WO2010041510A1 - Flexible conductor-clad laminate, flexible printed wiring board for cof, and methods for manufacturing same - Google Patents

Flexible conductor-clad laminate, flexible printed wiring board for cof, and methods for manufacturing same Download PDF

Info

Publication number
WO2010041510A1
WO2010041510A1 PCT/JP2009/063816 JP2009063816W WO2010041510A1 WO 2010041510 A1 WO2010041510 A1 WO 2010041510A1 JP 2009063816 W JP2009063816 W JP 2009063816W WO 2010041510 A1 WO2010041510 A1 WO 2010041510A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat
clad laminate
resistant resin
conductor layer
Prior art date
Application number
PCT/JP2009/063816
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 哲朗
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2010041510A1 publication Critical patent/WO2010041510A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/4985Flexible insulating substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0191Dielectric layers wherein the thickness of the dielectric plays an important role

Definitions

  • the present invention relates to a flexible conductor layer-clad laminate that can be used for a COF flexible printed wiring board on which electronic components such as ICs or LSIs are mounted, a COF flexible printed wiring board using the same, and a method of manufacturing the same.
  • the COF flexible printed wiring board used for this COF does not have a device hole, a flexible conductor layer-clad laminate in which a conductor layer and an insulating layer are laminated in advance is used, and the insulating layer generally has a thickness. This is because a polyimide film with a thickness of 30 to 40 ⁇ m is used. If the thickness is less than 30 ⁇ m, there is a risk of causing problems when transporting sprockets in the manufacturing process of COF flexible printed wiring boards and COF mounting processes due to insufficient mechanical strength. On the other hand, if it is thicker than 40 ⁇ m, it causes a conveyance failure during mounting due to a phenomenon called springback.
  • the present invention is a flexible conductive layer-clad laminate and a flexible COF that can be manufactured at a relatively low cost without causing a problem of terminal sinking or a springback problem when mounting an IC chip. It aims at providing a printed wiring board and these manufacturing methods.
  • a first aspect of the present invention that solves the above-mentioned problems is that a first heat-resistant resin layer having a thickness of 1 to 10 ⁇ m made of a heat-resistant resin having a glass transition temperature of 320 ° C. or higher is formed on one surface of a conductor layer, and thermosetting.
  • a thermosetting resin layer having a thickness of 4 to 10 ⁇ m made of a resin composition and a second heat resistant resin layer having a thickness of 10 to 35 ⁇ m made of a heat resistant resin having a glass transition temperature of 300 ° C. or higher are sequentially provided.
  • the flexible conductor layer-clad laminate is characterized.
  • the first heat resistant resin prevents the IC chip terminal from sinking and the low elastic resin layer is provided, so that the problem of springback is also solved. Is done. Moreover, since it can manufacture by a lamination, cost reduction can be achieved.
  • the thermosetting resin composition contains a thermosetting resin by a thermosetting reaction that does not release by-products.
  • the flexible conductor layer-clad laminate is characterized.
  • thermosetting resin layer is formed of a thermosetting resin that does not release by-products from the thermosetting reaction, the laminate is free from problems such as blistering.
  • the thermosetting resin composition in the flexible conductor layer-clad laminate according to the first or second aspect, includes an aromatic polyamide resin polymer and an epoxy resin. Located on flexible conductor layered laminate.
  • thermosetting resin layer also serves as an adhesive layer, a laminate that is favorably bonded by lamination can be obtained.
  • the flexible conductor layer-clad laminate in the flexible conductor layer-clad laminate according to any one of the first to third aspects, the first heat-resistant resin layer, the thermosetting resin layer, and the second heat-resistant resin layer.
  • the flexible conductor layer-clad laminate is characterized in that the insulating layer comprising the resin layer has a thickness of 30 to 40 ⁇ m.
  • a laminate having a thickness suitable as a base material for COF is obtained.
  • the conductor layer is made of copper foil. is there.
  • a copper clad laminate suitable as a COF base material is obtained.
  • a laminate of the conductor layer and the first heat-resistant resin layer, and the second heat-resistant resin layer are provided.
  • a flexible conductor layer-clad laminate is obtained by laminating a resin layer via the thermosetting resin layer.
  • the sixth aspect it can be manufactured by laminating two layers, and can be manufactured relatively easily and at low cost.
  • a seventh aspect of the present invention is formed by using the flexible conductor layer-clad laminate described in any one of the first to sixth aspects, and is formed by patterning the conductor layer and mounting a semiconductor chip.
  • the first heat-resistant resin layer prevents the IC chip terminals from sinking and the low-elasticity resin layer is provided, the problem of springback is also solved. Moreover, since it can manufacture by a lamination, cost reduction can be achieved.
  • the eighth aspect of the present invention comprises a first heat-resistant resin layer having a thickness of 1 to 10 ⁇ m made of a heat-resistant resin having a glass transition temperature of 320 ° C. or higher on one surface of a conductor layer, and a thermosetting resin composition.
  • a flexible conductor layer-clad laminate comprising a thermosetting resin layer having a thickness of 4 to 10 ⁇ m and a second heat resistant resin layer having a thickness of 10 to 35 ⁇ m made of a heat resistant resin having a glass transition temperature of 300 ° C. or higher.
  • a manufacturing method comprising applying a heat-resistant resin precursor coating solution having a glass transition temperature of 300 ° C.
  • thermosetting resin composition A flexible conductor layer-clad laminate obtained by laminating the laminate and the heat-resistant resin film via the thermosetting resin composition, and It is in the manufacturing method.
  • the first heat resistant resin layer when the first heat resistant resin layer is formed by a coating method and laminated through the second heat resistant resin layer and the low elastic resin layer, the first heat resistant resin layer is obtained. Since the resin layer prevents the terminal of the IC chip from sinking and the low-elasticity resin layer is provided, a flexible conductor layer-clad laminate that can eliminate the problem of springback can be manufactured relatively easily and at low cost.
  • thermosetting resin layer does not release by-products during the thermosetting reaction.
  • thermosetting resin layer is formed of a thermosetting resin that does not release by-products from the thermosetting reaction, a laminate without problems such as blistering can be manufactured.
  • the thermosetting resin layer includes an aromatic polyamide resin polymer and an epoxy resin. It is in the manufacturing method of the flexible conductor layer tension laminated board characterized by consisting of.
  • the low elastic resin layer also serves as the adhesive layer, it is possible to obtain a laminated plate that is satisfactorily bonded by lamination.
  • the first heat-resistant resin layer, the thermosetting resin layer, A method for producing a flexible conductor layer-clad laminate is characterized in that a flexible conductor layer-clad laminate having a thickness of 30 to 40 ⁇ m of an insulating layer comprising a second heat-resistant resin layer is produced.
  • a laminate having a thickness suitable as a COF substrate is produced.
  • a copper foil or a copper foil with a carrier is used as the conductor layer.
  • the method for producing a flexible conductor layer-clad laminate is not limited to any one of the eighth to eleventh aspects.
  • a copper-clad laminate suitable as a substrate for COF is relatively easily manufactured by forming and laminating a first heat-resistant resin layer using a copper foil or a copper foil with a carrier.
  • a flexible printed wiring board for COF is produced from a flexible conductor layer-clad laminate obtained by the method for producing a flexible conductor layer-clad laminate described in any one of the eighth to twelfth aspects. This is a method for producing a flexible printed wiring board for COF.
  • the first heat-resistant resin layer prevents the terminal of the IC chip from sinking and the low-elasticity resin layer is also used as the adhesive layer, the problem of springback is also eliminated.
  • a flexible printed wiring board is manufactured.
  • FIG. 1 is a schematic cross-sectional view of a flexible conductor layer-clad laminate of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the production process of the flexible conductor layer-clad laminate of the present invention.
  • FIG. 1 shows a flexible conductor layered laminate according to an embodiment.
  • the flexible conductor layer-clad laminate 10 of this embodiment includes a conductor layer 11 made of metal foil, a first heat-resistant resin layer 12, a thermosetting resin layer 13, and a second heat-resistant resin layer 14. It has the laminated structure.
  • the metal foil is not particularly limited as long as it has a thickness and quality that can be used as a flexible printed wiring board for COF. Generally, a thickness of about 5 to 35 ⁇ m is used. Further, from the viewpoint of handling in the manufacturing process, a metal foil with a carrier may be used in the manufacturing process, and the carrier may be finally removed.
  • examples of the metal foil include copper foil and aluminum foil
  • examples of the carrier include copper foil and aluminum foil.
  • the first heat-resistant resin layer is made of a heat-resistant resin having a glass transition temperature of 320 ° C. or higher, and has a thickness of 1 to 10 ⁇ m, preferably 3 to 6 ⁇ m.
  • the connection terminal of the IC chip is submerged when COF mounting is performed. It has been found that it can be effectively prevented, and has such a configuration.
  • Examples of the heat resistant resin for forming the first heat resistant resin layer include a polyimide resin and a polyamideimide resin.
  • a resin provided on the conductor foil by a coating method is preferable, and particularly preferable is a resin that becomes a heat-resistant resin layer by applying a heat-resistant resin precursor composition and then curing.
  • the first heat-resistant resin layer has a volatile component contained before lamination of 2% by mass or less, preferably 1% by mass or less. This is because the first heat-resistant resin layer is placed at a position in direct contact with the metal foil, and the amount of residual volatile components such as solvents is strictly controlled to prevent the sinking when mounting the IC chip. It is to do. In other words, if the volatile component remains in the first heat resistant resin layer in excess of 2% by mass, the plasticity of the volatile component such as a solvent causes a decrease in the elastic modulus at a high temperature of the heat resistant resin layer. This is because even if a heat-resistant resin having a glass transition temperature of 320 ° C. or higher is used, its original performance is not exhibited, and there is a high possibility that subsidence easily occurs.
  • the second heat-resistant resin layer is made of a heat-resistant resin having a glass transition temperature of 300 ° C. or higher and has a thickness of 10 to 35 ⁇ m, preferably 20 to 30 ⁇ m.
  • the second heat-resistant resin layer is preferably manufactured as a heat-resistant resin film in terms of cost and handling.
  • a polyimide-based film or a polyamide-imide-based film that is commercially available as a base material for flexible printed wiring boards is used. It is preferable to use it.
  • the second heat-resistant resin layer When the second heat-resistant resin layer is thin, handling becomes difficult and wrinkles are easily generated during lamination. When the second heat-resistant resin layer is thick, the thickness of the low-elasticity resin layer is relatively thin due to the total thickness. Both are undesirable. From such a viewpoint and easy availability and cost, it is preferable to use a polyimide film having a thickness of 25 ⁇ m.
  • wholly aromatic polyimides obtained by polymerization of pyromellitic dianhydride and 4,4′-diaminodiphenyl ether (for example, trade name: Kapton EN; manufactured by Toray DuPont) and biphenyltetracarboxylic acid-2 anhydride
  • Kapton EN for example, trade name: Kapton EN; manufactured by Toray DuPont
  • PPD paraphenylenediamine
  • Upilex S manufactured by Ube Industries
  • Kaneka apical (manufactured by Kaneka), and the like.
  • the reason why the glass transition temperature of the second heat resistant resin layer is set to 300 ° C. or more is to maintain heat resistance against connection with solder having a melting point of 288 ° C.
  • the thermosetting resin layer is made of a thermosetting resin composition and has a thickness of 4 to 10 ⁇ m, preferably 5 to 8 ⁇ m.
  • the thermosetting resin layer preferably has a low elastic modulus, for example, a room temperature elastic modulus of 3 GPa or less, preferably 1.5 to 2.5 GPa, more preferably about 1.5 to 2 GPa. It is. It has been found that even if such a low elastic resin layer having a low elastic modulus is provided, there is no adverse effect on the sinking when the IC chip is mounted, and spring back can be effectively prevented.
  • a room temperature elastic modulus for example, a room temperature elastic modulus of 3 GPa or less, preferably 1.5 to 2.5 GPa, more preferably about 1.5 to 2 GPa. It is. It has been found that even if such a low elastic resin layer having a low elastic modulus is provided, there is no adverse effect on the sinking when the IC chip is mounted, and spring back can be effectively prevented.
  • thermosetting resin layer is preferably one that can be formed by a coating method and that functions as an adhesive layer.
  • thermosetting resin layer need not strictly define the volatile components contained before lamination. That is, if the content of the volatile component of the thermosetting resin layer does not show stickiness at room temperature and does not cause any problems in handling after coating, it contains more than 2% by mass of volatile components. May be.
  • a volatile component such as a solvent
  • the volatile component contained in the thermosetting resin layer can be easily removed after lamination, and can be removed in a short time by heating performed at the time of curing the thermosetting resin layer after lamination. .
  • thermosetting resin may be sufficiently removed before lamination.
  • the thermosetting resin is easily softened and exhibits fluidity before curing, and lamination by lamination can be performed without any problem.
  • thermosetting resin composition containing a thermosetting resin that is cured by a thermosetting reaction that does not generate by-products such as water and gas.
  • the by-product during the thermosetting can be completely removed from the layer sandwiched between the first heat-resistant resin layer and the second heat-resistant resin layer after lamination. It is extremely difficult.
  • the removal of volatile components such as solvents can be gradually performed by heating the temperature near the boiling point of the volatile components, but by-products due to the curing reaction occur after the reaction occurs above a predetermined temperature. This is because it suddenly occurs when the temperature at which the reaction starts is exceeded, causing bubble accumulation called voids and delamination between layers.
  • the solvent such as methyl ethyl ketone and cyclopentanone contained in the thermosetting resin composition of the present invention has a boiling point as low as 150 ° C. or less and is heated at 150 ° C. to 230 ° C., which is the curing temperature of the thermosetting resin. Since it gradually evaporates while it is gradually heated to the atmosphere, it can be easily removed without providing a new removal step.
  • polyamic acid which is a precursor of polyimide resin
  • the ring closing reaction of polyamic acid requires a temperature of 300 ° C. or higher. When heated further, water molecules are rapidly generated due to dehydration reaction, and it is extremely difficult to suppress the occurrence of swelling and voids associated therewith.
  • thermosetting resin composition an organic solvent-soluble thermosetting resin that cures by a thermosetting reaction that does not generate by-products such as water and gas, an organic solvent-soluble base resin,
  • curing agent and an organic solvent can be mentioned.
  • thermosetting resins that are cured by a thermosetting reaction that does not generate by-products such as water and gas are excluded from those due to dehydration reaction type, decarboxylation reaction, deformalin reaction, etc. And novolak type phenol resins.
  • examples of the base resin include aromatic polyamide resin polymers. This is because a thermosetting resin layer having good compatibility with the thermosetting resin and having a low elastic modulus and good adhesiveness can be formed.
  • the aromatic polyamide resin polymer can include a composition containing a thermosetting resin made of an epoxy resin.
  • the aromatic polyamide resin polymer The resin composition which consists of a hardening accelerator which is soluble in an epoxy resin, a hardening
  • the “aromatic polyamide resin polymer” is obtained by reacting an aromatic polyamide resin and a rubber resin.
  • the aromatic polyamide resin is synthesized by condensation polymerization of an aromatic diamine and a dicarboxylic acid.
  • the aromatic diamine it is preferable to use 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylsulfone, m-xylenediamine, 3,3′-oxydianiline and the like.
  • the dicarboxylic acid it is preferable to use phthalic acid, isophthalic acid, terephthalic acid, fumaric acid or the like.
  • 4-hydroxyisophthalic acid may be used for the purpose of providing a crosslinking point with the epoxy resin.
  • the rubbery resin to be reacted with the aromatic polyamide resin must be copolymerized with the aromatic polyamide resin and incorporated into the molecule, and particularly represented by CTBN (carboxy group-terminated butadiene nitrile), A rubber component having a carboxyl group at the end of the molecule is used.
  • the aromatic polyamide resin and rubber resin that constitute the aromatic polyamide resin polymer are preferably used in a blend of 25 wt% to 75 wt% of the aromatic polyamide resin and the remaining rubber resin.
  • the aromatic polyamide resin is less than 25 wt%, the abundance ratio of the rubber component becomes too high and the heat resistance is inferior.
  • the aromatic polyamide resin becomes too large and curing occurs. Later hardness becomes too high and becomes brittle.
  • This aromatic polyamide resin polymer is used for the purpose of reducing damage caused by an etching solution when etching a conductor layer after being processed into a conductor layer-clad laminate.
  • This aromatic polyamide resin polymer is required to be soluble in a solvent.
  • This aromatic polyamide resin polymer is used in a blending ratio of 20 to 80 parts by weight.
  • the “epoxy resin” is one having two or more epoxy groups in the molecule and can be used without any problem as long as it can be used for electric / electronic materials. It is preferable to use a polyfunctional solid epoxy resin (hereinafter referred to as a polyfunctional solid epoxy resin) containing three or more epoxy groups per molecule and solid at room temperature with a softening point of 50 ° C. or higher.
  • a polyfunctional solid epoxy resin containing three or more epoxy groups per molecule and solid at room temperature with a softening point of 50 ° C. or higher.
  • examples of such polyfunctional solid epoxy resins include novolak type epoxy resins, o-cresol novolak type epoxy resins, triglycidyl isocyanurate, tetrakis (glycidyloxyphenyl) ethane, and the like. These polyfunctional solid epoxy resins may be used alone or in combination of two or more.
  • liquid epoxy resin an epoxy resin that is liquid at room temperature
  • a liquid epoxy resin refers to an epoxy resin having fluidity at room temperature without adding a solvent.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, epoxidized polybutadiene, and N, N diglycidyl aniline.
  • glycidylamine compounds such as polyglycidyl esters of organic polycarboxylic acids such as tetrahydrophthalic acid diglycidyl ester, and cyclic aliphatic epoxy resins.
  • liquid epoxy resins include those that have high crystallinity and that, by themselves, crystallize at room temperature and become powdery. These liquid epoxy resins may be used alone or in combination of two or more.
  • the epoxy resin containing the liquid epoxy resin is added as an epoxy resin blend in which a curing agent and a curing accelerator added as necessary are blended.
  • the epoxy resin curing agent is known as a phenol resin, an acid anhydride, or a polyamine compound, but is not particularly limited as long as it is used as a material for an electronic component.
  • generally known tertiary amines, imidazoles, urea compounds and the like are used as curing accelerators added as necessary.
  • a preferable blending ratio of each of these components in a suitable thermosetting resin composition is 20 to 80% by weight of the base resin, more preferably 30 to 70% by weight in a total of 100% by weight of the base resin and the epoxy resin blend.
  • the epoxy resin composition is 20 to 80% by mass, more preferably 40 to 70% by mass.
  • the preferable blending ratio of the liquid epoxy resin is 5 to 80 parts by mass, more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the polyfunctional solid epoxy resin.
  • the blending ratio of the liquid epoxy resin is less than 5 parts by mass, the effect of improving the fluidity is not remarkable, and when it exceeds 80 parts by mass, the solder heat resistance tends to decrease.
  • thermosetting resin composition contains an epoxy resin
  • it can be applied as a varnish and then dried to form an uncured thermosetting resin layer.
  • the uncured thermosetting resin layer before laminating is dried in a state where the volatile component contained is 2% by mass or less, preferably 1% by mass or less. This is to prevent the volatile component from volatilizing and remaining between the layers during the subsequent thermosetting process.
  • thermosetting resin layer After laminating in this way, after being wound on a roll, the uncured thermosetting resin layer is cured by heating at a higher temperature than the laminating step to obtain a thermosetting resin layer.
  • the lamination temperature can be, for example, 100 ° C. to 200 ° C., preferably 100 ° C. to 150 ° C., and the thermosetting temperature can be 150 ° C. to 230 ° C.
  • thermosetting resin composition can be applied to the second heat-resistant resin layer or the first heat-resistant resin layer, but is preferably applied to the second heat-resistant resin layer.
  • FIG. 2 shows an example of a method for producing a flexible conductor layered laminate according to the present invention.
  • FIG. 2A shows a state in which the first heat-resistant resin layer 12 is provided on the conductor layer 11 while the uncured thermosetting resin layer 13 a is provided on the second heat-resistant resin layer 14. Next, these are laminated to form a laminate, and the uncured thermosetting resin layer 13a is cured to form the thermosetting resin layer 13, whereby the flexible conductor layer-clad laminate 10 shown in FIG. Can be obtained.
  • the flexible conductor layer-clad laminate 10 can be a COF flexible printed wiring board by a predetermined process. That is, after forming the flexible copper-clad laminate 10 into a tape shape having a predetermined width as necessary, a sprocket hole is formed, for example, the conductor layer 11 is patterned by a photolithography process to form a predetermined circuit, and for COF It can be set as a flexible printed wiring board.
  • Such a flexible printed wiring board for COF prevents the sinking of the terminals of the IC chip when mounting the IC chip or the like, and also eliminates the problem of conveyance failure during mounting due to springback. It is.
  • the method disclosed in the examples of JP-A-2007-204714 was employed.
  • the Tg of the polyamideimide resin to be synthesized can be freely set from about 300 ° C. to about 400 ° C. by changing the ratio of the monomer components.
  • Each polyamideimide resin 1 to 3 was an N-methylpyrrolidone solution having a solid content of 10%.
  • the glass transition temperature Tg of each polyamideimide resin was as follows using the polyamideimide resin film prepared as follows.
  • the polyamide-imide resin varnish after completion of the synthesis reaction was applied on an aluminum plate using a bar coder so that the thickness after drying was 25 ⁇ m. Subsequently, as primary drying, it was dried in a hot air dryer at 150 ° C. for 10 minutes, and as secondary drying, it was heated at 350 ° C. in a nitrogen atmosphere for 30 minutes. Next, the aluminum plate was removed by etching using a 10% caustic soda solution, washed with water, and dried to obtain a polyamideimide resin film.
  • the dynamic viscoelasticity of the polyamideimide resin film was measured, and the peak value of tan ⁇ was defined as Tg.
  • Example 1 Polyamide that forms a polyamide-imide resin layer with a glass transition temperature of 395 ° C. on the base material surface (glossy surface) of a commercially available electrolytic copper foil with a thickness of 15 ⁇ m (NA-DFF: trade name, manufactured by Mitsui Kinzoku Mining Co., Ltd.)
  • the imide resin varnish was applied using a bar coater so that the thickness after primary drying was 6 ⁇ m. After coating, during hot air drying, primary drying is performed at 150 ° C. for 10 minutes, followed by secondary drying at 350 ° C. for 30 minutes in a nitrogen atmosphere, and a copper-clad laminate composed of a copper foil and a polyamideimide layer A plate was formed.
  • the residual amount of volatile components in the copper clad laminate was 0.5% by mass.
  • Volatile component residual amount (%) [(W 0 ⁇ W 1 ) / (W 0 ⁇ W Cu )] ⁇ 100
  • W 0 Mass of copper-clad laminate before heating
  • W 1 Mass of copper-clad laminate after heating at 350 ° C. for 15 minutes under vacuum
  • W 2 Copper-clad after heating for 15 minutes at 350 ° C. under vacuum Mass after etching away copper foil of laminate
  • W Cu Mass of copper foil (W 1 -W 2 )
  • thermosetting resin composition prepared as described below was applied to one side of a commercially available polyimide film with a thickness of 25 ⁇ m, Upilex S (trade name, manufactured by Ube Industries), dried, and uncured thermoset. A laminated board having a conductive resin layer was obtained. The coating thickness at this time was 6 ⁇ m after heating at 150 ° C. for 3 minutes.
  • the remaining amount of volatile components in the laminated board was 4.5% by mass.
  • Volatile component residual amount (%) [(W 10 ⁇ W 11 ) / (W 10 ⁇ W f )] ⁇ 100
  • W 10 mass of the laminate before heating (100 mm ⁇ 100 mm)
  • W 11 Mass of laminate after heating for 60 minutes at 200 ° C. under atmospheric pressure
  • W f 10-point average weight of S of Iupilex (100 mm ⁇ 100 mm)
  • thermosetting resin composition was prepared as follows.
  • thermosetting resin composition was prepared by adding methyl ethyl ketone thereto to a resin solid content of 30% by mass.
  • the above-described copper-clad laminate and the laminate were laminated using a laminating apparatus so that the polyamideimide layer and the uncured thermosetting resin layer face each other.
  • the laminating conditions at this time are as follows. There was no generation of wrinkles or entrainment of bubbles during lamination.
  • the laminated body thus laminated was wound with dust-free paper in between and heated in the atmosphere to thermally cure the uncured thermosetting resin layer, thereby obtaining a flexible conductor layer-clad laminate of this example.
  • the reason why the dust-free paper is sandwiched is to prevent the laminates from completely adhering to each other, and to completely remove the residual solvent simultaneously with the curing of the thermosetting resin in the thermosetting process. It is.
  • thermosetting conditions were such that the temperature was raised from room temperature to 190 ° C. over 4 hours and held at 190 ° C. for 4 hours. After the holding time, the power was turned off and the mixture was gradually cooled.
  • Example 2 A flexible copper-clad laminate was obtained in the same manner as in Example 1 except that the thickness of the polyamideimide resin layer in Example 1 was 3 ⁇ m.
  • Example 3 A flexible copper-clad laminate was obtained in the same manner as in Example 1 except that the thickness of the polyamideimide resin layer in Example 1 was 1 ⁇ m.
  • Example 4 A flexible copper clad laminate was obtained in the same manner as in Example 1 except that the polyamideimide resin 2 was used in place of the polyamideimide resin 1 in Example 1.
  • Example 5 A flexible copper clad laminate was obtained in the same manner as in Example 1 except that the thickness of the uncured thermosetting resin in Example 1 was 10 ⁇ m.
  • Example 6 A flexible copper-clad laminate was obtained in the same manner as in Example 1 except that the thickness of the uncured thermosetting resin in Example 1 was 4 ⁇ m.
  • Example 1 A flexible copper-clad laminate was obtained in the same manner as in Example 1 except that the thickness of the polyamideimide resin layer in Example 1 was 0.5 ⁇ m.
  • Example 2 A flexible copper-clad laminate was obtained in the same manner as in Example 1 except that the thickness of the uncured thermosetting resin in Example 1 was 15 ⁇ m.
  • Example 3 A flexible copper clad laminate was obtained in the same manner as in Example 1 except that the thickness of the uncured thermosetting resin in Example 1 was 2 ⁇ m.
  • Example 4 A flexible copper clad laminate was obtained in the same manner as in Example 1 except that the polyamideimide resin 3 was used instead of the polyamideimide resin 1 in Example 1.
  • Test example A test board for evaluation of “terminal sinking” was obtained by forming a predetermined circuit on the flexible copper-clad laminates of Examples 1 to 6 and Comparative Examples 1 to 4 and then performing tin plating on the inner lead portion. .
  • the “terminal sinking” evaluation is performed by mounting an IC having a gold bump on the test substrate, observing a cross section of the terminal portion after the mounting is completed, and determining that the sinking amount exceeds 3 ⁇ m. The case of 3 ⁇ m or less was performed by judging as good “ ⁇ ”.
  • a flip chip bonder TFC-3000 manufactured by Shibaura Mechatronics
  • the bonding head tool temperature is 400 ° C.
  • the stage temperature is 100 ° C.
  • the bonding pressure is 20 gf per bump. Set and went.
  • Example 3 where the thickness of the first heat-resistant resin layer was 1 ⁇ m.
  • Tg of 1st heat resistant resin prevented terminal sinking in Example 4 of 325 degreeC, it turned out that terminal sinking becomes large in the comparative example 4 whose Tg is 308 degreeC.
  • a heat resistant resin having a Tg of 320 ° C. or higher may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

A flexible conductor-clad laminate sequentially comprising, on one side of a conductor layer (11), a first heat-resistant resin layer (12) which has a thickness of 1-10 μm and is composed of a heat-resistant resin having a glass transition temperature of not less than 320˚C, a thermosetting resin layer (13) which has a thickness of 4-10 μm and is composed of a thermosetting resin composition, and a second heat-resistant resin layer (14) which has a thickness of 10-35 μm and is composed of a heat-resistant resin having a glass transition temperature of not less than 300˚C.

Description

フレキシブル導体層張積層板及びCOF用フレキシブルプリント配線板並びにこれらの製造方法Flexible conductive layer-clad laminate, flexible printed wiring board for COF, and methods for producing the same
 本発明は、ICあるいはLSIなどの電子部品を実装するCOF用フレキシブルプリント配線板に用いることができるフレキシブル導体層張積層板及びそれを用いたCOF用フレキシブルプリント配線板並びにこれらの製造方法に関する。 The present invention relates to a flexible conductor layer-clad laminate that can be used for a COF flexible printed wiring board on which electronic components such as ICs or LSIs are mounted, a COF flexible printed wiring board using the same, and a method of manufacturing the same.
 エレクトロニクス産業の発達に伴い、IC(集積回路)、LSI(大規模集積回路)等の電子部品を実装するプリント配線板の需要が急激に増加しているが、電子機器の小型化、軽量化、高機能化が要望され、これら電子部品の実装方法として、より小さいスペースで、より高密度の実装を行う実装方法として、ICチップをフレキシブルプリント配線板上に直接搭載するCOF(チップ・オン・フィルム)が実用化されている。 With the development of the electronics industry, the demand for printed wiring boards for mounting electronic components such as ICs (integrated circuits) and LSIs (large scale integrated circuits) has increased rapidly. There is a demand for higher functionality, and as a mounting method for mounting these electronic components in a smaller space in a higher density, a COF (chip on film) in which an IC chip is directly mounted on a flexible printed wiring board ) Has been put to practical use.
 このCOFに用いられるCOF用フレキシブルプリント配線板はデバイスホールを具備しないので、導体層と絶縁層とが予め積層されたフレキシブル導体層張積層板が用いられ、絶縁層には、一般的には厚さ30~40μmのポリイミド系のフィルムが用いられるこれは、30μm未満の厚さでは、機械的な強度不足からCOF用フレキシブルプリント配線板の製造工程やCOF実装工程においてスプロケット搬送時に問題を生じる虞があり、一方、40μmより厚いと、スプリングバックと呼ばれる現象により、実装時の搬送不良を引き起こすからである。 Since the COF flexible printed wiring board used for this COF does not have a device hole, a flexible conductor layer-clad laminate in which a conductor layer and an insulating layer are laminated in advance is used, and the insulating layer generally has a thickness. This is because a polyimide film with a thickness of 30 to 40 μm is used. If the thickness is less than 30 μm, there is a risk of causing problems when transporting sprockets in the manufacturing process of COF flexible printed wiring boards and COF mounting processes due to insufficient mechanical strength. On the other hand, if it is thicker than 40 μm, it causes a conveyance failure during mounting due to a phenomenon called springback.
 また、このようなICチップの実装は、ボンダーにより行われるが、この際にフィルムが加熱されるので、ICチップの接続端子の沈み込みやフィルムの軟化による実装装置への張り付きなどが生じるという問題がある。 Further, such mounting of the IC chip is performed by a bonder. At this time, since the film is heated, there is a problem that the connection terminal of the IC chip sinks or the film is stuck to the mounting device due to softening of the film. There is.
 このようなICチップの実装の際の沈み込みを防止するものとして、銅箔上に溶液塗布、乾燥、硬化して得られた所定のポリイミド層を有するCOF用銅張積層板が提案されている(特許文献1参照)。 In order to prevent such sinking when mounting an IC chip, a copper-clad laminate for COF having a predetermined polyimide layer obtained by applying, drying and curing a solution on a copper foil has been proposed. (See Patent Document 1).
 しかしながら、塗布法により30~40μmのポリイミド層を形成するという製造方法では、製造工程管理が大変であり、また、良品質のポリイミド層とするために非常にコスト高となるという問題がある。 However, in the manufacturing method in which a polyimide layer having a thickness of 30 to 40 μm is formed by a coating method, manufacturing process management is difficult, and there is a problem that the cost is very high in order to obtain a good quality polyimide layer.
 一方、複数の樹脂層を積層したラミネート品が種々提案されている。例えば、金属箔又は耐熱性フィルムに有機溶剤可溶性のポリイミド樹脂又はポリアミドイミド樹脂を塗布して乾燥し、積層して巻き取った後、加熱することにより金属箔積層長尺体を製造する方法が開示されている(特許文献2参照)。しかしながら、この場合、加熱処理により有機溶剤を除去する際に積層長尺体にふくれなどの問題が生じる可能性が大きい。 On the other hand, various laminate products in which a plurality of resin layers are laminated have been proposed. For example, a method for producing a metal foil laminate long body by applying an organic solvent-soluble polyimide resin or polyamideimide resin to a metal foil or a heat-resistant film, drying, laminating and winding, and then heating is disclosed. (See Patent Document 2). However, in this case, when the organic solvent is removed by heat treatment, there is a high possibility that problems such as blistering will occur in the laminated long body.
 また、特に、ICチップの接続端子の沈み込みを有効に防止するものとして、所定の耐熱性樹脂(a)、(b)を積層した金属層付き積層フィルムが提案されている(特許文献3参照)。 In particular, a multilayer film with a metal layer in which predetermined heat resistant resins (a) and (b) are laminated has been proposed as a means for effectively preventing sinking of connection terminals of an IC chip (see Patent Document 3). ).
 しかしながら、この場合、耐熱性樹脂を2層設けているので、スプリングバックの問題が生じる虞があるという問題がある。 However, in this case, since two layers of heat resistant resin are provided, there is a problem that a problem of springback may occur.
特開2006-130747号公報(特許請求の範囲)JP 2006-130747 A (Claims) 特開平3-164241号公報JP-A-3-164241 特開2005-125688号公報(特許請求の範囲)Japanese Patent Laying-Open No. 2005-125688 (Claims)
 本発明は、このような事情に鑑み、ICチップの実装の際の端子の沈み込みの問題やスプリングバックの問題が生じず且つ比較的低コストで製造できるフレキシブル導体層張積層板及びCOF用フレキシブルプリント配線板並びにこれらの製造方法を提供することを目的とする。 In view of such circumstances, the present invention is a flexible conductive layer-clad laminate and a flexible COF that can be manufactured at a relatively low cost without causing a problem of terminal sinking or a springback problem when mounting an IC chip. It aims at providing a printed wiring board and these manufacturing methods.
 前記課題を解決する本発明の第1の態様は、導体層の一方面に、ガラス転移温度が320℃以上の耐熱性樹脂からなる厚さ1~10μmの第1耐熱樹脂層と、熱硬化性樹脂組成物からなる厚さ4~10μmの熱硬化性樹脂層と、ガラス転移温度が300℃以上の耐熱性樹脂からなる厚さ10~35μmの第2耐熱性樹脂層とを順次具備することを特徴とするフレキシブル導体層張積層板にある。 A first aspect of the present invention that solves the above-mentioned problems is that a first heat-resistant resin layer having a thickness of 1 to 10 μm made of a heat-resistant resin having a glass transition temperature of 320 ° C. or higher is formed on one surface of a conductor layer, and thermosetting. A thermosetting resin layer having a thickness of 4 to 10 μm made of a resin composition and a second heat resistant resin layer having a thickness of 10 to 35 μm made of a heat resistant resin having a glass transition temperature of 300 ° C. or higher are sequentially provided. The flexible conductor layer-clad laminate is characterized.
 かかる第1の態様では、COF用プリント配線板とした場合に、第1耐熱性樹脂でICチップの端子の沈み込みが防止され且つ低弾性樹脂層が設けられているのでスプリングバックの問題も解消される。また、ラミネートにより製造可能であるから、低コスト化を図ることができる。 In the first aspect, when the printed wiring board for COF is used, the first heat resistant resin prevents the IC chip terminal from sinking and the low elastic resin layer is provided, so that the problem of springback is also solved. Is done. Moreover, since it can manufacture by a lamination, cost reduction can be achieved.
 本発明の第2の態様は、請求項1に記載のフレキシブル導体層張積層板において、前記熱硬化性樹脂組成物が、副生物を放出しない熱硬化反応による熱硬化性樹脂を含有することを特徴とするフレキシブル導体層張積層板にある。 According to a second aspect of the present invention, in the flexible conductor layered laminate according to claim 1, the thermosetting resin composition contains a thermosetting resin by a thermosetting reaction that does not release by-products. The flexible conductor layer-clad laminate is characterized.
 かかる第2の態様では、熱硬化反応より副生物を放出しない熱硬化性樹脂により熱硬化性樹脂層が形成されるので、ふくれなどの問題のない積層板となる。 In the second aspect, since the thermosetting resin layer is formed of a thermosetting resin that does not release by-products from the thermosetting reaction, the laminate is free from problems such as blistering.
 本発明の第3の態様は、第1又は2の態様に記載のフレキシブル導体層張積層板において、前記熱硬化性樹脂組成物が、芳香族ポリアミド樹脂ポリマー及びエポキシ樹脂を含むことを特徴とするフレキシブル導体層張積層板にある。 According to a third aspect of the present invention, in the flexible conductor layer-clad laminate according to the first or second aspect, the thermosetting resin composition includes an aromatic polyamide resin polymer and an epoxy resin. Located on flexible conductor layered laminate.
 かかる第3の態様では、熱硬化性樹脂層が接着層を兼ねるので、ラミネートにより良好に接合された積層板とすることができる。 In the third aspect, since the thermosetting resin layer also serves as an adhesive layer, a laminate that is favorably bonded by lamination can be obtained.
 本発明の第4の態様は、第1~3の何れか1つの態様に記載のフレキシブル導体層張積層板において、前記第1耐熱樹脂層と、前記熱硬化性樹脂層と、前記第2耐熱樹脂層とからなる絶縁層の厚さが30~40μmであることを特徴とするフレキシブル導体層張積層板にある。 According to a fourth aspect of the present invention, in the flexible conductor layer-clad laminate according to any one of the first to third aspects, the first heat-resistant resin layer, the thermosetting resin layer, and the second heat-resistant resin layer. The flexible conductor layer-clad laminate is characterized in that the insulating layer comprising the resin layer has a thickness of 30 to 40 μm.
 かかる第4の態様では、COF用の基材として好適な厚さの積層板となる。 In the fourth aspect, a laminate having a thickness suitable as a base material for COF is obtained.
 本発明の第5の態様は、第1~4の何れか1つの態様に記載のフレキシブル導体層張積層板において、前記導体層が銅箔からなることを特徴とするフレキシブル導体層張積層板にある。 According to a fifth aspect of the present invention, in the flexible conductor layer-clad laminate described in any one of the first to fourth aspects, the conductor layer is made of copper foil. is there.
 かかる第5の態様では、COF用の基材として好適な銅張積層板となる。 In the fifth aspect, a copper clad laminate suitable as a COF base material is obtained.
 本発明の第6の態様は、第1~5の何れか1つの態様に記載のフレキシブル導体層張積層板において、前記導体層と前記第1耐熱樹脂層との積層体と、前記第2耐熱樹脂層とを、前記熱硬化性樹脂層を介してラミネートしたものであることを特徴とするフレキシブル導体層張積層板にある。 According to a sixth aspect of the present invention, in the flexible conductor layer-clad laminate according to any one of the first to fifth aspects, a laminate of the conductor layer and the first heat-resistant resin layer, and the second heat-resistant resin layer are provided. A flexible conductor layer-clad laminate is obtained by laminating a resin layer via the thermosetting resin layer.
 かかる第6の態様では、2層をラミネートすることにより製造でき、比較的容易に且つ低コストでの製造が可能となる。 In the sixth aspect, it can be manufactured by laminating two layers, and can be manufactured relatively easily and at low cost.
 本発明の第7の態様は、第1~6の何れか1つの態様に記載のフレキシブル導体層張積層板を用いて形成され、前記導体層をパターニングして形成されると共に半導体チップが実装される配線パターンを具備することを特徴とするCOF用フレキシブルプリント配線板にある。 A seventh aspect of the present invention is formed by using the flexible conductor layer-clad laminate described in any one of the first to sixth aspects, and is formed by patterning the conductor layer and mounting a semiconductor chip. A flexible printed wiring board for COF, comprising a wiring pattern.
 かかる第7の態様では、第1耐熱樹脂層でICチップの端子の沈み込みが防止され且つ低弾性樹脂層が設けられているのでスプリングバックの問題も解消される。また、ラミネートにより製造可能であるから、低コスト化を図ることができる。 In the seventh aspect, since the first heat-resistant resin layer prevents the IC chip terminals from sinking and the low-elasticity resin layer is provided, the problem of springback is also solved. Moreover, since it can manufacture by a lamination, cost reduction can be achieved.
 本発明の第8の態様は、導体層の一方面に、ガラス転移温度が320℃以上の耐熱性樹脂からなる厚さ1~10μmの第1耐熱樹脂層と、熱硬化性樹脂組成物からなる厚さ4~10μmの熱硬化性樹脂層と、ガラス転移温度が300℃以上の耐熱性樹脂からなる厚さ10~35μmの第2耐熱性樹脂層とを順次具備するフレキシブル導体層張積層板の製造方法であって、前記導体層となる導体箔の一方面に、ガラス転移温度が300℃以上の耐熱性樹脂前駆体塗布液を塗布して熱処理することにより厚さ1~10μmの第1耐熱樹脂層を形成して積層体とする工程と、前記第2耐熱樹脂層となる耐熱性樹脂フィルムを準備する工程と、前記積層体及び前記耐熱性樹脂フィルムの何れか一方に前記熱硬化性樹脂層となる熱硬化性樹脂組成物を塗布する工程と、その後、前記積層体と前記耐熱性樹脂フィルムとを前記熱硬化性樹脂組成物を介してラミネートすることによりフレキシブル導体層張積層板とすることを特徴とするフレキシブル導体層張積層板の製造方法にある。 The eighth aspect of the present invention comprises a first heat-resistant resin layer having a thickness of 1 to 10 μm made of a heat-resistant resin having a glass transition temperature of 320 ° C. or higher on one surface of a conductor layer, and a thermosetting resin composition. A flexible conductor layer-clad laminate comprising a thermosetting resin layer having a thickness of 4 to 10 μm and a second heat resistant resin layer having a thickness of 10 to 35 μm made of a heat resistant resin having a glass transition temperature of 300 ° C. or higher. A manufacturing method comprising applying a heat-resistant resin precursor coating solution having a glass transition temperature of 300 ° C. or higher to one surface of a conductive foil to be a conductive layer, and heat-treating the first heat-resistant layer having a thickness of 1 to 10 μm. The step of forming a resin layer to form a laminate, the step of preparing a heat-resistant resin film to be the second heat-resistant resin layer, and the thermosetting resin in one of the laminate and the heat-resistant resin film Apply the thermosetting resin composition A flexible conductor layer-clad laminate obtained by laminating the laminate and the heat-resistant resin film via the thermosetting resin composition, and It is in the manufacturing method.
 かかる第8の態様では、第1耐熱樹脂層を塗布法で形成し、第2耐熱樹脂層と低弾性樹脂層を介してラミネートすることにより、COF用プリント配線板とした場合に、第1耐熱樹脂層でICチップの端子の沈み込みが防止され且つ低弾性樹脂層が設けられているのでスプリングバックの問題も解消されるフレキシブル導体層張積層板を比較的容易且つ低コストで製造できる。 In the eighth aspect, when the first heat resistant resin layer is formed by a coating method and laminated through the second heat resistant resin layer and the low elastic resin layer, the first heat resistant resin layer is obtained. Since the resin layer prevents the terminal of the IC chip from sinking and the low-elasticity resin layer is provided, a flexible conductor layer-clad laminate that can eliminate the problem of springback can be manufactured relatively easily and at low cost.
 本発明の第9の態様は、第8の態様に記載のフレキシブル導体層張積層板の製造方法において、前記熱硬化性樹脂層が、熱硬化反応の際に副生物を放出しないものであることを特徴とするフレキシブル導体層張積層板の製造方法にある。 According to a ninth aspect of the present invention, in the method for producing a flexible conductor layer-clad laminate according to the eighth aspect, the thermosetting resin layer does not release by-products during the thermosetting reaction. A method for producing a flexible conductor-layer-clad laminate.
 かかる第9の態様では、熱硬化反応より副生物を放出しない熱硬化性樹脂により熱硬化性樹脂層が形成されるので、ふくれなどの問題のない積層板を製造できる。 In the ninth aspect, since the thermosetting resin layer is formed of a thermosetting resin that does not release by-products from the thermosetting reaction, a laminate without problems such as blistering can be manufactured.
 本発明の第10の態様は、第8又は9の態様に記載のフレキシブル導体層張積層板の製造方法において、前記熱硬化性樹脂層が芳香族ポリアミド樹脂ポリマー及びエポキシ樹脂を含む熱硬化性樹脂からなることを特徴とするフレキシブル導体層張積層板の製造方法にある。 According to a tenth aspect of the present invention, in the method for producing a flexible conductor layer-clad laminate according to the eighth or ninth aspect, the thermosetting resin layer includes an aromatic polyamide resin polymer and an epoxy resin. It is in the manufacturing method of the flexible conductor layer tension laminated board characterized by consisting of.
 かかる第10の態様では、低弾性樹脂層が接着層を兼ねるので、ラミネートにより良好に接合された積層板とすることができる。 In the tenth aspect, since the low elastic resin layer also serves as the adhesive layer, it is possible to obtain a laminated plate that is satisfactorily bonded by lamination.
 本発明の第11の態様では、第8~10の何れか1つの態様に記載のフレキシブル導体層張積層板の製造方法において、前記第1耐熱樹脂層と、前記熱硬化性樹脂層と、前記第2耐熱樹脂層とからなる絶縁層の厚さが30~40μmであるフレキシブル導体層張積層板を製造することを特徴とするフレキシブル導体層張積層板の製造方法にある。 According to an eleventh aspect of the present invention, in the method for producing a flexible conductor layer-clad laminate according to any one of the eighth to tenth aspects, the first heat-resistant resin layer, the thermosetting resin layer, A method for producing a flexible conductor layer-clad laminate is characterized in that a flexible conductor layer-clad laminate having a thickness of 30 to 40 μm of an insulating layer comprising a second heat-resistant resin layer is produced.
 かかる第11の態様では、COF用の基材として好適な厚さの積層板が製造される。 In the eleventh aspect, a laminate having a thickness suitable as a COF substrate is produced.
 本発明の第12の態様は、第8~11の何れか1つの態様に記載のフレキシブル導体層張積層板の製造方法において、前記導体層として銅箔又はキャリア付き銅箔を用いることを特徴とするフレキシブル導体層張積層板の製造方法にある。 According to a twelfth aspect of the present invention, in the method for producing a flexible conductor layer-clad laminate according to any one of the eighth to eleventh aspects, a copper foil or a copper foil with a carrier is used as the conductor layer. The method for producing a flexible conductor layer-clad laminate.
 かかる第12の態様では、銅箔又はキャリア付き銅箔を用いて第1耐熱樹脂層を形成し、ラミネートすることにより、COF用の基材として好適な銅張積層板が比較的容易に製造される。 In the twelfth aspect, a copper-clad laminate suitable as a substrate for COF is relatively easily manufactured by forming and laminating a first heat-resistant resin layer using a copper foil or a copper foil with a carrier. The
 本発明の第13の態様は、第8~12の何れか1つの態様に記載のフレキシブル導体層張積層板の製造方法により得たフレキシブル導体層張積層板からCOF用フレキシブルプリント配線板を製造することを特徴とするCOF用フレキシブルプリント配線板の製造方法にある。 According to a thirteenth aspect of the present invention, a flexible printed wiring board for COF is produced from a flexible conductor layer-clad laminate obtained by the method for producing a flexible conductor layer-clad laminate described in any one of the eighth to twelfth aspects. This is a method for producing a flexible printed wiring board for COF.
 かかる第13の態様では、第1耐熱樹脂層でICチップの端子の沈み込みが防止され且つ低弾性樹脂層を接着層を兼ねて設けられているので、スプリングバックの問題も解消されるCOF用フレキシブルプリント配線板が製造される。 In the thirteenth aspect, since the first heat-resistant resin layer prevents the terminal of the IC chip from sinking and the low-elasticity resin layer is also used as the adhesive layer, the problem of springback is also eliminated. A flexible printed wiring board is manufactured.
図1は、本発明のフレキシブル導体層張積層板の模式的な断面図である。FIG. 1 is a schematic cross-sectional view of a flexible conductor layer-clad laminate of the present invention. 図2は、本発明のフレキシブル導体層張積層板の製造工程を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the production process of the flexible conductor layer-clad laminate of the present invention.
 以下、本発明の一実施形態に係るフレキシブル導体層張積層板の一例を実施例に基づいて説明する。 Hereinafter, an example of the flexible conductor layer-clad laminate according to an embodiment of the present invention will be described based on examples.
 図1には、一実施形態に係るフレキシブル導体層張積層板を示す。図1に示すように、本実施形態のフレキシブル導体層張積層板10は金属箔からなる導体層11と、第1耐熱樹脂層12と、熱硬化性樹脂層13、第2耐熱樹脂層14との積層構造を有する。 FIG. 1 shows a flexible conductor layered laminate according to an embodiment. As shown in FIG. 1, the flexible conductor layer-clad laminate 10 of this embodiment includes a conductor layer 11 made of metal foil, a first heat-resistant resin layer 12, a thermosetting resin layer 13, and a second heat-resistant resin layer 14. It has the laminated structure.
 ここで、金属箔は、COF用フレキシブルプリント配線板として使用できる厚さ、品質を有していれば、特に限定されない。一般的には、5~35μm程度の厚さのものが用いられる。また、製造工程での取り扱い性の点から、製造過程ではキャリア付き金属箔を用い、最後にキャリアを除去するようにしてもよい。 Here, the metal foil is not particularly limited as long as it has a thickness and quality that can be used as a flexible printed wiring board for COF. Generally, a thickness of about 5 to 35 μm is used. Further, from the viewpoint of handling in the manufacturing process, a metal foil with a carrier may be used in the manufacturing process, and the carrier may be finally removed.
 また、金属箔としては、銅箔、アルミ箔などを挙げることができ、キャリアとしては銅箔やアルミ箔などを挙げることができる。 Also, examples of the metal foil include copper foil and aluminum foil, and examples of the carrier include copper foil and aluminum foil.
 第1耐熱樹脂層は、ガラス転移温度が320℃以上の耐熱性樹脂からなるものであり、厚さが1~10μm、好ましくは、3~6μmのものである。ガラス転移温度が320℃以上の耐熱性を有し、且つ1μm以上の厚さを有する第1耐熱樹脂層を金属箔直下に設けることにより、COF実装した際にICチップの接続端子の沈み込みが有効に防止できることができることを知見し、かかる構成としている。また、第1耐熱樹脂層を10μmより厚くするのは、沈み込み防止の観点からは不要であり、また、スプリングバックを防止するのが困難になる傾向になり、さらに、塗布法での製造工程が困難となり、また、ラミネートの際の熱処理でねじれ等が生じやすくなり、好ましくないからである。 The first heat-resistant resin layer is made of a heat-resistant resin having a glass transition temperature of 320 ° C. or higher, and has a thickness of 1 to 10 μm, preferably 3 to 6 μm. By providing the first heat-resistant resin layer having a glass transition temperature of 320 ° C. or more and a thickness of 1 μm or more directly below the metal foil, the connection terminal of the IC chip is submerged when COF mounting is performed. It has been found that it can be effectively prevented, and has such a configuration. In addition, it is unnecessary to make the first heat-resistant resin layer thicker than 10 μm from the viewpoint of prevention of sinking, and it tends to be difficult to prevent springback. This is because the heat treatment during lamination is liable to cause twisting and the like, which is not preferable.
 このような第1耐熱樹脂層を形成するための耐熱性樹脂として、ポリイミド樹脂、ポリアミドイミド樹脂などを挙げることができる。 Examples of the heat resistant resin for forming the first heat resistant resin layer include a polyimide resin and a polyamideimide resin.
 また、製造工程上、導体箔上に塗布法で設けられる樹脂が好ましく、特に好ましくは、耐熱樹脂の前駆体組成物を塗布した後、硬化することにより耐熱樹脂層となるものが望ましい。 Also, in the production process, a resin provided on the conductor foil by a coating method is preferable, and particularly preferable is a resin that becomes a heat-resistant resin layer by applying a heat-resistant resin precursor composition and then curing.
 ここで、第1耐熱樹脂層は、ラミネート前に含有される揮発性成分が2質量%以下、好ましくは1質量%以下の状態であることが好ましい。これは、第1耐熱樹脂層が金属箔と直接接する位置に配置されるので、溶剤などの揮発性成分の残留量を厳密に管理することにより、ICチップ実装の際の沈み込みを確実に防止するためである。換言すると、第1耐熱樹脂層に揮発性成分が2質量%を超えて残留した場合には、溶剤などの揮発性成分の可塑化作用により、耐熱樹脂層の高温での弾性率低下を引き起こすので、ガラス転移温度が320℃以上の耐熱性樹脂を使用しても、その本来の性能が発現されず、沈み込みを容易に発生する虞が高いからである。 Here, it is preferable that the first heat-resistant resin layer has a volatile component contained before lamination of 2% by mass or less, preferably 1% by mass or less. This is because the first heat-resistant resin layer is placed at a position in direct contact with the metal foil, and the amount of residual volatile components such as solvents is strictly controlled to prevent the sinking when mounting the IC chip. It is to do. In other words, if the volatile component remains in the first heat resistant resin layer in excess of 2% by mass, the plasticity of the volatile component such as a solvent causes a decrease in the elastic modulus at a high temperature of the heat resistant resin layer. This is because even if a heat-resistant resin having a glass transition temperature of 320 ° C. or higher is used, its original performance is not exhibited, and there is a high possibility that subsidence easily occurs.
 一方、第2耐熱樹脂層は、ガラス転移温度が300℃以上の耐熱性樹脂からなり、厚さが10~35μm、好ましくは、20~30μmのものである。かかる第2耐熱樹脂層は、耐熱樹脂フィルムとして製造されているものを用いるのがコスト、取り扱いの面で好ましく、フレキシブルプリント配線板の基材として市販されているポリイミド系フィルム又はポリアミドイミド系フィルムを用いるのが好ましい。 On the other hand, the second heat-resistant resin layer is made of a heat-resistant resin having a glass transition temperature of 300 ° C. or higher and has a thickness of 10 to 35 μm, preferably 20 to 30 μm. The second heat-resistant resin layer is preferably manufactured as a heat-resistant resin film in terms of cost and handling. A polyimide-based film or a polyamide-imide-based film that is commercially available as a base material for flexible printed wiring boards is used. It is preferable to use it.
 第2耐熱樹脂層は、薄くなると取り扱いが困難となり且つラミネートの際にしわが生じ易く、厚くなると、総厚の関係から低弾性樹脂層の厚さが相対的に薄くなるので、スプリングバックが低減できなくなり、共に好ましくない。このような観点及び入手の容易及びコストの観点から、厚さ25μmのポリイミドフィルムを用いるのが好ましい。 When the second heat-resistant resin layer is thin, handling becomes difficult and wrinkles are easily generated during lamination. When the second heat-resistant resin layer is thick, the thickness of the low-elasticity resin layer is relatively thin due to the total thickness. Both are undesirable. From such a viewpoint and easy availability and cost, it is preferable to use a polyimide film having a thickness of 25 μm.
 特に、ピロメリット酸2無水物と4,4'-ジアミノジフェニルエーテルの重合によって得られる全芳香族ポリイミド(例えば、商品名:カプトンEN;東レ・デュポン社製)や、ビフェニルテトラカルボン酸-2無水物とパラフェニレンジアミン(PPD)との重合物(例えば、商品名:ユーピレックスS;宇部興産社製)、アピカル(カネカ社製)などを用いるのが好ましい。 In particular, wholly aromatic polyimides obtained by polymerization of pyromellitic dianhydride and 4,4′-diaminodiphenyl ether (for example, trade name: Kapton EN; manufactured by Toray DuPont) and biphenyltetracarboxylic acid-2 anhydride It is preferable to use a polymer of styrene and paraphenylenediamine (PPD) (for example, trade name: Upilex S; manufactured by Ube Industries), apical (manufactured by Kaneka), and the like.
 なお、第2耐熱樹脂層のガラス転移温度を300℃以上としたのは、融点が288℃の半田での接続に対する耐熱性を保持するためである。 The reason why the glass transition temperature of the second heat resistant resin layer is set to 300 ° C. or more is to maintain heat resistance against connection with solder having a melting point of 288 ° C.
 熱硬化性樹脂層は、熱硬化性樹脂組成物からなる厚さ4~10μm、好ましくは、5~8μmのものである。 The thermosetting resin layer is made of a thermosetting resin composition and has a thickness of 4 to 10 μm, preferably 5 to 8 μm.
 また、熱硬化性樹脂層は、低弾性率とするのが好ましく、例えば、室温の弾性率が3GPa以下、好ましくは1.5~2.5GPa、さらに好ましくは、1.5~2GPa程度のものである。このような低弾性率の低弾性樹脂層を設けても、ICチップ実装の際の沈み込みに対しては悪影響がなく、スプリングバックを有効に防止できることを知見し、かかる構成としている。 The thermosetting resin layer preferably has a low elastic modulus, for example, a room temperature elastic modulus of 3 GPa or less, preferably 1.5 to 2.5 GPa, more preferably about 1.5 to 2 GPa. It is. It has been found that even if such a low elastic resin layer having a low elastic modulus is provided, there is no adverse effect on the sinking when the IC chip is mounted, and spring back can be effectively prevented.
 さらに、熱硬化性樹脂層は、塗布法で形成できるもので且つ接着層として機能するものが好ましい。 Furthermore, the thermosetting resin layer is preferably one that can be formed by a coating method and that functions as an adhesive layer.
 ここで、熱硬化性樹脂層は、第1耐熱樹脂層とは異なり、ラミネート前に含有される揮発性成分は厳密に規定する必要はない。すなわち、熱硬化性樹脂層の揮発性成分の含有量は、室温での粘着性を示さず、塗布後の取り扱いに問題のない範囲であれば、2質量%を超える揮発性成分が含有されていてもよい。このように熱硬化性樹脂層に溶剤などの揮発性成分が含有される場合、溶剤などの揮発性成分の可塑化作用により、ラミネート温度を引き下げる効果がある。また、熱硬化性樹脂層に含有される揮発性成分はラミネート後に除去することが容易であり、ラミネート後の熱硬化性樹脂層の硬化の際に行われる加熱により短時間で除去できるからである。勿論、熱硬化性樹脂の溶剤除去をラミネート前に十分に行ってもよい。このようにラミネート前の揮発性成分の含有量が極めて低くても、熱硬化性樹脂は硬化前であれば、容易に軟化して流動性を示し、ラミネートによる積層が問題なく行えるからである。 Here, unlike the first heat-resistant resin layer, the thermosetting resin layer need not strictly define the volatile components contained before lamination. That is, if the content of the volatile component of the thermosetting resin layer does not show stickiness at room temperature and does not cause any problems in handling after coating, it contains more than 2% by mass of volatile components. May be. Thus, when a volatile component such as a solvent is contained in the thermosetting resin layer, there is an effect of lowering the laminating temperature due to the plasticizing action of the volatile component such as the solvent. Moreover, it is because the volatile component contained in the thermosetting resin layer can be easily removed after lamination, and can be removed in a short time by heating performed at the time of curing the thermosetting resin layer after lamination. . Of course, the solvent of the thermosetting resin may be sufficiently removed before lamination. As described above, even if the content of the volatile component before lamination is very low, the thermosetting resin is easily softened and exhibits fluidity before curing, and lamination by lamination can be performed without any problem.
 但し、熱硬化性樹脂組成物としては、水やガスなどの副生物を生成しない熱硬化反応により硬化する熱硬化性樹脂を含むものを用いるのが好ましい。熱硬化の際に副生物は、上述した樹脂中の溶剤などの揮発性成分とは異なり、ラミネート後に第1耐熱樹脂層と第2耐熱樹脂層との挟持された層から完全に除去することが極めて困難であるからである。すなわち、溶剤などの揮発性成分の除去は揮発性成分の沸点近傍の温度を加熱して徐々に行うことができるが、硬化反応による副生物は所定の温度を超えて反応が起こってから発生し、反応が開始される温度を超えた際に急激に発生し、ボイドと呼ばれる泡溜まりや層間の剥離を生じさせるからである。つまり、本発明の熱硬化性樹脂組成物に含有される、メチルエチルケトンやシクロペンタノンなどの溶剤は、沸点が150℃以下と低く、熱硬化性樹脂の硬化温度である150℃~230℃の加熱雰囲気まで徐々に加熱される間に徐々に蒸発してしまうので、新たな除去工程を付与することなく、容易に除去することができる。しかしながら、未硬化熱硬化性樹脂としてポリイミド樹脂の前駆体であるポリアミック酸を用いて、硬化反応の副生物をラミネート工程後に除去しようとすると、ポリアミック酸の閉環反応は300℃以上の温度が必要であり、それ以上に加熱した場合には、脱水反応による水分子の発生が急激に起こるので、それに伴う膨れやボイドの発生を抑えることは極めて困難である。 However, it is preferable to use a thermosetting resin composition containing a thermosetting resin that is cured by a thermosetting reaction that does not generate by-products such as water and gas. Unlike the volatile components such as the solvent in the resin described above, the by-product during the thermosetting can be completely removed from the layer sandwiched between the first heat-resistant resin layer and the second heat-resistant resin layer after lamination. It is extremely difficult. In other words, the removal of volatile components such as solvents can be gradually performed by heating the temperature near the boiling point of the volatile components, but by-products due to the curing reaction occur after the reaction occurs above a predetermined temperature. This is because it suddenly occurs when the temperature at which the reaction starts is exceeded, causing bubble accumulation called voids and delamination between layers. That is, the solvent such as methyl ethyl ketone and cyclopentanone contained in the thermosetting resin composition of the present invention has a boiling point as low as 150 ° C. or less and is heated at 150 ° C. to 230 ° C., which is the curing temperature of the thermosetting resin. Since it gradually evaporates while it is gradually heated to the atmosphere, it can be easily removed without providing a new removal step. However, if polyamic acid, which is a precursor of polyimide resin, is used as an uncured thermosetting resin and a by-product of the curing reaction is to be removed after the lamination step, the ring closing reaction of polyamic acid requires a temperature of 300 ° C. or higher. When heated further, water molecules are rapidly generated due to dehydration reaction, and it is extremely difficult to suppress the occurrence of swelling and voids associated therewith.
 以上の点を考慮すると、熱硬化性樹脂組成物としては、水やガスなどの副生物を生成しない熱硬化反応により硬化する有機溶剤可溶性の熱硬化性樹脂と、有機溶剤可溶性のベース樹脂と、硬化剤と、有機溶剤とを含む組成物を挙げることができる。 In consideration of the above points, as the thermosetting resin composition, an organic solvent-soluble thermosetting resin that cures by a thermosetting reaction that does not generate by-products such as water and gas, an organic solvent-soluble base resin, The composition containing a hardening | curing agent and an organic solvent can be mentioned.
 ここで、水やガスなどの副生物を生成しない熱硬化反応により硬化する有機溶剤可溶性の熱硬化性樹脂としては、脱水反応型、脱炭酸反応、脱ホルマリン反応などによるものは除外され、エポキシ樹脂、ノボラック型フェノール樹脂を挙げることができる。 Here, organic solvent-soluble thermosetting resins that are cured by a thermosetting reaction that does not generate by-products such as water and gas are excluded from those due to dehydration reaction type, decarboxylation reaction, deformalin reaction, etc. And novolak type phenol resins.
 また、ベース樹脂としては、芳香族ポリアミド樹脂ポリマーを挙げることができる。熱硬化性樹脂との相溶性がよく、低弾性率で良好な接着性を有する熱硬化性樹脂層を形成できるからである。 Also, examples of the base resin include aromatic polyamide resin polymers. This is because a thermosetting resin layer having good compatibility with the thermosetting resin and having a low elastic modulus and good adhesiveness can be formed.
 よって、熱硬化性樹脂層としては、好適には、芳香族ポリアミド樹脂ポリマーに、エポキシ樹脂からなる熱硬化性樹脂を含有する組成物を挙げることができ、詳細には、芳香族ポリアミド樹脂ポリマー、エポキシ樹脂、硬化剤、溶剤に可溶な及び、必要に応じて適宜量添加する硬化促進剤からなる樹脂組成物を挙げることができる。 Therefore, as the thermosetting resin layer, preferably, the aromatic polyamide resin polymer can include a composition containing a thermosetting resin made of an epoxy resin. In detail, the aromatic polyamide resin polymer, The resin composition which consists of a hardening accelerator which is soluble in an epoxy resin, a hardening | curing agent, a solvent, and is added suitably as needed can be mentioned.
 ここで、「芳香族ポリアミド樹脂ポリマー」とは、芳香族ポリアミド樹脂とゴム性樹脂とを反応させて得られるものである。ここで、芳香族ポリアミド樹脂とは、芳香族ジアミンとジカルボン酸との縮重合により合成されるものである。このときの芳香族ジアミンには、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルスルホン、m-キシレンジアミン、3,3'-オキシジアニリン等を用いることが好ましい。そして、ジカルボン酸には、フタル酸、イソフタル酸、テレフタル酸、フマル酸等を用いることが好ましい。また、エポキシ樹脂との架橋点を設けることを目的として4-ヒドロキシイソフタル酸を用いてもよい。そして、この芳香族ポリアミド樹脂と反応させるゴム性樹脂は、芳香族ポリアミド樹脂と共重合して分子中に取り込まれることが必要であり、特に、CTBN(カルボキシ基末端ブタジエンニトリル)に代表される、分子の末端にカルボキシル基を有するゴム成分を用いられる。 Here, the “aromatic polyamide resin polymer” is obtained by reacting an aromatic polyamide resin and a rubber resin. Here, the aromatic polyamide resin is synthesized by condensation polymerization of an aromatic diamine and a dicarboxylic acid. As the aromatic diamine at this time, it is preferable to use 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylsulfone, m-xylenediamine, 3,3′-oxydianiline and the like. As the dicarboxylic acid, it is preferable to use phthalic acid, isophthalic acid, terephthalic acid, fumaric acid or the like. Further, 4-hydroxyisophthalic acid may be used for the purpose of providing a crosslinking point with the epoxy resin. The rubbery resin to be reacted with the aromatic polyamide resin must be copolymerized with the aromatic polyamide resin and incorporated into the molecule, and particularly represented by CTBN (carboxy group-terminated butadiene nitrile), A rubber component having a carboxyl group at the end of the molecule is used.
 芳香族ポリアミド樹脂ポリマーを構成することとなる芳香族ポリアミド樹脂とゴム性樹脂とは、芳香族ポリアミド樹脂が25wt%~75wt%、残部ゴム性樹脂という配合で用いることが好ましい。芳香族ポリアミド樹脂が25wt%未満の場合には、ゴム成分の存在比率が大きくなりすぎ耐熱性に劣るものとなり、一方、75wt%を越えると芳香族ポリアミド樹脂の存在比率が大きくなりすぎて、硬化後の硬度が高くなりすぎ、脆くなるのである。この芳香族ポリアミド樹脂ポリマーは、導体層張積層板に加工した後の導体層をエッチング加工する際に、エッチング液による損傷を低減することを目的に用いたものである。 The aromatic polyamide resin and rubber resin that constitute the aromatic polyamide resin polymer are preferably used in a blend of 25 wt% to 75 wt% of the aromatic polyamide resin and the remaining rubber resin. When the aromatic polyamide resin is less than 25 wt%, the abundance ratio of the rubber component becomes too high and the heat resistance is inferior. On the other hand, when it exceeds 75 wt%, the abundance ratio of the aromatic polyamide resin becomes too large and curing occurs. Later hardness becomes too high and becomes brittle. This aromatic polyamide resin polymer is used for the purpose of reducing damage caused by an etching solution when etching a conductor layer after being processed into a conductor layer-clad laminate.
 この芳香族ポリアミド樹脂ポリマーには、まず溶剤に可溶であるという性質が求められる。この芳香族ポリアミド樹脂ポリマーは、20重量部~80重量部の配合割合で用いる。 This aromatic polyamide resin polymer is required to be soluble in a solvent. This aromatic polyamide resin polymer is used in a blending ratio of 20 to 80 parts by weight.
 一方、「エポキシ樹脂」とは、分子内に2個以上のエポキシ基を有するものであって、電気・電子材料用途に用いることのできるものであれば、特に問題なく使用できるが、特に、一分子あたり3個以上のエポキシ基を含有し、軟化点が50℃以上の室温で固体の多官能固形エポキシ樹脂(以下、多官能固形エポキシ樹脂という)を用いるのが好ましい。かかる多官能固形エポキシ樹脂としては、ノボラック型エポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂、トリグリシジルイソシアヌレート、テトラキス(グリシジルオキシフェニル)エタン等が挙げられる。これら多官能固形エポキシ樹脂は1種類単独で、あるいは2種類以上混合して用いられる。 On the other hand, the “epoxy resin” is one having two or more epoxy groups in the molecule and can be used without any problem as long as it can be used for electric / electronic materials. It is preferable to use a polyfunctional solid epoxy resin (hereinafter referred to as a polyfunctional solid epoxy resin) containing three or more epoxy groups per molecule and solid at room temperature with a softening point of 50 ° C. or higher. Examples of such polyfunctional solid epoxy resins include novolak type epoxy resins, o-cresol novolak type epoxy resins, triglycidyl isocyanurate, tetrakis (glycidyloxyphenyl) ethane, and the like. These polyfunctional solid epoxy resins may be used alone or in combination of two or more.
 また、このような多官能固形エポキシ樹脂と共に、室温で液状のエポキシ樹脂(以下、液状エポキシ樹脂という)を用いるのがさらに好ましい。かかる液状エポキシ樹脂とは、溶剤を添加せずに室温で流動性があるエポキシ樹脂をいい、具体的にはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、エポキシ化ポリブタジエン、N,Nジグリシジルアニリン等のグリシジルアミン化合物、テトラヒドロフタル酸ジグリシジルエステル等の有機多価カルボン酸のポリグリシジルエステル、環式脂肪族エポキシ樹脂類等が例示される。また、液状エポキシ樹脂には、結晶性が高く、単独では室温で結晶化して粉末状態のものになるものも含まれる。これら液状エポキシ樹脂は1種類単独で、あるいは2種類以上混合して用いられる。 It is more preferable to use an epoxy resin that is liquid at room temperature (hereinafter referred to as a liquid epoxy resin) together with such a polyfunctional solid epoxy resin. Such a liquid epoxy resin refers to an epoxy resin having fluidity at room temperature without adding a solvent. Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, epoxidized polybutadiene, and N, N diglycidyl aniline. And the like, glycidylamine compounds such as polyglycidyl esters of organic polycarboxylic acids such as tetrahydrophthalic acid diglycidyl ester, and cyclic aliphatic epoxy resins. In addition, liquid epoxy resins include those that have high crystallinity and that, by themselves, crystallize at room temperature and become powdery. These liquid epoxy resins may be used alone or in combination of two or more.
 ここで、液状エポキシ樹脂を含むエポキシ樹脂は、硬化剤及び必要に応じて添加される硬化促進剤を配合した、エポキシ樹脂配合物として添加される。エポキシ樹脂の硬化剤は、フェノール樹脂、酸無水物、ポリアミン化合物が知られているが、電子部品の材料として使用されるものであれば、特に限定されるものではない。また、必要に応じて添加される硬化促進剤としては、一般的に知られている三級アミン、イミダゾール類、尿素化合物などが使用される。 Here, the epoxy resin containing the liquid epoxy resin is added as an epoxy resin blend in which a curing agent and a curing accelerator added as necessary are blended. The epoxy resin curing agent is known as a phenol resin, an acid anhydride, or a polyamine compound, but is not particularly limited as long as it is used as a material for an electronic component. Moreover, generally known tertiary amines, imidazoles, urea compounds and the like are used as curing accelerators added as necessary.
 好適な熱硬化性樹脂組成物中のこれら各成分の好ましい配合比率は、ベース樹脂及びエポキシ樹脂配合物の合計100質量%中、ベース樹脂20~80質量%、さらに好ましくは30~70重量%、エポキシ樹脂配合物20~80質量%、さらに好ましくは40~70質量%である。 A preferable blending ratio of each of these components in a suitable thermosetting resin composition is 20 to 80% by weight of the base resin, more preferably 30 to 70% by weight in a total of 100% by weight of the base resin and the epoxy resin blend. The epoxy resin composition is 20 to 80% by mass, more preferably 40 to 70% by mass.
 また、液状エポキシ樹脂の好ましい配合比率は、多官能固形エポキシ樹脂100質量部に対して5~80質量部、さらに好ましくは10~60質量部である。液状エポキシ樹脂の配合比率が5質量部未満であると流動性の改善効果が顕著ではなく、80質量部を超えるとハンダ耐熱性が低下する傾向が出てくる。 Further, the preferable blending ratio of the liquid epoxy resin is 5 to 80 parts by mass, more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the polyfunctional solid epoxy resin. When the blending ratio of the liquid epoxy resin is less than 5 parts by mass, the effect of improving the fluidity is not remarkable, and when it exceeds 80 parts by mass, the solder heat resistance tends to decrease.
 本発明では、このような熱硬化性樹脂組成物は、エポキシ樹脂を含有しているので、ワニスとして塗布した後、乾燥することで未硬化熱硬化性樹脂層を形成することができ、その後のラミネートに供することができる。すなわち、未硬化状態の熱硬化性樹脂層は、ラミネートの際に容易に軟化するので、容易にラミネートによる積層をすることができる。 In the present invention, since such a thermosetting resin composition contains an epoxy resin, it can be applied as a varnish and then dried to form an uncured thermosetting resin layer. Can be used for lamination. That is, since the uncured thermosetting resin layer is easily softened during lamination, it can be easily laminated by lamination.
 ここで、ラミネートする前の未硬化熱硬化性樹脂層は、含有される揮発性成分が2質量%以下、好ましくは1質量%以下の状態に乾燥されたものであるのが好ましい。この後の熱硬化処理の際に揮発性成分が揮発して層間に残留するのを防止するためである。 Here, it is preferable that the uncured thermosetting resin layer before laminating is dried in a state where the volatile component contained is 2% by mass or less, preferably 1% by mass or less. This is to prevent the volatile component from volatilizing and remaining between the layers during the subsequent thermosetting process.
 このようにラミネートした後は、ロールに巻き取った後、ラミネート工程より高温で処理することにより、未硬化熱硬化性樹脂層を熱硬化させて熱硬化性樹脂層とする。 After laminating in this way, after being wound on a roll, the uncured thermosetting resin layer is cured by heating at a higher temperature than the laminating step to obtain a thermosetting resin layer.
 ここで、ラミネート温度は、例えば、100℃~200℃、好ましくは、100℃~150℃で行うことができ、また、熱硬化温度は、150℃~230℃とすることができる。 Here, the lamination temperature can be, for example, 100 ° C. to 200 ° C., preferably 100 ° C. to 150 ° C., and the thermosetting temperature can be 150 ° C. to 230 ° C.
 また、熱硬化性樹脂組成物は、第2耐熱樹脂層か、第1耐熱樹脂層かに塗布することができるが、第2耐熱樹脂層に塗布するのが好ましい。 The thermosetting resin composition can be applied to the second heat-resistant resin layer or the first heat-resistant resin layer, but is preferably applied to the second heat-resistant resin layer.
 図2は、本発明に係るフレキシブル導体層張積層板の製造方法の一例を示すものである。図2(a)は、導体層11上に第1耐熱樹脂層12を設ける一方、第2耐熱樹脂層14上に、未硬化熱硬化性樹脂層13aを設けた状態を示す。次いで、これらをラミネートして積層体とすると共に、未硬化熱硬化性樹脂層13aを硬化して熱硬化性樹脂層13とすることにより、図2(b)に示すフレキシブル導体層張積層板10を得ることができる。 FIG. 2 shows an example of a method for producing a flexible conductor layered laminate according to the present invention. FIG. 2A shows a state in which the first heat-resistant resin layer 12 is provided on the conductor layer 11 while the uncured thermosetting resin layer 13 a is provided on the second heat-resistant resin layer 14. Next, these are laminated to form a laminate, and the uncured thermosetting resin layer 13a is cured to form the thermosetting resin layer 13, whereby the flexible conductor layer-clad laminate 10 shown in FIG. Can be obtained.
 また、フレキシブル導体層張積層板10は、所定のプロセスでCOF用フレキシブルプリント配線板とすることができる。すなわち、フレキシブル銅張積層板10を必要に応じて所定幅のテープ状とした後、スプロケットホールを形成し、例えば、フォトリソグラフィー工程により導体層11をパターニングして所定の回路を形成し、COF用フレキシブルプリント配線板とすることができる。 Further, the flexible conductor layer-clad laminate 10 can be a COF flexible printed wiring board by a predetermined process. That is, after forming the flexible copper-clad laminate 10 into a tape shape having a predetermined width as necessary, a sprocket hole is formed, for example, the conductor layer 11 is patterned by a photolithography process to form a predetermined circuit, and for COF It can be set as a flexible printed wiring board.
 かかるCOF用フレキシブルプリント配線板は、ICチップなどを実装する際に、ICチップの端子の沈み込みが防止されるものであり、また、スプリングバックによる実装時の搬送不良の問題も解消されるものである。 Such a flexible printed wiring board for COF prevents the sinking of the terminals of the IC chip when mounting the IC chip or the like, and also eliminates the problem of conveyance failure during mounting due to springback. It is.
 以下、具体的な実施例を示してさらに本発明を詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to specific examples.
 まず、実施例で第1耐熱樹脂として使用する下記に示すガラス転移温度Tgを有するポリアミドイミド樹脂1~3を合成した。 First, polyamideimide resins 1 to 3 having the glass transition temperature Tg shown below, which are used as the first heat-resistant resin in Examples, were synthesized.
 合成方法は、特開2007-204714号公報の実施例に開示されている方法を採用した。このとき、合成されるポリアミドイミド樹脂のTgは、モノマー成分の比率を変更することにより、300℃程度から400℃程度まで自由に設定可能である。なお、各ポリアミドイミド樹脂1~3は、固形分10%のN-メチルピロリドン溶液とした。 As the synthesis method, the method disclosed in the examples of JP-A-2007-204714 was employed. At this time, the Tg of the polyamideimide resin to be synthesized can be freely set from about 300 ° C. to about 400 ° C. by changing the ratio of the monomer components. Each polyamideimide resin 1 to 3 was an N-methylpyrrolidone solution having a solid content of 10%.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 ここで、各ポリアミドイミド樹脂のガラス転移温度Tgは、以下のように作成したポリアミドイミド樹脂フィルムを用いて以下のように行った。 Here, the glass transition temperature Tg of each polyamideimide resin was as follows using the polyamideimide resin film prepared as follows.
 まず、合成反応が終了したポリアミドイミド樹脂ワニスをアルミニウム板上に、バーコーダーを用いて、乾燥後の厚さが25μmとなるように塗布した。次いで、1次乾燥として、150℃の熱風乾燥機中で10分間乾燥し、2次乾燥として、350℃、窒素雰囲気中で30分間加熱した。次に、10%苛性ソーダ溶液を用いてアルミニウム板をエッチングにより除去し、水洗した後、乾燥してポリアミドイミド樹脂フィルムを得た。 First, the polyamide-imide resin varnish after completion of the synthesis reaction was applied on an aluminum plate using a bar coder so that the thickness after drying was 25 μm. Subsequently, as primary drying, it was dried in a hot air dryer at 150 ° C. for 10 minutes, and as secondary drying, it was heated at 350 ° C. in a nitrogen atmosphere for 30 minutes. Next, the aluminum plate was removed by etching using a 10% caustic soda solution, washed with water, and dried to obtain a polyamideimide resin film.
 ポリアミドイミド樹脂フィルムの動的粘弾性を測定し、tanδのピーク値をTgとした。 The dynamic viscoelasticity of the polyamideimide resin film was measured, and the peak value of tan δ was defined as Tg.
 (実施例1)
 市販の厚さ15μmの電解銅箔(NA-DFF:三井金属鉱業社製、商品名)の基材面(光沢を有する面)に、ガラス転移温度が395℃のポリアミドイミド樹脂層を形成するポリアミドイミド樹脂ワニスをバーコータを用いて1次乾燥後の厚さが6μmとなるように塗布した。塗布後、熱風乾燥中、150℃で10分間乾燥の1次乾燥を行い、次いで、窒素雰囲気下、350℃で30分間の2次乾燥を行い、銅箔とポリアミドイミド層とからなる銅張積層板を形成した。
Example 1
Polyamide that forms a polyamide-imide resin layer with a glass transition temperature of 395 ° C. on the base material surface (glossy surface) of a commercially available electrolytic copper foil with a thickness of 15 μm (NA-DFF: trade name, manufactured by Mitsui Kinzoku Mining Co., Ltd.) The imide resin varnish was applied using a bar coater so that the thickness after primary drying was 6 μm. After coating, during hot air drying, primary drying is performed at 150 ° C. for 10 minutes, followed by secondary drying at 350 ° C. for 30 minutes in a nitrogen atmosphere, and a copper-clad laminate composed of a copper foil and a polyamideimide layer A plate was formed.
 かかる銅張積層板の揮発成分残有量は0.5質量%であった。 The residual amount of volatile components in the copper clad laminate was 0.5% by mass.
 (揮発成分残有量測定)
  揮発成分残有量(%)=[(W-W)/(W-WCu)]×100
 
     W:加熱前の銅張積層板の質量
     W:真空下、350℃にて15分間加熱後の銅張積層板の質量
     W:真空下、350℃にて15分間加熱後の銅張積層板の銅箔を
        エッチング除去した後の質量
     WCu:銅箔の質量(W-W
(Measurement of residual amount of volatile components)
Volatile component residual amount (%) = [(W 0 −W 1 ) / (W 0 −W Cu )] × 100

W 0 : Mass of copper-clad laminate before heating W 1 : Mass of copper-clad laminate after heating at 350 ° C. for 15 minutes under vacuum W 2 : Copper-clad after heating for 15 minutes at 350 ° C. under vacuum Mass after etching away copper foil of laminate W Cu : Mass of copper foil (W 1 -W 2 )
 一方、市販の厚さ25μmのポリイミドフィルムであるユーピレックスS(宇部興産社製、商品名)の片面に、下記のように調製した熱硬化性樹脂組成物を塗布し、乾燥させ、未硬化熱硬化性樹脂層を有する積層板を得た。この時の塗布厚は、150℃で3分間加熱した後に6μmとなるようにした。 On the other hand, a thermosetting resin composition prepared as described below was applied to one side of a commercially available polyimide film with a thickness of 25 μm, Upilex S (trade name, manufactured by Ube Industries), dried, and uncured thermoset. A laminated board having a conductive resin layer was obtained. The coating thickness at this time was 6 μm after heating at 150 ° C. for 3 minutes.
 かかる積層板の揮発成分残有量は4.5質量%であった。 The remaining amount of volatile components in the laminated board was 4.5% by mass.
 (揮発成分残有量測定)
  揮発成分残有量(%)=[(W10-W11)/(W10-W)]×100
 
     W10:加熱前の積層板の質量(100mm×100mm)
     W11:大気圧下、200℃にて60分間加熱後の積層板の質量
     W:ユーピレックスのSの10点平均重量(100mm×100
        mm)
(Measurement of residual amount of volatile components)
Volatile component residual amount (%) = [(W 10 −W 11 ) / (W 10 −W f )] × 100

W 10 : mass of the laminate before heating (100 mm × 100 mm)
W 11 : Mass of laminate after heating for 60 minutes at 200 ° C. under atmospheric pressure W f : 10-point average weight of S of Iupilex (100 mm × 100
mm)
 熱硬化性樹脂組成物は、以下のように調製した。 The thermosetting resin composition was prepared as follows.
 o-クレゾールノボラック型エポキシ樹脂(東都化成社製YDCN-704)と、溶剤に可溶な芳香族ポリアミド樹脂ポリマーと、溶剤としてのシクロペンタノンとの混合ワニス(日本化薬社製BP3225-50P)を原料として用いた。 Mixed varnish of o-cresol novolac type epoxy resin (YDCN-704 manufactured by Toto Kasei Co., Ltd.), aromatic polyamide resin polymer soluble in solvent, and cyclopentanone as solvent (BP3225-50P manufactured by Nippon Kayaku Co., Ltd.) Was used as a raw material.
 この混合ワニスに、硬化剤としてのノボラック型フェノール樹脂(大日本インキ社製、VH-4170)及び硬化促進剤(四国化成工業社製、2E4MZ)を添加して下記配合の樹脂組成物を得、これにメチルエチルケトンを加えて樹脂固形分30質量%とすることで、熱硬化性樹脂組成物を調製した。 To this mixed varnish, a novolac type phenol resin (VH-4170, manufactured by Dainippon Ink Co., Ltd.) and a curing accelerator (2E4MZ, manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing agent were added to obtain a resin composition having the following composition, A thermosetting resin composition was prepared by adding methyl ethyl ketone thereto to a resin solid content of 30% by mass.
 (樹脂組成物配合)
 o-クレゾールノボラック型エポキシ樹脂  38質量部
 芳香族ポリアミド樹脂ポリマー       50質量部
 フェノール樹脂              18質量部
 硬化促進剤               0.1質量部
(Resin composition)
o-cresol novolac epoxy resin 38 parts by weight aromatic polyamide resin polymer 50 parts by weight phenol resin 18 parts by weight curing accelerator 0.1 part by weight
 上述した銅張積層板と、積層板とをポリアミドイミド層と未硬化熱硬化性樹脂層とが相対向するようにラミネート装置を用いてラミネートした。このときのラミネート条件は以下の通りである。なお、ラミネートの際にシワの発生や気泡の巻き込みはなかった。 The above-described copper-clad laminate and the laminate were laminated using a laminating apparatus so that the polyamideimide layer and the uncured thermosetting resin layer face each other. The laminating conditions at this time are as follows. There was no generation of wrinkles or entrainment of bubbles during lamination.
 ロール温度:   両者110℃
 ロール圧力:   0.5MPa
 搬送速度:    2.5m/分
Roll temperature: 110 ° C for both
Roll pressure: 0.5 MPa
Conveyance speed: 2.5m / min
 このようにラミネートした積層体を無塵紙を間に挟んで巻回し、大気中で加熱して未硬化熱硬化性樹脂層を熱硬化させ、本実施例のフレキシブル導体層張積層板を得た。無塵紙を挟んだのは、積層体同士が完全に密着するのを防止するためであり、また、熱硬化工程で熱硬化性樹脂の硬化と同時に残留溶剤の気散による除去を完全に行うためである。 The laminated body thus laminated was wound with dust-free paper in between and heated in the atmosphere to thermally cure the uncured thermosetting resin layer, thereby obtaining a flexible conductor layer-clad laminate of this example. The reason why the dust-free paper is sandwiched is to prevent the laminates from completely adhering to each other, and to completely remove the residual solvent simultaneously with the curing of the thermosetting resin in the thermosetting process. It is.
 熱硬化条件は、室温から4時間かけて190℃まで昇温し、190℃で4時間保持する条件とした。なお、保持時間終了後は電源を切って徐冷した。 The thermosetting conditions were such that the temperature was raised from room temperature to 190 ° C. over 4 hours and held at 190 ° C. for 4 hours. After the holding time, the power was turned off and the mixture was gradually cooled.
 (実施例2)
 実施例1のポリアミドイミド樹脂層の厚さを3μmとした以外は、実施例1と同様にしてフレキシブル銅張積層板を得た。
(Example 2)
A flexible copper-clad laminate was obtained in the same manner as in Example 1 except that the thickness of the polyamideimide resin layer in Example 1 was 3 μm.
 (実施例3)
 実施例1のポリアミドイミド樹脂層の厚さを1μmとした以外は、実施例1と同様にしてフレキシブル銅張積層板を得た。
(Example 3)
A flexible copper-clad laminate was obtained in the same manner as in Example 1 except that the thickness of the polyamideimide resin layer in Example 1 was 1 μm.
 (実施例4)
 実施例1のポリアミドイミド樹脂1に代えて、ポリアミドイミド樹脂2を用いた以外は、実施例1と同様にしてフレキシブル銅張積層板を得た。
Example 4
A flexible copper clad laminate was obtained in the same manner as in Example 1 except that the polyamideimide resin 2 was used in place of the polyamideimide resin 1 in Example 1.
 (実施例5)
 実施例1の未硬化熱硬化性樹脂の厚さを10μmとした以外は、実施例1と同様にしてフレキシブル銅張積層板を得た。
(Example 5)
A flexible copper clad laminate was obtained in the same manner as in Example 1 except that the thickness of the uncured thermosetting resin in Example 1 was 10 μm.
 (実施例6)
 実施例1の未硬化熱硬化性樹脂の厚さを4μmとした以外は、実施例1と同様にしてフレキシブル銅張積層板を得た。
(Example 6)
A flexible copper-clad laminate was obtained in the same manner as in Example 1 except that the thickness of the uncured thermosetting resin in Example 1 was 4 μm.
 (比較例1)
 実施例1のポリアミドイミド樹脂層の厚さを0.5μmとした以外は、実施例1と同様にしてフレキシブル銅張積層板を得た。
(Comparative Example 1)
A flexible copper-clad laminate was obtained in the same manner as in Example 1 except that the thickness of the polyamideimide resin layer in Example 1 was 0.5 μm.
 (比較例2)
 実施例1の未硬化熱硬化性樹脂の厚さを15μmとした以外は、実施例1と同様にしてフレキシブル銅張積層板を得た。
(Comparative Example 2)
A flexible copper-clad laminate was obtained in the same manner as in Example 1 except that the thickness of the uncured thermosetting resin in Example 1 was 15 μm.
 この比較例2では、積層板にカールが発生したため、ラミネートが困難であり、断続的にシワが発生した。 In Comparative Example 2, curling occurred on the laminated plate, so that lamination was difficult and wrinkles occurred intermittently.
 (比較例3)
 実施例1の未硬化熱硬化性樹脂の厚さを2μmとした以外は、実施例1と同様にしてフレキシブル銅張積層板を得た。
(Comparative Example 3)
A flexible copper clad laminate was obtained in the same manner as in Example 1 except that the thickness of the uncured thermosetting resin in Example 1 was 2 μm.
 この比較例3では、ラミネートの際に気泡の巻き込みが多数見られ、硬化工程で多くのボイドが観察された。 In Comparative Example 3, many bubbles were observed during lamination, and many voids were observed in the curing process.
 (比較例4)
 実施例1のポリアミドイミド樹脂1に代えて、ポリアミドイミド樹脂3を用いた以外は、実施例1と同様にしてフレキシブル銅張積層板を得た。
(Comparative Example 4)
A flexible copper clad laminate was obtained in the same manner as in Example 1 except that the polyamideimide resin 3 was used instead of the polyamideimide resin 1 in Example 1.
 (試験例)
 実施例1~6及び比較例1~4のフレキシブル銅張積層板に、所定の回路を形成した後、インナーリード部に錫めっきを行ったものを「端子沈み込み」評価用のテスト基板とした。
(Test example)
A test board for evaluation of “terminal sinking” was obtained by forming a predetermined circuit on the flexible copper-clad laminates of Examples 1 to 6 and Comparative Examples 1 to 4 and then performing tin plating on the inner lead portion. .
 「端子沈み込み」評価は、テスト基板に対して、金バンプを有するICを実装し、実装完了後の端子部分の断面観察を行い、沈み込み量が3μmを超えた場合を不良「×」、3μm以下の場合を良好「○」と判断することで行った。 The “terminal sinking” evaluation is performed by mounting an IC having a gold bump on the test substrate, observing a cross section of the terminal portion after the mounting is completed, and determining that the sinking amount exceeds 3 μm. The case of 3 μm or less was performed by judging as good “◯”.
 なお、実装は、フリップチップボンダーTFC-3000(芝浦メカトロニクス社製)を使用し、ボンディングヘッドツール温度を400℃、ステージ温度を100℃とし、接合圧力を1バンプ当たりの荷重が20gfとなるように設定して行った。 For mounting, a flip chip bonder TFC-3000 (manufactured by Shibaura Mechatronics) is used, the bonding head tool temperature is 400 ° C., the stage temperature is 100 ° C., and the bonding pressure is 20 gf per bump. Set and went.
 (まとめ)
 試験例の端子沈み込み評価の結果を表1に示す。
(Summary)
Table 1 shows the results of the terminal sinking evaluation of the test examples.
 また、各実施例及び各比較例におけるラミネートの際のシワの発生及び硬化後のボイドの発生について、良好を「○」、不良を「×」として評価し、結果を表1に併せて示す。 In addition, regarding the generation of wrinkles during lamination and the generation of voids after curing in each Example and each Comparative Example, the evaluation was good as “◯” and the defect as “X”, and the results are also shown in Table 1.
 この結果、第1耐熱樹脂層の厚さは1μmの実施例3でも端子沈み込みが防止されることがわかった。また、第1耐熱樹脂のTgは、325℃の実施例4では端子沈み込みが防止されるが、Tgが308℃の比較例4では端子沈み込みが大きくなることがわかった。さらに検証の結果、Tgが320℃以上の耐熱樹脂を用いればよいことがわかった。 As a result, it was found that the sinking of the terminal was prevented even in Example 3 where the thickness of the first heat-resistant resin layer was 1 μm. Moreover, although Tg of 1st heat resistant resin prevented terminal sinking in Example 4 of 325 degreeC, it turned out that terminal sinking becomes large in the comparative example 4 whose Tg is 308 degreeC. Further, as a result of verification, it was found that a heat resistant resin having a Tg of 320 ° C. or higher may be used.
 また、未硬化熱硬化性樹脂層の厚さが0.5μmと薄い比較例1では端子沈み込みが大きく、厚さが2μmの比較例3では硬化後にボイドが発止してしまうことがわかった。また、未硬化熱硬化性樹脂層の厚さが10μmの実施例5ではラミネートが良好に行えるが、厚さを15μmとした比較例2では、ラミネートの際にシワが断続的に発生してしまうことがわかった。 Further, it was found that the terminal sinking was large in Comparative Example 1 where the thickness of the uncured thermosetting resin layer was as thin as 0.5 μm, and the void was stopped after curing in Comparative Example 3 where the thickness was 2 μm. . Further, in Example 5 in which the thickness of the uncured thermosetting resin layer is 10 μm, lamination can be performed satisfactorily, but in Comparative Example 2 in which the thickness is 15 μm, wrinkles are intermittently generated during lamination. I understood it.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  10  フレキシブル導体層張積層板
  11  導体層
  12  第1耐熱樹脂層
  13  熱硬化性樹脂層
  14  第2耐熱樹脂層
DESCRIPTION OF SYMBOLS 10 Flexible conductor layer clad laminated board 11 Conductor layer 12 1st heat resistant resin layer 13 Thermosetting resin layer 14 2nd heat resistant resin layer

Claims (13)

  1. 導体層の一方面に、ガラス転移温度が320℃以上の耐熱性樹脂からなる厚さ1~10μmの第1耐熱樹脂層と、熱硬化性樹脂組成物からなる厚さ4~10μmの熱硬化性樹脂層と、ガラス転移温度が300℃以上の耐熱性樹脂からなる厚さ10~35μmの第2耐熱性樹脂層とを順次具備することを特徴とするフレキシブル導体層張積層板。 On one surface of the conductor layer, a first heat-resistant resin layer having a thickness of 1 to 10 μm made of a heat-resistant resin having a glass transition temperature of 320 ° C. or higher, and a thermosetting resin having a thickness of 4 to 10 μm made of a thermosetting resin composition. A flexible conductor layer-clad laminate comprising a resin layer and a second heat-resistant resin layer having a thickness of 10 to 35 μm made of a heat-resistant resin having a glass transition temperature of 300 ° C. or higher.
  2. 請求項1に記載のフレキシブル導体層張積層板において、前記熱硬化性樹脂組成物が、副生物を放出しない熱硬化反応による熱硬化性樹脂を含有することを特徴とするフレキシブル導体層張積層板。 The flexible conductor layer-clad laminate according to claim 1, wherein the thermosetting resin composition contains a thermosetting resin by a thermosetting reaction that does not release by-products. .
  3. 請求項1に記載のフレキシブル導体層張積層板において、前記熱硬化性樹脂組成物が、芳香族ポリアミド樹脂ポリマー及びエポキシ樹脂を含むことを特徴とするフレキシブル導体層張積層板。 The flexible conductor layer-clad laminate according to claim 1, wherein the thermosetting resin composition includes an aromatic polyamide resin polymer and an epoxy resin.
  4. 請求項1に記載のフレキシブル導体層張積層板において、前記第1耐熱樹脂層と、前記熱硬化性樹脂層と、前記第2耐熱樹脂層とからなる絶縁層の厚さが30~40μmであることを特徴とするフレキシブル導体層張積層板。 2. The flexible conductor layer-clad laminate according to claim 1, wherein an insulating layer composed of the first heat-resistant resin layer, the thermosetting resin layer, and the second heat-resistant resin layer has a thickness of 30 to 40 μm. A flexible conductor layer-clad laminate characterized by the above.
  5. 請求項1に記載のフレキシブル導体層張積層板において、前記導体層が銅箔からなることを特徴とするフレキシブル導体層張積層板。 The flexible conductor layer-clad laminate according to claim 1, wherein the conductor layer is made of copper foil.
  6. 請求項1に記載のフレキシブル導体層張積層板において、前記導体層と前記第1耐熱樹脂層との積層体と、前記第2耐熱樹脂層とを、前記熱硬化性樹脂層を介してラミネートしたものであることを特徴とするフレキシブル導体層張積層板。 The flexible conductor layer-clad laminate according to claim 1, wherein a laminate of the conductor layer and the first heat-resistant resin layer, and the second heat-resistant resin layer are laminated via the thermosetting resin layer. A flexible conductive layer-clad laminate, characterized by being a thing.
  7. 請求項1~6の何れか1項に記載のフレキシブル導体層張積層板を用いて形成され、前記導体層をパターニングして形成されると共に半導体チップが実装される配線パターンを具備することを特徴とするCOF用フレキシブルプリント配線板。 A wiring pattern formed by using the flexible conductive layer-clad laminate according to any one of claims 1 to 6, formed by patterning the conductive layer, and mounted with a semiconductor chip. COF flexible printed wiring board.
  8. 導体層の一方面に、ガラス転移温度が320℃以上の耐熱性樹脂からなる厚さ1~10μmの第1耐熱樹脂層と、熱硬化性樹脂組成物からなる厚さ4~10μmの熱硬化性樹脂層と、ガラス転移温度が300℃以上の耐熱性樹脂からなる厚さ10~35μmの第2耐熱性樹脂層とを順次具備するフレキシブル導体層張積層板の製造方法であって、前記導体層となる導体箔の一方面に、ガラス転移温度が300℃以上の耐熱性樹脂前駆体塗布液を塗布して熱処理することにより厚さ1~10μmの第1耐熱樹脂層を形成して積層体とする工程と、前記第2耐熱樹脂層となる耐熱性樹脂フィルムを準備する工程と、前記積層体及び前記耐熱性樹脂フィルムの何れか一方に前記熱硬化性樹脂層となる熱硬化性樹脂組成物を塗布する工程と、その後、前記積層体と前記耐熱性樹脂フィルムとを前記熱硬化性樹脂組成物を介してラミネートすることによりフレキシブル導体層張積層板とすることを特徴とするフレキシブル導体層張積層板の製造方法。 On one surface of the conductor layer, a first heat-resistant resin layer having a thickness of 1 to 10 μm made of a heat-resistant resin having a glass transition temperature of 320 ° C. or higher, and a thermosetting resin having a thickness of 4 to 10 μm made of a thermosetting resin composition. A method for producing a flexible conductor-layer-clad laminate comprising a resin layer and a second heat-resistant resin layer having a thickness of 10 to 35 μm made of a heat-resistant resin having a glass transition temperature of 300 ° C. or higher. A first heat-resistant resin layer having a thickness of 1 to 10 μm is formed on one surface of the conductor foil by applying a heat-resistant resin precursor coating solution having a glass transition temperature of 300 ° C. or higher and heat-treating the laminate. A thermosetting resin composition that becomes the thermosetting resin layer in any one of the laminate and the heat resistant resin film, a step of preparing a heat resistant resin film that becomes the second heat resistant resin layer, And the process before applying Method of manufacturing a flexible conductive layer clad laminate characterized by a laminate and the heat-resistant resin film and the flexible conductor layer clad laminate by laminating through the thermosetting resin composition.
  9. 請求項8に記載のフレキシブル導体層張積層板の製造方法において、前記熱硬化性樹脂層が、熱硬化反応の際に副生物を放出しないものであることを特徴とするフレキシブル導体層張積層板の製造方法。 9. The method of manufacturing a flexible conductor layered laminate according to claim 8, wherein the thermosetting resin layer does not release a by-product during a thermosetting reaction. Manufacturing method.
  10. 請求項8に記載のフレキシブル導体層張積層板の製造方法において、前記熱硬化性樹脂層が芳香族ポリアミド樹脂ポリマー及びエポキシ樹脂を含む熱硬化性樹脂からなることを特徴とするフレキシブル導体層張積層板の製造方法。 The flexible conductor layer-clad laminate according to claim 8, wherein the thermosetting resin layer is made of a thermosetting resin containing an aromatic polyamide resin polymer and an epoxy resin. A manufacturing method of a board.
  11. 請求項8に記載のフレキシブル導体層張積層板の製造方法において、前記第1耐熱樹脂層と、前記熱硬化性樹脂層と、前記第2耐熱樹脂層とからなる絶縁層の厚さが30~40μmであるフレキシブル導体層張積層板を製造することを特徴とするフレキシブル導体層張積層板の製造方法。 9. The method of manufacturing a flexible conductor layer-clad laminate according to claim 8, wherein an insulating layer comprising the first heat-resistant resin layer, the thermosetting resin layer, and the second heat-resistant resin layer has a thickness of 30 to 30. A method for producing a flexible conductor layer-clad laminate, comprising producing a flexible conductor layer-clad laminate having a thickness of 40 μm.
  12. 請求項8に記載のフレキシブル導体層張積層板の製造方法において、前記導体層として銅箔又はキャリア付き銅箔を用いることを特徴とするフレキシブル導体層張積層板の製造方法。 The method for producing a flexible conductor layer-clad laminate according to claim 8, wherein a copper foil or a copper foil with a carrier is used as the conductor layer.
  13. 請求項8~12の何れか1項に記載のフレキシブル導体層張積層板の製造方法により得たフレキシブル導体層張積層板からCOF用フレキシブルプリント配線板を製造することを特徴とするCOF用フレキシブルプリント配線板の製造方法。 A flexible printed wiring board for COF, characterized in that a flexible printed wiring board for COF is produced from the flexible conductor layer-clad laminate obtained by the method for producing a flexible conductor layer-clad laminate according to any one of claims 8 to 12. A method for manufacturing a wiring board.
PCT/JP2009/063816 2008-10-07 2009-08-04 Flexible conductor-clad laminate, flexible printed wiring board for cof, and methods for manufacturing same WO2010041510A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-261108 2008-10-07
JP2008261108 2008-10-07

Publications (1)

Publication Number Publication Date
WO2010041510A1 true WO2010041510A1 (en) 2010-04-15

Family

ID=42100466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063816 WO2010041510A1 (en) 2008-10-07 2009-08-04 Flexible conductor-clad laminate, flexible printed wiring board for cof, and methods for manufacturing same

Country Status (2)

Country Link
TW (1) TW201016095A (en)
WO (1) WO2010041510A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461293B (en) * 2011-11-29 2014-11-21 Microcosm Technology Co Ltd Composite laminated board and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013135A (en) * 2004-06-25 2006-01-12 Furukawa Electric Co Ltd:The Flexible circuit board and laminated body therefor
JP2007115722A (en) * 2005-10-17 2007-05-10 Tdk Corp Flexible wiring board and electronic component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013135A (en) * 2004-06-25 2006-01-12 Furukawa Electric Co Ltd:The Flexible circuit board and laminated body therefor
JP2007115722A (en) * 2005-10-17 2007-05-10 Tdk Corp Flexible wiring board and electronic component

Also Published As

Publication number Publication date
TW201016095A (en) 2010-04-16

Similar Documents

Publication Publication Date Title
JP4957552B2 (en) Manufacturing method of prepreg with carrier for printed wiring board, prepreg with carrier for printed wiring board, manufacturing method of thin double-sided board for printed wiring board, thin double-sided board for printed wiring board, and manufacturing method of multilayer printed wiring board
JP5651941B2 (en) Epoxy resin composition
TWI528873B (en) Primer layer for plating process, laminated plate for wiring board and fabricating method thereof, multilayer wiring board and fabricating method thereof
JP6156020B2 (en) Resin composition
JP6623747B2 (en) Manufacturing method of wiring board
TWI808062B (en) Interlayer insulating film and manufacturing method thereof
JP7111233B2 (en) resin composition
JP2006176764A (en) Adhesive composition for electronic equipment, adhesive sheet for electronic equipment, and electronic part and electronic equipment using the same
TWI650235B (en) A release film of a polyimide film with an adhesive layer, a laminate provided with a release film of a polyimide film with an adhesive layer, a laminate, and a release film of a polyimide film with an adhesive layer Layer or multilayer wiring board, and manufacturing method of multilayer wiring board
JP5162379B2 (en) Polyamic acid and non-thermoplastic polyimide resin
JP5672694B2 (en) Resin sheet, printed wiring board, and semiconductor device
JP2009007531A (en) Resin/filler composite material and printed wiring board using the same
JP2007116134A (en) Tape for semiconductor, adhesive tape for semiconductor, substrate for connecting semiconductor integrated circuits, and semiconductor device
JP2008277384A (en) Adhesive sheet for build-up type multilayer board, and manufacturing method for circuit board using the same
WO2010041510A1 (en) Flexible conductor-clad laminate, flexible printed wiring board for cof, and methods for manufacturing same
JP5776134B2 (en) Resin composition
JP6756162B2 (en) Manufacturing method of release metal foil with insulating layer for conformal mask, laminated board, multi-layer wiring board and multi-layer wiring board
JP2014185330A (en) Resin composition, primer layer for plating process, primer layer for plating process supported by substrate, cured primer layer for plating process, laminate for wiring board, method of producing laminate for wiring board, multilayer wiring board, and method of producing multilayer wiring board
JP2018101703A (en) Method for manufacturing printed wiring board
JP2017183376A (en) Flexible substrate, flexible circuit board, and method of manufacturing support-less flexible circuit board
JP2010221526A (en) Metal clad laminated plate, printed circuit board, and semiconductor device
JP6191659B2 (en) Resin composition
JP5556986B2 (en) Multi-wire wiring board adhesive, multi-wire wiring board using this adhesive, and manufacturing method thereof
TWI618630B (en) Laminated body, laminated board, printed wiring board, manufacturing method of laminated body, and manufacturing method of laminated board
JP6295708B2 (en) Resin composition, primer layer for plating process, primer layer for plating process with support, primer layer for post-curing plating process, laminated board for wiring board, method for producing laminated board for wiring board, multilayer wiring board, and multilayer wiring board Manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09819046

Country of ref document: EP

Kind code of ref document: A1