WO2010044236A1 - スパークプラグおよびその製造方法 - Google Patents

スパークプラグおよびその製造方法 Download PDF

Info

Publication number
WO2010044236A1
WO2010044236A1 PCT/JP2009/005283 JP2009005283W WO2010044236A1 WO 2010044236 A1 WO2010044236 A1 WO 2010044236A1 JP 2009005283 W JP2009005283 W JP 2009005283W WO 2010044236 A1 WO2010044236 A1 WO 2010044236A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground electrode
electrode
protrusion
center electrode
spark plug
Prior art date
Application number
PCT/JP2009/005283
Other languages
English (en)
French (fr)
Inventor
中山勝稔
鬘谷浩平
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP2010507564A priority Critical patent/JP5134080B2/ja
Priority to US13/123,371 priority patent/US8466608B2/en
Priority to CN2009801401228A priority patent/CN102177629B/zh
Priority to EP09820414.2A priority patent/EP2339704B1/en
Publication of WO2010044236A1 publication Critical patent/WO2010044236A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode

Definitions

  • the present invention relates to a spark plug (ignition plug) that ignites fuel by electrically generating a spark in an internal combustion engine, and more particularly to a ground electrode of the spark plug.
  • Patent Document 1 discloses a technique for forming a protrusion on a ground electrode by “forging press” which is one of press processes.
  • Non-Patent Document 1 discloses a technique for forming a protrusion on a ground electrode by “extrusion press” which is one of press processes.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a technique capable of improving the durability of a spark plug in which a ground electrode is formed by press working.
  • the present invention has been made to solve at least a part of the problems described above, and can be realized as the following forms or application examples.
  • the spark plug of Application Example 1 is joined to a shaft-shaped center electrode, an insulator that holds the outer periphery of the center electrode, a metal shell that holds the outer periphery of the insulator, and the metal shell.
  • a projecting amount A from which the protrusion protrudes from the opposing surface satisfies 0.4 mm ⁇ A ⁇ 1.0 mm
  • the tip of the ground electrode Width B of up to less recess is characterized by satisfying 0.4 mm ⁇ B ⁇ 2.5 mm.
  • the width B may satisfy 0.4 mm ⁇ B ⁇ 1.1 mm.
  • the heat dissipation of the protrusion can be improved.
  • the durability of the spark plug in which the ground electrode is formed by press working can be further improved.
  • the width C from the side end of the ground electrode to the press recess may satisfy 0.4 mm ⁇ C ⁇ 0.8 mm.
  • the heat dissipation at the portion from the side end of the ground electrode to the press recess can be improved.
  • the durability of the spark plug in which the ground electrode is formed by press working can be further improved.
  • the spark plug of Application Example 7 is joined to the shaft center electrode, the insulator holding the outer periphery of the center electrode, the metal shell holding the outer periphery of the insulator, and the metal shell.
  • the protrusion A from which the protrusion protrudes from the opposing surface satisfies 0.4 mm ⁇ A ⁇ 1.0 mm, and the width from the side end of the ground electrode to the press recess It is characterized by satisfying 0.4mm ⁇ C ⁇ 0.8mm.
  • a spark plug manufacturing method includes a shaft-shaped center electrode, an insulator that holds the outer periphery of the center electrode, a metal shell that holds the outer periphery of the insulator, and the metal shell. And a ground electrode that forms a spark gap with the center electrode, the spark plug including a ground electrode facing the tip of the center electrode from the facing surface.
  • a protrusion protruding toward the tip of the center electrode is formed by an extrusion press so that a protrusion amount A protruding from the facing surface of the protrusion satisfies 0.4 mm ⁇ A ⁇ 1.0 mm, and the grounding
  • a press recess recessed from the back surface toward the front end of the center electrode has a width B from the front end of the ground electrode to the press recess. And forming so as to satisfy the .4mm ⁇ B ⁇ 2.5mm.
  • the form of the present invention is not limited to the form of the spark plug and the manufacturing method thereof, and can be applied to various forms such as, for example, the ground electrode of the spark plug and the manufacturing method thereof, and the internal combustion engine including the spark plug. is there. Further, the present invention is not limited to the above-described embodiments, and it is needless to say that the present invention can be implemented in various forms without departing from the spirit of the present invention.
  • FIG. 3 is a partial cross-sectional view showing, on an enlarged scale, a plane obtained by cutting the ground electrode at a cross section XX in FIG. 2.
  • FIG. 4 is a partial cross-sectional view showing, in an enlarged manner, a surface obtained by cutting a ground electrode at a cross-section YY in FIG. 3. It is the elements on larger scale which looked at the ground electrode from the back side.
  • FIG. 1 is an explanatory view mainly showing a partial cross section of the spark plug 100.
  • the spark plug 100 includes an insulator 10, a center electrode 20, a ground electrode 30, a terminal fitting 40, and a metal shell 50.
  • the rod-shaped center electrode 20 protruding from one end of the insulator 10 is electrically connected to a terminal fitting 40 provided at the other end of the insulator 10 through the inside of the insulator 10.
  • the outer circumference of the center electrode 20 is insulated by the insulator 10, and the outer circumference of the insulator 10 is held by the metal shell 50 at a position away from the terminal fitting 40.
  • the ground electrode 30 electrically connected to the metal shell 50 forms a spark gap G, which is a gap for generating a spark, between the tip of the center electrode 20.
  • the spark plug 100 is attached to a mounting screw hole 201 provided in an engine head 200 of an internal combustion engine (not shown) via a metallic shell 50, and a high voltage of 20,000 to 30,000 volts is applied to the terminal fitting 40. Then, a spark is generated in a spark gap G formed between the center electrode 20 and the ground electrode 30.
  • the insulator 10 of the spark plug 100 is an insulator formed by firing a ceramic material such as alumina.
  • the insulator 10 is a cylindrical body in which the shaft hole 12 that accommodates the center electrode 20 and the terminal fitting 40 is formed at the center.
  • a flange portion 19 having an increased outer diameter is formed at the center of the insulator 10 in the axial direction.
  • a rear end side body portion 18 that insulates between the terminal metal fitting 40 and the metal shell 50 is formed on the terminal metal fitting 40 side of the flange portion 19.
  • a front end side body portion 17 having an outer diameter smaller than that of the rear end side body portion 18 is formed on the center electrode 20 side with respect to the flange portion 19, and the front end side body portion 17 is further forward than the front end side body portion 17.
  • the leg length portion 13 is formed with a smaller outer diameter, and the outer diameter decreases toward the center electrode 20 side.
  • the metal shell 50 of the spark plug 100 is a cylindrical metal fitting that surrounds and holds a portion ranging from a part of the rear end side body portion 18 to the leg long portion 13 of the insulator 10.
  • the low-carbon steel is used. Consists of.
  • the metal shell 50 includes a tool engaging portion 51, a mounting screw portion 52, a seal portion 54, and a tip surface 57.
  • a tool (not shown) for attaching the spark plug 100 to the engine head 200 is fitted into the tool engaging portion 51 of the metal shell 50.
  • the mounting screw portion 52 of the metal shell 50 has a thread that is screwed into the mounting screw hole 201 of the engine head 200.
  • the seal portion 54 of the metal shell 50 is formed in a hook shape at the base of the mounting screw portion 52, and an annular gasket 5 formed by bending a plate is inserted between the seal portion 54 and the engine head 200.
  • the distal end surface 57 of the metal shell 50 is a hollow circular surface formed at the distal end of the mounting screw portion 52, and the center electrode 20 wrapped in the leg long portion 13 projects from the center of the distal end surface 57.
  • the center electrode 20 of the spark plug 100 is a rod-shaped electrode in which a core material 25 having better thermal conductivity than the electrode base material 21 is embedded in an electrode base material 21 formed in a bottomed cylindrical shape.
  • the electrode base material 21 is made of a nickel alloy containing nickel as a main component such as Inconel (registered trademark), and the core member 25 is made of copper or an alloy containing copper as a main component.
  • the center electrode 20 is inserted into the shaft hole 12 of the insulator 10 with the tip of the electrode base material 21 protruding from the shaft hole 12 of the insulator 10, and is electrically connected to the terminal fitting 40 via the ceramic resistor 3 and the seal body 4. Connected.
  • the ground electrode 30 of the spark plug 100 is an electrode that is joined to the front end surface 57 of the metal shell 50 and bends in a direction intersecting the axial direction of the center electrode 20 to face the front end of the center electrode 20.
  • the ground electrode 30 is made of a nickel alloy mainly composed of nickel such as Inconel (registered trademark).
  • FIG. 2 is an explanatory diagram mainly showing the detailed structure of the ground electrode 30.
  • the ground electrode 30 is a tip surface 31 that constitutes the tip of the ground electrode 30, a facing surface 32 that faces the center electrode 20 among the surfaces of the ground electrode 30, and a surface opposite to the facing surface 32. And a back surface 33 facing the back.
  • a protrusion 36 is formed by extrusion pressing so as to protrude opposite the tip of the center electrode 20.
  • a spark gap G is formed between the protrusion 36 and the center electrode 20.
  • a press recessed portion 37 is formed behind the protruding portion 36 along with the formation of the protruding portion 36 by extrusion molding.
  • the centers of gravity of the protrusions 36 and the press recesses 37 are arranged substantially along the extension of the center axis of the center electrode 20.
  • the projecting portion 36 is a cylindrical projection having a circular cross section
  • the press recessed portion 37 is a cylindrical recess having a circular cross section.
  • FIG. 3 is an enlarged partial cross-sectional view showing a surface obtained by cutting the ground electrode 30 in a cross section XX in FIG.
  • FIG. 4 is a partial cross-sectional view showing, on an enlarged scale, a surface obtained by cutting the ground electrode 30 at the cross-section YY in FIG.
  • FIG. 5 is a partially enlarged view of the ground electrode 30 as viewed from the back surface 33 side.
  • the cross section XX is a plane that passes through the central axis of the center electrode 20, and is a plane that intersects the direction in which the ground electrode 30 protrudes from the metal shell 50 to the central electrode 20, and the cross section YY is It is a surface that passes through the central axis of the center electrode 20 and is substantially along the direction in which the ground electrode 30 protrudes from the metal shell 50 to the center electrode 20.
  • the ground electrode 30 further includes side end surfaces 34 and 35 in addition to the front end surface 31, the opposing surface 32, and the back surface 33.
  • the side end surfaces 34, 35 of the ground electrode 30 are surfaces that intersect the tip surface 31, the opposing surface 32, and the back surface 33, and constitute the side end of the ground electrode 30.
  • the distance between the opposing surface 32 and the back surface 33, that is, the thickness T of the ground electrode 30 is 1.5 mm (millimeters)
  • the electrode width W of the ground electrode 30 is 2.8 mm.
  • the protrusion 36 of the ground electrode 30 includes a side surface 362 and a root portion 364.
  • the side surface 362 of the protrusion 36 is a surface substantially along the direction in which the protrusion 36 protrudes from the facing surface 32, that is, the direction toward the center electrode 20.
  • a root portion 364 of the protrusion 36 is a portion where the protrusion 36 rises from the facing surface 32 and is connected to the side surface 362.
  • the side surface 362 of the protruding portion 36 is substantially perpendicular to the facing surface 32, and the root portion 364 of the protruding portion 36 is formed as a substantially perpendicular corner.
  • the protrusion amount A that the protrusion 36 protrudes from the facing surface 32 preferably satisfies 0.4 mm ⁇ A ⁇ 1.0 mm. The evaluation value of the protrusion amount A will be described later.
  • the facing surface 32 of the ground electrode 30 includes a flat surface 322 and a round corner 324.
  • the flat surface 322 of the facing surface 32 is a flat surface that continues from the root portion 364 of the protrusion 36 to the side end surfaces 34 and 35 of the ground electrode 30.
  • the rounded corner portion 324 of the facing surface 32 is a curved surface formed by deforming the rounded corner portion originally formed on the member of the ground electrode 30 before the projection portion 36 is molded as the projection portion 36 is molded. It is.
  • the ratio between the distance E1 of the flat surface 322 extending from the root portion 364 of the protrusion 36 to the round corner 324 of the facing surface 32 and the distance E2 from the root portion 364 of the protrusion 36 to the side end surfaces 34 and 35 is 0.4 ⁇ (E1 / E2) ⁇ 1 is preferably satisfied.
  • the evaluation value of the ratio between the distance E1 and the distance E2 will be described later.
  • the press recessed portion 37 of the ground electrode 30 includes a bottom surface 371, side surfaces 372, and corner portions 374.
  • the bottom surface 371 of the press recess 37 is a surface that is substantially parallel to the back surface 33 and that forms the bottom of the press recess 37.
  • the side surface 372 of the press concave portion 37 is a surface substantially along the direction in which the press concave portion 37 is recessed from the back surface 33 toward the facing surface 32, that is, the direction toward the center electrode 20.
  • the corner 374 of the press recessed portion 37 is a portion connected from the bottom surface 371 to the side surface 372 of the press recessed portion 37.
  • the side surface 372 of the press concave portion 37 is substantially perpendicular to the bottom surface 371 of the press concave portion 37 and the back surface 33 of the ground electrode 30, and the corner portion 374 of the press concave portion 37 is formed as a substantially perpendicular corner portion.
  • the width B from the side surface 372 of the press recess 37 to the tip surface 31 of the ground electrode 30 preferably satisfies 0.4 mm ⁇ B ⁇ 2.5 mm.
  • the width C from the side surface 372 of the press recess 37 to the side end surfaces 34 and 35 of the ground electrode 30 preferably satisfies 0.4 mm ⁇ C ⁇ 0.8 mm. Evaluation values of the widths B and C will be described later.
  • the projecting portion 36 is located inside the press recessed portion 37.
  • the distance F at which the root portion 364 of the projection portion 36 is located on the inner side from the side surface 372 of the press concave portion 37 satisfies 0 mm or more.
  • FIG. 6 is a flowchart showing the manufacturing process of the ground electrode 30.
  • FIG. 7 and FIG. 8 are explanatory views showing how the ground electrode 30 is manufactured.
  • the electrode member 301 which is the material of the ground electrode 30 is welded to the metal shell 50 (step S110).
  • the electrode member 301 is a rod-shaped nickel alloy having a substantially rectangular cross section.
  • the electrode member 301 is disposed between the holding die 610 and the receiving die 620 (step S120).
  • the holding die 610 and the receiving die 620 are dies used for an extrusion press.
  • the receiving mold 620 is formed with a molding groove 622 having substantially the same shape as the electrode member 301, and the electrode member 301 is accommodated in the molding groove 622 of the receiving mold 620.
  • a pin hole 614 is formed in the holding die 610 at a position corresponding to the press recessed portion 37 of the ground electrode 30 in accordance with the position of the forming groove 622 formed in the receiving die 620, and the grounding electrode is provided in the receiving die 620.
  • a pin hole 624 is formed at a position corresponding to the 30 protrusions 36.
  • the receiving pin 630 is inserted into the pin hole 624 of the receiving die 620 (step S130).
  • the receiving pin 630 is a pin having a diameter substantially the same as the diameter of the pin hole 624 of the receiving mold 620, and the protrusion amount A of the protrusion 36 is set according to the amount of insertion of the receiving pin 630 into the pin hole 624. It is possible to adjust.
  • the processing pin 640 is press-inserted into the pin hole 614 of the presser mold 610, whereby an extrusion press is applied to the electrode member 301 (step S140). .
  • a portion of the electrode member 301 adjacent to the pin hole portion 614 of the pressing die 610 is depressed by the processing pin 640.
  • the press concave portion 37 is formed, and a portion of the electrode member 301 adjacent to the pin hole portion 624 of the receiving die 620 is pushed out to the pin hole portion 624 by the processing pin 640 to form the protrusion 36.
  • the electrode member 301 is processed by extrusion pressing (step S140), the electrode member 301 in which the protruding portion 36 and the press recessed portion 37 are formed on the electrode member 301 is taken out from the mold (step S150). Thereafter, the electrode member 301 taken out from the mold is bent (step S160), and the ground electrode 30 is completed.
  • the ground electrode 30 was manufactured by subjecting the electrode member 301 previously welded to the metal shell 50 to extrusion pressing and bending.
  • the electrode member 301 is subjected to extrusion pressing and bending before welding to the metal shell 50.
  • the ground electrode 30 may be manufactured, or the electrode member 301 subjected to extrusion press before being welded to the metal shell 50 may be bent after being welded to the metal shell 50.
  • FIG. 9 is an explanatory view showing the ground electrode 30 of the first to third modifications.
  • FIG. 9 shows a cross section XX corresponding to the cross section described in FIG. 2 and a cross section YY corresponding to the cross section described in FIG. 3 for each ground electrode 30 in the first to third modifications. Is shown.
  • the ground electrode 30 of the first modified example is the above-described embodiment except that the shape of the root portion 364 of the projection portion 36 and the corner portion 374 of the press recessed portion 37 is a corner portion chamfered at an angle of about 45 °. It is the same.
  • the distances E2 to 34 and 35 are shorter than the above-described embodiment by the root portion 364, respectively.
  • the distance F at which the protrusion 36 is located on the inner side from the side surface 372 of the press recess 37 is greater than 0 mm.
  • the ground electrode 30 of the second modification is the same as that of the above-described embodiment except that the shape of the root portion 364 of the projection portion 36 and the corner portion 374 of the press recessed portion 37 is a curved round corner portion.
  • the distances E2 to 34 and 35 are shorter than the above-described embodiment by the root portion 364, respectively.
  • the distance F at which the protrusion 36 is located on the inner side from the side surface 372 of the press recess 37 is greater than 0 mm.
  • the ground electrode 30 of the third modified example is the same as that of the above-described embodiment except that the side surface 372 of the press recessed portion 37 is inclined so that the diameter decreases in the depth direction.
  • the distance F at which the root portion 364 of the protrusion 36 is located on the inner side from the side surface 372 of the press concave portion 37 is greater than 0 mm.
  • FIG. 10 is an explanatory view showing the ground electrode 30 of the fourth to eighth modifications.
  • FIG. 10 shows a partially enlarged view of each ground electrode 30 in the first to third modifications as viewed from the back surface 33 side.
  • the ground electrode 30 of the fourth modification is the same as that of the above-described embodiment except that the circular protrusion 36 is located inside the square press recessed portion 37 when the ground electrode 30 is viewed from the back surface 33 side.
  • the ground electrode 30 of the fifth modified example is the same as the above-described embodiment except that when the ground electrode 30 is viewed from the back surface 33 side, a square protrusion 36 is located inside the circular press recessed portion 37.
  • the ground electrode 30 of the sixth modified example is the same as the above-described embodiment except that the elliptical protrusion 36 is located inside the elliptical press recessed portion 37 when the ground electrode 30 is viewed from the back surface 33 side. It is.
  • the ground electrode 30 of the seventh modified example is the same as the above-described embodiment except that the triangular protrusion 36 is located inside the square press recessed portion 37 when the ground electrode 30 is viewed from the back surface 33 side.
  • the ground electrode 30 of the sixth modification is the same as that of the above-described embodiment except that a square protrusion 36 is located inside the triangular press recess 37 when the ground electrode 30 is viewed from the back surface 33 side.
  • the shapes of the protrusions 36 and the press recesses 37 of the ground electrode 30 may be other polygons or a plurality of curves, depending on the embodiment. It may have a configured shape.
  • FIG. 11 is an explanatory diagram showing the results of an evaluation experiment in which the influence of the protrusion amount A on the ignition performance is examined.
  • experimental values are shown with the protrusion amount A on the horizontal axis and the ignition timing with a combustion fluctuation rate of 20% on the vertical axis.
  • the ignition timing at which the combustion fluctuation rate is 20% is shown using the crank angle of the internal combustion engine.
  • a plurality of spark plugs 100 having a diameter of the protrusion 36 of 1.5 mm and different protrusion amounts A of the protrusion 36 were prepared. These spark plugs 100 were mounted on a 2000 cc displacement, DOHC gasoline engine, and idling was performed at an intake pressure of ⁇ 550 mmHg and an engine speed of 750 rpm, thereby obtaining the experimental values shown in FIG. According to the experimental values in FIG. 11, it was found that when the protrusion amount A is smaller than 0.4 mm, the rapid ignition performance is drastically decreased.
  • FIG. 12 is an explanatory diagram showing the results of an evaluation experiment in which the influence of the protrusion amount A on the durability performance was examined.
  • the experimental value is shown with the protrusion amount A on the horizontal axis and the increase amount of the spark gap G on the vertical axis.
  • a plurality of spark plugs 100 having a diameter of the protrusion 36 of 1.5 mm and different protrusion amounts A of the protrusion 36 were prepared.
  • the experimental value of FIG. 12 was obtained.
  • the protrusion amount A preferably satisfies 0.4 mm or more from the viewpoint of ignition performance based on the result of FIG. 11, and preferably satisfies 1.0 mm or less from the viewpoint of durability performance based on the result of FIG. 12. . That is, the protrusion amount A preferably satisfies 0.4 mm ⁇ A ⁇ 1.0 mm.
  • Evaluation value of width B 13A and 13B are explanatory diagrams showing the results of an evaluation experiment in which the influence of the width B on the durability performance is examined.
  • the horizontal axis indicates the width B
  • the vertical axis indicates the temperature of the tip surface 31, and the experimental value is shown.
  • the horizontal axis indicates the width B
  • the vertical axis indicates the temperature of the protrusion 36.
  • Experimental values are shown. 13A and 13B, a plurality of spark plugs 100 having different widths B from the front end surface 31 of the ground electrode 30 to the press recessed portion 37 were prepared.
  • the thickness T of the ground electrode 30 is 1.5 mm
  • the electrode width W of the ground electrode 30 is 2.8 mm
  • the protrusion amount A of the protrusion 36 is 0.7 mm
  • the diameter of the protrusion 36 is 1.
  • the depth of the press concave portion 37 was 0.7 mm
  • the diameter of the press concave portion 37 was 1.7 mm
  • the width C from the side end surfaces 34 and 35 of the ground electrode 30 to the press concave portion 37 was 0.5 mm.
  • the spark plug 100 is heated to 950 ° C. for 2 minutes with a burner and then cooled for 1 minute at room temperature. After 1000 cycles, the temperature of the tip 33 of the ground electrode 30 near the back surface 33 is measured.
  • the experimental value of FIG. 13A was obtained
  • the experimental value of FIG. 13B was obtained by measuring the temperature of the side surface 362 of the protrusion 36 on the side of the tip surface 31.
  • the width B when the width B is smaller than 0.4 mm, the temperature of the tip surface 31 is rapidly increased to the allowable limit value of 1000 ° C. or more, and when the width B exceeds 2.5 mm. It has been found that the temperature of the tip surface 31 suddenly increases and reaches the allowable limit value of 1000 ° C. or higher. Therefore, the width B preferably satisfies 0.4 mm ⁇ B ⁇ 2.5 mm from the viewpoint of durability performance as a result of FIG. 13A.
  • the temperature of the protrusion 36 is 962 ° C. when the width B is 0.4 mm, 955 ° C. when the width B is 0.6 mm, 957 ° C. when the width B is 1.0 mm,
  • the temperature was 960 ° C.
  • the width B was smaller than 0.4 mm, the temperature of the protrusion 36 rapidly increased, and became 985 ° C. when the width B was 0.3 mm, and 1005 ° C. when the width B was 0.2 mm.
  • the width B is larger than 1.1 mm, the temperature of the protrusion 36 rapidly increases to 978 ° C. when the width B is 1.3 mm, and 981 ° C.
  • the width B when the width B is 1.5 mm.
  • the temperature was 985 ° C. Therefore, in the range where the width B satisfies 0.4 mm ⁇ B ⁇ 1.1 mm, the temperature of the protrusion 36 remains at about 960 ° C., and when the width B is smaller than 0.4 mm, or the width B is It has been found that when it is larger than 1.1 mm, it rapidly rises above 970 ° C.
  • the protruding portion 36 of the ground electrode 30 is a portion where a spark generated between the tip of the center electrode 20 ignites, and the consumption of the protruding portion 36 is more likely to proceed as the temperature of the protruding portion 36 increases. Therefore, the durability of the protrusion 36 is improved as the temperature of the protrusion 36 is lowered. Therefore, it is more preferable that the width B satisfies 0.4 mm ⁇ B ⁇ 1.1 mm from the viewpoint of durability performance as a result of FIG. 13B.
  • FIG. 14 is an explanatory diagram showing the result of an evaluation experiment in which the influence of the width C on the durability performance is examined.
  • experimental values are shown with the width C on the horizontal axis and the temperature of the side end faces 34 and 35 on the vertical axis.
  • a plurality of spark plugs 100 having different widths C from the side end surfaces 34 and 35 of the ground electrode 30 to the press recessed portion 37 were prepared.
  • the thickness T of the ground electrode 30 is 1.5 mm
  • the electrode width W of the ground electrode 30 is 2.8 mm
  • the protrusion amount A of the protrusion 36 is 0.7 mm
  • the depth of the press recess 37 is 0.
  • the width B from the tip surface 31 of the ground electrode 30 to the press recess 37 is 0.6 mm
  • the diameter of the press recess 37 is (electrode width W ⁇ (2 ⁇ width C)) mm
  • the diameter of the protrusion 36 is ( (Diameter of the press recess 37) ⁇ 0.2) mm (maximum value 1.7 mm).
  • the width C preferably satisfies 0.4 mm ⁇ C ⁇ 0.8 mm from the viewpoint of durability performance and formability according to the result of FIG.
  • FIG. 15 is an explanatory diagram showing the result of an evaluation experiment in which the influence of the distance F on the moldability is examined.
  • the ground electrode 30 is cracked when the root portion 364 of the protrusion 36 is located on the inner side from the side surface 372 of the press recessed portion 37 and the ground electrode 30 is extruded and pressed at the distance F.
  • the crack generation rate indicating the ratio of occurrence of the crack is shown.
  • the distance F takes a negative value in a state in which the protruding portion 36 protrudes outside the press recessed portion 37.
  • the distance F is changed by changing the diameter of the protrusion 36, the thickness T of the ground electrode 30 is 1.5 mm, the electrode width W of the ground electrode 30 is 2.8 mm, The depth was 1.0 mm, the diameter of the press recess 37 was 1.7 mm, the center of gravity deviation D was 0 mm, and the ratio (E1 / E2) was 1.
  • the evaluation experiment of FIG. 15 after a plurality of ground electrodes 30 having different distances F were processed by an extrusion press, the presence or absence of cracks generated in the ground electrode 30 was inspected.
  • the distance F when the distance F becomes negative, the crack occurrence rate increases rapidly. Therefore, it is preferable that the distance F satisfies 0 mm or more.
  • FIG. 16 is an explanatory diagram showing the results of an evaluation experiment in which the influence of the center-of-gravity deviation amount D on the moldability is examined.
  • the ground electrode 30 is processed by extrusion pressing with the center of gravity 366 between the center of gravity 366 of the protrusion 36 and the center of gravity 376 of the press recess 37, and the center of gravity misalignment D, the ground electrode 30 is cracked. The crack generation rate indicating the ratio of occurrence of the crack is shown.
  • FIG. 16 is an explanatory diagram showing the results of an evaluation experiment in which the influence of the center-of-gravity deviation amount D on the moldability is examined.
  • the diameter of the protrusion 36 is changed according to the center-of-gravity shift amount D
  • the thickness T of the ground electrode 30 is 1.5 mm
  • the electrode width W of the ground electrode 30 is 2.8 mm
  • the depth was 1.0 mm
  • the diameter of the press recess 37 was 1.7 mm
  • the distance F was 0 mm
  • the ratio (E1 / E2) was 1.
  • FIG. 17 is an explanatory diagram showing the results of an evaluation experiment in which the influence of the ratio (E1 / E2) on the moldability is examined.
  • FIG. 17 shows a ratio (E1 / E2) indicating the ratio of the flat surface 322 to the opposing surface 32 of the ground electrode 30 and the ground electrode 30 processed by an extrusion press at the ratio (E1 / E2).
  • the crack generation rate indicating the ratio of occurrence of cracks in the electrode 30 is shown.
  • the thickness T of the ground electrode 30 is 1.5 mm
  • the electrode width W of the ground electrode 30 is 2.8 mm
  • the depth of the press concave portion 37 is 1.0 mm
  • the diameter of the press concave portion 37 is 1.7 mm.
  • the diameter of the protrusion 36 was 1.5 mm
  • the center of gravity deviation D was 0 mm
  • the distance F was 0 mm.
  • the protrusion amount A of the protrusion 36 satisfies 0.4 mm ⁇ A ⁇ 1.0 mm, and the width B from the tip surface 31 of the ground electrode 30 to the press recess 37 is 0.4 mm ⁇ . Since B ⁇ 2.5 mm is satisfied, it is possible to improve the heat dissipation in the portion from the tip surface 31 of the ground electrode 30 to the press recess 37. As a result, the durability of the spark plug 100 in which the ground electrode 30 is formed by press working can be improved.
  • the width B from the front end surface 31 of the ground electrode 30 to the press concave portion 37 satisfies 0.4 mm ⁇ B ⁇ 1.1 mm, the heat dissipation performance at the portion from the front end surface 31 of the ground electrode 30 to the press concave portion 37 is satisfied.
  • the heat dissipation of the protrusion 36 can be improved.
  • the durability of the spark plug 100 in which the ground electrode 30 is formed by pressing can be further improved.
  • the width C from the side end surfaces 34, 35 of the ground electrode 30 to the press concave portion 37 satisfies 0.4 mm ⁇ C ⁇ 0.8 mm, in addition to the portion from the tip surface 31 of the ground electrode 30 to the press concave portion 37 In addition, it is possible to improve the heat dissipation in the portion from the side end surfaces 34 and 35 of the ground electrode 30 to the press concave portion 37. As a result, the durability of the spark plug 100 in which the ground electrode 30 is formed by pressing can be further improved.
  • the projection 36 when the projection 36 is viewed from the direction facing the center electrode 20, the projection 36 is located inside the press recess 37, and therefore, when the ground electrode 30 is extruded, the corner of the press recess 37 is formed. Since the position of the projection part 36 deviates from the direction of the shearing force transmitted radially from 374, the generation of cracks in the projection part 36 and its surroundings can be suppressed. As a result, the durability of the spark plug 100 in which the ground electrode 30 is formed by pressing can be further improved.
  • the center-of-gravity shift amount D between the protrusion 36 and the press recess 37 satisfies 0 mm ⁇ D ⁇ 0.3 mm, and thus is added to the protrusion 36.
  • Load imbalance can be suppressed. As a result, it is possible to further suppress the occurrence of cracks in the protrusion 36 and its surroundings.
  • the ratio (E1 / E2) indicating the ratio of the flat surface 322 to the opposing surface 32 of the ground electrode 30 satisfies 0.4 ⁇ (E1 / E2) ⁇ 1
  • the amount of deformation around the protrusion 36 is suppressed. By doing so, it is possible to suppress the occurrence of cracks in the protrusion 36 and its surroundings. As a result, it is possible to further suppress the occurrence of cracks in the protrusion 36 and its surroundings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spark Plugs (AREA)

Abstract

 スパークプラグ100において、突起部36の突出量Aは、0.4mm≦A≦1.0mmを満たし、接地電極30の先端面31からプレス凹部37までの幅Bは、0.4mm≦B≦2.5mmを満たす。

Description

スパークプラグおよびその製造方法
 本発明は、内燃機関において電気的に火花を発生させることによって燃料に着火させるスパークプラグ(点火プラグ)に関し、特に、スパークプラグの接地電極に関する。
 従来、接地電極に貴金属チップを用いることなくスパークプラグの着火性を向上させるために、プレス加工によって接地電極に突起部を形成する技術が提案されている。特許文献1には、プレス加工の一つである「鍛造プレス」によって接地電極に突起部を形成する技術が開示されている。非特許文献1には、プレス加工の一つである「押出しプレス」によって接地電極に突起部を形成する技術が開示されている。
特開2006-286469号公報
Shin Nishioka他著、「Super Ignition Spark Plug with Wear Resistive Electrode」、SAE TECHNICAL PAPER SERIES 2008-01-0092,2008年4月発行
 しかしながら、従来、プレス加工によって接地電極に突起部を形成することに関して十分な考慮がなされていなかった。例えば、プレス加工による塑性域を超える変形によって接地電極に亀裂や欠損が発生すると、接地電極の耐久性が低下してしまうという問題があった。また、プレス加工で形成可能な接地電極の形状に制約がある中、接地電極の形状によっては、内燃機関において過度に蓄熱して接地電極の酸化が進行することにより、接地電極の耐久性が低下してしまうという問題もあった。
 本発明は、上記した課題を踏まえ、プレス加工によって接地電極が形成されたスパークプラグの耐久性を向上させることができる技術を提供することを目的とする。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
[適用例1] 適用例1のスパークプラグは、軸状の中心電極と、前記中心電極の外周を保持する絶縁碍子と、前記絶縁碍子の外周を保持する主体金具と、前記主体金具に接合され、前記中心電極との間に火花ギャップを形成する接地電極であって、前記中心電極の先端に対向する対向面と、前記中心電極の先端に背を向ける背面と、押出しプレスによって形成され、前記対向面から前記中心電極の先端に向けて突出する突起部と、前記押出しプレスによる前記突起部の形成に伴って前記背面に形成され、前記背面から前記中心電極の先端に向けて窪むプレス凹部とを有する接地電極とを備えるスパークプラグであって、前記突起部が前記対向面から突出する突出量Aは、0.4mm≦A≦1.0mmを満たし、前記接地電極の先端から前記プレス凹部までの幅Bは、0.4mm≦B≦2.5mmを満たすことを特徴とする。適用例1のスパークプラグによれば、接地電極の先端からプレス凹部までの部位における放熱性を向上させることができる。その結果、プレス加工によって接地電極が形成されたスパークプラグの耐久性を向上させることができる。
[適用例2] 適用例1のスパークプラグであって、前記幅Bは、0.4mm≦B≦1.1mmを満たすとしても良い。適用例2のスパークプラグによれば、接地電極の先端からプレス凹部までの部位における放熱性の向上に加え、突起部の放熱性を向上させることができる。その結果、プレス加工によって接地電極が形成されたスパークプラグの耐久性を更に向上させることができる。
[適用例3] 適用例1または適用例2のスパークプラグであって、前記接地電極の側端から前記プレス凹部までの幅Cは、0.4mm≦C≦0.8mmを満たすとしても良い。適用例3のスパークプラグによれば、接地電極の先端からプレス凹部までの部位に加え、接地電極の側端からプレス凹部までの部位における放熱性を向上させることができる。その結果、プレス加工によって接地電極が形成されたスパークプラグの耐久性を更に向上させることができる。
[適用例4] 適用例1ないし適用例3のいずれかのスパークプラグであって、前記突起部が前記中心電極の先端に突出する方向から見た場合、前記突起部は、前記プレス凹部の内側に位置するとしても良い。適用例4のスパークプラグによれば、接地電極に押出成形を施す際に、プレス凹部の底面の隅から放射状に伝わる剪断力の方向から突起部の位置が外れるため、突起部およびその周囲における亀裂(クラック)の発生を抑制することができる。その結果、プレス加工によって接地電極が形成されたスパークプラグの耐久性を更に向上させることができる。
[適用例5] 適用例4のスパークプラグであって、前記突起部が前記中心電極の先端に突出する方向から見た場合、前記突起部と前記プレス凹部との重心ズレ量Dは、0mm≦D≦0.3mmを満たすとしても良い。適用例5のスパークプラグによれば、突起部に加わる荷重の偏りを抑制することができる。その結果、突起部およびその周囲における亀裂(クラック)の発生を更に抑制することができる。
[適用例6] 適用例1ないし適用例5のいずれかに記載のスパークプラグであって、前記突起部が立ち上がる根元部から前記接地電極の側端までの間の平坦な表面の距離E1と、前記根元部から前記接地電極の側端までの距離E2との比は、0.4≦(E1/E2)≦1を満たすとしても良い。適用例6のスパークプラグによれば、突起部の周囲における変形量を抑制することによって、突起部およびその周囲における亀裂(クラック)の発生を抑制することができる。その結果、突起部およびその周囲における亀裂(クラック)の発生を更に抑制することができる。
[適用例7] 適用例7のスパークプラグは、軸状の中心電極と、前記中心電極の外周を保持する絶縁碍子と、前記絶縁碍子の外周を保持する主体金具と、前記主体金具に接合され、前記中心電極との間に火花ギャップを形成する接地電極であって、前記中心電極の先端に対向する対向面と、前記中心電極の先端に背を向ける背面と、押出しプレスによって形成され、前記対向面から前記中心電極の先端に向けて突出する突起部と、前記押出しプレスによる前記突起部の形成に伴って前記背面に形成され、前記背面から前記中心電極の先端に向けて窪むプレス凹部とを備えるスパークプラグであって、前記突起部が前記対向面から突出する突出量Aは、0.4mm≦A≦1.0mmを満たし、前記接地電極の側端から前記プレス凹部までの幅Cは、0.4mm≦C≦0.8mmを満たすことを特徴とする。適用例7のスパークプラグによれば、接地電極の側端からプレス凹部までの部位における放熱性を向上させることができる。その結果、プレス加工によって接地電極が形成されたスパークプラグの耐久性を向上させることができる。
[適用例8] 適用例8におけるスパークプラグの製造方法は、軸状の中心電極と、前記中心電極の外周を保持する絶縁碍子と、前記絶縁碍子の外周を保持する主体金具と、前記主体金具に接合され、前記中心電極との間に火花ギャップを形成する接地電極とを備えるスパークプラグの製造方法であって、前記接地電極において前記中心電極の先端に対向する対向面に、前記対向面から前記中心電極の先端に向けて突出する突起部を、前記突起部が前記対向面から突出する突出量Aが0.4mm≦A≦1.0mmを満たすように、押出しプレスによって形成し、前記接地電極において前記中心電極の先端に背を向ける背面に、前記背面から前記中心電極の先端に向けて窪むプレス凹部を、前記接地電極の先端から前記プレス凹部までの幅Bが0.4mm≦B≦2.5mmを満たすように形成することを特徴とする。適用例8のスパークプラグの製造方法によれば、プレス加工による亀裂や欠損を抑制しながら、放熱性に優れた接地電極を形成することができる。
 本発明の形態は、スパークプラグおよびその製造方法の形態に限るものではなく、例えば、スパークプラグの接地電極およびその製造方法、スパークプラグを備える内燃機関などの種々の形態に適用することも可能である。また、本発明は、前述の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内において様々な形態で実施し得ることは勿論である。
スパークプラグの部分断面を主に示す説明図である。 接地電極の詳細構造を主に示す説明図である。 図2における断面X-Xで接地電極を切断した面を拡大して示す部分断面図である。 図3における断面Y-Yで接地電極を切断した面を拡大して示す部分断面図である。 接地電極を背面側から見た部分拡大図である。 接地電極の製造工程を示すフローチャートである。 接地電極を製造する様子を示す説明図である。 接地電極を製造する様子を示す説明図である。 第1変形例ないし第3変形例の接地電極を示す説明図である。 第4変形例ないし第8変形例の接地電極を示す説明図である。 突出量Aが着火性能に与える影響を調べた評価実験の結果を示す説明図である。 突出量Aが耐久性能に与える影響を調べた評価実験の結果を示す説明図である。 幅Bが耐久性能に与える影響を調べた評価実験の結果を示す説明図である。 幅Bが耐久性能に与える影響を調べた評価実験の結果を示す説明図である。 幅Cが耐久性能に与える影響を調べた評価実験の結果を示す説明図である。 距離Fが成形性に与える影響を調べた評価実験の結果を示す説明図である。 重心ズレ量Dが成形性に与える影響を調べた評価実験の結果を示す説明図である。 比(E1/E2)が成形性に与える影響を調べた評価実験の結果を示す説明図である。
 以上説明した本発明の構成および作用を一層明らかにするために、以下本発明を適用したスパークプラグについて説明する。
A.実施例:
 A-1.スパークプラグの構成:
 図1は、スパークプラグ100の部分断面を主に示す説明図である。スパークプラグ100は、絶縁碍子10と、中心電極20と、接地電極30と、端子金具40と、主体金具50とを備える。絶縁碍子10の一端から突出する棒状の中心電極20は、絶縁碍子10の内部を通じて、絶縁碍子10の他端に設けられた端子金具40に電気的に接続されている。中心電極20の外周は、絶縁碍子10によって絶縁され、絶縁碍子10の外周は、端子金具40から離れた位置で主体金具50によって保持されている。主体金具50に電気的に接続された接地電極30は、火花を発生させる隙間である火花ギャップGを中心電極20の先端との間に形成する。スパークプラグ100は、内燃機関(図示しない)のエンジンヘッド200に設けられた取付ネジ孔201に主体金具50を介して取り付けられ、2万~3万ボルトの高電圧が端子金具40に印加されると、中心電極20と接地電極30との間に形成された火花ギャップGに火花が発生する。
 スパークプラグ100の絶縁碍子10は、アルミナを始めとするセラミックス材料を焼成して形成された絶縁体である。絶縁碍子10は、中心電極20および端子金具40を収容する軸孔12が中心に形成された筒状体である。絶縁碍子10の軸方向中央には外径を大きくした鍔部19が形成されている。鍔部19よりも端子金具40側には、端子金具40と主体金具50との間を絶縁する後端側胴部18が形成されている。鍔部19よりも中心電極20側には、後端側胴部18よりも外径が小さい先端側胴部17が形成され、先端側胴部17の更に先には、先端側胴部17よりも小さい外径であって中心電極20側へ向かうほど外径が小さくなる脚長部13が形成されている。
 スパークプラグ100の主体金具50は、絶縁碍子10の後端側胴部18の一部から脚長部13に亘る部位を包囲して保持する円筒状の金具であり、本実施例では、低炭素鋼から成る。主体金具50は、工具係合部51と、取付ネジ部52と、シール部54と、先端面57とを備える。主体金具50の工具係合部51は、スパークプラグ100をエンジンヘッド200に取り付ける工具(図示しない)が嵌合する。主体金具50の取付ネジ部52は、エンジンヘッド200の取付ネジ孔201に螺合するネジ山を有する。主体金具50のシール部54は、取付ネジ部52の根元に鍔状に形成され、シール部54とエンジンヘッド200との間には、板体を折り曲げて形成した環状のガスケット5が嵌挿される。主体金具50の先端面57は、取付ネジ部52の先端に形成された中空円状の面であり、先端面57の中央には、脚長部13に包まれた中心電極20が突出する。
 スパークプラグ100の中心電極20は、有底筒状に形成された電極母材21の内部に、電極母材21よりも熱伝導性に優れる芯材25を埋設した棒状の電極である。本実施例では、電極母材21は、インコネル(登録商標)を始めとするニッケルを主成分とするニッケル合金から成り、芯材25は、銅または銅を主成分とする合金から成る。中心電極20は、電極母材21の先端が絶縁碍子10の軸孔12から突出した状態で絶縁碍子10の軸孔12に挿入され、セラミック抵抗3およびシール体4を介して端子金具40に電気的に接続されている。
 スパークプラグ100の接地電極30は、主体金具50の先端面57に接合され、中心電極20の軸方向に交差する方向に屈曲して中心電極20の先端に対向する電極である。本実施例では、接地電極30は、インコネル(登録商標)を始めとするニッケルを主成分とするニッケル合金から成る。
 図2は、接地電極30の詳細構造を主に示す説明図である。接地電極30は、接地電極30の先端を構成する先端面31と、接地電極30の表面のうち中心電極20に対向する対向面32と、対向面32とは反対側の面であり接地電極30に背を向ける背面33とを備える。接地電極30の対向面32には、中心電極20の先端に対向して突出する突起部36が、押出しプレスによって形成されている。突起部36と中心電極20との間には、火花ギャップGが形成される。接地電極30の背面33には、押出成形による突起部36の形成に伴って突起部36の背後にプレス凹部37が形成されている。突起部36およびプレス凹部37の重心は、中心電極20の中心軸の延長線上に略沿って並ぶ。本実施例では、突起部36は、円形の断面を有する円柱状の突起であり、プレス凹部37は、円形の断面を有する円柱状の窪みである。
 図3は、図2における断面X-Xで接地電極30を切断した面を拡大して示す部分断面図である。図4は、図3における断面Y-Yで接地電極30を切断した面を拡大して示す部分断面図である。図5は、接地電極30を背面33側から見た部分拡大図である。ここで、断面X-Xは、中心電極20の中心軸を通る面であって、接地電極30が主体金具50から中心電極20に突出する方向に交差する面であり、断面Y-Yは、中心電極20の中心軸を通る面であって、接地電極30が主体金具50から中心電極20に突出する方向に略沿った面である。
 接地電極30は、先端面31,対向面32,背面33に加え、側端面34,35を更に備える。接地電極30の側端面34,35は、先端面31,対向面32,背面33の各々に交差する面であり、接地電極30の側端を構成する。本実施例では、対向面32と背面33との間の距離、すなわち、接地電極30の厚みTは、1.5mm(ミリメートル)であり、側端面34と側端面35との間の距離、すなわち、接地電極30の電極幅Wは、2.8mmである。
 図3および図4に示すように、接地電極30の突起部36は、側面362と、根元部364とを備える。突起部36の側面362は、突起部36が対向面32から突出する方向、すなわち中心電極20に向かう方向に略沿った面である。突起部36の根元部364は、突起部36が対向面32から立ち上がり側面362へと繋がる部位である。本実施例では、突起部36の側面362は、対向面32に対して略垂直であり、突起部36の根元部364は、略直角な角部として形成されている。突起部36が対向面32から突き出す突出量Aは、0.4mm≦A≦1.0mmを満たすことが好ましい。突出量Aの評価値については後述する。
 図3に示すように、接地電極30の対向面32は、平坦面322と、丸角部324とを備える。対向面32の平坦面322は、突起部36の根元部364から接地電極30の側端面34,35までの間に続く平坦な表面である。対向面32の丸角部324は、突起部36が成形される前の接地電極30の部材に元々あった丸い角部が、突起部36の成形に伴って変形して形成された湾曲した表面である。突起部36の根元部364から対向面32の丸角部324までの間に続く平坦面322の距離E1と、突起部36の根元部364から側端面34,35までの距離E2との比は、0.4≦(E1/E2)≦1を満たすことが好ましい。距離E1と距離E2との比の評価値については後述する。
 図3および図4に示すように、接地電極30のプレス凹部37は、底面371と、側面372と、隅部374とを備える。プレス凹部37の底面371は、背面33に略平行な面であって、プレス凹部37の底を構成する面である。プレス凹部37の側面372は、プレス凹部37が背面33から対向面32に向かって窪む方向、すなわち中心電極20に向かう方向に略沿った面である。プレス凹部37の隅部374は、プレス凹部37の底面371から側面372へと繋がる部位である。本実施例では、プレス凹部37の側面372は、プレス凹部37の底面371および接地電極30の背面33に対して略垂直であり、プレス凹部37の隅部374は、略直角な角部として形成されている。プレス凹部37の側面372から接地電極30の先端面31までの幅Bは、0.4mm≦B≦2.5mmを満たすことが好ましい。プレス凹部37の側面372から接地電極30の側端面34,35までの幅Cは、0.4mm≦C≦0.8mmを満たすことが好ましい。幅B,Cの評価値については後述する。
 図4および図5に示すように、接地電極30を背面33側から見た場合、すなわち突起部36が中心電極20に対向する方向から見た場合、突起部36は、プレス凹部37の内側に位置する。つまり、図4に示すように、突起部36の根元部364がプレス凹部37の側面372から内側に位置する距離Fは、0mm以上を満たすことが好ましい。図5に示すように、接地電極30を背面33側から見た場合、突起部36の重心366とプレス凹部37の重心376との重心ズレ量Dは、0mm≦D≦0.3mmを満たすことが好ましい。重心ズレ量Dおよび距離Fの評価値については後述する。
 A-2.スパークプラグの製造方法:
 次に、スパークプラグ100を製造する製造工程の一部である接地電極30の製造工程について説明する。図6は、接地電極30の製造工程を示すフローチャートである。図7および図8は、接地電極30を製造する様子を示す説明図である。接地電極30を製造する際には、まず、接地電極30の材料である電極部材301を主体金具50に溶接する(ステップS110)。本実施例では、電極部材301は、略長方形の断面を有する棒状のニッケル合金である。
 電極部材301を主体金具50に溶接した後(ステップS110)、押さえ型610と受け型620との間に電極部材301を配置する(ステップS120)。押さえ型610および受け型620は、押出しプレスに用いられる金型である。図7に示すように、受け型620には、電極部材301と略同じ形状である成形溝部622が形成されており、電極部材301は、受け型620の成形溝部622に収容される。受け型620に形成された成形溝部622の位置に合わせて、押さえ型610には、接地電極30のプレス凹部37に対応する位置にピン孔部614が形成され、受け型620には、接地電極30の突起部36に対応する位置にピン孔部624が形成されている。
 押さえ型610と受け型620との間に電極部材301を配置した後(ステップS120)、受け型620のピン孔部624に受けピン630を挿入する(ステップS130)。受けピン630は、受け型620のピン孔部624の径と略同じ大きさのピンであり、ピン孔部624に受けピン630を挿入する挿入量に応じて、突起部36の突出量Aを調整することが可能である。
 ピン孔部624に受けピン630を挿入した後(ステップS130)、押さえ型610のピン孔部614に加工ピン640をプレス挿入することによって、押出しプレスが電極部材301に施される(ステップS140)。図8に示すように、ピン孔部614に加工ピン640がプレス挿入されると、電極部材301において押さえ型610のピン孔部614に隣接する部位は、加工ピン640に押されて窪むことによってプレス凹部37を形成し、電極部材301において受け型620のピン孔部624に隣接する部位は、加工ピン640によってピン孔部624に押し出されて突起部36を形成する。
 電極部材301を押出しプレスで加工した後(ステップS140)、電極部材301に突起部36およびプレス凹部37を形成した電極部材301を、金型から取り出す(ステップS150)。その後、金型から取り出された電極部材301を折り曲げることによって(ステップS160)、接地電極30が完成する。本実施例では、主体金具50に予め溶接した電極部材301に押出しプレスおよび折り曲げを施して接地電極30を製造したが、他の実施形態において、主体金具50に溶接する前に押出しプレスおよび折り曲げを施して接地電極30を製造しても良いし、主体金具50に溶接する前に押出しプレスを施した電極部材301を、主体金具50に溶接してから折り曲げを施しても良い。
 A-3.変形例:
 図9は、第1変形例ないし第3変形例の接地電極30を示す説明図である。図9には、第1変形例ないし第3変形例における各々の接地電極30について、図2で説明した断面に相当する断面X-Xと、図3で説明した断面に相当する断面Y-Yとが示されている。
 第1変形例の接地電極30は、突起部36の根元部364およびプレス凹部37の隅部374の形状が、約45°の角度で面取りされた角部である点を除き、前述した実施例と同様である。図9に示した第1変形例では、突起部36の根元部364から対向面32の丸角部324までの間に続く平坦面322の距離E1と、突起部36の根元部364から側端面34,35までの距離E2とは、それぞれ根元部364の分だけ、前述した実施例よりも短い。図9に示した第1変形例では、プレス凹部37の側面372から内側に突起部36が位置する距離Fは、0mmよりも大きい。
 第2変形例の接地電極30は、突起部36の根元部364およびプレス凹部37の隅部374の形状が、湾曲した丸角部である点を除き、前述した実施例と同様である。図9に示した第2変形例では、突起部36の根元部364から対向面32の丸角部324までの間に続く平坦面322の距離E1と、突起部36の根元部364から側端面34,35までの距離E2とは、それぞれ根元部364の分だけ、前述した実施例よりも短い。図9に示した第2変形例では、プレス凹部37の側面372から内側に突起部36が位置する距離Fは、0mmよりも大きい。
 第3変形例の接地電極30は、プレス凹部37の側面372が深さ方向に径が小さくなるように傾斜している点を除き、前述した実施例と同様である。図9に示した第3変形例では、突起部36の根元部364がプレス凹部37の側面372から内側に位置する距離Fは、0mmよりも大きい。
 図10は、第4変形例ないし第8変形例の接地電極30を示す説明図である。図10では、第1変形例ないし第3変形例における各々の接地電極30を背面33側から見た部分拡大図が示されている。
 第4変形例の接地電極30は、接地電極30を背面33側から見た場合、四角形のプレス凹部37の内側に円形の突起部36が位置する点を除き、前述した実施例と同様である。第5変形例の接地電極30は、接地電極30を背面33側から見た場合、円形のプレス凹部37の内側に四角形の突起部36が位置する点を除き、前述した実施例と同様である。第6変形例の接地電極30は、接地電極30を背面33側から見た場合、楕円形のプレス凹部37の内側に楕円形の突起部36が位置する点を除き、前述した実施例と同様である。第7変形例の接地電極30は、接地電極30を背面33側から見た場合、四角形のプレス凹部37の内側に三角形の突起部36が位置する点を除き、前述した実施例と同様である。第6変形例の接地電極30は、接地電極30を背面33側から見た場合、三角形のプレス凹部37の内側に四角形の突起部36が位置する点を除き、前述した実施例と同様である。実施例および第4変形例ないし第8変形例に示した形状の他、接地電極30の突起部36およびプレス凹部37の形状は、実施の形態に応じて、他の多角形や複数の曲線で構成された形状であっても良い。
 A-4.突出量Aの評価値:
 図11は、突出量Aが着火性能に与える影響を調べた評価実験の結果を示す説明図である。図11では、横軸に突出量Aをとり、縦軸に燃焼変動率20%の点火時期をとって、実験値が示されている。ここで、燃焼変動率とは、燃焼圧力から図示平均有効圧力(IMEP、Indicated Mean Effective Pressure)を求め、500サンプルの平均値と標準偏差に基づいて、「(燃焼変動率)=(標準偏差/平均値)×100(%)」として求められた値である。図11では、燃焼変動率20%となる点火時期が、内燃機関のクランク角度を用いて示されている。図11の評価実験では、突起部36の直径を1.5mmとし、突起部36の突出量Aが異なる複数のスパークプラグ100を用意した。これらのスパークプラグ100を、排気量2000cc、DOHC型ガソリンエンジンに装着した上で、吸気圧-550mmHg、エンジン回転数750rpmでアイドリング運転を行うことによって、図11の実験値を得た。図11の実験値によれば、突出量Aが0.4mmよりも小さくなると、急着火性能が急激に低下することが分かった。
 図12は、突出量Aが耐久性能に与える影響を調べた評価実験の結果を示す説明図である。図12では、横軸に突出量Aをとり、縦軸に火花ギャップGの増加量をとって、実験値が示されている。図12の評価実験では、突起部36の直径を1.5mmとし、突起部36の突出量Aが異なる複数のスパークプラグ100を用意した。これらのスパークプラグ100を、排気量2000cc、DOHC型ガソリンエンジンに装着した上で、スロットル全開状態、エンジン回転数5000rpmにて、400時間運転した後、火花ギャップGの増加量を測定することによって、図12の実験値を得た。図12の実験値によれば、突出量Aが1.0mmを超えると、火花ギャップGの増加量が急激に増加し許容限界値である0.2mm以上になることが分かった。
 突出量Aは、図11の結果による着火性能の面から、0.4mm以上を満たすことが好適であり、図12の結果による耐久性能の面から、1.0mm以下を満たすことが好適である。すなわち、突出量Aは、0.4mm≦A≦1.0mmを満たすことが好適である。
 A-5.幅Bの評価値:
 図13Aおよび図13Bは、幅Bが耐久性能に与える影響を調べた評価実験の結果を示す説明図である。図13Aでは、横軸に幅Bをとり、縦軸に先端面31の温度をとって実験値が示され、図13Bでは、横軸に幅Bをとり、縦軸に突起部36の温度をとって実験値が示されている。図13Aおよび図13Bの評価実験では、接地電極30の先端面31からプレス凹部37までの幅Bが異なる複数のスパークプラグ100を用意した。これらのスパークプラグ100において、接地電極30の厚みTを1.5mm、接地電極30の電極幅Wを2.8mm、突起部36の突出量Aを0.7mm、突起部36の直径を1.5mm、プレス凹部37の深さを0.7mm、プレス凹部37の直径を1.7mm、接地電極30の側端面34,35からプレス凹部37までの幅Cを0.5mmとした。これらのスパークプラグ100を、バーナーで950℃に2分間加熱した後に室温で1分間冷却する工程を1000サイクル実施した後、接地電極30の先端面31における背面33寄りの部分の温度を測定することによって図13Aの実験値を得ると共に、突起部36の側面362における先端面31側の部分の温度を測定することによって図13Bの実験値を得た。
 図13Aの実験値によれば、幅Bが0.4mmよりも小さいと、先端面31の温度が急激に増加し許容限界値である1000℃以上になり、幅Bが2.5mmを超えると、先端面31の温度が急激に増加し許容限界値である1000℃以上になることが分かった。したがって、幅Bは、図13Aの結果による耐久性能の面から、0.4mm≦B≦2.5mmを満たすことが好適である。
 図13Bの評価試験では、突起部36の温度は、幅Bが0.4mmの場合に962℃、幅Bが0.6mmの場合に955℃、幅Bが1.0mmの場合に957℃、幅Bが1.1mmの場合に960℃となった。幅Bが0.4mmよりも小さくなると、突起部36の温度は、急激に上昇し、幅Bが0.3mmの場合に985℃、幅Bが0.2mmの場合に1005℃となった。また、幅Bが1.1mmよりも大きくなると、突起部36の温度は、急激に上昇して幅Bが1.3mmの場合に978℃となり、幅Bが1.5mmの場合に981℃、幅Bが2.0mmの場合に985℃となった。これらのことから、幅Bが0.4mm≦B≦1.1mmを満たす範囲では、突起部36の温度は、約960℃に留まり、幅Bが0.4mmよりも小さい場合や、幅Bが1.1mmよりも大きい場合には、970℃を超えて急激に上昇することが分かった。
 接地電極30の突起部36は、中心電極20の先端との間に発生した火花が飛火する部分であり、突起部36の消耗は、突起部36の温度が高くなるほど進行し易くなる。そのため、突起部36の耐久性は、突起部36の温度が低くなるほど向上する。したがって、図13Bの結果による耐久性能の面から、幅Bは、0.4mm≦B≦1.1mmを満たすことがより好適である。
 A-6.幅Cの評価値:
 図14は、幅Cが耐久性能に与える影響を調べた評価実験の結果を示す説明図である。図14では、横軸に幅Cをとり、縦軸に側端面34,35の温度をとって、実験値が示されている。図14の評価実験では、接地電極30の側端面34,35からプレス凹部37までの幅Cが異なる複数のスパークプラグ100を用意した。これらのスパークプラグ100において、接地電極30の厚みTを1.5mm、接地電極30の電極幅Wを2.8mm、突起部36の突出量Aを0.7mm、プレス凹部37の深さを0.7mm、接地電極30の先端面31からプレス凹部37までの幅Bを0.6mm、プレス凹部37の直径を(電極幅W-(2×幅C))mm、突起部36の直径を((プレス凹部37の直径)-0.2)mm(最大値1.7mm)とした。これらのスパークプラグ100を、バーナーで950℃に2分間加熱した後に室温で1分間冷却する工程を1000サイクル実施した後、接地電極30の側端面34,35における背面33寄りの部分の温度を測定することによって、図14の実験値を得た。
 図14の実験値によれば、幅Cが0.4mmよりも小さいと、側端面34,35の温度が急激に増加し許容限界値である1000℃以上になることが分かった。幅Cが0.8mmを超える接地電極30は、押出しプレスによって良好に加工することができなかった。したがって、幅Cは、図14の結果による耐久性能および成形性の面から、0.4mm≦C≦0.8mmを満たすことが好適である。
 A-7.距離Fの評価値:
 図15は、距離Fが成形性に与える影響を調べた評価実験の結果を示す説明図である。図15には、突起部36の根元部364がプレス凹部37の側面372から内側に位置する距離Fと、その距離Fにて接地電極30を押出しプレスで加工した場合に、接地電極30にクラックが発生する割合を示すクラック発生率とが示されている。なお、接地電極30を背面33側から見た場合に、突起部36がプレス凹部37の外側に飛び出た状態では、距離Fはマイナスの値をとる。図15の評価実験において、突起部36の直径を変更することによって距離Fを変化させ、接地電極30の厚みTを1.5mm、接地電極30の電極幅Wを2.8mm、プレス凹部37の深さを1.0mm、プレス凹部37の直径を1.7mm、重心ズレ量Dを0mm、比(E1/E2)を1とした。図15の評価実験では、距離Fが異なる複数の接地電極30を押出しプレスで加工した後、接地電極30に発生したクラックの有無を検査した。
 図15の実験値によれば、距離Fがマイナスになるとクラック発生率が急激に増加することが分かった。したがって、距離Fは、0mm以上を満たすことが好適である。
 A-8.重心ズレ量Dの評価値:
 図16は、重心ズレ量Dが成形性に与える影響を調べた評価実験の結果を示す説明図である。図16には、突起部36の重心366とプレス凹部37の重心376との重心ズレ量Dと、その重心ズレ量Dにて接地電極30を押出しプレスで加工した場合に、接地電極30にクラックが発生する割合を示すクラック発生率とが示されている。図16の評価実験において、突起部36の直径は重心ズレ量Dに応じて変化させ、接地電極30の厚みTを1.5mm、接地電極30の電極幅Wを2.8mm、プレス凹部37の深さを1.0mm、プレス凹部37の直径を1.7mm、距離Fを0mm、比(E1/E2)を1とした。図16の評価実験では、重心ズレ量Dが異なる複数の接地電極30を押出しプレスで加工した後、接地電極30に発生したクラックの有無を検査した。
 図16の実験値によれば、重心ズレ量Dが0.3mmを超えるとクラック発生率が急激に増加することが分かった。したがって、重心ズレ量Dは、0mm≦D≦0.3mmを満たすことが好適である。
 A-9.比(E1/E2)の評価値:
 図17は、比(E1/E2)が成形性に与える影響を調べた評価実験の結果を示す説明図である。図17には、接地電極30の対向面32における平坦面322の割合を示す比(E1/E2)と、その比(E1/E2)にて接地電極30を押出しプレスで加工した場合に、接地電極30にクラックが発生する割合を示すクラック発生率とが示されている。図17の評価実験において、接地電極30の厚みTを1.5mm、接地電極30の電極幅Wを2.8mm、プレス凹部37の深さを1.0mm、プレス凹部37の直径を1.7mm、突起部36の直径を1.5mm、重心ズレ量Dを0mm、距離Fを0mmとした。図17の評価実験では、比(E1/E2)が異なる複数の接地電極30を押出しプレスで加工した後、接地電極30に発生したクラックの有無を検査した。
 図17の実験値によれば、比(E1/E2)が0.4よりも小さいとクラック発生率が急激に増加することが分かった。したがって、比(E1/E2)は、0.4≦(E1/E2)≦1を満たすことが好適である。
 A-10.効果:
 以上説明したスパークプラグ100によれば、突起部36の突出量Aが0.4mm≦A≦1.0mmを満たし、接地電極30の先端面31からプレス凹部37までの幅Bが0.4mm≦B≦2.5mmを満たすことから、接地電極30の先端面31からプレス凹部37までの部位における放熱性を向上させることができる。その結果、プレス加工によって接地電極30が形成されたスパークプラグ100の耐久性を向上させることができる。
 また、接地電極30の先端面31からプレス凹部37までの幅Bが0.4mm≦B≦1.1mmを満たすことから、接地電極30の先端面31からプレス凹部37までの部位における放熱性の向上に加え、突起部36の放熱性を向上させることができる。その結果、プレス加工によって接地電極30が形成されたスパークプラグ100の耐久性を更に向上させることができる。
 また、接地電極30の側端面34,35からプレス凹部37までの幅Cが0.4mm≦C≦0.8mmを満たすことから、接地電極30の先端面31からプレス凹部37までの部位に加え、接地電極30の側端面34,35からプレス凹部37までの部位における放熱性を向上させることができる。その結果、プレス加工によって接地電極30が形成されたスパークプラグ100の耐久性を更に向上させることができる。
 また、突起部36が中心電極20に対向する方向から見た場合、突起部36がプレス凹部37の内側に位置することから、接地電極30に押出成形を施す際に、プレス凹部37の隅部374から放射状に伝わる剪断力の方向から突起部36の位置が外れるため、突起部36およびその周囲におけるクラックの発生を抑制することができる。その結果、プレス加工によって接地電極30が形成されたスパークプラグ100の耐久性を更に向上させることができる。
 また、突起部36が中心電極20に対向する方向から見た場合、突起部36とプレス凹部37との重心ズレ量Dは、0mm≦D≦0.3mmを満たすことから、突起部36に加わる荷重の偏りを抑制することができる。その結果、突起部36およびその周囲におけるクラックの発生を更に抑制することができる。
 また、接地電極30の対向面32における平坦面322の割合を示す比(E1/E2)が0.4≦(E1/E2)≦1を満たすことから、突起部36の周囲における変形量を抑制することによって、突起部36およびその周囲におけるクラックの発生を抑制することができる。その結果、突起部36およびその周囲におけるクラックの発生を更に抑制することができる。
B.他の実施形態:
 以上、本発明の実施の形態について説明したが、本発明はこうした実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内において様々な形態で実施し得ることは勿論である。

Claims (8)

  1.  軸状の中心電極と、
     前記中心電極の外周を保持する絶縁碍子と、
     前記絶縁碍子の外周を保持する主体金具と、
     前記主体金具に接合され、前記中心電極との間に火花ギャップを形成する接地電極であって、
      前記中心電極の先端に対向する対向面と、
      前記中心電極の先端に背を向ける背面と、
      押出しプレスによって形成され、前記対向面から前記中心電極の先端に向けて突出する突起部と、
      前記押出しプレスによる前記突起部の形成に伴って前記背面に形成され、前記背面から前記中心電極の先端に向けて窪むプレス凹部と
     を有する接地電極と
     を備えるスパークプラグであって、
     前記突起部が前記対向面から突出する突出量Aは、0.4mm≦A≦1.0mmを満たし、
     前記接地電極の先端から前記プレス凹部までの幅Bは、0.4mm≦B≦2.5mmを満たすことを特徴とするスパークプラグ。
  2.  請求項1に記載のスパークプラグであって、前記幅Bは、0.4mm≦B≦1.1mmを満たすことを特徴とするスパークプラグ。
  3.  請求項1または請求項2に記載のスパークプラグであって、前記接地電極の側端から前記プレス凹部までの幅Cは、0.4mm≦C≦0.8mmを満たすことを特徴とするスパークプラグ。
  4.  請求項1ないし請求項3のいずれか一項に記載のスパークプラグであって、前記突起部が前記中心電極の先端に突出する方向から見た場合、前記突起部は、前記プレス凹部の内側に位置することを特徴とするスパークプラグ。
  5.  請求項4に記載のスパークプラグであって、前記突起部が前記中心電極の先端に突出する方向から見た場合、前記突起部と前記プレス凹部との重心ズレ量Dは、0mm≦D≦0.3mmを満たすことを特徴とするスパークプラグ。
  6.  請求項1ないし請求項5のいずれか一項に記載のスパークプラグであって、前記突起部が立ち上がる根元部から前記接地電極の側端までの間の平坦な表面の距離E1と、前記根元部から前記接地電極の側端までの距離E2との比は、0.4≦(E1/E2)≦1を満たすことを特徴とするスパークプラグ。
  7.  軸状の中心電極と、
     前記中心電極の外周を保持する絶縁碍子と、
     前記絶縁碍子の外周を保持する主体金具と、
     前記主体金具に接合され、前記中心電極との間に火花ギャップを形成する接地電極であって、
      前記中心電極の先端に対向する対向面と、
      前記中心電極の先端に背を向ける背面と、
      押出しプレスによって形成され、前記対向面から前記中心電極の先端に向けて突出する突起部と、
      前記押出しプレスによる前記突起部の形成に伴って前記背面に形成され、前記背面から前記中心電極の先端に向けて窪むプレス凹部と
     を備えるスパークプラグであって、
     前記突起部が前記対向面から突出する突出量Aは、0.4mm≦A≦1.0mmを満たし、
     前記接地電極の側端から前記プレス凹部までの幅Cは、0.4mm≦C≦0.8mmを満たすことを特徴とするスパークプラグ。
  8.  軸状の中心電極と、
     前記中心電極の外周を保持する絶縁碍子と、
     前記絶縁碍子の外周を保持する主体金具と、
     前記主体金具に接合され、前記中心電極との間に火花ギャップを形成する接地電極と
     を備えるスパークプラグの製造方法であって、
     前記接地電極において前記中心電極の先端に対向する対向面に、前記対向面から前記中心電極の先端に向けて突出する突起部を、前記突起部が前記対向面から突出する突出量Aが0.4mm≦A≦1.0mmを満たすように、押出しプレスによって形成し、
     前記接地電極において前記中心電極の先端に背を向ける背面に、前記背面から前記中心電極の先端に向けて窪むプレス凹部を、前記接地電極の先端から前記プレス凹部までの幅Bが0.4mm≦B≦2.5mmを満たすように形成することを特徴とするスパークプラグの製造方法。
PCT/JP2009/005283 2008-10-14 2009-10-09 スパークプラグおよびその製造方法 WO2010044236A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010507564A JP5134080B2 (ja) 2008-10-14 2009-10-09 スパークプラグおよびその製造方法
US13/123,371 US8466608B2 (en) 2008-10-14 2009-10-09 Spark plug and manufacturing method thereof
CN2009801401228A CN102177629B (zh) 2008-10-14 2009-10-09 火花塞及其制造方法
EP09820414.2A EP2339704B1 (en) 2008-10-14 2009-10-09 Spark plug and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008264932 2008-10-14
JP2008-264932 2008-10-14

Publications (1)

Publication Number Publication Date
WO2010044236A1 true WO2010044236A1 (ja) 2010-04-22

Family

ID=42106408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005283 WO2010044236A1 (ja) 2008-10-14 2009-10-09 スパークプラグおよびその製造方法

Country Status (6)

Country Link
US (1) US8466608B2 (ja)
EP (1) EP2339704B1 (ja)
JP (1) JP5134080B2 (ja)
KR (1) KR20110084942A (ja)
CN (1) CN102177629B (ja)
WO (1) WO2010044236A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236238A (en) * 1975-09-16 1977-03-19 Shinkosumosu Denki Kk Electric spark plug for automoyive internal combustion engine
JPS55121290A (en) * 1979-03-09 1980-09-18 Nippon Soken Ignition plug
JP2006286469A (ja) 2005-04-01 2006-10-19 Denso Corp 内燃機関用のスパークプラグ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109633A (en) * 1975-09-16 1978-08-29 New Cosmos Electric Company Limited Spark-plug for automobile internal combustion engine
US4331899A (en) * 1979-03-09 1982-05-25 Nippon Soken, Inc. Spark plug
JPH01264187A (ja) * 1988-04-12 1989-10-20 Ryohei Kashiwabara 点火栓の速燃焼装置
DE3820552A1 (de) * 1988-06-16 1989-12-21 Champion Spark Plug Europ Zuendkerze fuer brennkraftmaschine
US5373214A (en) * 1992-06-12 1994-12-13 Mccready; David F. Spark plug and electrode arrangement therefor
US5998912A (en) * 1996-01-16 1999-12-07 Schwab; Joseph P. Spark plug
EP2339705B1 (en) * 2008-10-16 2018-12-05 NGK Spark Plug Co., Ltd. Spark plug and manufacturing method thereof
CN102187536B (zh) * 2008-10-16 2013-10-16 日本特殊陶业株式会社 火花塞及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236238A (en) * 1975-09-16 1977-03-19 Shinkosumosu Denki Kk Electric spark plug for automoyive internal combustion engine
JPS55121290A (en) * 1979-03-09 1980-09-18 Nippon Soken Ignition plug
JP2006286469A (ja) 2005-04-01 2006-10-19 Denso Corp 内燃機関用のスパークプラグ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2339704A4
SHIN NISHIOKA ET AL.: "Super Ignition Spark Plug with Wear Resistive Electrode", SAE TECHNICAL PAPER SERIES 2008-01-0092, April 2008 (2008-04-01)

Also Published As

Publication number Publication date
JPWO2010044236A1 (ja) 2012-03-15
EP2339704A4 (en) 2013-12-04
EP2339704B1 (en) 2016-01-27
CN102177629B (zh) 2013-08-14
JP5134080B2 (ja) 2013-01-30
EP2339704A1 (en) 2011-06-29
CN102177629A (zh) 2011-09-07
US20110241524A1 (en) 2011-10-06
US8466608B2 (en) 2013-06-18
KR20110084942A (ko) 2011-07-26

Similar Documents

Publication Publication Date Title
WO2012105255A1 (ja) スパークプラグ
JP5245578B2 (ja) 内燃機関用のスパークプラグ
EP2330700B1 (en) Spark plug
JP5134081B2 (ja) スパークプラグおよびその製造方法
JP5087135B2 (ja) スパークプラグおよびその製造方法
JP5134080B2 (ja) スパークプラグおよびその製造方法
US10424901B2 (en) Spark plug
US10218153B2 (en) Spark plug
JP5721680B2 (ja) スパークプラグ
JP2013222676A (ja) スパークプラグ
JP5960869B1 (ja) スパークプラグ
JP2023093105A (ja) 内燃機関用のスパークプラグ
JP2011086612A (ja) スパークプラグ
WO2010128603A1 (ja) 内燃機関用スパークプラグ及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140122.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010507564

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009820414

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1973/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117010986

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13123371

Country of ref document: US