WO2010038845A1 - 顕微鏡システム - Google Patents

顕微鏡システム Download PDF

Info

Publication number
WO2010038845A1
WO2010038845A1 PCT/JP2009/067206 JP2009067206W WO2010038845A1 WO 2010038845 A1 WO2010038845 A1 WO 2010038845A1 JP 2009067206 W JP2009067206 W JP 2009067206W WO 2010038845 A1 WO2010038845 A1 WO 2010038845A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnification
zoom
objective lens
switching
electric
Prior art date
Application number
PCT/JP2009/067206
Other languages
English (en)
French (fr)
Inventor
隆 若松
昭俊 鈴木
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2010531913A priority Critical patent/JP5126367B2/ja
Priority to EP09817877.5A priority patent/EP2341384B1/en
Publication of WO2010038845A1 publication Critical patent/WO2010038845A1/ja
Priority to US13/077,162 priority patent/US8379303B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/248Base structure objective (or ocular) turrets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification

Definitions

  • the present invention relates to a microscope system, and more particularly to a microscope system that can improve operability.
  • the objective lens inserted into the observation optical path is switched using a lens revolver equipped with a plurality of objective lenses having different magnifications, and the magnification is intermittently rotated by simply rotating the lens revolver. Can be changed.
  • the magnification can be changed linearly within a movable range of the zoom lens by continuously moving the zoom lens in the zoom ring.
  • the operability of the microscope can be improved by electrically driving the rotation of the lens revolver or the movement of the zoom lens.
  • a stereomicroscope that observes a biological sample or the like as it is often uses a configuration in which a method of switching an objective lens and a method using a zoom lens are used together, and the magnification can be changed linearly. At the same time, the variable range of magnification can be widened.
  • Patent Document 1 discloses a microscope system including an objective switching mechanism that electrically switches an objective lens and a zoom mechanism that moves a zoom lens.
  • the magnification cannot be changed continuously. Therefore, in such a case, the user himself / herself must operate the lens revolver to perform an operation of switching to an objective lens having a high magnification. Similarly, when the lower limit of the zoom range of the zoom lens is reached, the user must operate the lens revolver to switch to an objective lens with a low magnification. It was a hassle.
  • the observation field of view changes greatly, so that the observation position of the sample is easily lost. That is, when changing the magnification with the zoom lens, the magnification is changed linearly, so that the observation position of the sample is not lost when changing the magnification, whereas when changing the magnification with the objective lens, Since the magnification is greatly changed, it is easy to lose sight of the observation position of the sample. Therefore, it is difficult to handle such a microscope smoothly unless it is an expert who is familiar with the operation.
  • the present invention has been made in view of such a situation, and is intended to improve operability.
  • the microscope system of the present invention is a microscope system for magnifying and observing a sample, a zoom instruction means for changing the magnification of the sample, and a magnification for enlarging the sample in accordance with an instruction from the zoom instruction means.
  • the zoom means that continuously changes within the range in which the magnification can be changed, and a plurality of objective lenses having different magnifications, and the objective lens arranged in the observation optical path is switched to intermittently enlarge the magnification of the sample.
  • the overall magnification calculation means for calculating the overall magnification for observing the sample,
  • the magnification after the change according to the operation is a range in which the zoom unit can change the magnification.
  • Switching control means for controlling the switching means so as to switch the objective lens disposed in the observation optical path, and switching the objective lens to the total magnification after switching of the objective lens.
  • Zoom magnification determining means for determining the magnification (target magnification) of the zoom means necessary for maintaining the previous overall magnification, and the target magnification determined by the zoom magnification determining means.
  • the zoom control means for controlling the zoom means is provided.
  • the magnification for magnifying the sample is continuously changed within a predetermined magnification changeable range by the zoom means, and the magnification is different.
  • the switching means having a plurality of objective lenses the objective lens arranged in the observation optical path is switched, and the magnification for enlarging the sample is intermittently changed.
  • the zoom instruction means performs an operation to change the magnification
  • the switching means is controlled so as to switch the objective lens arranged in the observation optical path when the magnification after the change according to the operation is outside the magnification changeable range of the zoom means. Then, the magnification of the zoom unit (target magnification) necessary to maintain the total magnification after switching of the objective lens at the total magnification before switching of the objective lens is determined, so that the magnification of the zoom unit becomes the target magnification.
  • the zoom means is controlled.
  • the zoom operability can be improved.
  • FIG. 10 is a block diagram which shows the structural example of one Embodiment of the microscope system to which this invention is applied. It is a figure which shows the remote commander. It is a figure explaining the process which maintains the total magnification of the microscope. 10 is a flowchart for explaining processing for maintaining the overall magnification of the microscope 12; It is a flowchart explaining a zoom-up process. It is a flowchart explaining a zoom-down process. It is a flowchart explaining a revolver normal rotation process. It is a flowchart explaining a revolver reverse rotation process.
  • FIG. 1 is a block diagram showing a configuration example of an embodiment of a microscope system to which the present invention is applied.
  • a microscope system 11 includes a microscope 12 for observing a sample at a predetermined magnification, a control box 13 that controls each part of the microscope 12, a remote commander 14 that inputs operations on the microscope 12 by a user to the control box 13, An imaging unit 15 that images a sample through the microscope 12 and a display unit 16 that displays an image captured by the imaging unit 15 are configured.
  • the microscope 12 includes an electric zoom 21, a sensor 22, a motor drive circuit 23, an electric revolver 24, a stop sensor 25, an address sensor 26, and a motor drive circuit 27.
  • the electric zoom 21 has a plurality of zoom lenses and a motor (not shown) for driving these zoom lenses, and the position of the zoom lens is changed according to the driving of the motor, so that the microscope 12 Change the magnification to linear.
  • the sensor 22 supplies a signal indicating the position of the zoom lens to the electric zoom magnification detection unit 31 of the control box 13.
  • the sensor 22 is composed of a potentiometer or the like, and the resistance value of the potentiometer changes according to the movement of the zoom lens included in the electric zoom 21.
  • a signal indicating the position of the lens is output.
  • the motor drive circuit 23 supplies power for moving the zoom lens of the electric zoom 21 to the motor of the electric zoom 21 in accordance with a control signal supplied from the electric zoom control unit 32 of the control box 13 as will be described later. .
  • the motor moves the zoom lens according to the electric power supplied from the motor drive circuit 23, and the zoom lens is arranged at a position where the magnification is in accordance with the control of the electric zoom control unit 32.
  • the electric revolver 24 includes a revolver on which a plurality of objective lenses (not shown) having different magnifications are mounted, and a motor that drives the revolver to rotate. The lenses are switched, and an objective lens having a desired magnification is inserted into the observation optical path.
  • the electric revolver 24 is set with an address for identifying the mounting position of each objective lens.
  • the electric revolver 24 includes a click stop mechanism for stopping the objective lens on the optical axis in the observation optical path.
  • the click stop mechanism holds the electric revolver 24 with a constant force and stops the rotation.
  • the objective lens is positioned on the optical axis.
  • the stop sensor 25 determines whether the rotation of the electric revolver 24 is stopped in a state where the objective lens is disposed on the optical axis, that is, the click stop mechanism holds the electric revolver 24 and stops the rotation. Is detected on the optical axis. Then, the stop sensor 25 supplies a signal indicating whether or not the rotation of the electric revolver 24 is stopped to the electric revolver position detection unit 33 of the control box 13.
  • the address sensor 26 is configured to include, for example, a Hall element and detects an address that identifies a mounting location where an objective lens disposed on the optical axis is mounted.
  • the motor drive circuit 27 supplies electric power for rotating the revolver included in the electric revolver 24 to the motor included in the electric revolver 24 in accordance with a control signal supplied from the electric revolver control unit 34 of the control box 13 as will be described later. To do.
  • the motor rotates the revolver according to the electric power supplied from the motor drive circuit 27, and the objective lens is switched according to the rotation direction.
  • the control box 13 includes an electric zoom magnification detector 31, an electric zoom controller 32, an electric revolver position detector 33, an electric revolver controller 34, and a controller 35.
  • a signal indicating the position of the zoom lens is supplied from the sensor 22 to the electric zoom magnification detection unit 31, and the electric zoom magnification detection unit 31 obtains the magnification of the electric zoom 21 based on the position of the zoom lens.
  • a signal indicating the magnification is supplied to the control unit 35.
  • the electric zoom magnification detection unit 31 stores in advance a table in which a signal (voltage value) indicating the position of the zoom lens and the magnification of the electric zoom 21 are associated with each other. Referring to the table, the magnification of the electric zoom 21 is obtained.
  • the electric zoom control unit 32 is supplied with a signal instructing to increase or decrease the magnification of the electric zoom 21 from the control unit 35, and the electric zoom control unit 32 controls to move the zoom lens of the electric zoom 21 according to the signal.
  • a signal is supplied to the motor drive circuit 23.
  • the electric zoom control unit 32 is supplied with a signal indicating the target magnification from the control unit 35 as described later, and the electric zoom control unit 32 determines the movement amount of the zoom lens of the electric zoom 21 based on the signal. Then, a control signal for moving the zoom lens by the amount of movement is supplied to the motor drive circuit 23. Thereby, the motor drive circuit 23 supplies the electric power according to the control signal from the electric zoom control unit 32 to the motor of the electric zoom 21 and arranges the zoom lens at a position where the target magnification is achieved.
  • the electric revolver position detector 33 is supplied with a signal indicating whether or not the rotation of the electric revolver 24 is stopped from the stop sensor 25, and the electric revolver position detector 33 receives the signal from the stop sensor 25 as an electric revolver 24.
  • the address of the electric revolver 24 detected by the address sensor 26 is read at a timing when the rotation of the electric revolver 24 is changed to a state where the rotation of the electric revolver 24 is stopped. That is, when the electric revolver position detection unit 33 rotates the electric revolver 24 according to the user's operation and switches the objective lens, the rotation of the electric revolver 24 stops and the objective lens is arranged on the optical axis.
  • the address of the electric revolver 24 that identifies the mounting location where the objective lens is mounted is detected via the address sensor 26. Then, the electric revolver position detection unit 33 supplies a signal indicating an address for identifying the mounting position of the objective lens on the optical axis to the control unit 35.
  • the electric revolver control unit 34 is supplied with a signal for instructing normal rotation or reverse rotation of the revolver of the electric revolver 24 from the control unit 35, and the electric revolver control unit 34 rotates the revolver of the electric revolver 24 in the normal direction according to the signal.
  • a control signal for reverse rotation is supplied to the motor drive circuit 27.
  • the control unit 35 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the CPU loads a program stored in the ROM into the RAM. By executing, each part of the control box 13 is controlled.
  • control unit 35 is supplied with a signal indicating the magnification of the electric zoom 21 from the electric zoom magnification detection unit 31 and a signal indicating an address for identifying the mounting position of the objective lens on the optical axis. Supplied from the electric revolver position detector 33, the controller 35 calculates the total magnification at which the sample is magnified in the microscope 12 from these signals.
  • the RAM of the control unit 35 stores the address of the mounting location and the magnification of the objective lens in association with each other, and the control unit 35 corresponds to the address indicated by the signal from the electric revolver position detection unit 33.
  • a value obtained by multiplying the magnification of the attached objective lens and the magnification of the electric zoom 21 is obtained as a total magnification.
  • the control unit 35 is supplied with an operation signal from the remote commander 14 according to the user's operation on the remote commander 14, and the control unit 35 instructs to increase or decrease the magnification of the electric zoom 21 according to the operation signal.
  • the signal is supplied to the electric zoom control unit 32.
  • the control unit 35 supplies the electric revolver control unit 34 with a signal instructing the normal rotation or reverse rotation of the revolver of the electric revolver 24 in accordance with the operation signal from the remote commander 14.
  • FIG. 2 shows a perspective view of the remote commander 14, and a bottom view of the remote commander 14 is shown below the perspective view.
  • a zoom up switch 41, a zoom down switch 42, a forward rotation switch 43, a reverse rotation switch 44, and a function changeover switch 45 are provided on the front of the remote commander 14.
  • Magnification setting switches 46 to 48 are provided on the bottom surface.
  • the zoom up switch 41 or the zoom down switch 42 is operated when the magnification of the electric zoom 21 is changed.
  • the remote commander 14 supplies an operation signal indicating that the zoom-up switch 41 has been operated to the control unit 35.
  • a signal instructing an increase in magnification is supplied to the electric zoom control unit 32.
  • the zoom lens of the electric zoom 21 moves in the direction of increasing the magnification, and the overall magnification of the microscope 12 is increased.
  • the remote commander 14 supplies an operation signal indicating that the zoom down switch 42 has been operated to the control unit 35. Is supplied to the electric zoom control unit 32. As a result, the zoom lens of the electric zoom 21 moves in the direction of decreasing the magnification, and the overall magnification of the microscope 12 is decreased.
  • the forward rotation switch 43 or the reverse rotation switch 44 is operated when the objective lens of the electric revolver 24 is switched.
  • the remote commander 14 supplies an operation signal indicating that the forward rotation switch 43 has been operated to the control unit 35, and the control unit 35 receives the electric revolver 24.
  • a signal instructing rotation of the revolver in the positive direction is supplied to the electric revolver control unit 34.
  • the revolver of the electric revolver 24 rotates in the positive direction, and the objective lens is switched.
  • the remote commander 14 supplies an operation signal indicating that the reverse rotation switch 44 has been operated to the control unit 35, and the control unit 35 receives the electric revolver 24.
  • a signal for instructing the revolver to rotate in the reverse direction is supplied to the electric revolver controller 34. Thereby, the revolver of the electric revolver 24 rotates in the reverse direction, and the objective lens is switched.
  • the function selector switch 45 is operated when switching between enabling and disabling the function for maintaining the overall magnification of the microscope 12. For example, when the user operates the function changeover switch 45 to enable the function of maintaining the total magnification of the microscope 12, the total magnification of the microscope 12 as described later with reference to FIGS. 4 to 8 is maintained. Processing is executed.
  • the magnification setting switches 46 to 48 are operated when setting the magnification of the objective lens attached to the electric revolver 24.
  • magnification setting switch 46 is used to set the magnification of the objective lens attached to the attachment location identified by the address 1.
  • the magnification setting switch 47 is used for setting the magnification of the objective lens mounted at the mounting location identified by the address 2
  • magnification setting switch 48 is the objective lens mounted at the mounting location identified by the address 3. This is used to set the magnification.
  • the magnification setting switches 46 to 48 are constituted by rotary switches, and the user sets the magnification setting switches 46 to 48 according to the magnification of the objective lens attached to the attachment location identified by the addresses 1 to 3 of the electric revolver 24. Set each position.
  • the control unit 35 reads the positions of the magnification setting switches 46 to 48, and obtains the address corresponding to the magnification setting switches 46 to 48 and the magnification corresponding to the position read from each. Store in association with each other.
  • the address of the mounting location and the magnification of the objective lens are stored in the control unit 35 in association with each other.
  • the control unit 35 stores the magnification of the objective lens stored in association with the address 1
  • the total magnification of the microscope 12 is calculated by multiplying the magnification of the electric zoom 21.
  • the control unit 35 can maintain the total magnification before switching as the total magnification after switching.
  • the magnification of the electric zoom 21 (which has the same magnification) is calculated as the target magnification of the electric zoom 21.
  • the electric zoom control unit 32 When the control unit 35 supplies a signal indicating the target magnification of the electric zoom 21 to the electric zoom control unit 32, the electric zoom control unit 32 obtains the movement amount of the zoom lens of the electric zoom 21 based on the signal. Then, a control signal for moving the zoom lens by the movement amount is supplied to the motor drive circuit 23. Thereby, the magnification of the electric zoom 21 is changed to the target magnification, and the total magnification after switching of the objective lens can maintain the total magnification before switching of the objective lens.
  • the user operates the zoom up switch 41 or the zoom down switch 42 of the remote commander 14 to change the magnification of the electric zoom 21 linearly, and the magnification of the electric zoom 21 is the upper limit value or the lower limit value. Until the objective lens is automatically switched and the overall magnification of the microscope 12 is maintained before and after the switching of the objective lens.
  • the control unit 35 can rotate the electric revolver 24 to further increase the overall magnification of the microscope 12
  • the control unit 35 rotates the revolver of the electric revolver 24 via the electric revolver control unit 34 and the motor drive circuit 27.
  • an objective lens with a high magnification is inserted into the observation optical path.
  • the control part 35 is based on the total magnification before switching an objective lens, and the magnification of the objective lens after switching,
  • the electric zoom 21 in which the total magnification after switching can maintain the total magnification before switching.
  • the magnification of the electric zoom 21 is changed via the electric zoom control unit 32 and the motor drive circuit 23, and the total magnification after switching of the objective lens is maintained at the total magnification before switching of the objective lens.
  • the control unit 35 can rotate the electric revolver 24 to further reduce the overall magnification of the microscope 12, the control unit 35 rotates the revolver of the electric revolver 24 via the electric revolver control unit 34 and the motor drive circuit 27.
  • an objective lens having a low magnification is inserted into the observation optical path, and the magnification of the electric zoom 21 is changed so that the total magnification after switching of the objective lens is maintained at the total magnification before switching of the objective lens.
  • the magnification of the plurality of objective lenses mounted on the electric revolver 24 is stored in the control unit 35, and the control unit 35 uses the objective lens currently inserted in the observation optical path. Further, based on whether an objective lens having a high magnification or an objective lens having a low magnification is mounted on the electric revolver 24, it is determined whether the objective lens can be switched to increase or decrease the total magnification of the microscope 12. To do.
  • control unit 35 stores the positional relationship of the mounting location of the electric revolver 24.
  • the control unit 35 In accordance with the direction in which the desired objective lens is mounted, a signal for instructing normal rotation or reverse rotation of the revolver of the electric revolver 24 is supplied to the electric revolver control unit 34.
  • FIG. 3 shows the relationship between the magnification of the electric zoom 21 and the magnification of the objective lens, and the overall magnification of the microscope 12.
  • the electric zoom 21 can change the magnification linearly every 0.1 times from 0.7 times to 15 times.
  • the motorized revolver 24 is equipped with three objective lenses, a 0.5x objective lens is attached to address 1, a 1x objective lens is attached to address 2, and a 2.5x objective lens is attached to address 3. Has been.
  • the control unit 35 calculates and stores the current overall magnification of the microscope 12 by calculating the following equation (1).
  • Total magnification Electric zoom magnification x Objective lens magnification (1)
  • the control unit 35 sets the current total magnification of the microscope 12 to 0.35. Calculate and store the double. That is, as shown in FIG. 3, the current overall magnification is 0.35 times shown in the cell C1 where the magnification of the electric zoom 21 is 0.7 times and the magnification of the objective lens is 0.5 times.
  • the control unit 35 sets the magnification of the electric zoom 21 to 1 via the electric zoom control unit 32 and the motor drive circuit 23. Increase the stage. Thereby, the magnification of the electric zoom 21 is 0.8 times, and the total magnification of the microscope 12 is 0.4 times. As described above, when the process of increasing the magnification of the electric zoom 21 one step at a time is repeated and the magnification of the electric zoom 21 reaches 15 times the upper limit, the total magnification of the microscope 12 is 7.5 as shown in the cell C2. Doubled.
  • the magnification of the electric zoom 21 is the upper limit value, so that the control unit 35 moves the objective lens on the optical axis to 0.5 to increase the overall magnification of the microscope 12.
  • Control is performed to switch from a double objective lens (address 1) to a single objective lens (address 2).
  • the total magnification after the switching is shown in a cell C3 where the magnification of the electric zoom 21 is 15 times and the magnification of the objective lens is 1 as shown in FIG. Will be 15 times.
  • control unit 35 changes the magnification of the electric zoom 21 to 7.5 in order to maintain 7.5 times that is the total magnification before switching of the objective lens in the 1 ⁇ objective lens (address 2). Therefore, as shown in FIG. 3, the total magnification after the switching is 7.5 times shown in the grid C4 where the magnification of the electric zoom 21 is 7.5 times and the magnification of the objective lens is 1 time.
  • the magnification of the electric zoom 21 is not the lower limit value, so that the control unit 35 includes the electric zoom control unit.
  • the magnification of the electric zoom 21 is decreased by one step through the motor 32 and the motor drive circuit 23. Thereby, the magnification of the electric zoom 21 is 7.4 times, and the total magnification of the microscope 12 is 7.4 times.
  • the process of decreasing the magnification of the electric zoom 21 one step at a time is repeated, and when the magnification of the electric zoom 21 becomes 0.7 times the lower limit, the total magnification of the microscope 12 is 0.7 as shown in the cell C5. Doubled.
  • the magnification of the electric zoom 21 is the lower limit value, so that the control unit 35 moves the objective lens on the optical axis to 1 to reduce the total magnification of the microscope 12.
  • Control is performed to switch from a double objective lens (address 2) to a 0.5 objective lens (address 1).
  • the total magnification after switching is shown in a cell C1 where the magnification of the electric zoom 21 is 0.7 times and the magnification of the objective lens is 0.5 times as shown in FIG. It has been 0.35 times.
  • control unit 35 changes the magnification of the electric zoom 21 to 1.4 in order to maintain 0.7 times that is the total magnification before switching of the objective lens in the 0.5 ⁇ objective lens (address 1). Therefore, as shown in FIG. 3, the total magnification after the switching is 0.7 times shown in the cell C6 where the magnification of the electric zoom 21 is 1.4 and the magnification of the objective lens is 0.5.
  • the magnification change range of the electric zoom 21 (in the example of FIG. 3, the range from 0.7 to 15 times) is outside.
  • the objective lens is switched by the electric revolver 24, and a process for maintaining the total magnification of the microscope 12 before and after the switching of the objective lens is performed.
  • magnification of the electric zoom 21 is also increased when the user operates the forward rotation switch 43 or the reverse rotation switch 44 of the remote commander 14 to switch the objective lens arranged on the optical axis.
  • the process of changing and maintaining the total magnification of the microscope 12 is performed.
  • the control unit 35 sets the current overall magnification of the microscope 12 to 7.5 ⁇ C2) is calculated and stored.
  • the control unit 35 is driven by the electric revolver control unit 34 and the motor drive.
  • the revolver of the electric revolver 24 is rotated forward via the circuit 27 to place a 1 ⁇ objective lens on the optical axis.
  • control unit 35 changes the magnification of the electric zoom 21 to 7.5 times and maintains the total magnification of the microscope 12 in order to maintain 7.5 times that is the overall magnification before switching of the objective lens in the 1 ⁇ objective lens. Is changed to 7.5 times (mesh C4), and the overall magnification of the microscope 12 is maintained before and after the switching of the objective lens.
  • the control unit 35 sets the current overall magnification of the microscope 12 to 0.7 times (a grid). C5) is calculated and stored.
  • the control unit 35 is driven by the electric revolver control unit 34 and the motor drive. The revolver of the electric revolver 24 is reversely rotated through the circuit 27 to place the 0.5 ⁇ objective lens on the optical axis.
  • control unit 35 changes the magnification of the electric zoom 21 to 1.4 to change the overall magnification of the microscope 12 in order to maintain 0.7 times that is the overall magnification before switching of the objective lens in the 0.5 ⁇ objective lens. Is changed to 0.7 times (mesh C6), and the overall magnification of the microscope 12 is maintained before and after switching of the objective lens.
  • FIG. 4 is a flowchart for explaining processing in which the microscope system 11 maintains the total magnification of the microscope 12.
  • the process starts when the microscope system 11 is turned on and the control box 13 is activated.
  • the control unit 35 is attached to the electric revolver 24 set by the magnification setting switches 46 to 48 of the remote commander 14. Read the magnification of the objective lens. Then, the control unit 35 stores the address corresponding to the magnification setting switches 46 to 48 and the magnification read from the magnification setting switches 46 to 48 in association with each other, and the process proceeds to step S12.
  • step S ⁇ b> 12 the electric revolver position detection unit 33 detects an address for identifying a mounting location where the objective lens disposed on the optical axis is mounted via the address sensor 26, and outputs a signal indicating the address. It supplies to the control part 35.
  • step S12 the process proceeds to step S13, and the electric zoom magnification detection unit 31 detects the magnification of the electric zoom 21 via the sensor 22, and supplies a signal indicating the magnification of the electric zoom 21 to the control unit 35. Then, the process proceeds to step S14.
  • step S14 the controller 35 stores the magnification of the objective lens stored in association with the address indicated by the signal supplied from the electric revolver position detector 33 in step S12, and the electric zoom magnification detector 31 in step S13. Based on the magnification of the electric zoom 21 indicated by the signal supplied from, the above formula (1) is calculated, and the total magnification of the microscope 12 is calculated.
  • step S14 the process proceeds to step S15, and the control unit 35 determines whether or not the user has operated to enlarge (zoom up) the magnification of the electric zoom 21, that is, from the remote commander 14 to the zoom up switch 41. It is determined whether or not an operation signal indicating that has been operated is supplied.
  • step S15 when it is determined that the control unit 35 has been operated to increase the magnification of the electric zoom 21, the process proceeds to step S16, and zoom-up processing is performed. Then, after the zoom-up process, the process returns to step S13, and thereafter the same process is repeated.
  • step S15 when it is determined in step S15 that the control unit 35 has not been operated to increase the magnification of the electric zoom 21, the process proceeds to step S17.
  • step S17 the control unit 35 indicates whether or not the user has operated to decrease (zoom down) the magnification of the electric zoom 21, that is, an operation signal indicating that the zoom down switch 42 has been operated from the remote commander 14. It is determined whether or not is supplied.
  • step S17 If it is determined in step S17 that the control unit 35 has been operated by the user to decrease the magnification of the electric zoom 21, the process proceeds to step S18, and zoom-down processing is performed. Then, after the zoom-down process, the process returns to step S13, and the same process is repeated thereafter.
  • step S17 determines in step S17 that the user has not operated to decrease the magnification of the electric zoom 21
  • step S19 the control unit 35 receives an operation signal indicating whether or not the user has operated to rotate the revolver of the electric revolver 24 in the forward direction, that is, the remote commander 14 has operated the forward rotation switch 43. It is determined whether or not it has been supplied.
  • step S19 when the control unit 35 determines that the revolver has been operated to rotate in the forward direction, the process proceeds to step S20, and the revolver forward rotation process is performed. Then, after the revolver forward rotation process, the process returns to step S13, and thereafter the same process is repeated.
  • step S19 determines in step S19 that the revolver is not operated to rotate in the forward direction.
  • step S21 the control unit 35 receives an operation signal indicating whether or not the user has operated to rotate the revolver of the electric revolver 24 in the reverse direction, that is, the remote rotation switch 44 has been operated from the remote commander 14. It is determined whether or not it has been supplied.
  • step S21 when it is determined that the control unit 35 has been operated to rotate the revolver in the reverse direction, the process proceeds to step S22, and the revolver reverse rotation process is performed. Then, after the revolver reverse rotation process, the process returns to step S13, and the same process is repeated thereafter.
  • step S16 After the zoom-up process performed in step S16, the zoom-down process performed in step S18, the revolver normal rotation process performed in step S20, or the revolver reverse rotation process performed in step S22.
  • the magnification of the electric zoom 21 changed in each process is detected by the electric zoom magnification detection unit 31, and the magnification of the electric zoom 21 after the change is used. An overall magnification is required.
  • step S21 determines in step S21 that the revolver is not operated to rotate in the reverse direction
  • the process returns to step S15, and the same process is repeated thereafter. That is, in this case, since the operation by the user is not performed, the process waits until the operation is performed by the user.
  • FIG. 5 is a flowchart for explaining the zoom-up process in step S16 of FIG.
  • step S31 the control unit 35 determines whether or not the current magnification of the electric zoom 21 is the upper limit value of the zoom range, that is, via the sensor 22 and the electric zoom magnification detection unit 31 in the previous step S13 (FIG. 4). It is determined whether the detected magnification is the upper limit value of the zoom range.
  • step S31 when the control unit 35 determines that the current magnification of the electric zoom 21 is not the upper limit value of the zoom range, the process proceeds to step S32, and the control unit 35 performs the electric zoom control unit 32 and the motor drive circuit 23. , The magnification of the electric zoom 21 is increased, the zoom-up process is terminated, and the process returns to step S13.
  • step S31 determines in step S31 that the current magnification of the electric zoom 21 is the upper limit value of the zoom range.
  • the process proceeds to step S33, and the control unit 35 switches the objective lens and switches the microscope 12. It is determined whether or not the overall magnification can be increased.
  • control unit 35 refers to the magnification of the objective lens read out in step S11 of FIG. 4, and if the objective lens having a larger magnification than the objective lens currently inserted in the observation optical path is attached to the electric revolver 24. For example, it is determined that the overall magnification of the microscope 12 can be increased by switching the objective lens. On the other hand, the control unit 35 increases the overall magnification of the microscope 12 even if the objective lens is switched unless an objective lens having a larger magnification than the objective lens currently inserted in the observation optical path is attached to the electric revolver 24. It is determined that it cannot be made.
  • step S33 if the control unit 35 determines that the objective lens can be switched to increase the overall magnification of the microscope 12, the process proceeds to step S34.
  • the control unit 35 includes a motor drive circuit 27 and an electric revolver control unit so that an objective lens having a magnification one step larger than that of the objective lens currently inserted in the observation optical path is inserted in the observation optical path.
  • the revolver of the electric revolver 24 is rotated via 34 to switch the objective lens.
  • step S34 the process proceeds to step S35, and the control unit 35 determines the magnification of the objective lens after switching in step S34 and the overall magnification of the microscope 12 before switching of the objective lens (that is, immediately preceding step S14).
  • the target magnification of the electric zoom 21 is calculated based on the total magnification of the microscope 12 calculated in step 1). That is, as described with reference to FIG. 3, the control unit 35 sets the target of the electric zoom 21 so that the overall magnification of the microscope 12 before switching of the objective lens is maintained at the magnification of the objective lens after switching. Find the magnification.
  • step S35 the process proceeds to step S36, and the control unit 35 supplies a signal indicating the target magnification of the electric zoom 21 calculated in step S35 to the electric zoom control unit 32.
  • the electric zoom control unit 32 Based on the signal, the electric zoom 21 is controlled via the motor drive circuit 23.
  • the motor drives the zoom lens according to the control of the electric zoom control unit 32, and the magnification of the electric zoom 21 is set as the target magnification.
  • step S36 After the process of step S36, the zoom-up process ends, and the process returns to step S13 of FIG.
  • step S33 determines in step S33 that the objective lens cannot be switched to increase the total magnification of the microscope 12, the process proceeds to step S37.
  • step S ⁇ b> 37 the control unit 35 cannot display the error message indicating that the zoom-up cannot be performed on the display unit 16 or outputs an error message or an error sound from a speaker (not shown), for example.
  • Process to notify For example, in the example of FIG. 3, when the magnification of the electric zoom 21 is 15 and an objective lens with a magnification of 2.5 is inserted in the observation optical path, the total magnification of the microscope 12 cannot be increased. Processing for notifying that zoom-in cannot be performed is performed.
  • step S37 After the process in step S37, the zoom-up process ends, and the process returns to step S13 in FIG.
  • FIG. 6 is a flowchart for explaining the zoom-down process in step S18 of FIG.
  • step S41 the control unit 35 determines whether or not the current magnification of the electric zoom 21 is the lower limit value of the zoom range, that is, via the sensor 22 and the electric zoom magnification detection unit 31 in the previous step S13 (FIG. 4). It is determined whether the detected magnification is the lower limit value of the zoom range.
  • step S41 when the control unit 35 determines that the current magnification of the electric zoom 21 is not the lower limit value of the zoom range, the process proceeds to step S42, and the control unit 35 includes the electric zoom control unit 32 and the motor drive circuit 23. , The magnification of the electric zoom 21 is decreased, the zoom-down process ends, and the process returns to step S13.
  • step S41 determines in step S41 that the current magnification of the electric zoom 21 is the lower limit value of the zoom range.
  • step S43 the control unit 35 switches the objective lens and switches the microscope 12. It is determined whether or not the overall magnification can be reduced.
  • control unit 35 refers to the magnification of the objective lens read out in step S11 in FIG. 4, and if the objective lens having a smaller magnification than the objective lens currently inserted in the observation optical path is mounted on the electric revolver 24. For example, it is determined that the overall magnification of the microscope 12 can be reduced by switching the objective lens. On the other hand, the control unit 35 reduces the overall magnification of the microscope 12 even if the objective lens is switched unless an objective lens having a smaller magnification than the objective lens currently inserted in the observation optical path is attached to the electric revolver 24. It is determined that it cannot be made.
  • step S43 when the control unit 35 determines that the objective lens can be switched to reduce the total magnification of the microscope 12, the process proceeds to step S44.
  • step S44 the control unit 35 controls the motor drive circuit 27 and the electric revolver control unit so that an objective lens having a magnification one step smaller than that of the objective lens currently inserted in the observation optical path is inserted in the observation optical path.
  • the revolver of the electric revolver 24 is rotated via 34 to switch the objective lens.
  • step S44 the process proceeds to steps S45 and S46, and the control unit 35 calculates the target magnification of the electric zoom 21 that maintains the overall magnification of the microscope 12 as in the processes of steps S35 and S36 of FIG. Then, the magnification of the electric zoom 21 is set to the target magnification via the electric zoom control unit 32 and the motor drive circuit 23.
  • step S46 After the process in step S46, the zoom-down process ends, and the process returns to step S13 in FIG.
  • step S43 determines in step S43 that the objective lens cannot be switched to increase the total magnification of the microscope 12
  • the process proceeds to step S47, and the control unit 35 performs step S37 in FIG.
  • processing for notifying that zoom-down cannot be performed is performed.
  • FIG. 3 when the magnification of the electric zoom 21 is 0.7 and an objective lens having a magnification of 0.5 is inserted in the observation optical path, the total magnification of the microscope 12 cannot be reduced.
  • a process for notifying that zoom-down cannot be performed is performed.
  • step S47 After the process in step S47, the zoom-down process ends, and the process returns to step S13 in FIG.
  • FIG. 7 is a flowchart for explaining the revolver forward rotation processing in step S20 of FIG.
  • step S51 the control unit 35 rotates the revolver of the electric revolver 24 forward via the motor drive circuit 27 and the electric revolver control unit 34, and the process proceeds to step S52.
  • step S52 the control unit 35 detects the magnification of the objective lens after the switching in step S51 via the address sensor 26 and the electric revolver position detection unit 33, and the magnification of the objective lens and the switching of the objective lens. Based on the total magnification of the previous microscope 12 (that is, the total magnification of the microscope 12 calculated in the immediately preceding step S14), the target magnification of the electric zoom 21 is calculated. That is, as described with reference to FIG. 3, the control unit 35 sets the target of the electric zoom 21 so that the overall magnification of the microscope 12 before switching of the objective lens is maintained at the magnification of the objective lens after switching. Find the magnification.
  • step S52 the process proceeds to step S53, and the control unit 35 supplies a signal indicating the target magnification of the electric zoom 21 calculated in step S52 to the electric zoom control unit 32, and the electric zoom control unit 32 Based on the signal, the electric zoom 21 is controlled via the motor drive circuit 23.
  • the motor drives the zoom lens according to the control of the electric zoom control unit 32, and the magnification of the electric zoom 21 is set as the target magnification.
  • step S53 After the process of step S53, the revolver forward rotation process ends, and the process returns to step S13 of FIG.
  • FIG. 8 is a flowchart for explaining the revolver reverse rotation process in step S22 of FIG.
  • step S61 the control unit 35 reversely rotates the revolver of the electric revolver 24 via the motor drive circuit 27 and the electric revolver control unit 34, and the process proceeds to steps S62 and S63.
  • control unit 35 calculates the target magnification of the electric zoom 21 that maintains the overall magnification of the microscope 12, similarly to the processing in steps S52 and S53 of FIG. 7, and the electric zoom control unit 32 and the motor
  • the magnification of the electric zoom 21 is set to the target magnification via the drive circuit 23.
  • step S63 After the process of step S63, the revolver reverse rotation process ends, and the process returns to step S13 of FIG.
  • the user since the overall magnification of the microscope 12 is maintained before and after switching of the objective lens, the user does not lose sight of the observation position of the sample, and the operability can be improved.
  • the objective lens is switched by the electric revolver 24 when it is outside the range in which the magnification of the electric zoom 21 can be changed, the user does not need to perform an operation of switching the objective lens.
  • the objective lens is automatically switched, the overall magnification of the microscope 12 can be smoothly changed in a wider range. In this way, the user's trouble can be saved, and the microscope system 11 with high operability can be provided.
  • step S34 of FIG. 5 when the objective lens is switched in the process of step S34 of FIG. 5, the process of steps S35 and S36 is performed at the same time (to be precise, immediately after the command for switching the objective lens is transmitted) to perform the electric operation.
  • Switching time can be shortened by changing the magnification of the zoom 21.
  • the control unit 35 has already grasped the magnification of the objective lens after the switching. Therefore, immediately after the determination, the target magnification of the electric zoom 21 is obtained, and the process of rotating the revolver of the electric revolver 24 and the process of changing the magnification of the electric zoom 21 can be performed continuously.
  • the zoom-up process can be performed smoothly, and the time required for the zoom-up process can be shortened, that is, the waiting time of the user by switching the objective lens can be shortened.
  • control unit 35 can adjust the time required for rotating the revolver by the electric revolver 24 and the time required for changing to the desired magnification by the electric zoom 21, the control unit 35 can adjust the electric revolver 24. It may be controlled so that the magnification of the electric zoom 21 becomes the target magnification until the rotation of the revolver is completed, that is, until the objective lens having a desired magnification is inserted into the observation optical path. Thereby, during the change of the magnification by the electric zoom 21, the objective lens is not arranged in the observation optical path, and it is possible to avoid the display of the image being changed on the display unit 16.
  • the control unit 35 performs the same control in the zoom-down process of FIG. 6, the revolver forward rotation process of FIG. 7, and the revolver reverse rotation process of FIG. It can be carried out.
  • the magnification of the electric zoom 21 when each of the plurality of objective lenses is used is continuously changed as the magnification of the objective lens mounted on the electric revolver 24.
  • the range of change in the overall magnification is set so that the objective lenses with adjacent magnifications overlap each other. Thereby, the change range of the overall magnification of the microscope 12 can be continuously wide.
  • control unit 35 can control display of an image by the display unit 16.
  • the display unit 16 displays an image captured by the imaging unit 15 via the microscope 12, and the control unit 35 starts from the rotation of the electric revolver 24 until the rotation of the electric revolver 24 is stopped.
  • the display unit 16 controls to stop displaying images.
  • step S34 (or step S44 of FIG. 6, step S51 of FIG. 7, step S61 of FIG. 8) of the flowchart of FIG.
  • the display unit 16 is controlled immediately before the rotation, and the display of the image (live image) being captured by the imaging unit 15 is stopped. For example, a black color image is displayed or the image is captured immediately before the revolver is rotated. Continue to display the image.
  • step S36 (or step S46 in FIG. 6, step S53 in FIG. 7, step S63 in FIG. 8) in the flowchart of FIG. 5, after the magnification of the electric zoom 21 is set to the target magnification, the control unit 35 Then, the display unit 16 is controlled to resume the display of the live image.
  • control unit 35 controls the display of the image on the display unit 16, so that an image in the middle of changing the magnification of the electric zoom 21 is displayed on the display unit 16 when the objective lens is switched. Is avoided.
  • an image in which the overall magnification of the microscope 12 is maintained before and after switching of the objective lens is displayed on the display unit 16, so that it is more difficult to lose sight of the sample than when the image being changed is displayed. That is, the user is less likely to lose sight of the sample than when the magnification is changed by the electric zoom 21 and an image having a magnification different from the magnification before and after the objective lens switching is temporarily displayed on the display unit 16. It is possible to concentrate on the observation and to observe more smoothly.
  • control unit 35 stops the display of the live image (for example, while displaying a black color image or continuing to display the image immediately before the rotation of the revolver), the display unit 16.
  • a message indicating that the magnification of the electric zoom 21 is being changed may be displayed at the end of.
  • the microscope 12 and the control box 13 are configured separately, but the control box 13 may be incorporated in the microscope 12.
  • control box 13 In addition to performing an operation of changing the magnification of the electric zoom 21 using the remote commander 14, for example, the control box 13 is provided with a communication function such as RS232C or USB, and the control box 13 and a personal computer are connected, Various operations can be instructed to the control box 13 by communication commands from the personal computer.
  • a communication function such as RS232C or USB
  • the remote commander 14 includes a function changeover switch 45, and the user operates the function changeover switch 45 to appropriately disable the function of maintaining the total magnification of the microscope 12. Can do. Thus, by switching the function of maintaining the overall magnification of the microscope 12, for example, a skilled person or the like can operate the microscope system 11 more smoothly.
  • the processes described with reference to the flowcharts described above do not necessarily have to be processed in time series in the order described in the flowcharts, but are performed in parallel or individually (for example, parallel processes or objects). Processing). Further, the program may be processed by a single CPU, or may be processed in a distributed manner by a plurality of CPUs. Furthermore, the program executed by the CPU of the control unit 35 can be downloaded to a memory included in the control unit 35 and updated as appropriate.
  • system represents the entire apparatus composed of a plurality of apparatuses.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)
  • Lens Barrels (AREA)

Abstract

 本発明は、操作性を向上させることができる顕微鏡システムに関する。  電動ズーム21は、サンプルを拡大する倍率を倍率変更可能範囲内で連続的に変更し、電動レボルバ24は、観察光路内に配置される対物レンズを切り替えて、サンプルを拡大する倍率を断続的に変更する。制御部34は、電動ズーム21による倍率と、観察光路内に現在配置されている対物レンズの倍率とに基づいて総合倍率を算出し、電動ズーム21の倍率を変更させる操作に応じた変更後の倍率が電動ズーム21の倍率変更可能範囲外となるとき、観察光路内に配置される対物レンズを切り替えるように、電動レボルバ24を制御して、対物レンズの切り替え後の総合倍率を、対物レンズの切り替え前の総合倍率に維持させる電動ズーム21の倍率である目標倍率を決定し、電動ズーム制御部32が、目標倍率となるように電動ズーム21を制御する。本発明は、例えば、実体顕微鏡に適用できる。

Description

顕微鏡システム
 本発明は、顕微鏡システムに関し、特に、操作性を向上させることができるようにした顕微鏡システムに関する。
  従来、顕微鏡において、サンプルを拡大して観察する総合倍率を変更する方式として、対物レンズを切り替える方式やズームレンズを利用した方式などの種々の方式が採用されている。
 例えば、対物レンズを切り替える方式では、倍率の異なる複数の対物レンズを装着したレンズレボルバを利用して、観察光路内に挿入される対物レンズが切り替えられ、レンズレボルバを回転させるだけで倍率を断続的に変更することができる。また、ズームレンズを利用した方式では、ズームリング内のズームレンズを連続的に移動させることで、ズームレンズの可動範囲内であれば倍率をリニアに変更することができる。
 また、レンズレボルバまたはズームレンズを備えた顕微鏡において、レンズレボルバの回転またはズームレンズの移動を電気的に駆動させることにより、顕微鏡の操作性を向上させることができる。
 特に、生体試料などをそのままの状態で観察する実体顕微鏡では、対物レンズを切り替える方式と、ズームレンズを利用した方式とを併用した構成が用いられることが多く、倍率をリニアに変更することができるとともに、倍率の可変範囲を広くすることができる。
 例えば、特許文献1には、対物レンズを電動で切り替える対物切替機構と、ズームレンズを移動させるズーム機構とを備えた顕微鏡システムが開示されている。
特開2004-4856号公報
 上述したような、対物レンズを切り替える方式とズームレンズを利用した方式とを併用した構成の顕微鏡では、例えば、ユーザがズームレンズを操作して、ズームレンズのズーム範囲の上限に達したときには、それ以上、倍率を連続的に変更することはできない。従って、このような場合、ユーザ自身がレンズレボルバを操作して、倍率が大きな対物レンズに切り替える操作を行わなければならない。また、同様に、ズームレンズのズーム範囲の下限に達したときにも、ユーザ自身が、レンズレボルバを操作して、倍率が小さな対物レンズに切り替える操作を行わなければならず、そのような操作が手間であった。
 また、このように対物レンズを切り替えて総合倍率を変更する際には、観察視野が大きく変化するため、サンプルの観察位置を見失い易くなる。即ち、ズームレンズにより倍率を変更する際には、倍率がリニアに変更されるので、倍率の変更時にサンプルの観察位置を見失うことはないのに対し、対物レンズにより倍率を変更する際には、倍率が大きく変更されるため、サンプルの観察位置を見失い易くなる。従って、このような顕微鏡は、操作に精通した熟練者でなければ、スムーズに扱うことは難しかった。
 本発明は、このような状況に鑑みてなされたものであり、操作性を向上することができるようにするものである。
 本発明の顕微鏡システムは、サンプルを拡大して観察する顕微鏡システムであって、前記サンプルの拡大倍率を変化させるズーム指示手段と、前記ズーム指示手段の指示に従って、前記サンプルを拡大する倍率を、所定の倍率変更可能範囲内で連続的に変更するズーム手段と、倍率の異なる複数の対物レンズを有し、観察光路内に配置される対物レンズを切り替えて、前記サンプルを拡大する倍率を断続的に変更する切替手段と、前記ズーム手段による倍率と、前記観察光路内に現在配置されている前記対物レンズの倍率とに基づいて、前記サンプルを観察する総合倍率を算出する総合倍率算出手段と、前記ズーム指示手段により倍率を変更させる操作が行われた場合に、その操作に応じた変更後の倍率が前記ズーム手段の倍率変更可能範囲の範囲外となるとき、前記観察光路内に配置される前記対物レンズを切り替えるように、前記切替手段を制御する切替制御手段と、前記対物レンズの切り替え後の前記総合倍率を前記対物レンズの切り替え前の前記総合倍率に維持させるのに必要な前記ズーム手段の倍率(目標倍率)を決定するズーム倍率決定手段と、前記ズーム手段の倍率が、前記ズーム倍率決定手段により決定された前記目標倍率となるように、前記ズーム手段を制御するズーム制御手段とを備えることを特徴とする。
 本発明の顕微鏡システムにおいては、サンプルの拡大倍率を変化させるズーム指示手段の指示に従って、ズーム手段により、サンプルを拡大する倍率が、所定の倍率変更可能範囲内で連続的に変更され、倍率の異なる複数の対物レンズを有する切替手段により、観察光路内に配置される対物レンズを切り替えて、サンプルを拡大する倍率を断続的に変更される。また、ズーム手段による倍率と、観察光路内に現在配置されている対物レンズの倍率とに基づいて、サンプルを観察する総合倍率が算出され、ズーム指示手段により倍率を変更させる操作が行われた場合に、その操作に応じた変更後の倍率がズーム手段の倍率変更可能範囲の範囲外となるとき、観察光路内に配置される対物レンズを切り替えるように、切替手段が制御される。そして、対物レンズの切り替え後の総合倍率を対物レンズの切り替え前の総合倍率に維持させるのに必要なズーム手段の倍率(目標倍率)が決定され、ズーム手段の倍率が目標倍率となるように、ズーム手段が制御される。
 本発明の顕微鏡システムによれば、ズーム操作性を向上させることができる。
本発明を適用した顕微鏡システムの一実施の形態の構成例を示すブロック図である。 リモートコマンダ14を示す図である。 顕微鏡12の総合倍率を維持させる処理について説明する図である。 顕微鏡12の総合倍率を維持させる処理を説明するフローチャートである。 ズームアップ処理を説明するフローチャートである。 ズームダウン処理を説明するフローチャートである。 レボルバ正回転処理を説明するフローチャートである。 レボルバ逆回転処理を説明するフローチャートである。
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
 図1は、本発明を適用した顕微鏡システムの一実施の形態の構成例を示すブロック図である。
 図1において、顕微鏡システム11は、所定の倍率でサンプルを観察するための顕微鏡12、顕微鏡12の各部を制御するコントロールボックス13、ユーザによる顕微鏡12に対する操作をコントロールボックス13に入力するリモートコマンダ14、顕微鏡12を介してサンプルを撮像する撮像部15、および、撮像部15により撮像された画像などを表示する表示部16を備えて構成されている。
 顕微鏡12は、電動ズーム21、センサ22、モータ駆動回路23、電動レボルバ24、ストップセンサ25、アドレスセンサ26、およびモータ駆動回路27を備えて構成されている。
 電動ズーム21は、複数のズームレンズと、それらのズームレンズを駆動するモータ(いずれも図示せず)とを有しており、モータの駆動に従ってズームレンズの位置が変更することで、顕微鏡12の倍率をリニアに変更する。
 センサ22は、ズームレンズの位置を示す信号を、コントロールボックス13の電動ズーム倍率検出部31に供給する。例えば、センサ22はポテンショメータなどからなり、電動ズーム21が有するズームレンズの移動に応じて、ポテンショメータの抵抗値が変化し、センサ22は、その抵抗値に従って電圧が変化するような信号、即ち、ズームレンズの位置を示す信号を出力する。
 モータ駆動回路23は、後述するようにコントロールボックス13の電動ズーム制御部32から供給される制御信号に従って、電動ズーム21が有するズームレンズを移動させるための電力を電動ズーム21が有するモータに供給する。電動ズーム21では、モータ駆動回路23から供給される電力に応じてモータがズームレンズを移動させ、電動ズーム制御部32の制御に従った倍率となる位置にズームレンズが配置される。
 電動レボルバ24は、倍率の異なる複数の対物レンズ(図示せず)が装着されたレボルバと、レボルバを回転駆動するモータとを有しており、モータの駆動に応じてレボルバが回転することで対物レンズの切り替えが行われ、所望の倍率の対物レンズが観察光路内に挿入される。また、電動レボルバ24には、それぞれの対物レンズの装着箇所を識別するためのアドレスが設定されている。また、電動レボルバ24は、対物レンズを観察光路内の光軸上で停止させるためのクリックストップ機構を備えており、クリックストップ機構は、一定の力で電動レボルバ24を保持して回転を停止させ、対物レンズを光軸上に位置決めする。
 ストップセンサ25は、対物レンズが光軸上に配置された状態で電動レボルバ24の回転が停止しているか否か、即ち、クリックストップ機構が電動レボルバ24を保持して回転を停止させ、対物レンズが光軸上に配置された状態となっているか否かを検出する。そして、ストップセンサ25は、電動レボルバ24の回転が停止しているか否かを示す信号を、コントロールボックス13の電動レボルバ位置検出部33に供給する。
 アドレスセンサ26は、例えば、ホール素子などを備えて構成され、光軸上に配置されている対物レンズが装着されている装着箇所を識別するアドレスを検出する。
 モータ駆動回路27には、後述するようにコントロールボックス13の電動レボルバ制御部34から供給される制御信号に従って、電動レボルバ24が有するレボルバを回転させるための電力を、電動レボルバ24が有するモータに供給する。電動レボルバ24では、モータ駆動回路27から供給される電力に応じてモータがレボルバを回転させ、その回転方向に応じて、対物レンズの切り替えが行われる。
 コントロールボックス13は、電動ズーム倍率検出部31、電動ズーム制御部32、電動レボルバ位置検出部33、電動レボルバ制御部34、および制御部35を備えて構成されている。
 電動ズーム倍率検出部31には、ズームレンズの位置を示す信号がセンサ22から供給され、電動ズーム倍率検出部31は、ズームレンズの位置に基づいて電動ズーム21の倍率を求め、電動ズーム21の倍率を示す信号を制御部35に供給する。例えば、電動ズーム倍率検出部31には、ズームレンズの位置を示す信号(電圧値)と電動ズーム21の倍率とが対応付けられたテーブルが予め記憶されており、電動ズーム倍率検出部31は、そのテーブルを参照して、電動ズーム21の倍率を求める。
 電動ズーム制御部32には、電動ズーム21の倍率の増大または減少を指示する信号が制御部35から供給され、電動ズーム制御部32は、その信号に従って、電動ズーム21のズームレンズを移動させる制御信号をモータ駆動回路23に供給する。
 また、電動ズーム制御部32には、後述するように制御部35から目標倍率を示す信号が供給され、電動ズーム制御部32は、その信号に基づいて、電動ズーム21のズームレンズの移動量を求め、その移動量だけズームレンズを移動させる制御信号をモータ駆動回路23に供給する。これにより、モータ駆動回路23は、電動ズーム制御部32からの制御信号に従った電力を電動ズーム21のモータに供給して、目標倍率となる位置にズームレンズを配置させる。
 電動レボルバ位置検出部33には、電動レボルバ24の回転が停止しているか否かを示す信号がストップセンサ25から供給され、電動レボルバ位置検出部33は、ストップセンサ25からの信号が電動レボルバ24の回転が停止していない状態から、電動レボルバ24の回転が停止した状態に変化したタイミングで、アドレスセンサ26が検出する電動レボルバ24のアドレスを読み出す。即ち、電動レボルバ位置検出部33は、ユーザの操作に応じて電動レボルバ24を回転させて対物レンズを切り替える際に、電動レボルバ24の回転が停止して光軸上に対物レンズが配置されると、その対物レンズが装着されている装着箇所を識別する電動レボルバ24のアドレスを、アドレスセンサ26を介して検出する。そして、電動レボルバ位置検出部33は、光軸上にある対物レンズの装着箇所を識別するアドレスを示す信号を制御部35に供給する。
 電動レボルバ制御部34には、電動レボルバ24のレボルバの正回転または逆回転を指示する信号が制御部35から供給され、電動レボルバ制御部34は、その信号に従って、電動レボルバ24のレボルバを正回転または逆回転させる制御信号をモータ駆動回路27に供給する。
 制御部35は、CPU(Central Processing Unit),ROM(Read Only Memory),RAM(Random Access Memory)などを備えて構成されており、CPUが、ROMに記憶されているプログラムをRAMにロードして実行することにより、コントロールボックス13の各部を制御する。
 上述したように、制御部35には、電動ズーム21の倍率を示す信号が電動ズーム倍率検出部31から供給されるとともに、光軸上にある対物レンズの装着箇所を識別するアドレスを示す信号が電動レボルバ位置検出部33から供給され、制御部35は、それらの信号から顕微鏡12においてサンプルが拡大される総合倍率を算出する。
 例えば、制御部35のRAMには、装着箇所のアドレスと対物レンズの倍率とが対応付けられて記憶されており、制御部35は、電動レボルバ位置検出部33からの信号により示されるアドレスに対応付けられている対物レンズの倍率と、電動ズーム21の倍率とを乗算した値を総合倍率として求める。
 また、制御部35には、ユーザのリモートコマンダ14に対する操作に応じた操作信号がリモートコマンダ14から供給され、制御部35は、その操作信号に従って、電動ズーム21の倍率の増大または減少を指示する信号を電動ズーム制御部32に供給する。また、制御部35は、リモートコマンダ14からの操作信号に従って、電動レボルバ24のレボルバの正回転または逆回転を指示する信号を電動レボルバ制御部34に供給する。
 ここで、図2を参照して、リモートコマンダ14について説明する。
 図2には、リモートコマンダ14の斜視図が示されており、斜視図の下側には、リモートコマンダ14の底面図が示されている。
 図2に示すように、リモートコマンダ14の正面には、ズームアップスイッチ41、ズームダウンスイッチ42、正回転スイッチ43、逆回転スイッチ44、および機能切替スイッチ45が設けられており、リモートコマンダ14の底面には、倍率設定スイッチ46乃至48が設けられている。
 ズームアップスイッチ41またはズームダウンスイッチ42は、電動ズーム21の倍率を変更させるときに操作される。
 例えば、ユーザが、ズームアップスイッチ41を押し下げる操作をすると、リモートコマンダ14は、ズームアップスイッチ41が操作されたことを示す操作信号を制御部35に供給し、制御部35は、電動ズーム21の倍率の増大を指示する信号を電動ズーム制御部32に供給する。これにより、倍率を増大させる方向に電動ズーム21のズームレンズが移動し、顕微鏡12の総合倍率が増大される。
 同様に、ユーザが、ズームダウンスイッチ42を押し下げる操作をすると、リモートコマンダ14は、ズームダウンスイッチ42が操作されたことを示す操作信号を制御部35に供給し、制御部35は、電動ズーム21の倍率の減少を指示する信号を電動ズーム制御部32に供給する。これにより、倍率を減少させる方向に電動ズーム21のズームレンズが移動し、顕微鏡12の総合倍率が減少される。
 正回転スイッチ43または逆回転スイッチ44は、電動レボルバ24の対物レンズを切り替えるときに操作される。
 例えば、ユーザが、正回転スイッチ43を押し下げる操作をすると、リモートコマンダ14は、正回転スイッチ43が操作されたことを示す操作信号を制御部35に供給し、制御部35は、電動レボルバ24のレボルバの正方向への回転を指示する信号を電動レボルバ制御部34に供給する。これにより、電動レボルバ24のレボルバが正方向に回転して対物レンズが切り替えられる。
 同様に、ユーザが、逆回転スイッチ44を押し下げる操作をすると、リモートコマンダ14は、逆回転スイッチ44が操作されたことを示す操作信号を制御部35に供給し、制御部35は、電動レボルバ24のレボルバの逆方向への回転を指示する信号を電動レボルバ制御部34に供給する。これにより、電動レボルバ24のレボルバが逆方向に回転して対物レンズが切り替えられる。
 機能切替スイッチ45は、顕微鏡12の総合倍率を維持させる機能の有効または無効を切り替えるときに操作される。例えば、ユーザが、機能切替スイッチ45を操作して、顕微鏡12の総合倍率を維持する機能を有効にさせると、図4乃至図8を参照して後述するような顕微鏡12の総合倍率を維持させる処理が実行される。
 倍率設定スイッチ46乃至48は、電動レボルバ24に装着される対物レンズの倍率を設定するときに操作される。
 電動レボルバ24には、例えば、3本の対物レンズを装着することができ、倍率設定スイッチ46は、アドレス1により識別される装着箇所に装着される対物レンズの倍率の設定に用いられる。また、倍率設定スイッチ47は、アドレス2により識別される装着箇所に装着される対物レンズの倍率の設定に用いられ、倍率設定スイッチ48は、アドレス3により識別される装着箇所に装着される対物レンズの倍率の設定に用いられる。
 例えば、倍率設定スイッチ46乃至48は、ロータリスイッチにより構成され、ユーザは、電動レボルバ24のアドレス1乃至3により識別される装着箇所に装着されている対物レンズの倍率に従って、倍率設定スイッチ46乃至48のポジションをそれぞれ設定する。そして、例えば、コントロールボックス13の起動時に、制御部35は、倍率設定スイッチ46乃至48のポジションを読み出し、倍率設定スイッチ46乃至48に対応するアドレスと、それぞれから読み出したポジションに対応する倍率とを対応付けて記憶する。
 このように制御部35には、装着箇所のアドレスと対物レンズの倍率とが対応付けられて記憶される。そして、制御部35は、例えば、電動レボルバ位置検出部33から供給される信号により示されているアドレスが、アドレス1である場合、アドレス1に対応付けて記憶している対物レンズの倍率と、電動ズーム21の倍率とを乗算して、顕微鏡12の総合倍率を算出する。
 その後、例えば、ユーザが、リモートコマンダ14の正回転スイッチ43または逆回転スイッチ44を操作して電動レボルバ24を回転させ、アドレス2の装着箇所に装着されている対物レンズが観察光路内の光軸上に配置されると、電動レボルバ位置検出部33は、アドレス2を示す信号を制御部35に供給する。このとき、制御部35は、対物レンズを切り替える前の総合倍率と、切り替え後の対物レンズの倍率とに基づいて、切り替え後の総合倍率が、切り替え前の総合倍率を維持することができる(ほぼ同じ倍率となるような)電動ズーム21の倍率を、電動ズーム21の目標倍率として算出する。
 そして、制御部35が、電動ズーム21の目標倍率を示す信号を電動ズーム制御部32に供給すると、電動ズーム制御部32は、その信号に基づいて、電動ズーム21のズームレンズの移動量を求め、その移動量だけズームレンズを移動させる制御信号をモータ駆動回路23に供給する。これにより、電動ズーム21の倍率が目標倍率に変更され、対物レンズの切り替え後の総合倍率が、対物レンズの切り替え前の総合倍率を維持することができる。
 さらに、顕微鏡システム11では、ユーザが、リモートコマンダ14のズームアップスイッチ41またはズームダウンスイッチ42を操作して、電動ズーム21の倍率をリニアに変更させ、電動ズーム21の倍率が上限値または下限値まで達したとき、自動的に、電動レボルバ24のレボルバが回転して対物レンズが切り替えられるとともに、対物レンズの切り替えの前後で顕微鏡12の総合倍率を維持させる処理が行われる。
 例えば、ユーザが、リモートコマンダ14のズームアップスイッチ41を操作して電動ズーム21の倍率をリニアに増大させ、電動ズーム21の倍率が上限値まで達したとする。このとき、制御部35は、電動レボルバ24を回転させて顕微鏡12の総合倍率をさらに増大させることができる場合、電動レボルバ制御部34およびモータ駆動回路27を介して電動レボルバ24のレボルバを回転させて、倍率の高い対物レンズを観察光路内に挿入させる。そして、制御部35は、対物レンズを切り替える前の総合倍率と、切り替え後の対物レンズの倍率とに基づいて、切り替え後の総合倍率が、切り替え前の総合倍率を維持することができる電動ズーム21の目標倍率を算出し、電動ズーム制御部32およびモータ駆動回路23を介して電動ズーム21の倍率を変更させて、対物レンズの切り替え後の総合倍率を、対物レンズの切り替え前の総合倍率に維持させる。
 同様に、例えば、ユーザが、リモートコマンダ14のズームダウンスイッチ42を操作して電動ズーム21の倍率をリニアに減少させ、電動ズーム21の倍率が下限値まで達したとする。このとき、制御部35は、電動レボルバ24を回転させて顕微鏡12の総合倍率をさらに減少させることができる場合、電動レボルバ制御部34およびモータ駆動回路27を介して電動レボルバ24のレボルバを回転させて、倍率の低い対物レンズを観察光路内に挿入させるとともに、電動ズーム21の倍率を変更させて、対物レンズの切り替え後の総合倍率を、対物レンズの切り替え前の総合倍率に維持させる。
 ここで、制御部35には、上述したように電動レボルバ24に装着されている複数の対物レンズの倍率が記憶されており、制御部35は、観察光路内に現在挿入されている対物レンズよりも倍率が大きな対物レンズまたは倍率が小さな対物レンズが電動レボルバ24に装着されているか否かに基づいて、対物レンズを切り替えて顕微鏡12の総合倍率を増大または減少させることができるか否かを判断する。
 また、制御部35には、電動レボルバ24の装着箇所の位置関係が記憶されており、対物レンズを切り替えて顕微鏡12の総合倍率を増大または減少させることができる場合には、制御部35は、所望の対物レンズが装着されている方向に従って、電動レボルバ24のレボルバの正回転または逆回転を指示する信号を電動レボルバ制御部34に供給する。
 次に、図3を参照して、顕微鏡12の総合倍率を維持させる処理について説明する。
 図3には、電動ズーム21の倍率および対物レンズの倍率と、顕微鏡12の総合倍率との関係が示されている。図3に示すように、電動ズーム21は、0.7倍から15倍までを0.1倍ごとにリニアに倍率を変更することができる。電動レボルバ24には、3つの対物レンズが装着されており、アドレス1に0.5倍の対物レンズが装着され、アドレス2に1倍の対物レンズが装着され、アドレス3に2.5倍の対物レンズが装着されている。
 制御部35は、次の式(1)を演算することにより顕微鏡12の現在の総合倍率を求めて記憶する。
   総合倍率=電動ズームの倍率×対物レンズの倍率   ・・・(1)
 例えば、現在、電動ズーム21の倍率が0.7倍であり、0.5倍の対物レンズ(アドレス1)が光軸上に配置されているとすると、制御部35は、顕微鏡12の現在の総合倍率として0.35倍を算出し記憶する。即ち、現在の総合倍率は、図3に示すように、電動ズーム21の倍率が0.7倍であり、かつ、対物レンズの倍率が0.5倍である升目C1に示されている0.35倍である。
 このとき、ユーザがズームアップスイッチ41を操作すると、電動ズーム21の倍率は上限値ではないので、制御部35は、電動ズーム制御部32およびモータ駆動回路23を介して電動ズーム21の倍率を1段階増大させる。これにより、電動ズーム21の倍率は0.8倍になり、顕微鏡12の総合倍率は0.4倍となる。このように、電動ズーム21の倍率を1段階ずつ増大させる処理を繰り返して、電動ズーム21の倍率が上限値の15倍になると、升目C2に示されているように顕微鏡12の総合倍率は7.5倍となる。
 そして、ユーザがズームアップスイッチ41をさらに操作すると、電動ズーム21の倍率は上限値であるので、制御部35は、顕微鏡12の総合倍率を増大させるために、光軸上の対物レンズを、0.5倍の対物レンズ(アドレス1)から、1倍の対物レンズ(アドレス2)に切り替えさせる制御を行う。このとき、対物レンズを切り替えるだけでは、切り替え後の総合倍率は、図3に示すように、電動ズーム21の倍率が15倍であり、かつ、対物レンズの倍率が1倍である升目C3に示されている15倍となる。
 そこで、制御部35は、1倍の対物レンズ(アドレス2)において、対物レンズの切り替え前の総合倍率である7.5倍を維持するために、電動ズーム21の倍率を7.5倍に変更させる。従って、切り替え後の総合倍率は、図3に示すように、電動ズーム21の倍率が7.5倍であり、かつ、対物レンズの倍率が1倍である升目C4に示されている7.5倍となる。
 一方、顕微鏡12の総合倍率が7.5倍(升目C4)であるときに、ユーザがズームダウンスイッチ42を操作すると、電動ズーム21の倍率は下限値ではないので、制御部35は、電動ズーム制御部32およびモータ駆動回路23を介して電動ズーム21の倍率を1段階減少させる。これにより、電動ズーム21の倍率は7.4倍になり、顕微鏡12の総合倍率は7.4倍となる。このように、電動ズーム21の倍率を1段階ずつ減少させる処理を繰り返して、電動ズーム21の倍率が下限値の0.7倍になると、升目C5に示されているように顕微鏡12の総合倍率は0.7倍となる。
 そして、ユーザがズームダウンスイッチ42をさらに操作すると、電動ズーム21の倍率は下限値であるので、制御部35は、顕微鏡12の総合倍率を減少させるために、光軸上の対物レンズを、1倍の対物レンズ(アドレス2)から、0.5倍の対物レンズ(アドレス1)に切り替えさせる制御を行う。このとき、対物レンズを切り替えるだけでは、切り替え後の総合倍率は、図3に示すように、電動ズーム21の倍率が0.7倍であり、かつ、対物レンズの倍率が0.5倍である升目C1に示されている0.35倍となる。
 そこで、制御部35は、0.5倍の対物レンズ(アドレス1)において、対物レンズの切り替え前の総合倍率である0.7倍を維持するために、電動ズーム21の倍率を1.4倍に変更させる。従って、切り替え後の総合倍率は、図3に示すように、電動ズーム21の倍率が1.4倍であり、かつ、対物レンズの倍率が0.5倍である升目C6に示されている0.7倍となる。
 このように、顕微鏡システム11では、電動ズーム21の倍率を変更させる操作が行われ、電動ズーム21の倍率変更可能範囲(図3の例では、0.7倍から15倍までの範囲)外となるとき、電動レボルバ24により対物レンズの切り替えが行われるとともに、対物レンズの切り替え前後で顕微鏡12の総合倍率を維持させる処理が行われる。
 また、顕微鏡システム11では、ユーザが、リモートコマンダ14の正回転スイッチ43または逆回転スイッチ44を操作して、光軸上に配置される対物レンズが切り替えられる際にも、電動ズーム21の倍率を変更して、顕微鏡12の総合倍率を維持させる処理が行われる。
 例えば、電動ズーム21の倍率が15倍であり、0.5倍の対物レンズ(アドレス1)が光軸上に配置されていると、制御部35は、顕微鏡12の現在の総合倍率として7.5倍(升目C2)を算出して記憶する。そして、ユーザが、1倍の対物レンズ(アドレス2)が光軸上に配置されるように、リモートコマンダ14の正回転スイッチ43を操作すると、制御部35は、電動レボルバ制御部34およびモータ駆動回路27を介して電動レボルバ24のレボルバを正回転させて、1倍の対物レンズを光軸上に配置させる。このとき、制御部35は、1倍の対物レンズにおいて、対物レンズの切り替え前の総合倍率である7.5倍を維持するために、電動ズーム21の倍率を7.5倍に変更させて顕微鏡12の総合倍率を7.5倍(升目C4)に変更させ、対物レンズの切り替えの前後で、顕微鏡12の総合倍率を維持させる。
 また、電動ズーム21の倍率が0.7倍であり、1倍の対物レンズ(アドレス2)が光軸上に配置されていると、制御部35は、顕微鏡12の現在の総合倍率として0.7倍(升目C5)を算出して記憶する。そして、ユーザが、0.5倍の対物レンズ(アドレス1)が光軸上に配置されるように、リモートコマンダ14の逆回転スイッチ44を操作すると、制御部35は、電動レボルバ制御部34およびモータ駆動回路27を介して電動レボルバ24のレボルバを逆回転させて、0.5倍の対物レンズを光軸上に配置させる。このとき、制御部35は、0.5倍の対物レンズにおいて、対物レンズの切り替え前の総合倍率である0.7倍を維持するために、電動ズーム21の倍率を1.4倍に変更させて顕微鏡12の総合倍率を0.7倍(升目C6)に変更させ、対物レンズの切り替えの前後で、顕微鏡12の総合倍率を維持させる。
 次に、図4は、顕微鏡システム11が、顕微鏡12の総合倍率を維持させる処理を説明するフローチャートである。
 例えば、顕微鏡システム11に電源が投入されてコントロールボックス13が起動すると処理が開始され、ステップS11において、制御部35は、リモートコマンダ14の倍率設定スイッチ46乃至48により設定される電動レボルバ24に装着されている対物レンズの倍率を読み出す。そして、制御部35は、倍率設定スイッチ46乃至48に応じたアドレスと、倍率設定スイッチ46乃至48から読み出した倍率とをそれぞれ対応付けて記憶し、処理はステップS12に進む。
 ステップS12において、電動レボルバ位置検出部33は、アドレスセンサ26を介して、光軸上に配置されている対物レンズが装着されている装着箇所を識別するアドレスを検出し、そのアドレスを示す信号を制御部35に供給する。
 ステップS12の処理後、処理はステップS13に進み、電動ズーム倍率検出部31は、センサ22を介して電動ズーム21の倍率を検出し、電動ズーム21の倍率を示す信号を制御部35に供給して、処理はステップS14に進む。
 ステップS14において、制御部35は、ステップS12で電動レボルバ位置検出部33から供給された信号により示されるアドレスに対応付けて記憶している対物レンズの倍率と、ステップS13で電動ズーム倍率検出部31から供給された信号により示される電動ズーム21の倍率とに基づいて、上述の式(1)を演算し、顕微鏡12の総合倍率を算出する。
 ステップS14の処理後、処理はステップS15に進み、制御部35は、ユーザにより電動ズーム21の倍率を拡大(ズームアップ)させるように操作されたか否か、即ち、リモートコマンダ14からズームアップスイッチ41が操作されたことを示す操作信号が供給されたか否かを判定する。
 ステップS15において、制御部35が、電動ズーム21の倍率を拡大させるように操作されたと判定した場合、処理はステップS16に進み、ズームアップ処理が行われる。そして、ズームアップ処理の処理後、処理はステップS13に戻り、以下、同様の処理が繰り返される。
 一方、ステップS15において、制御部35が、電動ズーム21の倍率を拡大させるように操作されていないと判定した場合、処理はステップS17に進む。
 ステップS17において、制御部35は、ユーザにより電動ズーム21の倍率を減少(ズームダウン)させるように操作されたか否か、即ち、リモートコマンダ14からズームダウンスイッチ42が操作されたことを示す操作信号が供給されたか否かを判定する。
 ステップS17において、制御部35が、ユーザにより電動ズーム21の倍率を減少させるように操作されたと判定した場合、処理はステップS18に進み、ズームダウン処理が行われる。そして、ズームダウン処理の処理後、処理はステップS13に戻り、以下、同様の処理が繰り返される。
 一方、ステップS17において、制御部35が、ユーザにより電動ズーム21の倍率を減少させるように操作されていないと判定した場合、処理はステップS19に進む。
 ステップS19において、制御部35は、ユーザにより電動レボルバ24のレボルバを正方向に回転させるように操作されたか否か、即ち、リモートコマンダ14から正回転スイッチ43が操作されたことを示す操作信号が供給されたか否かを判定する。
 ステップS19において、制御部35が、レボルバを正方向に回転させるように操作されたと判定した場合、処理はステップS20に進み、レボルバ正回転処理が行われる。そして、レボルバ正回転処理の処理後、処理はステップS13に戻り、以下、同様の処理が繰り返される。
 一方、ステップS19において、制御部35が、レボルバを正方向に回転させるように操作されていないと判定した場合、処理はステップS21に進む。
 ステップS21において、制御部35は、ユーザにより電動レボルバ24のレボルバを逆方向に回転させるように操作されたか否か、即ち、リモートコマンダ14から逆回転スイッチ44が操作されたことを示す操作信号が供給されたか否かを判定する。
 ステップS21において、制御部35が、レボルバを逆方向に回転させるように操作されたと判定した場合、処理はステップS22に進み、レボルバ逆回転処理が行われる。そして、レボルバ逆回転処理の処理後、処理はステップS13に戻り、以下、同様の処理が繰り返される。
 なお、ステップS16で行われるズームアップ処理の処理後、ステップS18で行われるズームダウン処理の処理後、ステップS20で行われるレボルバ正回転処理の処理後、または、ステップS22で行われるレボルバ逆回転処理の処理後、処理がステップS13に戻ったとき、それぞれの処理で変更された電動ズーム21の倍率が電動ズーム倍率検出部31により検出され、変更後の電動ズーム21の倍率を用いて顕微鏡12の総合倍率が求められる。
 一方、ステップS21において、制御部35が、レボルバを逆方向に回転させるように操作されていないと判定した場合、処理はステップS15に戻り、以下、同様の処理が繰り返される。即ち、この場合、ユーザによる操作が行われていないので、ユーザにより操作が行われるまで処理を待機する。
 次に、図5は、図4のステップS16におけるズームアップ処理を説明するフローチャートである。
 ステップS31において、制御部35は、電動ズーム21の現在の倍率がズーム範囲の上限値であるか否か、即ち、直前のステップS13(図4)でセンサ22および電動ズーム倍率検出部31を介して検出した倍率がズーム範囲の上限値であるか否かを判定する。
 ステップS31において、制御部35が、電動ズーム21の現在の倍率がズーム範囲の上限値でないと判定した場合、処理はステップS32に進み、制御部35は、電動ズーム制御部32およびモータ駆動回路23を介して電動ズーム21の倍率を増大させ、ズームアップ処理は終了し、処理はステップS13に戻る。
 一方、ステップS31において、制御部35が、電動ズーム21の現在の倍率がズーム範囲の上限値であると判定した場合、処理はステップS33に進み、制御部35は、対物レンズを切り替えて顕微鏡12の総合倍率を増大させることができるか否かを判定する。
 例えば、制御部35は、図4のステップS11で読み出した対物レンズの倍率を参照し、観察光路内に現在挿入されている対物レンズよりも倍率の大きな対物レンズが電動レボルバ24に装着されていれば、対物レンズを切り替えて顕微鏡12の総合倍率を増大させることができると判定する。一方、制御部35は、観察光路内に現在挿入されている対物レンズよりも倍率の大きな対物レンズが電動レボルバ24に装着されていなければ、対物レンズを切り替えても、顕微鏡12の総合倍率を増大させることはできないと判定する。
 ステップS33において、制御部35が、対物レンズを切り替えて顕微鏡12の総合倍率を増大させることができると判定した場合、処理はステップS34に進む。
 ステップS34において、制御部35は、観察光路内に現在挿入されている対物レンズよりも、倍率が1段階大きな対物レンズが観察光路内に挿入されるように、モータ駆動回路27および電動レボルバ制御部34を介して電動レボルバ24のレボルバを回転させ、対物レンズの切り替えを行う。
 ステップS34の処理後、処理はステップS35に進み、制御部35は、ステップS34での切り替え後の対物レンズの倍率、および、対物レンズの切り替え前の顕微鏡12の総合倍率(即ち、直前のステップS14で算出した顕微鏡12の総合倍率)に基づいて、電動ズーム21の目標倍率を算出する。即ち、制御部35は、図3を参照して説明したように、切り替え後の対物レンズの倍率において、対物レンズの切り替え前の顕微鏡12の総合倍率が維持されるように、電動ズーム21の目標倍率を求める。
 ステップS35の処理後、処理はステップS36に進み、制御部35は、ステップS35で算出した電動ズーム21の目標倍率を示す信号を、電動ズーム制御部32に供給し、電動ズーム制御部32は、その信号に基づいて、モータ駆動回路23を介して電動ズーム21を制御する。電動ズーム21では、電動ズーム制御部32の制御に応じて、モータがズームレンズを駆動して、電動ズーム21の倍率が目標倍率に設定される。
 ステップS36の処理後、ズームアップ処理は終了し、処理は図4のステップS13に戻る。
 一方、ステップS33において、制御部35が、対物レンズを切り替えて顕微鏡12の総合倍率を増大させることができないと判定した場合、処理はステップS37に進む。
 ステップS37において、制御部35は、例えば、表示部16に、ズームアップすることができない旨のエラーメッセージを表示させたり、図示しないスピーカからエラーメッセージまたはエラー音を出力させて、ズームアップができないことを通知する処理を行う。例えば、図3の例では、電動ズーム21の倍率が15倍であり、2.5倍の倍率の対物レンズが観察光路内に挿入されている場合、顕微鏡12の総合倍率を増大させることができないので、ズームアップができないことを通知する処理が行われる。
 ステップS37の処理後、ズームアップ処理は終了し、処理は図4のステップS13に戻る。
 次に、図6は、図4のステップS18におけるズームダウン処理を説明するフローチャートである。
 ステップS41において、制御部35は、電動ズーム21の現在の倍率がズーム範囲の下限値であるか否か、即ち、直前のステップS13(図4)でセンサ22および電動ズーム倍率検出部31を介して検出した倍率がズーム範囲の下限値であるか否かを判定する。
 ステップS41において、制御部35が、電動ズーム21の現在の倍率がズーム範囲の下限値でないと判定した場合、処理はステップS42に進み、制御部35は、電動ズーム制御部32およびモータ駆動回路23を介して電動ズーム21の倍率を減少させ、ズームダウン処理は終了し、処理はステップS13に戻る。
 一方、ステップS41において、制御部35が、電動ズーム21の現在の倍率がズーム範囲の下限値であると判定した場合、処理はステップS43に進み、制御部35は、対物レンズを切り替えて顕微鏡12の総合倍率を減少させることができるか否かを判定する。
 例えば、制御部35は、図4のステップS11で読み出した対物レンズの倍率を参照し、観察光路内に現在挿入されている対物レンズよりも倍率の小さな対物レンズが電動レボルバ24に装着されていれば、対物レンズを切り替えて顕微鏡12の総合倍率を減少させることができると判定する。一方、制御部35は、観察光路内に現在挿入されている対物レンズよりも倍率の小さな対物レンズが電動レボルバ24に装着されていなければ、対物レンズを切り替えても、顕微鏡12の総合倍率を減少させることはできないと判定する。
 ステップS43において、制御部35が、対物レンズを切り替えて顕微鏡12の総合倍率を減少させることができると判定した場合、処理はステップS44に進む。
 ステップS44において、制御部35は、観察光路内に現在挿入されている対物レンズよりも、倍率が1段階小さな対物レンズが観察光路内に挿入されるように、モータ駆動回路27および電動レボルバ制御部34を介して電動レボルバ24のレボルバを回転させ、対物レンズの切り替えを行う。
 ステップS44の処理後、処理はステップS45およびS46に進み、制御部35は、図5のステップS35およびS36での処理と同様に、顕微鏡12の総合倍率を維持させる電動ズーム21の目標倍率を算出し、電動ズーム制御部32およびモータ駆動回路23を介して、電動ズーム21の倍率を目標倍率に設定させる。
 ステップS46の処理後、ズームダウン処理は終了し、処理は図4のステップS13に戻る。
 一方、ステップS43において、制御部35が、対物レンズを切り替えて顕微鏡12の総合倍率を増大させることができないと判定した場合、処理はステップS47に進み、制御部35は、図5のステップS37での処理と同様に、ズームダウンができないことを通知する処理を行う。例えば、図3の例では、電動ズーム21の倍率が0.7倍であり、0.5倍の倍率の対物レンズが観察光路内に挿入されている場合、顕微鏡12の総合倍率を減少させることができないので、ズームダウンができないことを通知する処理が行われる。
 ステップS47の処理後、ズームダウン処理は終了し、処理は図4のステップS13に戻る。
 次に、図7は、図4のステップS20におけるレボルバ正回転処理を説明するフローチャートである。
 ステップS51において、制御部35は、モータ駆動回路27および電動レボルバ制御部34を介して電動レボルバ24のレボルバを正回転させ、処理はステップS52に進む。
 ステップS52において、制御部35は、アドレスセンサ26および電動レボルバ位置検出部33を介して、ステップS51での切り替え後の対物レンズの倍率を検出し、その対物レンズの倍率、および、対物レンズの切り替え前の顕微鏡12の総合倍率(即ち、直前のステップS14で算出した顕微鏡12の総合倍率)に基づいて、電動ズーム21の目標倍率を算出する。即ち、制御部35は、図3を参照して説明したように、切り替え後の対物レンズの倍率において、対物レンズの切り替え前の顕微鏡12の総合倍率が維持されるように、電動ズーム21の目標倍率を求める。
 ステップS52の処理後、処理はステップS53に進み、制御部35は、ステップS52で算出した電動ズーム21の目標倍率を示す信号を、電動ズーム制御部32に供給し、電動ズーム制御部32は、その信号に基づいて、モータ駆動回路23を介して電動ズーム21を制御する。電動ズーム21では、電動ズーム制御部32の制御に応じて、モータがズームレンズを駆動して、電動ズーム21の倍率が目標倍率に設定される。
 ステップS53の処理後、レボルバ正回転処理は終了し、処理は図4のステップS13に戻る。
 次に、図8は、図4のステップS22におけるレボルバ逆回転処理を説明するフローチャートである。
 ステップS61において、制御部35は、モータ駆動回路27および電動レボルバ制御部34を介して電動レボルバ24のレボルバを逆回転させ、処理はステップS62およびS63に進む。
 ステップS62およびS63において、制御部35は、図7のステップS52およびS53での処理と同様に、顕微鏡12の総合倍率を維持させる電動ズーム21の目標倍率を算出し、電動ズーム制御部32およびモータ駆動回路23を介して、電動ズーム21の倍率を目標倍率に設定させる。
 ステップS63の処理後、レボルバ逆回転処理は終了し、処理は図4のステップS13に戻る。
 以上のように、顕微鏡システム11では、対物レンズの切り替え前後で顕微鏡12の総合倍率を維持するので、ユーザが、サンプルの観察位置を見失うことはなく、その操作性を向上させることができる。
 さらに、電動ズーム21の倍率変更可能範囲の範囲外となるとき、電動レボルバ24により対物レンズが切り替えられるので、ユーザは、対物レンズを切り替える操作を行う必要がない。また、対物レンズの切り替えが自動的に行われることで、顕微鏡12の総合倍率を、より広い範囲でスムーズに変更することができる。このように、ユーザの手間を省くことができ、操作性の高い顕微鏡システム11を提供することができる。
 また、例えば、図5のステップS34の処理で対物レンズの切り替えを行うと同時(正確には、対物レンズの切り替えを指示するコマンドを送信した直後)に、ステップS35およびS36の処理を行って電動ズーム21の倍率を変更することで、切り替え時間を短縮化することができる。
 なお、図5のズームアップ処理において、制御部35は、ステップS33で対物レンズを切り替えて顕微鏡12の総合倍率を増大させることができると判定したとき、既に、切り替え後の対物レンズの倍率を把握しているので、その判定後すぐに、電動ズーム21の目標倍率を求め、電動レボルバ24のレボルバを回転させる処理と電動ズーム21の倍率を変更する処理とを連続的に行うことができる。このような制御を行うことにより、ズームアップ処理をスムーズに行うことができ、ズームアップ処理に要する時間を短縮すること、即ち、対物レンズの切り替えによるユーザの待機時間を短縮することができる。
 また、例えば、制御部35が、電動レボルバ24によるレボルバを回転に要する時間と、電動ズーム21による所望倍率への変更に要する時間とを調整することができる場合、制御部35は、電動レボルバ24のレボルバの回転が終了するまでに、即ち、所望の倍率の対物レンズが観察光路内に挿入されるまでに、電動ズーム21の倍率が目標倍率となるように制御してもよい。これにより、電動ズーム21による倍率の変更中には、観察光路内に対物レンズが配置されないことになり、その変更中の画像が表示部16に表示されることを回避することができる。従って、ユーザは、電動ズーム21による倍率の変更中の画像を見ることなく、ズームアップ処理の前後で倍率が維持された画像を続けて見ることができるので、観察に集中することができる。なお、図5のズームアップ処理における場合について説明したが、図6のズームダウン処理、図7のレボルバ正回転処理、および、図8のレボルバ逆回転処理においても、制御部35は同様な制御を行うことができる。
 また、顕微鏡システム11では、図3に示すように、電動レボルバ24に装着される対物レンズの倍率について、複数の対物レンズそれぞれが用いられたときの、電動ズーム21の倍率が連続的に変更することによる総合倍率の変更範囲が、隣り合う倍率の対物レンズどうしで重なり合うように設定されている。これにより、顕微鏡12の総合倍率の変更範囲を、連続的に広範囲なものとすることができる。
 なお、顕微鏡システム11では、制御部35が、表示部16による画像の表示を制御することができる。表示部16には、顕微鏡12を介して撮像部15により撮像された画像が表示され、制御部35は、電動レボルバ24の回転が開始されてから、電動レボルバ24の回転が停止されるまで、表示部16が画像の表示を停止するように制御する。
 例えば、図5のフローチャートのステップS34(または、図6のステップS44、図7のステップS51、図8のステップS61)において、電動レボルバ24によるレボルバの回転が開始された場合、制御部35は、その回転の直前に表示部16を制御して、撮像部15により撮像中の画像(ライブ画像)の表示を停止させ、例えば、黒一色の画像を表示させたり、レボルバの回転の直前に撮像された画像を表示させ続けたりする。その後、図5のフローチャートのステップS36(または、図6のステップS46、図7のステップS53、図8のステップS63)において、電動ズーム21の倍率が目標倍率に設定された後、制御部35は、表示部16を制御してライブ画像の表示を再開させる。
 このように、制御部35が、表示部16による画像の表示を制御することにより、対物レンズの切り替え時に、電動ズーム21の倍率を変更している途中の画像が表示部16に表示されることが回避される。これにより、対物レンズの切り替え前後で顕微鏡12の総合倍率が維持された画像が表示部16に表示されるので、変更中の画像が表示される場合よりも、サンプルを見失い難くなる。つまり、電動ズーム21により倍率が変更中で、対物レンズの切り替え前後の倍率とは異なる倍率の画像が一時的に表示部16に表示される場合よりも、ユーザが、サンプルを見失い難くなるので観察に集中することができ、よりスムーズに観察を行うことができる。
 さらに、例えば、制御部35は、ライブ画像の表示を停止している間(例えば、黒一色の画像を表示したり、レボルバの回転の直前の画像を表示し続けている間)、表示部16の端部に、電動ズーム21の倍率が変更中である旨のメッセージを表示してもよい。これにより、ユーザが、ライブ画像の表示が停止している理由を把握することができ、ライブ画像の表示が停止することにより感じる違和感を軽減することができる。
 なお、本実施の形態においては、顕微鏡12とコントロールボックス13とが別々に構成されているが、コントロールボックス13が顕微鏡12に組み込まれていてもよい。
 また、リモートコマンダ14を用いて電動ズーム21の倍率を変更させる操作を行う他、例えば、コントロールボックス13にRS232CやUSBなどの通信機能を備えさせ、コントロールボックス13とパーソナルコンピュータとを接続させて、パーソナルコンピュータからの通信コマンドにより、コントロールボックス13に各種の操作を指示することができる。
 なお、図2に示すように、リモートコマンダ14は機能切替スイッチ45を備えており、ユーザは、機能切替スイッチ45を操作して、適宜、顕微鏡12の総合倍率を維持させる機能を無効にすることができる。このように、顕微鏡12の総合倍率を維持させる機能を切り替えることで、例えば、熟練者などは、よりスムーズに顕微鏡システム11を操作することができる。
 なお、上述のフローチャートを参照して説明した各処理は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含むものである。また、プログラムは、1つのCPUにより処理されるものであっても良いし、複数のCPUによって分散処理されるものであっても良い。さらに、制御部35のCPUが実行するプログラムは、適宜、制御部35が有するメモリにダウンロードして更新することができる。
 また、本明細書において、システムとは、複数の装置により構成される装置全体を表すものである。
 なお、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
 11 顕微鏡システム, 12 顕微鏡, 13 コントロールボックス, 14 リモートコマンダ, 15 撮像部, 16 表示部, 21 電動ズーム, 22 センサ, 23 モータ駆動回路, 24 電動レボルバ, 25 ストップセンサ, 26 アドレスセンサ, 27 モータ駆動回路, 31 電動ズーム倍率検出部, 32 電動ズーム制御部, 33 電動レボルバ位置検出部, 34 電動レボルバ制御部, 35 制御部, 41 ズームアップスイッチ, 42 ズームダウンスイッチ, 43 正回転スイッチ, 44 逆回転スイッチ, 45 機能切替スイッチ, 46乃至48 倍率設定スイッチ

Claims (6)

  1.  サンプルを拡大して観察する顕微鏡システムにおいて、
     前記サンプルの拡大倍率を変化させるズーム指示手段と、
     前記ズーム指示手段の指示に従って、前記サンプルを拡大する倍率を、所定の倍率変更可能範囲内で連続的に変更するズーム手段と、
     倍率の異なる複数の対物レンズを有し、観察光路内に配置される対物レンズを切り替えて、前記サンプルを拡大する倍率を断続的に変更する切替手段と、
     前記ズーム手段による倍率と、前記観察光路内に現在配置されている前記対物レンズの倍率とに基づいて、前記サンプルを観察する総合倍率を算出する総合倍率算出手段と、
     前記ズーム指示手段により倍率を変更させる操作が行われた場合に、その操作に応じた変更後の倍率が前記ズーム手段の倍率変更可能範囲の範囲外となるとき、前記観察光路内に配置される前記対物レンズを切り替えるように、前記切替手段を制御する切替制御手段と、
     前記対物レンズの切り替え後の前記総合倍率を前記対物レンズの切り替え前の前記総合倍率に維持させるのに必要な前記ズーム手段の倍率(目標倍率)を決定するズーム倍率決定手段と、
     前記ズーム手段の倍率が、前記ズーム倍率決定手段により決定された前記目標倍率となるように、前記ズーム手段を制御するズーム制御手段と
     を備えることを特徴とする顕微鏡システム。
  2.  前記切替制御手段は、
      前記ズーム指示手段により倍率を増大させる操作が行われた場合に、その操作に応じた変更後の倍率が前記ズーム手段の倍率変更可能範囲の上限値より大となるか否かを判定し、
      前記ズーム手段の倍率変更可能範囲の上限値より大となると判定した場合、前記観察光路内に現在配置されている対物レンズよりも倍率が大きな対物レンズを前記切替手段が有しているか否かを判定し、
      前記倍率が大きな対物レンズを前記切替手段が有していると判定した場合、前記切替手段を制御して、前記倍率が大きな対物レンズを前記観察光路内に配置させる
     ことを特徴とする請求項1に記載の顕微鏡システム。
  3.  前記切替制御手段は、
      前記ズーム指示手段により倍率を減少させる操作が行われた場合に、その操作に応じた変更後の倍率が前記ズーム手段の倍率変更可能範囲の下限値未満となるか否かを判定し、
      前記ズーム手段の倍率変更可能範囲の下限値未満となると判定した場合、前記観察光路内に現在配置されている対物レンズよりも倍率が小さな対物レンズを前記切替手段が有しているか否かを判定し、
      前記倍率が小さな対物レンズを前記切替手段が有していると判定した場合、前記切替手段を制御して、前記倍率が小さな対物レンズを前記観察光路内に配置させる
     ことを特徴とする請求項1に記載の顕微鏡システム。
  4.  前記切替制御手段は、前記対物レンズを切り替えさせる操作が行われたときに、その操作に応じて前記観察光路内に配置される前記対物レンズを切り替えるように、前記切替手段を制御し、
     前記ズーム倍率決定手段は、前記対物レンズを切り替えさせる操作に応じた前記対物レンズの切り替え後の前記総合倍率を、前記対物レンズの切り替え前の前記総合倍率に維持させる前記目標倍率を決定し、
     前記ズーム制御手段は、前記ズーム手段の倍率が、前記対物レンズを切り替えさせる操作に応じて前記ズーム倍率決定手段により決定された目標倍率となるように、前記ズーム手段を制御する
     ことを特徴とする請求項1に記載の顕微鏡システム。
  5.  前記切替手段が有する複数の前記対物レンズは、複数の前記対物レンズそれぞれが用いられたときの、前記ズーム手段の倍率が連続的に変更することによる前記総合倍率の変更範囲が、隣り合う倍率の前記対物レンズどうしで重なり合うように設定されている
     ことを特徴とする請求項1に記載の顕微鏡システム。
  6.  前記対物レンズおよび前記ズーム手段を介して撮像された前記サンプルの画像を表示する表示手段と、
     前記切替手段による前記対物レンズの切り替えが開始されたことを検出する切替検出手段と、
     前記切替検出手段により前記対物レンズの切り替えが開始されたことが検出されてから、前記ズーム制御手段による前記ズーム手段の倍率の変更が終了するまで、前記表示手段の前記画像の表示を停止させる表示制御手段と
     をさらに備えることを特徴とする請求項1に記載の顕微鏡システム。
PCT/JP2009/067206 2008-10-02 2009-10-02 顕微鏡システム WO2010038845A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010531913A JP5126367B2 (ja) 2008-10-02 2009-10-02 顕微鏡システムおよび観察制御方法
EP09817877.5A EP2341384B1 (en) 2008-10-02 2009-10-02 Microscope system and observation control method
US13/077,162 US8379303B2 (en) 2008-10-02 2011-03-31 Microscope system and observation control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-257231 2008-10-02
JP2008257231 2008-10-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/077,162 Continuation US8379303B2 (en) 2008-10-02 2011-03-31 Microscope system and observation control method

Publications (1)

Publication Number Publication Date
WO2010038845A1 true WO2010038845A1 (ja) 2010-04-08

Family

ID=42073603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067206 WO2010038845A1 (ja) 2008-10-02 2009-10-02 顕微鏡システム

Country Status (4)

Country Link
US (1) US8379303B2 (ja)
EP (1) EP2341384B1 (ja)
JP (1) JP5126367B2 (ja)
WO (1) WO2010038845A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130113082A (ko) * 2012-04-05 2013-10-15 주식회사 휴비츠 현미경의 광학 배율 조절 장치
JP6455829B2 (ja) * 2013-04-01 2019-01-23 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
DE102014114465B3 (de) * 2014-10-06 2016-01-28 Leica Microsystems (Schweiz) Ag Mikroskop mit objektivabhängiger Begrenzung des Drehwinkels des Zoomdrehrades
DE102014114467A1 (de) * 2014-10-06 2016-04-07 Leica Microsystems (Schweiz) Ag Mikroskop mit überdimensioniertem Zoomsystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248450A (ja) * 1994-03-11 1995-09-26 Olympus Optical Co Ltd 顕微鏡システム
JP2004004856A (ja) 2003-05-23 2004-01-08 Olympus Corp 顕微鏡システム
JP2005017998A (ja) * 2003-06-24 2005-01-20 Hajime Murakami 多目的ズームレンズ機構共通型マイクロスコープシステム
JP2005316362A (ja) * 2004-03-31 2005-11-10 Olympus Corp 観察装置および蛍光観察装置
JP2006178440A (ja) * 2004-11-29 2006-07-06 Nikon Corp ズーム顕微鏡

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172617A (ja) * 1983-03-22 1984-09-29 Olympus Optical Co Ltd 自動制御式照明光学系を備えた顕微鏡
DE3475013D1 (en) * 1983-03-29 1988-12-08 Olympus Optical Co Microscope provided with automatic focusing device
JP2925647B2 (ja) * 1990-04-16 1999-07-28 オリンパス光学工業株式会社 顕微鏡変倍装置
JP3537205B2 (ja) * 1995-02-02 2004-06-14 オリンパス株式会社 顕微鏡装置
JP2001304809A (ja) * 2000-04-26 2001-10-31 Nachi Fujikoshi Corp 顕微鏡の光軸補正方法
EP1731941B1 (en) 2004-03-31 2013-05-01 Olympus Corporation Observing device and fluorescent light observing device
US7593157B2 (en) 2004-11-29 2009-09-22 Nikon Corporation Zoom microscope
JP4996304B2 (ja) * 2007-03-28 2012-08-08 オリンパス株式会社 走査型顕微鏡とその調節方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248450A (ja) * 1994-03-11 1995-09-26 Olympus Optical Co Ltd 顕微鏡システム
JP2004004856A (ja) 2003-05-23 2004-01-08 Olympus Corp 顕微鏡システム
JP2005017998A (ja) * 2003-06-24 2005-01-20 Hajime Murakami 多目的ズームレンズ機構共通型マイクロスコープシステム
JP2005316362A (ja) * 2004-03-31 2005-11-10 Olympus Corp 観察装置および蛍光観察装置
JP2006178440A (ja) * 2004-11-29 2006-07-06 Nikon Corp ズーム顕微鏡

Also Published As

Publication number Publication date
EP2341384A1 (en) 2011-07-06
EP2341384B1 (en) 2019-03-27
US20110310474A1 (en) 2011-12-22
US8379303B2 (en) 2013-02-19
JP5126367B2 (ja) 2013-01-23
EP2341384A4 (en) 2017-06-28
JPWO2010038845A1 (ja) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5467011B2 (ja) 顕微鏡システム
JP4460297B2 (ja) 方向可変のビューエンドスコープ用インターフェース
JP5246266B2 (ja) 顕微鏡システムおよび観察制御方法
JP5126367B2 (ja) 顕微鏡システムおよび観察制御方法
JP5087423B2 (ja) 観察装置
US7986338B2 (en) Microscope system and image production method
JP5053790B2 (ja) レンズ制御装置
JP2006197320A (ja) 資料提示装置
JP4273274B2 (ja) レンズ制御装置
JP2006049952A (ja) オートフォーカスシステム
JP5639251B2 (ja) 顕微鏡システム
JP5537320B2 (ja) 顕微鏡システム
JP4273275B2 (ja) レンズ制御装置
JP4059560B2 (ja) 内視鏡装置
JP6235835B2 (ja) レンズシステム及びそれを有する撮影装置
JP7252023B2 (ja) 画像処理装置及び医療用観察システム
JP2010256724A (ja) 観察装置
JP5639250B2 (ja) 顕微鏡システム
JP5639252B2 (ja) 顕微鏡システム
JP2006139115A (ja) オートフォーカスシステム
JP2004102000A (ja) レンズ制御装置
JP5450743B2 (ja) 顕微鏡装置
JP5102081B2 (ja) 顕微鏡装置、その駆動制御装置、プログラム
CN116615684A (zh) 用于显微镜的控制装置
JP2009015154A (ja) 操作装置、顕微鏡、ステージ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010531913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009817877

Country of ref document: EP