molécule et son organisation à la surface. Le flux de solution de polymère à étudier est emmené dans la cellule uniquement par différence de niveau; il doit être laminaire de l'ordre de 2 ml/min. Pour calculer la quantité adsorbée r, il est nécessaire de déterminer à l'aide d'un modèle optique le facteur de sensibilité As. Ce facteur dépend de la longueur d'onde du laser, de l'angle d'incidence, de l'épaisseur de l'adsorbant et des indices de réfraction du solvant et de la surface. On peut alors en déduire la quantité adsorbée r en mg/m2 par la relation r= (1/As)( ΔS/So). (As=0,1711 *dn/dc=0,171 1*0,17=0,029).
On teste la résistance de l'adsorption au rinçage avec une solution comprenant de l'eau distillée et KCI 10 -"3J M).
Résultats:
Figure imgf000052_0001
Exemple 5 - Modification d'une surface en verre
On prépare des compositions comprenant:
- eau distillée
- 50 ppm en poids du polymère à tester - pH 6
- Traitement/Modifications de surfaces Des plaques de verre 10cm x 15cm sont utilisées. On lave les plaques avec une solution alcaline Decon 90, à 10%. Ensuite on rince avec de l'eau du robinet et ensuite avec de l'eau distillée. On essuie avec du papier absorbant (essuyeurs de précision, KIMTECH, Kimberly-Clark) et on pulvérise les compostions ci-dessus. On essuie à nouveau avec du papier absorbant et on laisse sécher pendant environ 30 minutes.
- On mesure l'angle de contact d'une goutte d'eau distillée à l'aide d'un goniomètre (Rame-hart inc. NRL CA. GONIOMETER, Model No 100-00-230), avant et après le traitement/modification ci-dessus. On reporte la valeur finale. Une valeur faible pour la valeur finale indique un caractère hydrophile important.
Figure imgf000053_0001

Claims

REVENDICATIONS
1. Composition pour les soins ménagers comprenant un nanogel cationique, constitué de macromolécules réticulées chimiquement présentant un cœur C comprenant: - des unités réticulantes R dérivant d'un monomère R réticulant comprenant au moins deux groupes polymérisables, et
- des unités de cœur C dérivant d'au moins un monomère C comprenant un seul groupe polymérisable, comprenant :
- des unités cationiques ou potentiellement cationiques Ccat dérivant d'au moins un monomère Ccat cationique ou potentiellement cationique, et
- éventuellement des unités neutres CN, hydrophiles ou hydrophobes dérivant d'au moins un monomère CN neutre hydrophile ou hydrophobe,
- le nanogel étant différent d'un copolymère étoile comprenant des branches macromoléculaires en périphérie du cœur - la taille moyenne des macromolécules étant de préférence de 5 à 500 nm , de préférence de 30 à 170 nm.
2. Composition selon la revendication 1 , caractérisée en ce que le nanogel est susceptible d'être obtenu par un procédé mettant en œuvre un procédé de polymérisation radicalaire contrôlée.
3. Composition selon l'une des revendications précédentes, caractérisée en ce que les unités réticulantes R sont des unités dérivant d'un monomère diéthyléniquement insaturé ou triéthylèniquement insaturé.
4. Composition selon l'une des revendications précédentes, caractérisée en ce que le nanogel est obtenu par polymérisation, de préférence par polymérisation radicalaire contrôlée, d'un mélange de monomères comprenant:
- a u moi n s u n monomère R réticulant comprenant au moins deux groupes polymérisables, de préférence un monomère multiéthyléniquement insaturé, et
- au moins un monomère C comprenant un seul groupe polymérisable, de préférence un monomère monoéthyléniquement insaturé, comprenant :
- au moins un monomère Ccat cationique ou potentiellement cationique, et
- éventuellement un monomère CN neutre hydrophile ou hydrophobe.
5. Composition selon la revendication 4, caractérisée en ce que le rapport molaire entre le(s) monomère(s) C et le monomère R réticulant est supérieur ou égal à 1 , de préférence compris entre 80/20 et 99/1 , de préférence compris entre 90/10 et 95/5.
6. Composition selon l'une des revendications 4 ou 5, caractérisée en ce que
- le nanogel est obtenu par un procédé mettant en œuvre un procédé de polymérisation radicalaire contrôlée mettant en œuvre des groupes de control,
- le rapport molaire entre le nombre de groupes de contrôle et le nombre de groupes polymérisables du monomère R réticulant est compris entre 0,05 et 0,5.
7. Composition selon l'une des revendications précédentes, caractérisée en ce que le nanogel comprend des unités neutres hydrophiles CNphιie dérivant d'un monomère neutre hydrophile CNphιie-
8. Composition selon la revendication 7, caractérisée en ce que le rapport en moles entre les unités Ccat et les unités CNphιie est compris entre 1/99 et 50/50.
9. Composition selon l'une des revendications précédentes, caractérisée en ce que les unités cationiques ou potentiellement cationiques Ccat sont des unités dérivant de monomères Ccat choisis parmi les monomères suivants:
- le N,N-diméthylaminométhyl -acrylamide ou -méthacrylamide,
- le 2(N,N-diméthylamino)éthyl-acrylamide ou -méthacrylamide,
- le 3(N,N-diméthylamino)propyl-acrylamide ou -méthacrylamide,
- le 4(N,N-diméthylamino)butyl-acrylamide ou -méthacrylamide - le 2(diméthyl amino)éthyl acrylate (ADAM),
- le 2(diméthyl amino)éthyl méthacrylate (DMAM ou MADAM),
- le 3(diméthyl amino)propyl méthacrylate, le 2(tertiobutylamino)éthyl méthacrylate,
- le 2(dipentylamino)éthyl méthacrylate,
- le 2(diéthylamino)éthyl méthacrylate - les vinylpyridines
- la vinyl aminé
- les vinylimidazolines
- le chlorure de triméthylammoniumpropylméthacrylate,
- le chlorure ou le bromure de triméthylammoniuméthylacrylamide ou méthacrylamide, - le méthylsulfate de triméthylammoniumbutylacrylamide ou méthacrylamide,
- le méthylsulfate de triméthylammoniumpropylméthacrylamide (MAPTA MeS),
- le chlorure de (3-méthacrylamidopropyl)triméthylammonium (MAPTAC), - le chlorure de (3-acrylamidopropyl)triméthylammonium (APTAC),
- le chlorure ou le méthylsulfate de méthacryloyloxyéthyl triméthylammonium,
- les sels d'acryloyloxyéthyl triméthylammonium (ADAMQUAT),
- le bromure, chlorure ou méthylsulfate de 1-éthyl 2-vinylpyridinium, de 1-éthyl 4- vinylpyridinium ;
- le chlorure de N,N-diméthyldiallylammonium (DADMAC) ;
- le chlorure de diméthylaminopropylméthacrylamide,N-(3-chloro-2-hydroxypropyl) triméthylammonium (DIQUAT) ;
- le monomère de formule
Figure imgf000056_0001
où X" est un anion, de préférence chlorure ou méthylsulfate.
10. Composition selon l'une des revendications précédentes, caractérisée en ce que les unités éventuelles neutres CN sont des unités neutres hydrophiles CNphιie dérivant de monomères Cnphiie choisis parmi les monomères suivants:
- les acrylates et méthacrylates d'hydroxyéthyle,
- l'acrylamide,
- le méthacrylamide,
- l'alcool vinylique, - la vinylpyrrolidone,
- le vinylcaprolactame.
1 1. Composition selon l'une des revendications précédentes, caractérisée en ce que le nanogel présente une masse molaire d'au moins 350000 g/mol.
12. Composition selon l'une des revendications précédentes, caractérisée en ce qu'il s'agit d'une composition de traitement, de préférence de nettoyage, de surfaces dures ou de surfaces textiles.
13. Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend au moins un tensioactif.
14. Utilisation du nanogel cationique tel que défini dans l'une des revendications 1 à 9, dans une composition de soins ménagers.
15. Utilisation selon la revendication 14, caractérisée en ce que la composition de soins ménagers est d'une composition de traitement, de préférence de nettoyage, de surfaces dures ou de surfaces textiles.
16. Utilisation selon l'une des revendications 14 ou 15, caractérisée en ce que la composition est une composition de lavage du linge à la main ou en machine semi automatique, le nanogel étant utilisé à titre
- d'agent de stabilisation de mousse, de préférence à l'ajout de salissures, et/ou - à titre d'agent anti-redeposition.
17. Utilisation selon l'une des revendications 14 ou 1 5, caractérisée en ce que la composition est une composition de nettoyage de surfaces dures, le nanogel étant utilisé à titre d'agent d'hydrophilisation et/ou à titre d'agent anti-salissures.
18. Méthode de mise en œuvre de soins ménagers, comprenant une étape de mise en contact d'une surface ménagère, de préférence une surface textile ou une surface dure ménager, avec une composition telle que définie dans l'une des revendications 1 à 13, le cas échéant après une dilution préalable.
PCT/EP2009/063670 2008-10-22 2009-10-19 Composition pour les soins menagers comprenant un nanogel cationique WO2010046342A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI0919642A BRPI0919642A2 (pt) 2008-10-22 2009-10-19 composição para cuidados domésticos, utilização de um nanogel catiônico e processo de realização de cuidados domésticos.
CN2009801478573A CN102227496A (zh) 2008-10-22 2009-10-19 含有阳离子纳米凝胶的家居护理组合物
US13/125,769 US8791058B2 (en) 2008-10-22 2009-10-19 Composition for household care containing a cationic nanogel
EP09740106.1A EP2346974B1 (fr) 2008-10-22 2009-10-19 Composition pour les soins menagers comprenant un nanogel cationique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR08/05854 2008-10-22
FR0805854A FR2937336B1 (fr) 2008-10-22 2008-10-22 Composition pour les soins menagers comprenant un nanogel cationique

Publications (1)

Publication Number Publication Date
WO2010046342A1 true WO2010046342A1 (fr) 2010-04-29

Family

ID=40652729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/063670 WO2010046342A1 (fr) 2008-10-22 2009-10-19 Composition pour les soins menagers comprenant un nanogel cationique

Country Status (6)

Country Link
US (1) US8791058B2 (fr)
EP (1) EP2346974B1 (fr)
CN (2) CN102227496A (fr)
BR (1) BRPI0919642A2 (fr)
FR (1) FR2937336B1 (fr)
WO (1) WO2010046342A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042167A1 (fr) 2010-09-30 2012-04-05 Rhodia Operations Préparation de polymères hydrophiles de haute masse par polymérisation radicalaire controlée
WO2013030169A1 (fr) 2011-08-31 2013-03-07 Akzo Nobel Chemicals International B.V. Compositions détergentes pour linge comprenant un agent antisalissure
US20130072576A1 (en) * 2010-03-18 2013-03-21 Universidad Del Pais Vasco Cationic Nanogels For Biotechnological Applications

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2917415B1 (fr) * 2007-06-14 2012-10-12 Rhodia Recherches Et Tech Microgel polymerique comprenant des unites cationiques
EP2674477B1 (fr) 2010-04-01 2018-09-12 The Procter and Gamble Company Composition comprenant des microcapsules stabilisées par un polymère cationique
EP2553075B1 (fr) * 2010-04-01 2014-05-07 The Procter and Gamble Company Compositions de soin de textile comprenant des copolymères
WO2015139234A1 (fr) * 2014-03-19 2015-09-24 The Procter & Gamble Company Composition de détergent liquide
WO2015139220A1 (fr) * 2014-03-19 2015-09-24 Rhodia Operations Nouveaux copolymères utiles dans des compositions détergentes liquides
US20160145547A1 (en) * 2014-11-25 2016-05-26 Milliken & Company Film-Encased Cleaning Composition
EP3034595B1 (fr) * 2014-12-15 2018-12-05 S.P.C.M. Sa Épaississants contenant un polymère cationique
CN105820806B (zh) * 2016-04-25 2019-01-08 中国石油集团渤海钻探工程有限公司 一种改性羧甲基胍胶稠化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018650A1 (fr) * 2001-08-21 2003-03-06 Basf Aktiengesellschaft Utilisation de polymeres amphoteres comme additifs favorisant le decollement de salissures dans des produits pour traiter des surfaces
WO2003102043A1 (fr) * 2002-06-04 2003-12-11 Ciba Specialty Chemicals Holdings Inc. Preparations polymeres aqueuses
WO2004050815A1 (fr) * 2002-11-29 2004-06-17 Ciba Specialty Chemicals Holding Inc. Compositions aqueuses comprenant des homopolymeres et/ou des copolymeres
EP1698688A1 (fr) * 2005-03-04 2006-09-06 Rohm and Haas Company Compositions de lessive et utilisation
FR2894971A1 (fr) * 2005-12-20 2007-06-22 Rhodia Recherches & Tech Composition pour le traitement et/ou la modification de surfaces dures, comprenant un polymere synthetique
EP2039338A1 (fr) * 2007-09-20 2009-03-25 Rhodia Opérations Composition fortement mousseuse

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50127991A (fr) 1974-03-29 1975-10-08
US4728455A (en) 1986-03-07 1988-03-01 Lever Brothers Company Detergent bleach compositions, bleaching agents and bleach activators
US5108660A (en) 1990-01-29 1992-04-28 The Procter & Gamble Company Hard surface liquid detergent compositions containing hydrocarbyl amidoalkylenesulfobetaine
GB9003741D0 (en) 1990-02-19 1990-04-18 Unilever Plc Bleach activation
US5280117A (en) 1992-09-09 1994-01-18 Lever Brothers Company, A Division Of Conopco, Inc. Process for the preparation of manganese bleach catalyst
US5536452A (en) 1993-12-07 1996-07-16 Black; Robert H. Aqueous shower rinsing composition and a method for keeping showers clean
AU711960B2 (en) 1995-02-02 1999-10-28 Procter & Gamble Company, The Automatic dishwashing compositions comprising cobalt chelated catalysts
CA2211717C (fr) 1995-02-02 2001-04-03 The Procter & Gamble Company Compositions pour le lavage automatique de la vaisselle comprenant des catalyseurs cobalteux
ES1030318Y (es) 1995-03-01 1996-02-01 Esteban German Monfort Dispositivo calefactor para motocicletas.
US5763548A (en) 1995-03-31 1998-06-09 Carnegie-Mellon University (Co)polymers and a novel polymerization process based on atom (or group) transfer radical polymerization
US5559261A (en) 1995-07-27 1996-09-24 The Procter & Gamble Company Method for manufacturing cobalt catalysts
KR100479628B1 (ko) 1996-07-10 2005-04-06 이.아이,듀우판드네모아앤드캄파니 리빙 특성을 갖는 중합 방법
AUPO460797A0 (en) * 1997-01-15 1997-02-06 University Of Melbourne, The Polymerisation process
FR2764892B1 (fr) 1997-06-23 2000-03-03 Rhodia Chimie Sa Procede de synthese de polymeres a blocs
JP2001510208A (ja) 1997-07-15 2001-07-31 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド ニトロソ化合物又はニトロン化合物から誘導されたアルコキシアミン化合物を含む重合可能な組成物
CA2248476A1 (fr) 1997-10-01 1999-04-01 Unilever Plc Activation du blanchiment
NZ505654A (en) 1997-12-18 2002-03-28 John Chiefair Living polymerisation process whereby photo-initiators of polymerisation utilises a thermal process resulting in polymers of controlled molecular weight and low polydispersity
CA2355252C (fr) 1998-12-18 2008-03-04 Basf Coatings Ag Procede de production d'un produit de reaction polymere
PL197702B1 (pl) 1998-12-23 2008-04-30 Basf Ag Środki powłokowe i ich zastosowanie
AUPP939299A0 (en) 1999-03-23 1999-04-15 University Of Melbourne, The Polymer gels and methods for their preparation
FR2794463B1 (fr) 1999-06-04 2005-02-25 Rhodia Chimie Sa Procede de synthese de polymeres par polymerisation radicalaire controlee a l'aide de xanthates halogenes
FR2812293B1 (fr) 2000-07-28 2002-12-27 Rhodia Chimie Sa Procede de synthese de polymeres a blocs par polymerisation radicalaire controlee
US6569969B2 (en) 2000-09-28 2003-05-27 Symyx Technologies, Inc. Control agents for living-type free radical polymerization, methods of polymerizing and polymers with same
AU2002953369A0 (en) 2002-11-27 2003-01-09 The University Of Melbourne Free radical polymerisation process for microgel preparation
AU2002953359A0 (en) 2002-11-27 2003-01-09 The University Of Melbourne Microgel composition
US8828152B2 (en) * 2008-07-31 2014-09-09 Ppg Industries Ohio, Inc. Passivated metal core substrate and process for preparing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018650A1 (fr) * 2001-08-21 2003-03-06 Basf Aktiengesellschaft Utilisation de polymeres amphoteres comme additifs favorisant le decollement de salissures dans des produits pour traiter des surfaces
WO2003102043A1 (fr) * 2002-06-04 2003-12-11 Ciba Specialty Chemicals Holdings Inc. Preparations polymeres aqueuses
WO2004050815A1 (fr) * 2002-11-29 2004-06-17 Ciba Specialty Chemicals Holding Inc. Compositions aqueuses comprenant des homopolymeres et/ou des copolymeres
EP1698688A1 (fr) * 2005-03-04 2006-09-06 Rohm and Haas Company Compositions de lessive et utilisation
FR2894971A1 (fr) * 2005-12-20 2007-06-22 Rhodia Recherches & Tech Composition pour le traitement et/ou la modification de surfaces dures, comprenant un polymere synthetique
WO2007071591A1 (fr) * 2005-12-20 2007-06-28 Rhodia Operations Composition pour le traitement et/ou la modification de surfaces dures, comprenant un polymere synthetique
EP2039338A1 (fr) * 2007-09-20 2009-03-25 Rhodia Opérations Composition fortement mousseuse

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130072576A1 (en) * 2010-03-18 2013-03-21 Universidad Del Pais Vasco Cationic Nanogels For Biotechnological Applications
WO2012042167A1 (fr) 2010-09-30 2012-04-05 Rhodia Operations Préparation de polymères hydrophiles de haute masse par polymérisation radicalaire controlée
FR2965564A1 (fr) * 2010-09-30 2012-04-06 Rhodia Operations Preparation de polymeres hydrophiles de haute masse par polymerisation radicalaire controlee
US20130267661A1 (en) * 2010-09-30 2013-10-10 Centre National De La Recherche Scientifique (C.N.R.S) Preparation of Hydrophilic Polymers of High Mass by Controlled Radical Polymerization
CN103596987A (zh) * 2010-09-30 2014-02-19 罗地亚管理公司 通过受控自由基聚合制备大质量亲水性聚合物
EP3239186A1 (fr) 2010-09-30 2017-11-01 Rhodia Operations Préparation de polymères hydrophiles de haute masse par polymérisation radicalaire controlée
US9975980B2 (en) * 2010-09-30 2018-05-22 Rhodia Operations Preparation of hydrophilic polymers of high mass by controlled radical polymerization
WO2013030169A1 (fr) 2011-08-31 2013-03-07 Akzo Nobel Chemicals International B.V. Compositions détergentes pour linge comprenant un agent antisalissure

Also Published As

Publication number Publication date
EP2346974B1 (fr) 2014-06-04
CN104804897A (zh) 2015-07-29
US20110271460A1 (en) 2011-11-10
CN102227496A (zh) 2011-10-26
EP2346974A1 (fr) 2011-07-27
FR2937336A1 (fr) 2010-04-23
FR2937336B1 (fr) 2011-06-10
US8791058B2 (en) 2014-07-29
BRPI0919642A2 (pt) 2015-12-08

Similar Documents

Publication Publication Date Title
EP2346974B1 (fr) Composition pour les soins menagers comprenant un nanogel cationique
EP1966305A1 (fr) Composition pour le traitement et/ou la modification de surfaces dures, comprenant un polymere synthetique
CA2516405C (fr) Composition nettoyante ou rincante pour surfaces dures
JP2009520091A6 (ja) 合成ポリマーを含み、硬質表面を処理および/または修飾するための組成物
EP2212409B1 (fr) Copolymere pour le traitement de linge ou de surface dure
EP1966259B1 (fr) Copolymere comprenant des unites zwitterioniques et d'autres unites, composition comprenant le copolymere, et utilisation
EP2152845B1 (fr) Composition de nettoyage pour surface dure avec agent d'hydrophilisation et procédé pour nettoyer des surfaces dures
JP4215982B2 (ja) 硬質表面を処理するための両性重合体の使用法
EP2340299B1 (fr) Copolymere pour le traitement ou la modification de surfaces
JP2019535878A (ja) コポリマーおよび洗浄剤組成物中でのそれらの使用
FR2851573A1 (fr) Composition nettoyante ou rincante pour surfaces dures
JP2017510679A (ja) 液体洗剤組成物に有用な新規コポリマー
JP2017510680A (ja) 液体洗剤組成物に有用な新規コポリマー
FR2923218A1 (fr) Copolymere pour le traitement ou la modification de surfaces
FR2928377A1 (fr) Copolymere pour le traitement ou la modification de surfaces

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147857.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09740106

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2703/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009740106

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13125769

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0919642

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110420