WO2010044300A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2010044300A1
WO2010044300A1 PCT/JP2009/063120 JP2009063120W WO2010044300A1 WO 2010044300 A1 WO2010044300 A1 WO 2010044300A1 JP 2009063120 W JP2009063120 W JP 2009063120W WO 2010044300 A1 WO2010044300 A1 WO 2010044300A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting diode
liquid crystal
voltage
crystal display
Prior art date
Application number
PCT/JP2009/063120
Other languages
English (en)
French (fr)
Inventor
藤原 晃史
貴行 村井
山本 智彦
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2010533851A priority Critical patent/JP5394387B2/ja
Priority to US13/122,973 priority patent/US20110199401A1/en
Priority to EP09820478A priority patent/EP2339393A4/en
Priority to BRPI0920123A priority patent/BRPI0920123A2/pt
Priority to CN2009801408941A priority patent/CN102187266A/zh
Publication of WO2010044300A1 publication Critical patent/WO2010044300A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/18Controlling the intensity of the light using temperature feedback
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/064Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix

Definitions

  • the present invention relates to a liquid crystal display device.
  • it is a liquid crystal display device in which a plurality of light emitting diodes are arranged, and relates to control of the light emitting diodes.
  • a backlight is disposed on the back side of a liquid crystal display unit including a liquid crystal layer.
  • the light irradiated by the backlight is irradiated to the back surface of the liquid crystal display unit.
  • the liquid crystal display unit operates a voltage applied between two substrates sandwiching the liquid crystal layer, whereby the liquid crystal layer is operated in a mode of blocking light and a mode of allowing light to pass through, and a desired color is obtained through a color filter.
  • Light is displayed.
  • a backlight of such a liquid crystal display device for example, as disclosed in Japanese Patent Application Laid-Open No. 2007-165632 (Patent Document 1), a light-emitting diode (LED: light-emitting diode) is used as a light source. is there.
  • the light emitting diode generally has a characteristic that the relative luminance decreases as the ambient temperature increases.
  • a light emitting diode is used as the backlight device, it is necessary to take measures to maintain a constant light emission luminance regardless of temperature changes.
  • This publication discloses that a diode is used as a temperature sensor, temperature around the light emitting diode is measured, and temperature correction in the light emitting diode block is performed.
  • the color temperature and luminance of the light emitting diode can be maintained in a stable state.
  • the present invention proposes a novel structure that can control the color temperature and luminance of a light emitting diode (LED) in a stable state with higher accuracy.
  • a plurality of light emitting diodes are arranged on the back surface of the liquid crystal display unit.
  • a thermistor is provided separately from the light emitting diodes in a region where the plurality of light emitting diodes are disposed.
  • the liquid crystal display device further includes a light emission control unit that controls a voltage applied to the light emitting diode. Based on the temperature information acquired from the thermistor, the light emission control unit lowers the target value of the voltage applied to the light emitting diode when the temperature increases, and increases the target value of the voltage applied to the light emitting diode when the temperature decreases.
  • the voltage target value decreases as the temperature increases, and the voltage target value increases as the temperature decreases, as controlled by the light emission control unit.
  • the light emitting diode can emit light stably, and heat generation and power consumption can be kept low.
  • the liquid crystal display device may include a target voltage storage unit that stores in advance a relationship between temperature information acquired from the thermistor and a target value of a voltage applied to the light emitting diode.
  • the light emission control unit sets the target value of the voltage to be applied to the light emitting diode from the relationship between the temperature information stored in the target voltage storage unit and the voltage target value based on the temperature information acquired from the thermistor. Good.
  • the liquid crystal display device may include a reference voltage storage unit that stores a reference voltage for a target value of a voltage applied to the light emitting diode.
  • the light emission control unit may correct the reference voltage stored in the reference voltage storage unit based on the temperature information acquired from the thermistor and set the target value of the voltage applied to the light emitting diode.
  • a plurality of thermistors may be dispersed and arranged in a region where a plurality of light emitting diodes are arranged.
  • the light emission control unit divides the region where the plurality of light emitting diodes are arranged into a plurality of regions, acquires temperature information of each region based on the thermistor, and sets a target value of a voltage to be applied to the light emitting diode for each region. It may be set.
  • the target value of the voltage applied to the light emitting diode may be set based on the lower limit value of the VF value of the light emitting diode.
  • the plurality of light emitting diodes may include three types of light emitting diodes that emit R, G, and B light that are combined to form white light.
  • the light emission control unit may vary the target value of the voltage applied to the light emitting diode with respect to the temperature information acquired from the thermistor by the light emitting diode emitting R, G, B light.
  • the light emission control unit includes a light emitting diode that emits light of R and a light emitting diode that emits light of G and B, and the voltage applied to the light emitting diode with respect to temperature information acquired from the thermistor.
  • the target value may be varied.
  • the thermistor can be configured using, for example, a sintered body in which a metal oxide is mixed. Also, the number of thermistors for the light emitting diodes may vary partially.
  • the present invention can also be applied to a backlight that illuminates the back surface of a liquid crystal display unit of a liquid crystal display device.
  • the backlight includes a plurality of light emitting diodes disposed so as to face the back surface of the liquid crystal display unit, and a thermistor provided separately from the light emitting diodes in a region where the plurality of light emitting diodes are disposed. It is good to have. And based on the temperature information acquired from a thermistor, you may provide the light emission control part which controls the voltage applied to a light emitting diode.
  • the light emission control unit lowers the target value of the voltage applied to the light emitting diode when the temperature increases, and sets the target value of the voltage applied to the light emitting diode when the temperature decreases. It should be high.
  • temperature information is obtained from a thermistor provided separately from the light emitting diodes in an area where the plurality of light emitting diodes are disposed. Perform one step. Next, based on the temperature information acquired in the first step, a second step of setting a target value of the voltage to be applied to the light emitting diode from the relationship between the temperature information stored in advance and the target value of the voltage is executed. Then, based on the voltage target value set in the second step, the third step of controlling the voltage applied to the light emitting diode is executed.
  • a method for controlling a backlight for a liquid crystal display device includes a first step of acquiring temperature information from a thermistor provided in a region where a plurality of light emitting diodes are arranged separately from the light emitting diodes. Execute. Next, the reference voltage stored in advance for the target value of the voltage applied to the light emitting diode is corrected based on the temperature information acquired in the first step, and the second target voltage value to be applied to the light emitting diode is set. Perform steps. Then, based on the voltage target value set in the second step, the third step of controlling the voltage applied to the light emitting diode is executed.
  • FIG. 1 is a cross-sectional view showing a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a liquid crystal panel of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 3 is a plan view showing a pixel region portion of the array substrate of the liquid crystal display device according to the embodiment of the present invention.
  • FIG. 4 is a plan view showing a pixel region portion of the color filter substrate of the liquid crystal display device according to the embodiment of the present invention.
  • FIG. 5A is a partially enlarged plan view showing an arrangement of light emitting diodes and thermistors of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 5B is a plan view showing an arrangement of light emitting diodes and thermistors of the liquid crystal display device according to the embodiment of the present invention.
  • FIG. 6A is a diagram showing a relationship between the VF value of the light emitting diode and the temperature.
  • FIG. 6B is a diagram illustrating a relationship between the VF value of the light emitting diode and the temperature.
  • FIG. 6C is a diagram showing the relationship between the temperature and the target voltage value for the liquid crystal display device according to the embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a liquid crystal display device according to another embodiment of the present invention.
  • FIG. 8 is a plan view showing a configuration example of the substrate disposed inside the backlight chassis of the liquid crystal display device according to the embodiment of the present invention.
  • FIG. 1 schematically shows a cross-sectional configuration of a liquid crystal display device 100 according to an embodiment of the present invention.
  • the liquid crystal display device 100 includes a liquid crystal panel 10 as a liquid crystal display unit and a backlight 20.
  • a light emitting diode (LED) is used as the light source 22 of the backlight 20.
  • LED light emitting diode
  • the liquid crystal panel 10 of the liquid crystal display device 100 generally has a rectangular shape as a whole, and is composed of a pair of translucent substrates 11 and 12 (glass substrates).
  • the front side of the substrates 11 and 12 is the color filter substrate 11 (CF substrate), and the back side is the array substrate 12 (TFT substrate).
  • the color filter substrate 11 and the array substrate 12 each have a pixel region 10a (region in which pixels are formed).
  • the color filter substrate 11 and the array substrate 12 are arranged to face each other.
  • a sealing material 15 is provided between the color filter substrate 11 and the array substrate 12 so as to surround the periphery (outer peripheral edge) of the pixel region 10a in the circumferential direction.
  • a liquid crystal layer 13 is provided between the color filter substrate 11 and the array substrate 12.
  • the liquid crystal layer 13 is filled with a liquid crystal material containing liquid crystal molecules.
  • the orientation of liquid crystal molecules is manipulated in accordance with the application of an electric field between the color filter substrate 11 and the array substrate 12, and the optical characteristics change.
  • the sealing material 15 seals the liquid crystal material of the liquid crystal layer 13.
  • FIG. 2 shows a cross-sectional view of the state in which the color filter substrate 11 and the array substrate 12 are bonded together.
  • 3 shows a plan view of the pixel region portion of the array substrate 12
  • FIG. 4 shows a plan view of the pixel region portion of the color filter substrate 11.
  • a region surrounded by a broken line A in FIGS. 3 and 4 indicates a region constituting one pixel of the liquid crystal display device 100.
  • the array substrate 12 includes a pixel electrode 42, bus lines 43a to 43c (bus lines), a planarizing layer on the front side (liquid crystal layer 13 side) of the glass substrate 41. 44, an alignment film 46 (horizontal alignment film), and a thin film transistor 47 are formed.
  • the pixel electrode 42 is made of ITO (indium tin oxide) which is a transparent conductive material. A voltage corresponding to an image is applied to the pixel electrode 42 via bus lines 43a to 43c and a thin film transistor 47 (see FIG. 3). It is supplied at a predetermined timing.
  • the planarization layer 44 is made of an insulating material and covers the pixel electrode 42 and the bus lines 43a to 43c (see FIG. 3).
  • An alignment film 46 made of polyimide or the like is formed on the flattening layer 44 (on the liquid crystal layer 13 side).
  • the surface of the alignment film 46 (the surface on the liquid crystal layer 13 side) is subjected to an alignment process in order to determine the alignment direction of the liquid crystal molecules when no voltage is applied.
  • the color filter substrate 11 has a black matrix 52, a color filter 53, a planarization layer 54, a counter electrode 55 and an alignment film 56 on the back side (liquid crystal layer 13 side) of the glass substrate 51. (Horizontal alignment film) is formed.
  • the black matrix 52 is formed of a metal such as Cr (chromium) in order to prevent light from passing through the region between the pixels.
  • the color filter 53 has three colors of red (R), green (G), and blue (B).
  • R, green (G), and blue (B) As shown in FIGS. 2 to 4, one pixel electrode 42 of the array substrate 12 is opposed to any one of R, G, and B color filters 53.
  • the planarization layer 54 is formed so as to cover the black matrix 52 and the color filter 53.
  • a counter electrode 55 made of ITO (indium-tin-oxide) is formed below the flattening layer 54 (on the liquid crystal layer 13 side).
  • An alignment film 56 is formed below the counter electrode 55 (on the liquid crystal layer 13 side).
  • An alignment treatment is also applied to the surface of the alignment film 56 (the surface on the liquid crystal layer 13 side).
  • the alignment direction of the alignment film 46 of the array substrate 12 and the alignment direction of the alignment film 56 of the color filter substrate 11 are different by 90 °.
  • the glass substrates 41 and 51 are arranged with a spherical or cylindrical spacer 59 (spherical in the illustrated example) sandwiched therebetween.
  • the spacer 59 is made of, for example, plastic or glass.
  • the gap between the glass substrates 41 and 51 is held by the sealing material 15 (see FIG. 1) and the spacer 59 described above, and the liquid crystal layer 13 is kept constant.
  • polarizing plates 17 and 18 are attached to the front surface side of the color filter substrate 11 (glass substrate 51) and the back surface side of the array substrate 12 (glass substrate 41), respectively. .
  • the polarizing axes of the two polarizing plates 17 and 18 are arranged so as to be orthogonal to each other.
  • the polarization axes of the two polarizing plates 17 and 18 are arranged in parallel.
  • a bezel 30 is attached to the front side of the liquid crystal panel 10.
  • a frame 32 is attached to the back side of the liquid crystal panel 10.
  • the bezel 30 and the frame 32 support the liquid crystal panel 10. Further, the frame 32 has an opening corresponding to the pixel region 10 a of the liquid crystal panel 10.
  • a backlight 20 supported by a backlight chassis 24 is mounted on the back side of the liquid crystal panel 10.
  • the backlight 20 is an external light source disposed on the back side (right side in FIG. 1) of the liquid crystal panel 10 as shown in FIG.
  • the backlight 20 includes a plurality of light emitting diodes 22 (LEDs) and a backlight chassis 24.
  • the backlight chassis 24 has a box shape opened toward the front side (the liquid crystal panel 10 side), and a plurality of light emitting diodes 22 are dispersed in the backlight chassis 24. Has been placed. The arrangement and control of the light emitting diode 22 will be described in more detail later.
  • a plurality of optical sheets 26 are stacked in the opening of the backlight chassis 24.
  • the optical sheet 26 has, for example, a diffusion plate, a diffusion sheet, a lens sheet, and a brightness enhancement sheet in order from the back side.
  • the backlight chassis 24 is mounted on the back side of the frame 32 of the liquid crystal panel 10 with the light emitting diode 22 facing the liquid crystal panel 10 described above.
  • the optical sheet 26 is sandwiched between the back surface of the frame 32 of the liquid crystal panel 10 and the surface of the backlight chassis 24.
  • the liquid crystal display device 100 includes a control unit 200 (for example, a light control circuit such as a cold cathode tube inverter circuit) that adjusts the luminance (brightness) of the backlight 20.
  • a control unit 200 for example, a light control circuit such as a cold cathode tube inverter circuit
  • control unit 200 adjusts the brightness of the backlight 20 by adjusting the power supplied to the backlight 20.
  • the control unit 200 can brighten the backlight 20 (increase the luminance) by increasing the power supplied to the backlight 20.
  • control unit 200 can darken the backlight 20 (decrease the luminance) by reducing the power supplied to the backlight 20.
  • the liquid crystal molecules in the liquid crystal layer 13 are manipulated by applying a controlled voltage to the color filter substrate 11 and the array substrate 12.
  • the liquid crystal panel 10 blocks or passes light from the backlight 20 by manipulating liquid crystal molecules in the liquid crystal layer 13 for each pixel (more specifically, for each sub-pixel defined by RGB).
  • the light transmittance can be changed.
  • the liquid crystal display device 100 displays a desired image while controlling the luminance and the like of the backlight 20.
  • the backlight 20 uses a plurality of light emitting diodes 22 as light sources, as shown in FIG.
  • the plurality of light emitting diodes 22 are three types of light emitting diodes that emit R, G, and B light that are combined to form white light.
  • the backlight 20 is preferably white light in which the balance of RGB light intensity and the like is adjusted.
  • the backlight 20 in which the light emitting diode 22 is used includes a configuration in which white LEDs that emit white light are arranged to emit white illumination light, and three colors of R (red), G (green), and B (blue). LEDs (light emitting diodes) are arranged, and these three colors of light are mixed to produce white light.
  • a method of obtaining white by combining RGB phosphors with a short wavelength LED chip a method of obtaining white by combining yellow phosphors with a blue LED chip, or a three-color LED chip of RGB
  • a method of obtaining white as mixed light a method of obtaining white as mixed light of two-color LED chips which are complementary colors, and the like.
  • the light emitting diode 22 is mounted on the reflection substrate 25 disposed inside the backlight chassis 24 so as to face the back surface of the liquid crystal panel 10.
  • the light emitting diode 22 has a light emitting portion directed to the back surface of the liquid crystal panel 10.
  • the reflective substrate 25 has a mirror surface that reflects light on a surface 25 a (reflective surface) facing the liquid crystal panel 10. Then, the light of the light emitting diode 22 leaked to the reflective substrate 25 side is reflected toward the back surface of the liquid crystal panel 10 by the surface 25a.
  • the light emitting diodes 22 are distributed on the reflective substrate 25.
  • 5A and 5B are plan views schematically showing a surface 25a of the reflective substrate 25 facing the liquid crystal panel 10, and FIG.
  • FIG. 5A is an enlarged plan view of a portion indicated by an arrow 5a in FIG. 5B. .
  • the light emitting diodes 22 are arranged in a lattice pattern on the surface 25a.
  • the arrangement of the light emitting diodes 22 is not limited to the lattice shape shown in FIG. 5A. For example, even in an arrangement in which the positions of the light emitting diodes 22 are evenly shifted for each column (staggered lattice shape or zigzag shape). Good.
  • LEDs light emitting diodes
  • the control unit 200 controls the voltage and current applied to each light emitting diode 22.
  • the liquid crystal display device 100 includes a control unit 200 and a thermistor 28 (temperature sensor).
  • the control unit 200 controls the brightness and color temperature of the backlight 20.
  • FIG. 1 schematically illustrates the control unit 200 and the thermistor 28.
  • the structure of the liquid crystal display device 100 please refer to FIG. 1 as appropriate.
  • the control unit 200 is an electronic processing device, and includes a calculation unit having a calculation function configured by an MPU, a CPU, and the like, and a storage unit configured by a nonvolatile memory or the like.
  • the control unit 200 is configured to realize a required function by a program stored in advance. Although description is omitted, in this embodiment, the control unit 200 actually controls other than the luminance and color temperature of the backlight 20. For example, the voltage applied to the liquid crystal layer 13 of the liquid crystal panel 10 is controlled.
  • the thermistor 28 is provided separately from the light emitting diodes 22 in a region where the plurality of light emitting diodes 22 are disposed.
  • the thermistor 28 is installed on the reflective substrate 25 on which the light emitting diode 22 is disposed.
  • the light emitting diodes 22 are arranged in a grid pattern on the surface 25a of the reflective substrate 25 on the liquid crystal panel 10 side.
  • the thermistor 28 is arranged at the center of the four light emitting diodes 22 arranged in a lattice shape with the detection unit facing the liquid crystal panel 10 side of the reflective substrate 25.
  • a plurality of thermistors 28 are distributed in a region where the plurality of light emitting diodes 22 are arranged according to the arrangement of the light emitting diodes 22. It is good to arrange them. By disposing and disposing the plurality of thermistors 28 in the region where the plurality of light emitting diodes 22 are disposed, the temperature change in the region where the light emitting diodes 22 are disposed can be obtained more finely.
  • the arrangement of the light emitting diode 22 and the thermistor 28 are not limited to the above, and may be arranged at appropriate positions.
  • the thermistors 28 are uniformly distributed.
  • the thermistors 28 do not necessarily need to be uniformly distributed, and may be arranged by selecting an appropriate position according to the specific configuration of the liquid crystal panel 10 and the like.
  • thermistor 28 various thermistors capable of electrically acquiring temperature information based on a change in resistance value with respect to a temperature change can be used.
  • a thermistor using a sintered body in which an oxide of a metal such as nickel, manganese, cobalt, or iron is mixed can be used.
  • Such a thermistor generally constitutes an NTC (negative temperature coefficient) in which the resistance decreases as the temperature rises.
  • the thermistor 28 may be selected so that the change in temperature and the resistance value are approximately proportional and the change in resistance value with respect to the temperature change is large. Thereby, temperature information can be acquired easily and accurately.
  • the light emitting diode 22 is controlled based on temperature information obtained by the thermistor 28.
  • the thermistor 28 is electrically connected to the control unit 200 by a wiring 28a (see FIG. 1).
  • the light emitting diode 22 is connected to the control unit 200 through the wiring 22a (see FIG. 1).
  • the control unit 200 electrically applies a voltage applied to the light emitting diode 22 based on temperature information obtained from the thermistor 28. To control.
  • control unit 200 includes a light emission control unit 201 and a target voltage storage unit 202 as shown in FIG.
  • the light emission control unit 201 controls the voltage applied to the light emitting diode 22.
  • the light emission control unit 201 lowers the target value v1 of the voltage applied to the light emitting diode 22 when the temperature increases based on the temperature information acquired from the thermistor 28 (see FIG. 6C).
  • the light emission control part 201 makes the target value v1 of the voltage applied to the light emitting diode 22 high, when temperature falls based on the temperature information acquired from the thermistor 28 (refer FIG. 6C).
  • the luminance of the light emitting diode 22 may be adjusted by, for example, a pulse width modulation method or a PWM method (pulse width modulation).
  • the target voltage storage unit 202 stores in advance the relationship between the temperature information acquired from the thermistor 28 and the target value of the voltage applied to the light emitting diode 22.
  • the target voltage storage unit 202 stores the relationship between the temperature information and the voltage target value v1 in, for example, a table having the temperature information in one coordinate and the voltage target value v1 in another coordinate. Also good.
  • the light emission control unit 201 applies to the light emitting diode 22 from the relationship between the temperature information stored in the target voltage storage unit 202 and the voltage target value based on the temperature information acquired from the thermistor 28. Set the target voltage value.
  • the target voltage storage unit 202 may store the relationship between the temperature information acquired from the thermistor 28 and the target value of the voltage applied to the light emitting diode 22 based on the data.
  • the light-emitting diode 22 is tested in advance, and data is taken about the relationship between the ambient temperature of the light-emitting diode 22 and the VF value. Based on such data, the relationship between the temperature information acquired from the thermistor 28 and the target value of the voltage applied to the light emitting diode 22 may be stored.
  • the VF value refers to an allowable range of an applied voltage at which the light emitting diode emits light appropriately.
  • FIG. 6A, 6B and 6C show the relationship between the VF value of the light emitting diode and the temperature, respectively.
  • FIG. 6C further shows the relationship between the temperature and the voltage target value v1 for the liquid crystal display device 100 according to this embodiment.
  • 6A and 6B are comparative examples of FIG. 6C.
  • the lower limit L of the VF value tends to decrease as the temperature increases, as shown in FIG. 6A. Therefore, for example, considering that the light-emitting diode 22 emits light stably even at low temperatures, there is an idea that the target value v1 of the voltage is set based on the lower limit value of the VF value at low temperatures. For example, as shown in FIG. 6A, a voltage slightly higher than the lower limit L may be set as the voltage target value v1 based on the VF value at the low temperature. In this case, since the voltage applied to the light emitting diode 22 can be controlled with the target value v1 of a constant voltage, the voltage applied to the light emitting diode 22 can be easily controlled. However, in this case, when the temperature rises, the applied voltage may be increased beyond the upper limit of the VF value, and the light emitting diode 22 generates heat unnecessarily, and the power consumption becomes unnecessarily high.
  • the voltage applied to the light emitting diode 22 can be controlled with the target value v1 of a constant voltage, the voltage applied to the light emitting diode 22 can be easily controlled.
  • the voltage value applied to the light emitting diode 22 may be lower than the lower limit value L of the VF value, and the light emitting diode 22 may not be able to emit light stably.
  • the present inventor considers that it is desirable to apply an applied voltage slightly higher than the lower limit value L of the VF value to the light emitting diode 22 in consideration of the accuracy of the thermistor 28, voltage disturbance due to control, and the like. ing. That is, the lower limit L of the VF value indicates the lower limit of the applied voltage at which the light emitting diode 22 emits light appropriately at the temperature.
  • the amount of heat generation increases as the voltage applied to the light emitting diode 22 increases, and the power consumption increases.
  • the light emitting diode 22 cannot be made to emit light sufficiently at that temperature.
  • the light emitting diode 22 can be made to emit light stably, and heat generation and power consumption can be kept low. Can do.
  • the light emission control unit 201 controls the target value v1 of the voltage applied to the light emitting diode 22 based on the temperature information obtained from the thermistor 28, as shown in FIG. 6C. At this time, the light emission control unit 201 decreases the target value v1 of the voltage applied to the light emitting diode 22 when the temperature increases, and increases the target value v1 of the voltage applied to the light emitting diode 22 when the temperature decreases.
  • a plurality of thermistors 28 are attached. In this case, as the temperature information obtained from the thermistor 28, the minimum value (temperature information indicating the lowest temperature) among the temperature information of the plurality of thermistors 28 may be employed.
  • the applied voltage can be set based on the temperature of the area of the backlight 20 where the temperature is the lowest, and problems such as luminance spots due to insufficient voltage can be prevented.
  • the temperature information obtained from the thermistor 28 is not the minimum value of the temperature information of the plurality of thermistors 28, but temperature information indicating the lowest temperature (for example, the second or third). May be adopted. As a result, even when some thermistors show extremely low temperature information due to defects, it is possible to prevent the occurrence of malfunctions.
  • the temperature information of the thermistor 28 indicating the lowest temperature may be determined in consideration of the number of attached thermistors 28, the incidence of defective thermistors 28, and the like.
  • the relationship between the temperature information acquired from the thermistor 28 as described above and the target value v1 of the voltage applied to the light emitting diode 22 is stored in the target voltage storage unit 202.
  • the relationship between the temperature information and the voltage target value v1 is obtained by, for example, collecting data on the relationship between the temperature information acquired from the thermistor 28 and the VF value of the light emitting diode 22 by a test or the like performed in advance. Good.
  • the relationship between the temperature information and the voltage target value v1 is set so that the voltage target value v1 is slightly higher than the lower limit value L of the VF value.
  • the voltage target value v1 may be set based on the lower limit value L of the VF value of the light emitting diode 22.
  • the light emission control unit 201 calculates the light emitting diode from the relationship between the temperature information stored in the target voltage storage unit 202 and the voltage target value v1 (see FIG. 6C). A target value v1 of the voltage to be applied to 22 is set.
  • the light emission control unit 201 first acquires temperature information from a thermistor provided separately from the light emitting diode (first step). Next, based on the temperature information acquired in the first step and the relationship between the temperature information stored in advance and the voltage target value v1 (see FIG. 6C), the voltage target value v1 applied to the light emitting diode 22 is determined. Set (second step). Based on the voltage target value v1 set in the second step, the voltage applied to the light emitting diode 22 is controlled (third step). Then, the control from the first step to the third step is repeatedly executed at a predetermined timing.
  • the temperature information may be acquired from the thermistor 28 every predetermined time, and the control from the first step to the third step may be repeatedly executed.
  • the interval at which the temperature information is acquired from the thermistor 28 may be appropriately determined. However, if the frequency is too high, the control load increases and other controls may be affected. For example, when used in a television or the like, the interval may be about 0.5 to 15 seconds, and preferably 3 to 8 seconds.
  • the voltage target value v1 decreases as the temperature increases, and the voltage target value v1 increases as the temperature decreases.
  • the voltage applied to the light emitting diode 22 increases.
  • the voltage applied to the light emitting diode 22 decreases.
  • an applied voltage that is slightly higher than the lower limit value L of the VF value can be applied to the light emitting diode 22.
  • the light emitting diode 22 can be made to light-emit stably, Furthermore, generation
  • FIG. 7 shows another embodiment of the liquid crystal display device 100.
  • the control unit 200 may include a reference voltage storage unit 203 that stores a reference voltage v0 (see FIG. 6C) for a target value of a voltage applied to the light emitting diode 22. Then, the light emission control unit 201 corrects the reference voltage v0 stored in the reference voltage storage unit 203 based on the temperature information acquired from the thermistor 28, and sets the target value v1 of the voltage applied to the light emitting diode 22. May be.
  • the light emitting diode 22 has a certain relationship between the ambient temperature and the voltage to be applied, although there are individual differences. This relationship can be approximated by a linear relationship. For example, the relationship between the ambient temperature and the voltage to be applied can be replaced with a linear function or the like. Therefore, a reference voltage v0 (see FIG. 6C) to be applied to the light emitting diode 22 is determined, and the reference voltage v0 is appropriately corrected based on temperature information acquired from the thermistor 28.
  • the reference voltage v0 is preferably set to a voltage to be applied to the light emitting diode 22 at an appropriate temperature.
  • the voltage to be applied to the light emitting diode 22 at the reference temperature t0 may be set to the reference voltage v0.
  • an arithmetic expression used for such correction may be determined based on data collected in advance with respect to the relationship between the temperature around the light emitting diode 22 and the voltage applied to the light emitting diode 22, for example. Then, based on the temperature information obtained from the thermistor 28, the reference temperature t0, and the reference voltage v0, the voltage target value v1 may be obtained by a predetermined arithmetic expression.
  • the light emission control unit 201 first acquires temperature information from the thermistor 28 (first step). Next, with respect to the target value v1 of the voltage applied to the light emitting diode 22, the previously stored reference voltage v0 (see FIG. 6C) is corrected based on the temperature information acquired in the first step and applied to the light emitting diode 22.
  • a voltage target value v1 is set (second step). Based on the voltage target value v1 set in the second step, the voltage applied to the light emitting diode 22 is controlled (third step). Then, the control from the first step to the third step is repeatedly executed at a predetermined timing. Accordingly, as shown in FIG. 6C, the voltage target value v1 decreases as the temperature increases, and the voltage target value v1 increases as the temperature decreases.
  • the light emission control unit 201 decreases the voltage applied to the light emitting diode 22 when the temperature increases, and increases the voltage applied to the light emitting diode 22 when the temperature decreases, based on the temperature information acquired from the thermistor 28.
  • Various methods can be employed.
  • the target value v1 of the voltage decreases as the temperature increases and the target value v1 of the voltage decreases as the temperature decreases as controlled by the light emission control unit 201. Becomes higher. For this reason, when the temperature decreases, the voltage applied to the light emitting diode 22 increases, and when the temperature increases, the voltage applied to the light emitting diode 22 decreases. As a result, the light emitting diode 22 can emit light stably, and heat generation and power consumption can be kept low.
  • the target value v1 of the voltage is determined based on the lower limit value L of the VF value, and an applied voltage slightly higher than the lower limit value L of the VF value can be applied to the light emitting diode 22.
  • the voltage applied to the light emitting diode 22 can be appropriately controlled, the light emitting diode 22 can be caused to emit light more stably, and heat generation and power consumption can be suppressed to a low level.
  • the temperature does not become uniform in all the regions where the plurality of light emitting diodes 22 are arranged.
  • the temperature is uneven.
  • a plurality of electronic circuit boards 241 to 246 may be disposed inside the backlight chassis 24, as shown in FIG.
  • each of the electronic circuit boards 241 to 246 is subjected to required electronic processing, and at that time, heat is individually generated.
  • each substrate of the liquid crystal panel 10 on which wiring for passing electrical signals, such as a driving circuit of the liquid crystal panel 10, is laid also generates heat. Such heat is not uniform in the region where the light emitting diode 22 is disposed, and causes a spot in the temperature of the region where the light emitting diode 22 is disposed.
  • examples of the electronic circuit board include a terminal board 241, a power board 242, an AC inlet board 243, a liquid crystal controller board 244, a main board 245, and an LED control board 246.
  • the terminal board 241 has a function of inputting and outputting video and audio with the outside.
  • the power supply board 242 has a function of generating or supplying power to each board.
  • the AC inlet board 243 has a function of a noise filter.
  • the liquid crystal controller board 244 has a function of driving the liquid crystal panel.
  • the main substrate 245 has a function of controlling the operation of the entire liquid crystal display device 100.
  • each LED control board 246 has a function of driving the backlight 20 (specifically, the light emitting diode 22 (LED) as the light source 22).
  • FIG. 8 shows an example of the layout of each board, and the arrangement of each electronic circuit board is not limited to this illustrated example. In addition to the exemplified electronic circuit board, another electronic circuit board may be disposed, and a part of the exemplified electronic circuit board may not be mounted.
  • a plurality of thermistors 28 are distributed and arranged in a region where the plurality of light emitting diodes 22 are arranged.
  • the light emission control part 201 turns the area
  • the temperature information of each area is acquired based on the thermistor 28.
  • the target value v1 of the voltage applied to the light emitting diode 22 is set for every area.
  • FIG. 5A 4 arranged in a grid pattern as shown by broken lines B11, B12, B13,..., B21.
  • An area is set with two light emitting diodes 22 as a set.
  • a thermistor 28 is arranged at the center of each area.
  • 406 areas may be set with the four light emitting diodes 22 as a set.
  • the light emission control unit 201 acquires temperature information of each zone based on the thermistor 28.
  • the temperature information of the area can be acquired based on the thermistor 28 arranged at the center of each area.
  • the thermistor 28 may be defective. Therefore, in this embodiment, not only the thermistor 28 arranged at the center of each area, but also the temperature information of the area is acquired based on the area or a plurality of thermistors 28 around the area. Also good. In this case, it is preferable to take an average value of the temperature information based on the plurality of thermistors 28.
  • the average value may be obtained by omitting the maximum value and the minimum value. As a result, the influence of a single thermistor 28 can be minimized. Further, when the temperature information of the area is obtained based on the plurality of thermistors 28, the average value of the temperature information of the plurality of thermistors 28 is changed to the average value, and the minimum value (the most) You may employ
  • the temperature information obtained from the thermistor 28 is not the minimum value among the temperature information of the plurality of thermistors 28, but indicates the lowest temperature (for example, the second or third). Temperature information may be adopted. As a result, even when some thermistors show extremely low temperature information due to defects, it is possible to prevent the occurrence of malfunctions.
  • the light emission control unit 201 may set the target value v1 of the voltage to be applied to the light emitting diode 22 for each zone based on the temperature information of each zone obtained in this way. Thereby, the voltage applied to the light emitting diode 22 can be appropriately controlled for each zone according to the temperature information. For this reason, in particular, when a large liquid crystal panel 10 is used, even if the temperature is uneven in the region where the plurality of light emitting diodes 22 are arranged, the brightness and color temperature of the backlight are uneven. Can be prevented.
  • the area is not limited to the above-described embodiment, and may be appropriately determined depending on the number of light emitting diodes 22, the degree of dispersion, the degree of temperature spots generated in the region where the light emitting diodes 22 are arranged, and the like. That is, the area may be set so that the light emitting diode 22 can be appropriately controlled according to the specific configuration of the liquid crystal display device 100, such as the arrangement of the light emitting diode 22, the thermistor 28, and the arrangement of the substrate. For example, according to the specific configuration of the liquid crystal panel 10, the area may be finely divided at a part where the temperature change during driving may occur severely, and the area may be divided largely at a part where the temperature change during driving is small. .
  • the number of thermistors 28 with respect to the light emitting diodes 22 may partially vary. For example, the number of thermistors 28 may be increased with respect to the light emitting diode 22 in a portion where the temperature change during driving may occur drastically. Further, the number of thermistors 28 may be reduced with respect to the light emitting diode 22 in a portion where the temperature change during driving is small.
  • the plurality of light emitting diodes 22 include three types of light emitting diodes that emit R, G, and B light that are combined to form white light.
  • the light emission control unit 201 may be a light emitting diode that emits R, G, and B light, and may vary the target value v1 of the voltage applied to each light emitting diode. That is, different light emitting diodes are used for the light emitting diodes that emit R, G, and B light, and the relationship between the temperature and the VF value may be different. For this reason, the light emitting diodes emitting R, G, B light are appropriately controlled by varying the target value v1 of the voltage applied to each light emitting diode, respectively. be able to.
  • the light emission control unit 201 may vary the target value v1 of the voltage applied to the light emitting diode between the light emitting diode that emits R light and the light emitting diode that emits G and B light. That is, among the light emitting diodes that emit R, G, and B light, the light emitting diode that emits G and B light may have a similar or similar relationship between the temperature and the VF value. In this case, the light emitting diode that emits light of R and the light emitting diode that emits light of G and B differ in the target value v1 of the voltage applied to the light emitting diode, thereby emitting light of R, G, and B. Each of the diodes can be appropriately controlled.
  • the target value v1 of the voltage applied to the light emitting diodes emitting G, B light can be made the same in the light emitting diodes emitting R, G, B light. For this reason, compared with the case where the target value v1 of the voltage applied to the light emitting diodes is different for each of the light emitting diodes emitting R, G, and B light, the control configuration of the light emission control unit can be simplified.
  • the control configuration can be further modified.
  • a voltage target value v1 is obtained based on the temperature information of the thermistor 28, and then for each of the light emitting diodes that emit other light, a voltage target is obtained.
  • the value v1 may be obtained.
  • a voltage target value v 1 is obtained based on temperature information of the thermistor 28.
  • the target value v1 of the voltage of the light emitting diode emitting G and B light may be obtained from the target value v1 of the voltage applied to the light emitting diode emitting R light.
  • the light emission control unit may vary the target value of the voltage applied to the light emitting diode with respect to the temperature information acquired from the thermistor for each of the light emitting diodes emitting R, G, and B light.
  • liquid crystal display device according to one embodiment of the present invention has been described above, but the liquid crystal display device according to the present invention is not limited to the above-described embodiment.
  • the specific configuration of the liquid crystal display device is not limited to the above-described embodiment.
  • a so-called direct backlight is employed as the backlight, and a plurality of light emitting diodes are arranged in the backlight chassis, and a surface light source facing the liquid crystal panel 10 is formed.
  • the configuration of the backlight is not limited to such a form.
  • the backlight is a so-called edge light type (also called “side light type”) in which a linear light source in which light emitting diodes are arranged in a straight line is placed on the side surface of the light guide plate and converted into a planar light source.
  • the backlight may be used.
  • Liquid crystal panel liquid crystal display
  • Pixel region 11 Color filter substrate (CF substrate, translucent substrate) 12 Array substrate (TFT substrate, translucent substrate) 13 Liquid crystal layer 15 Sealing material 17, 18 Polarizing plate 20
  • Backlight 22
  • Light emitting diode (light source) 22a
  • Wiring 24
  • Backlight chassis 25
  • Reflecting substrate 25a Reflecting surface (surface facing the liquid crystal panel)
  • Optical sheet 28
  • Thermistor (temperature sensor) 28a Wiring 30
  • Frame Frame 41 Glass substrate (Glass substrate of array substrate) 42 Pixel electrodes 43a to 43c Bus line 44 Flattening layer 46 Alignment film 47 Thin film transistor 51 Glass substrate (glass substrate of color filter substrate) 52 Black matrix 53 Color filter 54 Flattening layer 55
  • Counter electrode 56 Alignment film 59
  • Spacer 100
  • Control unit 201
  • Light emission control unit 202
  • Target voltage storage unit 203
  • Reference voltage storage unit 241
  • Terminal substrate 242
  • Power supply substrate 24
  • AC inlet substrate 244

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 本発明では、より高精度に、発光ダイオード(LED)の色温度と輝度を安定した状態で制御できる新規な液晶表示装置を提案する。バックライトシャーシ(24)は、液晶パネル(10)の側に向けて開口した箱形形状を有しており、バックライトシャーシ(24)内には、複数の発光ダイオード(22)が、分散して配置されている。液晶表示装置(100)は、複数の発光ダイオード(22)が配置された領域に、発光ダイオード(22)とは別個に設けられたサーミスタ(28)と、発光ダイオード(22)に印加する電圧を制御する発光制御部(201)とを備えている。発光制御部(201)は、サーミスタ(28)から取得される温度情報に基づいて、温度が高くなると発光ダイオード(22)に印加する電圧の目標値(v1)を低くし、温度が低くなると発光ダイオード(22)に印加する電圧の目標値(v1)を高くする。

Description

液晶表示装置
 本発明は、液晶表示装置に関する。特に、複数の発光ダイオードが配置された液晶表示装置であって、発光ダイオードの制御に関する。
 液晶表示装置(LCD:liquid crystal display)は、液晶層を含む液晶表示部の背面側にバックライトが配置されている。バックライトで照射された光は、液晶表示部の背面に照射される。液晶表示部は、液晶層を挟む2つの基板間に印加される電圧を操作することによって、光を遮断する態様と光を通過させる態様とに液晶層が操作され、カラーフィルタを通して所望の色の光が表示される。かかる液晶表示装置のバックライトには、例えば、特開2007-165632号公報(特許文献1)に開示されているように、光源として発光ダイオード(LED:light-emitting diode)が用いられたものがある。
 上記の公報に記載されているように、発光ダイオードは、一般的に、周囲の温度が上がってくると相対輝度が落ちる特性を有する。バックライト装置として発光ダイオードを用いる場合には、温度変化に依らず一定の発光輝度に保つための対策が必要になる。同公報では、ダイオードを温度センサとして用い、発光ダイオードの周囲の温度を計測するとともに、発光ダイオードブロック内の温度補正を行うことが開示されている。これによって、発光ダイオードの色温度、輝度を安定した状態で維持することができる。
特開2007-165632号公報
 上記文献では、発光ダイオードの一部を温度検知手段として利用することが開示されている。発光ダイオードの一部を温度検知手段として利用する場合、発光ダイオードは、点灯時にそれ自体発熱する。また発熱の程度も発光ダイオードの個体差によるばらつきが少なからずある。より高精度に、発光ダイオードの色温度、輝度を安定した状態で制御するには、より細かい精度にて、発光ダイオードの温度補正を行いたい。そこで、本発明では、より高精度に、発光ダイオード(LED)の色温度、輝度を安定した状態で制御できる新規な構造を提案する。
 本発明に係る液晶表示装置は、液晶表示部の背面に複数の発光ダイオードが配置されている。そして、複数の発光ダイオードが配置された領域に、発光ダイオードとは別個にサーミスタが設けられている。さらに、この液晶表示装置は、発光ダイオードに印加する電圧を制御する発光制御部を備えている。発光制御部は、サーミスタから取得される温度情報に基づいて、温度が高くなると発光ダイオードに印加する電圧の目標値を低くし、温度が低くなると発光ダイオードに印加する電圧の目標値を高くする。
 この液晶表示装置によれば、上記発光制御部による制御によって、温度が高くなると電圧の目標値が低くなり、温度が低くなると電圧の目標値が高くなる。これによって、発光ダイオードを安定して発光させることができ、さらに、熱の発生や電力の消費を低く抑えることができる。
 また、ある実施形態として、液晶表示装置は、サーミスタから取得される温度情報と、発光ダイオードに印加する電圧の目標値との関係を予め記憶した目標電圧記憶部を備えていてもよい。この場合、発光制御部は、サーミスタから取得される温度情報に基づいて、目標電圧記憶部に記憶された温度情報と電圧の目標値との関係から、発光ダイオードに印加する電圧の目標値を設定するとよい。
 また、他の形態として、液晶表示装置は、発光ダイオードに印加する電圧の目標値について、基準電圧を記憶した基準電圧記憶部を備えていてもよい。この場合、発光制御部は、サーミスタから取得される温度情報に基づいて、基準電圧記憶部に記憶された基準電圧を補正して、発光ダイオードに印加する電圧の目標値を設定するとよい。
 また、液晶表示装置は、複数の発光ダイオードが配置された領域に、複数のサーミスタが分散して配置されていてもよい。この場合、発光制御部は、複数の発光ダイオードが配置された領域を複数の区域に分け、サーミスタに基づいて各区域の温度情報を取得し、区域毎に発光ダイオードに印加する電圧の目標値を設定してもよい。
 また、発光ダイオードに印加する電圧の目標値は、発光ダイオードのVF値の下限値に基づいて設定してもよい。
 また、複数の発光ダイオードは、合成されて白色光を形成するR、G、Bの光を発する3種類の発光ダイオードを含んでいてもよい。この場合、発光制御部は、サーミスタから取得される温度情報に対して、発光ダイオードに印加する電圧の目標値を、R、G、Bの光を発する発光ダイオードで異ならせてもよい。また、この場合、発光制御部は、Rの光を発する発光ダイオードと、G、Bの光を発する発光ダイオードとで、サーミスタから取得される温度情報に対して、前記発光ダイオードに印加する電圧の目標値を異ならせてもよい。
 また、サーミスタは、例えば、金属の酸化物を混合した焼結体を用いて構成することができる。また、発光ダイオードに対するサーミスタの数は、部分的にばらつきがあってもよい。
 また、本発明は、液晶表示装置の液晶表示部の背面を照明するバックライトにも適用できる。この場合、バックライトは、液晶表示部の背面に対向するように配置された複数の発光ダイオードと、複数の発光ダイオードが配置された領域に、発光ダイオードとは別個に設けられたサーミスタとを備えているとよい。そして、サーミスタから取得される温度情報に基づいて、発光ダイオードに印加する電圧を制御する発光制御部を備えていてもよい。この場合、発光制御部は、サーミスタから取得される温度情報に基づいて、温度が高くなると発光ダイオードに印加する電圧の目標値を低くし、温度が低くなると発光ダイオードに印加する電圧の目標値を高くするとよい。
 また、本発明の一形態に係る液晶表示装置用バックライトの制御方法は、まず、複数の発光ダイオードが配置された領域に、発光ダイオードとは別個に設けられたサーミスタから温度情報を取得する第1ステップを実行する。次に、第1ステップによって取得された温度情報に基づいて、予め記憶した温度情報と電圧の目標値との関係から発光ダイオードに印加する電圧の目標値を設定する第2ステップを実行する。そして、第2ステップで設定された電圧の目標値に基づいて、発光ダイオードに印加する電圧を制御する第3ステップを実行する。
 また、他の形態では、液晶表示装置用バックライトの制御方法は、まず、複数の発光ダイオードが配置された領域に、発光ダイオードとは別個に設けられたサーミスタから温度情報を取得する第1ステップを実行する。次に、発光ダイオードに印加する電圧の目標値について予め記憶した基準電圧を、第1ステップによって取得された温度情報に基づいて補正して、発光ダイオードに印加する電圧の目標値を設定する第2ステップを実行する。そして、第2ステップで設定された電圧の目標値に基づいて、発光ダイオードに印加する電圧を制御する第3ステップを実行する。
図1は、本発明の一実施形態に係る液晶表示装置を示す断面図である。 図2は、本発明の一実施形態に係る液晶表示装置の液晶パネルを示す断面図である。 図3は、本発明の一実施形態に係る液晶表示装置のアレイ基板の画素領域部分を示す平面図である。 図4は、本発明の一実施形態に係る液晶表示装置のカラーフィルタ基板の画素領域部分を示す平面図である。 図5Aは、本発明の一実施形態に係る液晶表示装置の発光ダイオードとサーミスタの配置を示す部分拡大平面図である。 図5Bは、本発明の一実施形態に係る液晶表示装置の発光ダイオードとサーミスタの配置を示す平面図である。 図6Aは、発光ダイオードのVF値と温度との関係を示す図である。 図6Bは、発光ダイオードのVF値と温度との関係を示す図である。 図6Cは、本発明の一実施形態に係る液晶表示装置について、温度と電圧の目標値との関係を示す図である。 図7は、本発明の他の実施形態に係る液晶表示装置を示す断面図である。 図8は、本発明の一実施形態に係る液晶表示装置のバックライトシャーシの内側に配設された基板構成例を示す平面図である。
 以下、本発明の一実施形態に係る液晶表示装置を図面に基づいて説明する。
 図1は、本発明の一実施形態に係る液晶表示装置100の断面構成を模式的に示している。液晶表示装置100は、図1に示すように、液晶表示部としての液晶パネル10と、バックライト20とを備えている。この液晶表示装置100では、バックライト20の光源22として、発光ダイオード(LED)が用いられている。ここでは、液晶表示装置100の構造を概略的に説明し、その後、かかるバックライト20の構造と制御を説明する。
 この液晶表示装置100の液晶パネル10は、概して、全体として矩形の形状を有しており、一対の透光性基板11、12(ガラス基板)で構成されている。この実施形態では、両基板11、12のうち、表側はカラーフィルタ基板11(CF基板)であり、裏側がアレイ基板12(TFT基板)である。
 この実施形態では、図1に示すように、カラーフィルタ基板11とアレイ基板12は、それぞれ画素領域10a(画素が形成されている領域)を有している。カラーフィルタ基板11とアレイ基板12は、互いに対向して配置されている。カラーフィルタ基板11とアレイ基板12の間には、画素領域10aの周囲(外周縁部)を周方向に囲むように、シール材15が設けられている。
 カラーフィルタ基板11とアレイ基板12の間には液晶層13が設けられている。液晶層13は、液晶分子を含む液晶材料が封入されている。かかる液晶材料は、カラーフィルタ基板11とアレイ基板12の間の電界印加に伴って液晶分子の配向方向が操作され、光学特性が変化する。シール材15はかかる液晶層13の液晶材料を封止している。
 以下、アレイ基板12と、カラーフィルタ基板11を順に説明する。図2から図4は液晶パネル10の画素領域10aを図示したものである。このうち図2はカラーフィルタ基板11とアレイ基板12を貼り合せた状態の断面図を示している。また、図3はアレイ基板12の画素領域部分の平面図を示し、図4はカラーフィルタ基板11の画素領域部分の平面図を示している。図3及び図4中の破線Aで囲まれた領域は、この液晶表示装置100の一画素を構成する領域を示している。
 この実施形態では、アレイ基板12は、図2及び図3に示すように、ガラス基板41の表側(液晶層13側)に、画素電極42、バスライン43a~43c(bus line)、平坦化層44及び配向膜46(水平配向膜)、薄膜トランジスタ47が形成されている。画素電極42は透明導電材料であるITO(indium tin oxide:酸化インジウムスズ)からなり、この画素電極42には画像に応じた電圧がバスライン43a~43c及び薄膜トランジスタ47(図3参照)を介して所定のタイミングで供給される。平坦化層44は絶縁材料によって形成されており、画素電極42及びバスライン43a~43c(図3参照)を覆っている。平坦化層44の上側(液晶層13側)にはポリイミド等からなる配向膜46が形成されている。この配向膜46の表面(液晶層13側の面)には、電圧を印加していないときの液晶分子の配向方向を決定するために、配向処理が施されている。
 また、カラーフィルタ基板11は、図2及び図4に示すように、ガラス基板51の裏側(液晶層13側)にブラックマトリクス52、カラーフィルタ53、平坦化層54、対向電極55及び配向膜56(水平配向膜)が形成されている。ブラックマトリクス52は画素間の領域を光が透過しないようにするため、Cr(クロム)等の金属により形成されている。カラーフィルタ53には赤(R)、緑(G)、青(B)の3色がある。図2から図4に示すように、アレイ基板12の1つの画素電極42には、R・G・Bのうち何れか1つのカラーフィルタ53が対向している。平坦化層54は、図2に示すように、ブラックマトリクス52及びカラーフィルタ53を覆うように形成されている。この平坦化層54の下側(液晶層13側)にはITO(indium tin oxide)からなる対向電極55が形成されている。また、対向電極55の下側(液晶層13側)には配向膜56が形成されている。この配向膜56の表面(液晶層13側の面)にも配向処理が施されている。なお、アレイ基板12の配向膜46の配向方向と、カラーフィルタ基板11の配向膜56の配向方向とは90°異なっている。
 ガラス基板41,51は、図2に示すように、球形又は円柱形のスペーサ59(図示例では、球形)を挟んで配置されている。スペーサ59は、例えば、プラスチックやガラスなどにより形成されている。ガラス基板41,51のギャップは、上述したシール材15(図1参照)及びスペーサ59によって保持され、液晶層13が一定に維持されている。
 さらに、図1及び図2に示すように、カラーフィルタ基板11(ガラス基板51)の表面側及びアレイ基板12(ガラス基板41)の裏面側にはそれぞれ偏光板17、18が貼り付けられている。いわゆるノーマリホワイト型の液晶表示装置では2枚の偏光板17、18の偏光軸は互いに直交するように配置される。また、いわゆるノーマリブラック型の液晶表示装置では2枚の偏光板17、18の偏光軸は並行に配置される。この実施形態では、図1に示すように、液晶パネル10の表側は、ベゼル30が装着されている。液晶パネル10の裏側には、フレーム32が装着されている。そして、ベゼル30とフレーム32は、液晶パネル10を支持する。さらに、フレーム32は、液晶パネル10の画素領域10aに相当する部分が開口している。かかる液晶パネル10の裏側には、バックライトシャーシ24に支持されたバックライト20が装着されている。
 バックライト20は、図1に示すように、液晶パネル10の裏側(図1中の右側)に配置された外部光源である。この実施形態では、バックライト20は、複数の発光ダイオード22(LED)と、バックライトシャーシ24とを備えている。この実施形態では、バックライトシャーシ24は、表側(液晶パネル10側)に向けて開口した箱形形状を有しており、バックライトシャーシ24内には、複数の発光ダイオード22が、分散して配置されている。発光ダイオード22の配置や、その制御については、さらに後で、より詳細に説明する。かかるバックライトシャーシ24の開口には、複数枚の光学シート26が積層されている。
 光学シート26は、例えば、裏側から順に、拡散板、拡散シート、レンズシート、及び輝度上昇シートを有している。バックライトシャーシ24は、上述した液晶パネル10に発光ダイオード22を向けた状態で、液晶パネル10のフレーム32の裏側に装着されている。光学シート26は、液晶パネル10のフレーム32の裏面とバックライトシャーシ24の表面とに挟まれている。また、液晶表示装置100は、図1に示すように、バックライト20の輝度(明るさ)を調整する制御部200(例えば、冷陰極管インバータ回路などの調光回路)を備えている。かかる制御部200は、例えば、バックライト20に投入する電力を調整して、バックライト20の明るさを調整する。この場合、制御部200は、バックライト20に投入する電力を高くすることによってバックライト20を明るく(輝度を高く)できる。また、制御部200は、バックライト20に投入する電力を低くすることによってバックライト20を暗く(輝度を低く)できる。
 液晶層13中の液晶分子は、カラーフィルタ基板11とアレイ基板12に制御された電圧が印加されることによって操作される。かかる液晶パネル10は、画素毎(より詳しくは、RGBで規定されるサブ画素毎)に、液晶層13中の液晶分子が操作されることによって、バックライト20の光を遮断又は通過させ、さらに光の透過率が変えられる。さらに、液晶表示装置100は、バックライト20の輝度等も制御されつつ所望の画像を表示する。
 以下、バックライト20の構造、特に、発光ダイオード22の配置及び制御を説明する。
 この実施形態では、バックライト20は、図1に示すように、光源として複数の発光ダイオード22が用いられている。この実施形態では、複数の発光ダイオード22は、合成されて白色光を形成するR、G、Bの光を発する3種類の発光ダイオードである。
 なお、バックライト20は、RGBの光の強さなどのバランスが調整された白色光が望ましい。発光ダイオード22が用いられるバックライト20には、白色光を発する白色LEDを配列して白色光の照明光を発光する構成や、R(赤),G(緑),B(青)の3色のLED(発光ダイオード)を配列し、これらの3色の光を混色して白色光とする構成がある。ここで、白色LEDには、短波長LEDチップにRGB蛍光体を組み合わせて白色を得る方式や、青色LEDチップに黄色の蛍光体を組み合わせて白色を得る方式、或いはRGBの3色のLEDチップの混光として白色を得る方式、補色となる2色のLEDチップの混光として白色を得る方式等がある。
 この実施形態では、発光ダイオード22は、図1に示すように、バックライトシャーシ24の内側に、液晶パネル10の背面に対向するように配置された反射基板25に装着されている。発光ダイオード22は、液晶パネル10の背面に発光部が向けられている。反射基板25は、液晶パネル10に対向する面25a(反射面)に光を反射する鏡面が形成されている。そして、当該面25aによって、反射基板25側に漏れた発光ダイオード22の光を液晶パネル10の背面に向けて反射させる。反射基板25には、発光ダイオード22を分散させて配置している。図5Aと図5Bは、それぞれ反射基板25の液晶パネル10に対向する面25aを概略的に示す平面図であり、図5Aは、図5B中の矢印5aで示す部分を拡大した平面図である。この実施形態では、発光ダイオード22は、図5Aに示すように、当該面25aに、格子状に並べて配置されている。なお、発光ダイオード22の配置の仕方は、図5Aに示す格子状に限定されず、例えば、発光ダイオード22の位置が列毎に均等にずれるような(千鳥格子状又はジグザグ状の)配置でもよい。
 また、発光ダイオード(LED)は、一般的に、周囲の温度が上がってくると相対輝度が落ちる特性をもつ。また、発光ダイオードは、周囲の温度の変動によってその発光効率が変わる。そこで、この液晶表示装置100では、各発光ダイオード22に印加する電圧、電流を、制御部200によって制御している。
 すなわち、この液晶表示装置100は、図1に示すように、制御部200と、サーミスタ28(温度センサ)とを備えている。制御部200はバックライト20の輝度や色温度などを制御する。図1は、かかる制御部200、サーミスタ28を模式的に描いている。以下、液晶表示装置100の構造に関しては、適宜、図1を参照されたい。
 かかる制御部200は、電子的な処理装置であり、MPUやCPUなどで構成された演算機能を有する演算手段と、不揮発性メモリーなどで構成された記憶手段とを備えている。かかる制御部200は、予め記憶されたプログラムによって所要の機能を実現するように構成されている。なお、説明は省略するが、この実施形態では、制御部200は、実際には、バックライト20の輝度や色温度以外の制御も担う。例えば、液晶パネル10の液晶層13に印加する電圧を制御する。
 サーミスタ28は、図5Aに示すように、複数の発光ダイオード22が配置された領域に、発光ダイオード22とは別個に設けられている。この実施形態では、サーミスタ28は、発光ダイオード22が配置された反射基板25に設置されている。発光ダイオード22は、反射基板25の液晶パネル10側の面25aに格子状に配置されている。サーミスタ28は、同様に、反射基板25の液晶パネル10側に検知部を向けて、格子状に配置された4つの発光ダイオード22の中心に配置されている。なお、発光ダイオード22が、千鳥格子状、ジグザグ状などで配置されている場合には、発光ダイオード22の配置に応じて、複数の発光ダイオード22が配置された領域に複数のサーミスタ28を分散させて配置するとよい。複数の発光ダイオード22が配置された領域に複数のサーミスタ28を分散させて配置することによって、発光ダイオード22が配置された領域の温度変化をよりきめ細かく取得することができる。なお、発光ダイオード22の配置、及び、サーミスタ28の配置は、上記に限定されず、適当な位置に配置するとよい。また、サーミスタ28は、均等に分散させて配置することが、望ましい形態の一つである。しかし、サーミスタ28は、必ずしも、均等に分散させて配置する必要はなく、液晶パネル10の具体的構成等に応じて、適当な位置を選択して配置するとよい。
 かかるサーミスタ28としては、温度変化に対する抵抗値の変化に基づいて、温度情報を電気的に取得することができる種々のサーミスタを用いることができる。例えば、ニッケル、マンガン、コバルト、鉄などの金属の酸化物を混合した焼結体を用いたサーミスタを用いることができる。かかるサーミスタは、一般には、温度上昇に応じて、抵抗が減少するNTC ( negative temperature coefficient )を構成する。また、例えば、サーミスタ28は、温度と抵抗値の変化が概ね比例し、温度変化に対する抵抗値の変化も大きいものを選択するとよい。これによって、温度情報の取得が容易かつ正確に行える。
 発光ダイオード22は、サーミスタ28によって得られる温度情報に基づいて制御される。この実施形態では、サーミスタ28は、配線28a(図1参照)によって制御部200に電気的に接続されている。また、発光ダイオード22は、配線22a(図1参照)を通して制御部200に接続されており、制御部200は、サーミスタ28から得られる温度情報に基づいて、発光ダイオード22に印加する電圧を電気的に制御する。
 この実施形態では、制御部200は、図1に示すように、発光制御部201と、目標電圧記憶部202とを備えている。
 発光制御部201は、発光ダイオード22に印加する電圧を制御する。この実施形態では、発光制御部201は、サーミスタ28から取得される温度情報に基づいて、温度が高くなると発光ダイオード22に印加する電圧の目標値v1を低くする(図6C参照)。また、発光制御部201は、サーミスタ28から取得される温度情報に基づいて、温度が低くなると発光ダイオード22に印加する電圧の目標値v1を高くする(図6C参照)。なお、発光ダイオード22の輝度(発光ダイオード22に印加する電圧)は、例えば、パルス幅変調方式、PWM方式(pulse width modulation)によって調整するとよい。
 目標電圧記憶部202は、サーミスタ28から取得される温度情報と、発光ダイオード22に印加する電圧の目標値との関係を予め記憶している。この場合、目標電圧記憶部202は、温度情報と電圧の目標値v1との関係を、例えば、一の座標に温度情報、他の座標に電圧の目標値v1を取ったテーブルに記憶していてもよい。この実施形態では、発光制御部201は、サーミスタ28から取得される温度情報に基づいて、目標電圧記憶部202に記憶された温度情報と電圧の目標値との関係から、発光ダイオード22に印加する電圧の目標値を設定する。
 発光ダイオード22には個体差はあるものの、周囲の温度と印加すべき電圧との間に一定の関係がある。そこで、例えば、発光ダイオード22の周囲の温度と、発光ダイオード22に印加する電圧との関係について、予めデータを収集するとよい。目標電圧記憶部202には、当該データに基づいて、サーミスタ28から取得される温度情報と、発光ダイオード22に印加する電圧の目標値との関係を記憶させるとよい。
 この実施形態では、発光ダイオード22について、予め試験を行い、当該発光ダイオード22の周囲の温度と、VF値との関係についてデータを取っている。そして、かかるデータに基づいて、サーミスタ28から取得される温度情報と、発光ダイオード22に印加する電圧の目標値との関係を記憶させるとよい。ここで、VF値は、発光ダイオードが適正に発光する印加電圧の許容範囲をいう。
 図6A、図6B及び図6Cは、それぞれ発光ダイオードのVF値と温度との関係を示している。図6Cは、この実施形態に係る液晶表示装置100について、温度と電圧の目標値v1との関係をさらに示している。図6A及び図6Bは、それぞれ図6Cの比較例である。
 VF値の下限値Lは、図6Aに示すように、温度が高くなるにつれて、低くなる傾向がある。そこで、例えば、低温時にも安定して、発光ダイオード22を発光させることを考えると、低温時のVF値の下限値に基づいて、電圧の目標値v1を設定するという考えもある。例えば、図6Aに示すように、当該低温時のVF値を基に、その下限値Lよりも少し高い電圧を電圧の目標値v1として設定するとよい。この場合、発光ダイオード22に印加する電圧を一定の電圧の目標値v1で制御できるので、発光ダイオード22に印加する電圧の制御が容易になる。しかしながら、この場合、温度が高くなると、VF値の上限を超えて、印加電圧が高くなる場合があり、発光ダイオード22が不要に熱を発生させたり、また消費電力が無駄に高くなったりする。
 また、例えば、図6Bに示すように、常温時のVF値を基に電圧の目標値v1を設定する考えもある。この場合、発光ダイオード22に印加する電圧を一定の電圧の目標値v1で制御できるので、発光ダイオード22に印加する電圧の制御が容易になる。しかしながら、低温時には、発光ダイオード22に印加する電圧値が、VF値の下限値Lを下回り、安定して発光ダイオード22を発光させることができない場合が生じ得る。
 本発明者は、サーミスタ28の精度や、制御による電圧の乱れなどを考慮して、発光ダイオード22には、上記のVF値の下限値Lよりも少し高い印加電圧を印加することが望ましいと考えている。すなわち、VF値の下限値Lは、当該温度において、発光ダイオード22が適正に発光する印加電圧の下限を示している。そして、VF値の下限値Lよりも高い電圧が発光ダイオード22に印加された場合、発光ダイオード22に印加される電圧が高くなるにつれて発熱量が高くなり、消費電力が多くなる。また、発光ダイオード22に印加される電圧がVF値の下限値Lよりも低すぎると、当該温度において発光ダイオード22を十分に発光させることができない。上記のVF値の下限値Lよりも少し高い印加電圧を発光ダイオード22に印加することによって、発光ダイオード22を安定して発光させることができ、また、熱の発生や電力の消費を低く抑えることができる。
 この実施形態では、発光制御部201は、図6Cに示すように、サーミスタ28から得られる温度情報に基づいて、発光ダイオード22に印加する電圧の目標値v1を制御する。この際、発光制御部201は、温度が高くなると発光ダイオード22に印加する電圧の目標値v1を低くし、温度が低くなると発光ダイオード22に印加する電圧の目標値v1を高くする。この実施形態では、複数のサーミスタ28が取り付けられている。この場合、サーミスタ28から得られる温度情報としては、複数のサーミスタ28の温度情報のうち、最小値(最も低い温度を示した温度情報)を採用してもよい。これによって、バックライト20のうち、最も温度が低いエリアの温度に基づいて、印加電圧を設定でき、電圧不足による輝度斑などの不具合を防止できる。また、この場合、サーミスタ28から得られる温度情報としては、複数のサーミスタ28の温度情報のうち、最小値ではなく、数番目(例えば、2番目、あるいは、3番目)に低い温度を示す温度情報を採用してもよい。これによって、いくつかのサーミスタが不良によって、極端に低い温度情報を示すような場合でも、不具合が生じるのを防止できる。何番目に低い温度を示すサーミスタ28の温度情報を採用するかについては、取り付けられるサーミスタ28の数や、当該サーミスタ28の不良の発生率などを勘案して決めるとよい。
 また、この実施形態では、上記のようにしてサーミスタ28から取得される温度情報と、発光ダイオード22に印加する電圧の目標値v1との関係が、目標電圧記憶部202に記憶されている。かかる温度情報と電圧の目標値v1との関係は、例えば、予め実施された試験などによって、サーミスタ28から取得される温度情報と、発光ダイオード22のVF値との関係についてデータを取っておくとよい。そして、当該データに基づいて、図6Cに示すように、電圧の目標値v1が、VF値の下限値Lよりも少し高くなるように、当該温度情報と電圧の目標値v1との関係を設定し、目標電圧記憶部202に記憶するとよい。このように、電圧の目標値v1は、発光ダイオード22のVF値の下限値Lに基づいて設定するとよい。
 そして、発光制御部201は、サーミスタ28から取得される温度情報に基づいて、目標電圧記憶部202に記憶された当該温度情報と電圧の目標値v1との関係(図6C参照)から、発光ダイオード22に印加する電圧の目標値v1を設定する。
 この場合、発光制御部201は、まず、発光ダイオードとは別個に設けられたサーミスタから温度情報を取得する(第1ステップ)。次に、第1ステップによって取得された温度情報と、予め記憶した温度情報と電圧の目標値v1との関係(図6C参照)とに基づいて、発光ダイオード22に印加する電圧の目標値v1を設定する(第2ステップ)。そして、第2ステップで設定された電圧の目標値v1に基づいて、発光ダイオード22に印加する電圧を制御する(第3ステップ)。そして、所定のタイミングで、上記第1ステップから第3ステップの制御を繰り返し実行する。例えば、所定の時間毎に、サーミスタ28から温度情報を取得して、上記第1ステップから第3ステップの制御を繰り返し実行するとよい。サーミスタ28から温度情報を取得する間隔は、適当に定めるとよいが、あまりに頻度を高くすると、制御負荷が高くなり、他の制御に影響が生じうる。例えば、通常、テレビなどで用いられる場合には、0.5~15秒程度の間隔でよく、好ましくは、3秒から8秒程度の間隔で行うとよい。
 これによって、図6Cに示すように、温度が高くなると電圧の目標値v1が低くなり、温度が低くなると電圧の目標値v1が高くなる。そして、温度が低くなると発光ダイオード22に印加される電圧が高くなり、温度が高くなると発光ダイオード22に印加される電圧が低くなる。このように、この実施形態では、VF値の下限値Lよりも少し高い印加電圧を発光ダイオード22に印加することができる。そして、発光ダイオード22を安定して発光させることができ、さらに、熱の発生や電力の消費を低く抑えることができる。
 また、VF値の下限値Lよりも少し高い印加電圧を発光ダイオード22に印加する制御方法としては、他の方法も取り得る。
 図7は、液晶表示装置100の他の実施形態を示している。同図に示すように、制御部200は、発光ダイオード22に印加する電圧の目標値について、基準電圧v0(図6C参照)を記憶した基準電圧記憶部203を備えていてもよい。そして、発光制御部201において、サーミスタ28から取得される温度情報に基づいて、基準電圧記憶部203に記憶された基準電圧v0を補正して、発光ダイオード22に印加する電圧の目標値v1を設定してもよい。
 すなわち、発光ダイオード22は、個体差があるものの、周囲の温度と、印加すべき電圧との間に一定の関係がある。当該関係は、線形的な関係で近似できる。例えば、周囲の温度と、印加すべき電圧との関係は、一次関数などに置き換えることができる。そこで、発光ダイオード22に印加する基準となる基準電圧v0(図6C参照)を決めておき、サーミスタ28から取得される温度情報に基づいて、当該基準電圧v0を適切に補正するとよい。
 なお、基準電圧v0は、適当な温度にて、発光ダイオード22に印加すべき電圧を設定しておくとよい。この場合、基準温度t0の時に、発光ダイオード22に印加すべき電圧を基準電圧v0に設定するとよい。また、かかる補正に用いる演算式は、例えば、発光ダイオード22の周囲の温度と、発光ダイオード22に印加する電圧との関係について、予め収集したデータに基づいて決めるとよい。そして、サーミスタ28から得られる温度情報、基準温度t0、基準電圧v0を基に、所定の演算式によって、電圧の目標値v1を求めるとよい。
 この場合、発光制御部201は、まず、サーミスタ28から温度情報を取得する(第1ステップ)。次に、発光ダイオード22に印加する電圧の目標値v1について、予め記憶した基準電圧v0(図6C参照)を、第1ステップによって取得された温度情報に基づいて補正し、発光ダイオード22に印加する電圧の目標値v1を設定する(第2ステップ)。そして、第2ステップで設定された電圧の目標値v1に基づいて、発光ダイオード22に印加する電圧を制御する(第3ステップ)。そして、所定のタイミングで、上記第1ステップから第3ステップの制御を繰り返し実行する。これによって、図6Cに示すように、温度が高くなると電圧の目標値v1が低くなり、温度が低くなると電圧の目標値v1が高くなる。
 このように、発光制御部201は、サーミスタ28から取得される温度情報に基づいて、温度が高くなると発光ダイオード22に印加する電圧を低くし、温度が低くなると発光ダイオード22に印加する電圧を高くする種々の方法を採用することができる。
 以上のように、この液晶表示装置100では、図6Cに示すように、上記発光制御部201による制御によって、温度が高くなると電圧の目標値v1が低くなり、温度が低くなると電圧の目標値v1が高くなる。このため、温度が低くなると発光ダイオード22に印加される電圧が高くなり、温度が高くなると発光ダイオード22に印加される電圧が低くなる。これによって、発光ダイオード22を安定して発光させることができ、さらに、熱の発生や電力の消費を低く抑えることができる。さらに、この実施形態では、電圧の目標値v1はVF値の下限値Lに基づいて定められ、VF値の下限値Lよりも少し高い印加電圧を発光ダイオード22に印加することができる。これによって、発光ダイオード22に印加される電圧を適切に制御でき、発光ダイオード22をより安定して発光させることができ、さらに、熱の発生や電力の消費を低く抑えることができる。
 液晶表示装置100は、複数の発光ダイオード22が配置された領域のすべてにおいて、温度が均一になることはない。特に、大型の液晶パネル10が用いられている場合など、複数の発光ダイオード22が配置された領域において、温度に斑が生じる。例えば、液晶表示装置100は、図7に示すように、バックライトシャーシ24の内側などに、複数の電子回路基板241~246(図8参照)が配置される場合がある。この場合、各電子回路基板241~246は、所要の電子的な処理が行われるが、その際、個々に熱を発生させる。また、液晶パネル10の駆動回路など、電気信号が通る配線が敷設された液晶パネル10の各基板なども熱を生じさせる。かかる熱は、発光ダイオード22が配置された領域に均一ではなく、発光ダイオード22が配置された領域の温度に斑が生じさせる。
 例えば、電子回路基板としては、例えば、端子基板241、電源基板242、ACインレット基板243、液晶コントローラ基板244、メイン基板245、LEDコントロール基板246などが挙げられる。端子基板241は外部との映像や音声の入出力を行なう機能を有する。また、電源基板242は、各基板へ電源を生成又は供給する機能を有する。また、ACインレット基板243は、ノイズフィルタの機能を有する。また、液晶コントローラ基板244は、液晶パネルを駆動する機能を有する。また、メイン基板245は、液晶表示装置100全体の動作を制御する機能を有する。例えば、この液晶表示装置100がテレビを視聴する装置として用いられる場合には、メイン基板245は、テレビとして機能する液晶表示装置100全体の動作を制御する。また、LEDコントロール基板246は、それぞれバックライト20(具体的には、光源22としての発光ダイオード22(LED))を駆動させる機能を有する。なお、図8は、各基板のレイアウトの一例を示すものであり、各電子回路基板の配置は、かかる図示例に限定されない。また、例示した電子回路基板の他にも他の電子回路基板が配置される場合があり、また、例示した電子回路基板の一部が搭載されない場合もある。
 この実施形態では、図5A及び図5Bに示すように、複数の発光ダイオード22が配置された領域に、複数のサーミスタ28が分散して配置されている。そして、発光制御部201は、複数の発光ダイオード22が配置された領域を複数の区域(図5Aの破線B11,B12,B13,・・・,B21・・・,B31・・・,等)に分け、サーミスタ28に基づいて各区域の温度情報を取得する。そして、区域毎に発光ダイオード22に印加する電圧の目標値v1を設定する。
 すなわち、この実施形態では、図5Aに示すように、破線B11,B12,B13,・・・,B21・・・,B31・・・,等で示す区域のように、格子状に配置された4つの発光ダイオード22を一組として区域が設定されている。そして、各区域の中心にサーミスタ28が配置されている。例えば、液晶表示装置100で、1624個(横58×縦28)の発光ダイオード22が配置されている場合には、4つの発光ダイオード22を一組として406の区域を設定するとよい。また、例えば、液晶表示装置100で、1152個(横48×縦24)の発光ダイオード22が配置されている場合には、4つの発光ダイオード22を一組として288の区域を設定するとよい。
 発光制御部201は、サーミスタ28に基づいて各区域の温度情報を取得する。この実施形態では、例えば、各区域の中心に配置されたサーミスタ28に基づいて当該区域の温度情報を取得することができる。なお、サーミスタ28による計測では、サーミスタ28の不良も考えられる。このため、この実施形態では、各区域の中心に配置されたサーミスタ28だけでなく、当該区域、或いは、当該区域の周囲にある複数のサーミスタ28に基づいて、当該区域の温度情報を取得してもよい。この場合、複数のサーミスタ28に基づいて、温度情報の平均値を取るとよい。複数のサーミスタ28の温度情報の平均を取る場合には、例えば、最大値、最小値を省いて平均値を取るとよい。これによって、単一のサーミスタ28の不良による影響を小さく抑えることができる。さらに、複数のサーミスタ28に基づいて、区域の温度情報を取る場合には、複数のサーミスタ28の温度情報の平均を取ることに変えて、複数のサーミスタ28の温度情報のうち、最小値(最も低い温度を示した温度情報)を採用してもよい。これによって、バックライト20のうち、最も温度が低いエリアの温度に基づいて、印加電圧を設定でき、電圧不足による輝度斑などの不具合を防止できる。また、この場合、サーミスタ28から得られる温度情報としては、複数の複数のサーミスタ28の温度情報のうち、最小値ではなく、数番目(例えば、2番目、あるいは、3番目)に低い温度を示す温度情報を採用してもよい。これによって、いくつかのサーミスタが不良によって、極端に低い温度情報を示すような場合でも、不具合が生じるのを防止できる。
 発光制御部201は、このようにして得られた各区域の温度情報を基に、区域毎に発光ダイオード22に印加する電圧の目標値v1を設定するとよい。これによって、区域毎に、温度情報に応じて、発光ダイオード22に印加する電圧を適切に制御できる。このため、特に、大型の液晶パネル10が用いられている場合で、複数の発光ダイオード22が配置された領域において温度に斑が生じる場合でも、バックライトの輝度や色温度に斑が生じるのを防止できる。なお、区域は、上述した実施形態に限定されず、発光ダイオード22の数や、分散の程度、発光ダイオード22が配置される領域に生じる温度の斑の程度などによって適当に定めるとよい。すなわち、区域の設定は、発光ダイオード22の配置、サーミスタ28の配置、基板の配置など、液晶表示装置100の具体的構成に応じて、発光ダイオード22の制御が適切に行えるように設定するとよい。例えば、液晶パネル10の具体的構成等に応じて、駆動時の温度変化が激しく生じ得る部位には、区域を細かく区切り、駆動時の温度変化が少ない部位には、区域を大きく区切ってもよい。また、発光ダイオード22に対するサーミスタ28の数には部分的にばらつきがあってもよい。例えば、駆動時の温度変化が激しく生じ得る部位には、発光ダイオード22に対してサーミスタ28の数を多くしてもよい。また、駆動時の温度変化が少ない部位には、発光ダイオード22に対してサーミスタ28の数を少なくしてもよい。
 また、この実施形態では、複数の発光ダイオード22には、合成されて白色光を形成するR、G、Bの光を発する3種類の発光ダイオードがある。発光制御部201は、R、G、Bの光を発する発光ダイオードで、それぞれ発光ダイオードに印加する電圧の目標値v1を異ならせてもよい。すなわち、R、G、Bの光を発する発光ダイオードは、それぞれ異なる発光ダイオードが用いられており、温度とVF値との関係が異なる場合がある。このため、R、G、Bの光を発する発光ダイオードで、それぞれ発光ダイオードに印加する電圧の目標値v1を異ならせることによって、R、G、Bの光を発する発光ダイオードをそれぞれ適切に制御することができる。
 なお、発光制御部201は、Rの光を発する発光ダイオードと、G、Bの光を発する発光ダイオードとで、発光ダイオードに印加する電圧の目標値v1を異ならせてもよい。すなわち、R、G、Bの光を発する発光ダイオードのうち、G、Bの光を発する発光ダイオードは、温度とVF値との関係が近いか、同じ場合がある。この場合、Rの光を発する発光ダイオードと、G、Bの光を発する発光ダイオードとで、発光ダイオードに印加する電圧の目標値v1を異ならせることによって、R、G、Bの光を発する発光ダイオードをそれぞれ適切に制御することができる。この場合、R、G、Bの光を発する発光ダイオードで、G、Bの光を発する発光ダイオードに印加する電圧の目標値v1を同じにできる。このため、R、G、Bの光を発する発光ダイオードでそれぞれ発光ダイオードに印加する電圧の目標値v1を異ならせる場合に比べて、発光制御部の制御構成などを簡素化できる。
 なお、この場合、例えば、R、G、Bの光を発する発光ダイオードについて、温度とVF値との関係に相互に相関関係がある場合には、制御構成をさらに改変できる。例えば、R、G、Bのうち何れかの光を発する発光ダイオードについて、サーミスタ28の温度情報に基づいて電圧の目標値v1を求め、その後、他の光を発する発光ダイオードについて、それぞれ電圧の目標値v1を求めてもよい。例えば、Rの光を発する発光ダイオードについて、サーミスタ28の温度情報に基づいて電圧の目標値v1を求める。その後、それぞれの相関関係に基づいて、当該Rの光を発する発光ダイオードに印加する電圧の目標値v1から、G、Bの光を発する発光ダイオードの電圧の目標値v1を求めてもよい。このように、発光制御部は、サーミスタから取得される温度情報に対して、発光ダイオードに印加する電圧の目標値を、R、G、Bそれぞれの光を発する発光ダイオードで異ならせてもよい。
 以上、本発明の一実施形態に係る液晶表示装置を説明したが、本発明に係る液晶表示装置は、上述した実施形態には限定されない。
 例えば、液晶表示装置の具体的構成については、上述した実施形態に限定されない。上述した実施形態では、バックライトは、いわゆる直下型バックライトが採用されており、バックライトシャーシに複数の発光ダイオードを配列し、液晶パネル10に対向した面光源が形成されている。バックライトの構成は、かかる形態に限定されない。例えば、図示は省略するが、バックライトは、発光ダイオードを直線状に配列した線光源を導光板の側面に置き、平面光源に変換する、いわゆるエッジライト型(「サイドライト型」とも呼ばれる。)のバックライトを採用してもよい。
10 液晶パネル(液晶表示部)
10a 画素領域
11 カラーフィルタ基板(CF基板、透光性基板)
12 アレイ基板(TFT基板、透光性基板)
13 液晶層
15 シール材
17、18 偏光板
20 バックライト
22 発光ダイオード(光源)
22a 配線
24 バックライトシャーシ
25 反射基板
25a 反射面(液晶パネルに対向する面)
26 光学シート
28 サーミスタ(温度センサ)
28a 配線
30 ベゼル
32 フレーム
41 ガラス基板(アレイ基板のガラス基板)
42 画素電極
43a~43c バスライン
44 平坦化層
46 配向膜
47 薄膜トランジスタ
51 ガラス基板(カラーフィルタ基板のガラス基板)
52 ブラックマトリクス
53 カラーフィルタ
54 平坦化層
55 対向電極
56 配向膜
59 スペーサ
100 液晶表示装置
200 制御部
201 発光制御部
202 目標電圧記憶部
203 基準電圧記憶部
241 端子基板
242 電源基板
243 ACインレット基板
244 液晶コントローラ基板
245 メイン基板
246 LEDコントロール基板
L 発光ダイオードのVF値の下限値
t0 基準温度
v0 基準電圧
v1 発光ダイオードに印加する電圧の目標値

Claims (12)

  1.  液晶表示部の背面に複数の発光ダイオードが配置された液晶表示装置であって、
     前記複数の発光ダイオードが配置された領域に、前記発光ダイオードとは別個に設けられたサーミスタと、
     前記発光ダイオードに印加する電圧を制御する発光制御部と、
    を備え、
     前記発光制御部は、前記サーミスタから取得される温度情報に基づいて、温度が高くなると前記発光ダイオードに印加する電圧の目標値を低くし、温度が低くなると前記発光ダイオードに印加する電圧の目標値を高くする、液晶表示装置。
  2.  前記サーミスタから取得される温度情報と、前記発光ダイオードに印加する電圧の目標値との関係を予め記憶した目標電圧記憶部を備え、
     前記発光制御部は、前記サーミスタから取得される温度情報と、前記目標電圧記憶部に記憶された温度情報と電圧の目標値との関係とに基づいて、前記発光ダイオードに印加する電圧の目標値を設定する、請求項1に記載の液晶表示装置。
  3.  発光ダイオードに印加する電圧の目標値について、基準電圧を記憶した基準電圧記憶部を備え、
     前記発光制御部は、前記サーミスタから取得される温度情報に基づいて、前記基準電圧記憶部に記憶された基準電圧を補正して、前記発光ダイオードに印加する電圧の目標値を設定する、請求項1に記載の液晶表示装置。
  4.  前記複数の発光ダイオードが配置された領域に、複数のサーミスタが分散して配置されており、
     前記発光制御部は、複数の発光ダイオードが配置された領域を複数の区域に分け、前記サーミスタに基づいて各区域の温度情報を取得し、前記区域毎に前記発光ダイオードに印加する電圧の目標値を設定する、請求項1から3までの何れか一項に記載の液晶表示装置。
  5.  前記発光ダイオードに印加する電圧の目標値は、前記発光ダイオードのVF値の下限値に基づいて設定される、請求項1から4までの何れか一項に記載の液晶表示装置。
  6.  前記複数の発光ダイオードは、合成されて白色光を形成するR、G、Bの光を発する3種類の発光ダイオードを含み、
     前記発光制御部は、前記サーミスタから取得される温度情報に対して、前記発光ダイオードに印加する電圧の目標値を、R、G、Bの光を発する発光ダイオードで異ならせる、請求項1から5までの何れか一項に記載の液晶表示装置。
  7.  前記複数の発光ダイオードは、合成されて白色光を形成するR、G、Bの光を発する3種類の発光ダイオードを含み、
     前記発光制御部は、Rの光を発する発光ダイオードと、G、Bの光を発する発光ダイオードとで、前記サーミスタから取得される温度情報に対して、前記発光ダイオードに印加する電圧の目標値を異ならせる、請求項1から5までの何れか一項に記載の液晶表示装置。
  8.  前記サーミスタは、金属の酸化物を混合した焼結体を用いて構成されている、請求項1から7までの何れか一項に記載の液晶表示装置。
  9.  発光ダイオードに対するサーミスタの数が部分的にばらついている、請求項1から8までの何れか一項に記載の液晶表示装置。
  10.  液晶表示装置の液晶表示部の背面を照明するバックライトであって、
     液晶表示部の背面に対向するように配置された複数の発光ダイオードと、
     前記複数の発光ダイオードが配置された領域に、前記発光ダイオードとは別個に設けられたサーミスタと、
     前記発光ダイオードに印加する電圧を制御する発光制御部と、
    を備え、
     前記発光制御部は、前記サーミスタから取得される温度情報に基づいて、温度が高くなると前記発光ダイオードに印加する電圧の目標値を低くし、温度が低くなると前記発光ダイオードに印加する電圧の目標値を高くする、液晶表示装置用のバックライト。
  11.  液晶表示部の背面に複数の発光ダイオードが配置されたバックライトを備えた液晶表示装置用バックライトの制御方法であって、
     前記複数の発光ダイオードが配置された領域に、前記発光ダイオードとは別個に設けられたサーミスタから温度情報を取得する第1ステップと、
     前記第1ステップによって取得された温度情報に基づいて、予め記憶した温度情報と電圧の目標値との関係から前記発光ダイオードに印加する電圧の目標値を設定する第2ステップと、
     前記第2ステップで設定された電圧の目標値に基づいて、前記発光ダイオードに印加する電圧を制御する第3ステップと、
    を備えた、液晶表示装置用バックライトの制御方法。
  12.  液晶表示部の背面に複数の発光ダイオードが配置されたバックライトを備えた液晶表示装置用バックライトの制御方法であって、
     前記複数の発光ダイオードが配置された領域に、前記発光ダイオードとは別個に設けられたサーミスタから温度情報を取得する第1ステップと、
     前記発光ダイオードに印加する電圧の目標値について予め記憶した基準電圧を、前記第1ステップによって取得された温度情報に基づいて補正して、前記発光ダイオードに印加する電圧の目標値を設定する第2ステップと、
     前記第2ステップで設定された電圧の目標値に基づいて、前記発光ダイオードに印加する電圧を制御する第3ステップと、
    を備えた、液晶表示装置用バックライトの制御方法。
PCT/JP2009/063120 2008-10-14 2009-07-22 液晶表示装置 WO2010044300A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010533851A JP5394387B2 (ja) 2008-10-14 2009-07-22 液晶表示装置
US13/122,973 US20110199401A1 (en) 2008-10-14 2009-07-22 Liquid crystal display device
EP09820478A EP2339393A4 (en) 2008-10-14 2009-07-22 LIQUID CRYSTAL DISPLAY DEVICE
BRPI0920123A BRPI0920123A2 (pt) 2008-10-14 2009-07-22 dispositivo de monitor de cristal líquido
CN2009801408941A CN102187266A (zh) 2008-10-14 2009-07-22 液晶显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008265302 2008-10-14
JP2008-265302 2008-10-14

Publications (1)

Publication Number Publication Date
WO2010044300A1 true WO2010044300A1 (ja) 2010-04-22

Family

ID=42106467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063120 WO2010044300A1 (ja) 2008-10-14 2009-07-22 液晶表示装置

Country Status (7)

Country Link
US (1) US20110199401A1 (ja)
EP (1) EP2339393A4 (ja)
JP (1) JP5394387B2 (ja)
CN (1) CN102187266A (ja)
BR (1) BRPI0920123A2 (ja)
RU (1) RU2467366C1 (ja)
WO (1) WO2010044300A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118313A (ja) * 2010-12-01 2012-06-21 Mitsumi Electric Co Ltd 輝度制御装置、該輝度制御装置を備えた表示装置、及び照明装置
JP2014123051A (ja) * 2012-12-21 2014-07-03 Eizo Corp 輝度制御方法および液晶表示装置
JP2014535068A (ja) * 2011-09-28 2014-12-25 アップル インコーポレイテッド ディスプレイ温度検出のためのシステム及び方法
CN105913803A (zh) * 2010-12-02 2016-08-31 伊格尼斯创新公司 用于在amoled显示器中热补偿的系统和方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788649B (zh) * 2011-05-20 2016-08-03 富泰华工业(深圳)有限公司 自动温度测试系统及温度测试方法
CN102620187A (zh) * 2012-02-15 2012-08-01 深圳市华星光电技术有限公司 背光模组
CN102592520A (zh) * 2012-02-27 2012-07-18 郭丰亮 基于led可见光通信的lcd背光平板显示器
CN102855823A (zh) * 2012-08-28 2013-01-02 李崇 具有良好视觉效果的全色led显示屏
CN102883506B (zh) * 2012-09-21 2014-10-29 东南大学 阵列式led照明灯具中心区域温度动态控制方法
KR20150014194A (ko) * 2013-07-29 2015-02-06 삼성디스플레이 주식회사 백라이트 어셈블리 및 이를 포함하는 액정표시장치
CN103453402B (zh) * 2013-08-28 2016-09-14 昆山龙腾光电有限公司 背光模组
JP6843886B2 (ja) 2016-06-21 2021-03-17 ドルビー ラボラトリーズ ライセンシング コーポレイション 高輝度光場のもとでの液晶ディスプレイ応答変動の補償
CN108877642A (zh) * 2017-05-12 2018-11-23 京东方科技集团股份有限公司 发光组件、显示基板和显示装置
CN109345963B (zh) * 2018-10-12 2020-12-18 芯光科技新加坡有限公司 一种显示装置及其封装方法
CN110221468A (zh) * 2019-06-10 2019-09-10 北海惠科光电技术有限公司 显示面板及其温度补偿方法、显示装置
FR3116986B1 (fr) * 2020-12-02 2024-04-12 Valeo Vision Procédé de pilotage en tension pour une source lumineuse pixélisée

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051114A (ja) * 2003-07-30 2005-02-24 Toshiba Corp Led駆動装置
JP2007081394A (ja) * 2005-09-09 2007-03-29 Samsung Electro Mech Co Ltd 温度補償機能を有するled駆動制御回路
JP2007109553A (ja) * 2005-10-14 2007-04-26 Toshiba Matsushita Display Technology Co Ltd 照明装置及び液晶表示装置
JP2007165632A (ja) 2005-12-14 2007-06-28 Sharp Corp Ledバックライト装置及び画像表示装置
JP2008203769A (ja) * 2007-02-22 2008-09-04 Sharp Corp 映像表示装置
JP2008288396A (ja) * 2007-05-17 2008-11-27 Sharp Corp 定電流回路、発光装置、発光装置アレイ、カラー表示装置、バックライト、照明装置
WO2009016913A1 (ja) * 2007-07-27 2009-02-05 Sharp Kabushiki Kaisha 照明装置および液晶表示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306315B1 (en) * 1998-02-27 2001-10-23 Denso Corporation Thermistor device thermistor device manufacturing method and temperature sensor
JP4182930B2 (ja) * 2004-07-12 2008-11-19 ソニー株式会社 表示装置及びバックライト装置
TWI261136B (en) * 2004-08-03 2006-09-01 Au Optronics Corp Structures and methods of temperature compensation for LCD modules
TWI248321B (en) * 2004-10-18 2006-01-21 Chi Mei Optoelectronics Corp Active organic electroluminescence display panel module and driving module thereof
JP4884744B2 (ja) * 2005-10-07 2012-02-29 シャープ株式会社 バックライト装置及びこれを備える表示装置
US7638754B2 (en) * 2005-10-07 2009-12-29 Sharp Kabushiki Kaisha Backlight device, display apparatus including backlight device, method for driving backlight device, and method for adjusting backlight device
RU52492U1 (ru) * 2005-11-15 2006-03-27 Закрытое Акционерное Общество "Транзас" Светодиодная система для подсветки приборной панели
JP5076572B2 (ja) * 2006-04-03 2012-11-21 セイコーエプソン株式会社 画像表示装置、及び画像表示方法
JP2007324493A (ja) * 2006-06-03 2007-12-13 Nichia Chem Ind Ltd 発光装置、発光素子駆動回路及び発光素子の駆動方法
US20080284712A1 (en) * 2006-08-04 2008-11-20 Seiko Epson Corporation Display driver and electronic equipment
KR20080033771A (ko) * 2006-10-13 2008-04-17 삼성전자주식회사 백라이트 유닛의 구동장치, 이를 구비한 액정표시장치, 및그 제어방법
KR100798111B1 (ko) * 2006-11-21 2008-01-28 주식회사 우영 백라이트 제어 장치 및 그를 포함하는 백라이트 구동 장치
KR101494320B1 (ko) * 2007-10-05 2015-02-23 삼성디스플레이 주식회사 백라이트 어셈블리 및 이를 갖는 표시장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051114A (ja) * 2003-07-30 2005-02-24 Toshiba Corp Led駆動装置
JP2007081394A (ja) * 2005-09-09 2007-03-29 Samsung Electro Mech Co Ltd 温度補償機能を有するled駆動制御回路
JP2007109553A (ja) * 2005-10-14 2007-04-26 Toshiba Matsushita Display Technology Co Ltd 照明装置及び液晶表示装置
JP2007165632A (ja) 2005-12-14 2007-06-28 Sharp Corp Ledバックライト装置及び画像表示装置
JP2008203769A (ja) * 2007-02-22 2008-09-04 Sharp Corp 映像表示装置
JP2008288396A (ja) * 2007-05-17 2008-11-27 Sharp Corp 定電流回路、発光装置、発光装置アレイ、カラー表示装置、バックライト、照明装置
WO2009016913A1 (ja) * 2007-07-27 2009-02-05 Sharp Kabushiki Kaisha 照明装置および液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2339393A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118313A (ja) * 2010-12-01 2012-06-21 Mitsumi Electric Co Ltd 輝度制御装置、該輝度制御装置を備えた表示装置、及び照明装置
CN105913803A (zh) * 2010-12-02 2016-08-31 伊格尼斯创新公司 用于在amoled显示器中热补偿的系统和方法
CN105913803B (zh) * 2010-12-02 2021-07-06 伊格尼斯创新公司 用于在amoled显示器中热补偿的系统和方法
JP2014535068A (ja) * 2011-09-28 2014-12-25 アップル インコーポレイテッド ディスプレイ温度検出のためのシステム及び方法
KR101504883B1 (ko) * 2011-09-28 2015-03-20 애플 인크. 디스플레이 온도 감지를 위한 방법 및 시스템
JP2014123051A (ja) * 2012-12-21 2014-07-03 Eizo Corp 輝度制御方法および液晶表示装置

Also Published As

Publication number Publication date
CN102187266A (zh) 2011-09-14
EP2339393A1 (en) 2011-06-29
JP5394387B2 (ja) 2014-01-22
JPWO2010044300A1 (ja) 2012-03-15
RU2467366C1 (ru) 2012-11-20
EP2339393A4 (en) 2011-09-21
US20110199401A1 (en) 2011-08-18
BRPI0920123A2 (pt) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5394387B2 (ja) 液晶表示装置
JP4753661B2 (ja) 表示装置
JP4722136B2 (ja) バックライト装置及び液晶表示装置
JP5070331B2 (ja) 照明装置およびこれを備えた表示装置
WO2010016440A1 (ja) バックライトおよびこれを用いた表示装置
US8654064B2 (en) Backlight having blue light emitting diodes and method of driving same
US8305526B2 (en) Method for providing light to liquid crystal panel
US7551158B2 (en) Display device and method for providing optical feedback
JP2008123818A (ja) バックライト装置、バックライト駆動方法及びカラー画像表示装置
JP6039337B2 (ja) 表示装置及びその制御方法
KR102081600B1 (ko) 액정표시장치
WO2012165465A1 (ja) 液晶表示装置
JP6277549B2 (ja) 面状照明装置及び液晶表示装置
US20130021349A1 (en) Display device, liquid crystal module, and image display system
WO2011125271A1 (ja) 表示装置、液晶モジュール及び画像表示システム
CN110873982A (zh) 数字背光源系统及控制方法、液晶显示装置及控制方法
JP2010039247A (ja) 電気光学装置及び電子機器
JP2009087537A (ja) 光源ユニット、及びそれを用いた照明装置、及びそれを用いた表示装置
JP2006243591A (ja) 液晶表示装置
KR20090072730A (ko) 액정표시장치 및 그 구동방법
JP2007018846A (ja) 照明装置、照明装置を備えた電気光学装置、及び電子機器
JP2007018845A (ja) 照明装置、照明装置を備えた電気光学装置、及びそのような電気光学装置を用いた光学特性の調整方法、並びに電子機器
JP2009054913A (ja) 照明装置及び液晶表示装置
JP2009294506A (ja) 表示装置および表示装置の表示品質の調整方法
WO2011040089A1 (ja) 照明装置、及び表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140894.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13122973

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2417/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010533851

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009820478

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011119511

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0920123

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110414