WO2010038646A1 - 球状体の研磨装置、球状体の研磨方法および球状部材の製造方法 - Google Patents

球状体の研磨装置、球状体の研磨方法および球状部材の製造方法 Download PDF

Info

Publication number
WO2010038646A1
WO2010038646A1 PCT/JP2009/066503 JP2009066503W WO2010038646A1 WO 2010038646 A1 WO2010038646 A1 WO 2010038646A1 JP 2009066503 W JP2009066503 W JP 2009066503W WO 2010038646 A1 WO2010038646 A1 WO 2010038646A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
spherical body
layer
abrasive
groove
Prior art date
Application number
PCT/JP2009/066503
Other languages
English (en)
French (fr)
Inventor
田中 裕
勝利 村松
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN200980139747.2A priority Critical patent/CN102170999B/zh
Priority to EP09817680.3A priority patent/EP2351630B1/en
Priority to US13/122,372 priority patent/US9089947B2/en
Publication of WO2010038646A1 publication Critical patent/WO2010038646A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/02Lapping machines or devices; Accessories designed for working surfaces of revolution
    • B24B37/025Lapping machines or devices; Accessories designed for working surfaces of revolution designed for working spherical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B11/00Machines or devices designed for grinding spherical surfaces or parts of spherical surfaces on work; Accessories therefor
    • B24B11/02Machines or devices designed for grinding spherical surfaces or parts of spherical surfaces on work; Accessories therefor for grinding balls
    • B24B11/04Machines or devices designed for grinding spherical surfaces or parts of spherical surfaces on work; Accessories therefor for grinding balls involving grinding wheels
    • B24B11/06Machines or devices designed for grinding spherical surfaces or parts of spherical surfaces on work; Accessories therefor for grinding balls involving grinding wheels acting by the front faces, e.g. of plane, grooved or bevelled shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/18Wheels of special form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/40Ceramics, e.g. carbides, nitrides, oxides, borides of a metal

Definitions

  • the present invention relates to a spherical body polishing apparatus, a spherical body polishing method, and a spherical member manufacturing method, and more specifically, a spherical body polishing apparatus, a spherical body polishing method, and a spherical body capable of reducing polishing costs.
  • the present invention relates to a method for manufacturing a member.
  • a manufacturing process of a spherical member used as a rolling element of a rolling bearing or a valve body of a ball valve often includes a step of polishing the surface of the spherical body.
  • the polishing of the spherical body is generally performed using abrasive grains having a hardness higher than that of the spherical body.
  • the spherical body is made of a material having high hardness such as ceramics such as silicon nitride and sialon
  • the abrasive grains have extremely high hardness such as diamond, CBN (Cubic Boron Nitride), It is necessary to use expensive abrasive grains.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-210862
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-326238
  • an object of the present invention is to provide a spherical body polishing apparatus, a spherical body polishing method, and a spherical member manufacturing method capable of reducing the polishing cost.
  • a spherical body polishing apparatus is a spherical body polishing apparatus for polishing a surface of a spherical body, and includes a first member having a first polishing surface and a first member facing the first polishing surface. And a second member having two polished surfaces.
  • the first polishing surface and the second polishing surface can rotate relative to each other while maintaining a state of facing each other.
  • At least one of the first polishing surface and the second polishing surface is formed with a groove portion extending in the circumferential direction along the rotation.
  • At least one of the first member and the second member in which the groove is formed is formed on the abrasive layer including abrasive grains having a hardness higher than that of the spherical body, and is lower than the abrasive layer. And a holding layer having hardness.
  • the groove is formed so as to penetrate the holding layer in the depth direction and reach the abrasive layer.
  • the entire polishing surface of the surface plate is an abrasive layer including abrasive grains having a hardness higher than that of the spherical body, and the groove portion is formed in the abrasive layer.
  • the spherical body clamped by a pair of surface plate is grind
  • the abrasive layer contains abrasive grains having higher hardness than the spherical body to be processed, the cost of the processing is often increased.
  • the abrasive grains include extremely hard abrasive grains such as diamond and CBN, it is difficult to correct the groove depth by grinding, and it is necessary to carry out more expensive electric discharge machining. The cost required for the correction processing is extremely large.
  • the member in which the groove is formed includes an abrasive layer and a holding layer having a lower hardness than the abrasive layer, formed on the abrasive layer, The groove is formed so as to penetrate the holding layer in the depth direction and reach the abrasive layer.
  • the abrasive grain layer is exposed at the bottom of the groove that contributes to polishing of the spherical body, and the side wall of the groove that contributes to holding the spherical body is made of a holding layer.
  • the spherical body can be stably held by increasing the thickness of the holding layer.
  • the depth can be suppressed and the thickness of the abrasive layer can be reduced.
  • the groove depth correction process can be achieved by performing a process of removing the surface layer part of the holding layer instead of the hard abrasive layer. . Therefore, it is possible to reduce the running cost when continuously using the spherical body processing apparatus.
  • the spherical body polishing apparatus of the present invention it is possible to provide a spherical body polishing apparatus capable of reducing the polishing cost.
  • the abrasive grains include at least one selected from the group consisting of diamond particles, cubic boron nitride particles, and boron carbide particles.
  • the abrasive layer is preferably configured by bonding the abrasive grains with a binder. Thereby, the abrasive grain layer containing various abrasive grains can be formed easily.
  • the binder may include at least one selected from the group consisting of resinoid bonds, vitrified bonds, and metal bonds.
  • the abrasive grain layer having sufficient strength can be easily formed.
  • the holding layer may be made of a binder that binds abrasive grains in the abrasive layer.
  • the holding layer may be made of steel or casting. Thereby, it is possible to form an inexpensive holding layer having sufficient strength.
  • the spherical body polishing method provides a workpiece between a first member having a first polishing surface and a second member having a second polishing surface opposite to the first polishing surface.
  • At least one of the first polishing surface and the second polishing surface is formed with a groove portion extending in the circumferential direction along the rotation.
  • At least one of the first member and the second member in which the groove is formed is formed on the abrasive layer including abrasive grains having a hardness higher than that of the spherical body, and is lower than the abrasive layer. And a holding layer having hardness.
  • the groove is formed so as to penetrate the holding layer in the depth direction and reach the abrasive layer. And in the process of grind
  • the spherical body polishing method of the present invention in the step of polishing the spherical body, the spherical body is polished by contacting the abrasive layer while being held in the holding layer formed on the abrasive layer of the groove. .
  • the thickness of the holding layer having a lower hardness than the abrasive layer it is possible to stably hold the spherical body, and thus suppressing the depth of the groove formed in the abrasive layer, It becomes possible to reduce the thickness of the abrasive layer.
  • polishing of a spherical body can be suppressed.
  • the correction processing can be performed by removing the surface layer portion of the holding layer instead of the abrasive layer having high hardness. Therefore, the running cost of the spherical body processing apparatus can be reduced.
  • the spherical body polishing method of the present invention can provide a spherical body polishing method capable of reducing the polishing cost.
  • the spherical body is preferably made of ceramics.
  • the abrasive grains include at least one selected from the group consisting of diamond particles, cubic boron nitride particles, and boron carbide particles.
  • the method of polishing a spherical body of the present invention that can suppress the amount of abrasive grains used by reducing the thickness of the abrasive grain layer and can suppress the processing on the abrasive grain layer is extremely hard as described above.
  • the binder may include at least one selected from the group consisting of resinoid bonds, vitrified bonds, and metal bonds.
  • the holding layer may be made of a binder that binds the abrasive grains in the abrasive layer.
  • the holding layer may be made of steel or casting. Thereby, it has sufficient intensity
  • the method for manufacturing a spherical member according to the present invention includes a step of preparing a spherical body and a step of polishing the spherical body.
  • the spherical body is polished by the spherical body polishing method of the present invention.
  • the spherical member can be manufactured at a low cost by employing the above-described spherical polishing method that can reduce the polishing cost.
  • the spherical body polishing apparatus As is apparent from the above description, according to the spherical body polishing apparatus, the spherical body polishing method, and the spherical member manufacturing method of the present invention, the spherical body polishing apparatus and the spherical body capable of reducing the polishing cost.
  • a polishing method and a manufacturing method of a spherical member can be provided.
  • FIG. 1 is a schematic diagram showing a configuration of a spherical body polishing apparatus in Embodiment 1.
  • FIG. It is a schematic sectional drawing which shows the structure of the surface plate with which the spherical body grinding
  • 3 is a flowchart showing an outline of a method for manufacturing a bearing ball in the first embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a configuration of a surface plate provided in a spherical body polishing apparatus in a second embodiment. It is a schematic sectional drawing which shows the structure of the surface plate of a comparative example.
  • polishing apparatus 1 includes a rotating plate 10 that is a disk-shaped surface plate having a rotating plate polishing surface 10A, and a fixed plate polishing surface 20A that faces the rotating plate polishing surface 10A.
  • a fixed plate 20 that is a disk-shaped surface plate, an inlet chute 30 that introduces a spherical ball 91 that is a spherical body between the rotary plate 10 and the fixed plate 20, and an outlet chute from which the polished basic ball 91 is taken out. 40.
  • the fixed platen 20 and the turntable 10 are arranged at a predetermined interval so that the fixed plate polishing surface 20A and the turntable polishing surface 10A are parallel to each other and the center axis coincides with the rotation axis ⁇ . Yes. Further, the fixed platen 20 is fixed to a gantry (not shown) that holds the fixed platen 20, while the rotary plate 10 is rotated around the rotation axis ⁇ (along the rotation direction ⁇ along the circumferential direction of the rotary plate 10. And can be rotated.
  • the rotating disk polishing surface 10A has a plurality of concentric (three in this embodiment) groove portions 11 centering on the intersection of the rotation axis ⁇ and the rotating disk polishing surface 10A. Is formed. That is, three groove portions 11 extending in the circumferential direction along the rotation of the turntable 10 are formed on the turntable polishing surface 10A.
  • the fixed platen 20 has an opening 24 penetrating the fixed platen 20 in the thickness direction (direction along the rotation axis ⁇ ).
  • the three grooves 11 formed on the rotating disk polishing surface 10 ⁇ / b> A are exposed from the opening 24.
  • the inlet chute 30 has an upper surface on which a plurality of grooves 31 extending in parallel are formed.
  • the inlet chute 30 is arranged so that the direction in which the groove 31 extends intersects the groove portion 11 formed on the rotating disk polishing surface 10A and so that one end of the groove 31 is adjacent to the groove portion 11. It arrange
  • the inlet chute 30 is fixed to a gantry (not shown) in such a manner that the upper surface intersects the horizontal plane so that the groove 31 is inclined toward the opening 24. As a result, the base ball 91 supplied to the groove 31 of the inlet chute 30 rolls along the groove 31 and is inserted between the rotating disk 10 and the fixed disk 20.
  • the outlet chute 40 is disposed adjacent to the inlet chute 30 on the side opposite to the rotation direction ⁇ of the rotating disk 10 and penetrates the stationary disk 20 in the direction of the rotation axis ⁇ .
  • turntable 10 in the first embodiment uses disk-shaped surface plate main body 17 made of a material such as iron or casting, and diamond particles arranged on surface plate main body 17 as abrasive grains.
  • An abrasive layer 18 is included, and a holding layer 19 made of steel formed on the abrasive layer 18 is provided.
  • the hardness of the holding layer 19 is lower than that of the abrasive grain layer 18.
  • the groove 11 is formed so as to penetrate the holding layer 19 in the depth direction from the rotating disk polishing surface 10 ⁇ / b> A that is the surface of the holding layer 19 opposite to the abrasive grain layer 18, and reach the abrasive grain layer 18. Yes.
  • the bottom of the groove 11 is located in the abrasive layer 18.
  • the wall surface of the groove portion 11 has an arc shape in a cross section perpendicular to the extending direction.
  • the abrasive grain layer 18 is exposed at the bottom of the groove 11 that contributes to polishing of the elementary sphere 91, and the side wall of the groove 11 that contributes to holding the elementary sphere 91 (the wall surface of the groove 11 and the groove 11 are formed.
  • the portion of the rotating disk polishing surface 10 ⁇ / b> A that does not intersect is located in the holding layer 19.
  • the abrasive grain layer 18 is configured by bonding abrasive grains with a binder.
  • the turntable 10 in which the groove portion 11 is formed is formed on the abrasive layer 18 including abrasive grains made of diamond particles having hardness higher than the spherical sphere 91, and the abrasive layer 18. And a holding layer 19 having a hardness lower than 18.
  • the groove 11 is formed so as to penetrate the holding layer 19 in the depth direction and reach the abrasive layer 18.
  • a process ball preparation step is performed as a step (S10).
  • a raw material powder of ceramics such as silicon nitride and sialon is prepared, and after the raw material powder is formed into a spherical shape, pressure sintering or atmospheric pressure sintering is performed.
  • the spherical sphere 91 as a spherical body made of a ceramic sintered body is produced.
  • step (S20) a processing ball throwing step is performed.
  • the base ball 91 prepared in the step (S10) is put into the polishing apparatus shown in FIG. Specifically, referring to FIG. 1, raw ball 91 prepared in step (S ⁇ b> 10) is supplied onto groove 31 of inlet chute 30. The supplied elementary ball 91 rolls on the groove 31 of the inlet chute 30 and travels through the opening 24 to a position where it contacts the groove 11 of the turntable 10. At this time, by rotating the turntable 10 along the rotation direction ⁇ , the base ball 91 is drawn between the turntable 10 and the fixed plate 20 facing each other.
  • a processing step is performed as a step (S30).
  • the base ball 91 drawn between the turntable 10 and the fixed platen 20 is held between the groove portion 11 formed on the turntable 10 and the groove portion formed on the fixed platen 20, Polishing is performed by rolling in the direction ⁇ of the rotation of the turntable 10.
  • the base ball 91 drawn between the turntable 10 and the fixed platen 20 is held in the radial direction of the turntable 10 by the holding layer 19 in the groove portion 11. It grind
  • a polishing liquid containing loose abrasive grains may be supplied between the turntable 10 and the fixed platen 20.
  • a discharging step is performed as a step (S40).
  • the ground ball 91 that has been polished is discharged from the outlet chute 40.
  • the elementary ball 91 polished by rolling in the direction of rotation ⁇ of the turntable 10 in the step (S ⁇ b> 30) reaches the position where the exit chute 40 is disposed. By moving away from the groove portion 11, it is discharged to the outside of the polishing apparatus 1 through the outlet chute 40.
  • a finishing step is performed as a step (S50).
  • the base ball 91 prepared in step (S10) and polished in steps (S20) to (S40) is subjected to finishing, thereby completing a ball of the bearing as a spherical member.
  • the abrasive grains contained in the abrasive grain layer 18 are made of finer diamond particles with respect to the elementary sphere 91 that has been completed up to the step (S40).
  • a finishing process for further reducing the surface roughness of the elementary sphere 91 is performed by the same procedure as described above.
  • This finishing process may be performed a plurality of times while gradually reducing the diamond particles constituting the abrasive grains.
  • the lapping process using a well-known lapping machine may be implemented as final grinding
  • the abrasive layer 18 and the holding layer 19 are formed of one abrasive layer.
  • the turntable 10 is removed from the polishing apparatus, and correction processing is performed by a method such as high-cost electric discharge processing.
  • the attachment accuracy greatly affects the processing accuracy of the base ball 91, so fine adjustment after attachment is necessary.
  • This fine adjustment can be performed, for example, by performing a break-in operation for actually polishing the elementary ball 91 and confirming the polished state of the elementary ball 91. Due to such fine adjustment after installation, the downtime of the production line becomes longer, leading to an increase in cost.
  • the surface layer portion of the rotating disk polishing surface 10A of the rotating disk 10 is composed of the holding layer 19 having low hardness.
  • the groove depth can be corrected by an inexpensive method without being removed from the polishing apparatus 1.
  • a dresser is inserted from the opening 24 in a state where the turntable 10 is rotated and brought into contact with the holding layer 19.
  • correction processing can be performed. That is, in polishing apparatus 1 in the present embodiment, in-line groove depth correction processing is possible.
  • Embodiment 2 which is another embodiment of the present invention will be described.
  • the spherical body polishing apparatus according to the second embodiment has basically the same configuration as that of the first embodiment, operates in the same manner, and produces the same effects.
  • the spherical body polishing apparatus according to the second embodiment is different from the second embodiment in the configuration of the holding layer.
  • a layer made of the binder is formed on the layer, and then a process such as firing is performed, whereby the abrasive grain layer 18 and the abrasive grains are formed.
  • the holding layer 59 on the layer 18 can be efficiently manufactured.
  • the polishing apparatus includes the rotating disk and the fixed disk has been described.
  • the spherical body polishing apparatus of the present invention is not limited to this, and for example, the rotation directions of the surface plates facing each other are different. And / or one that rotates relative to the other by rotating at different rotational speeds.
  • the polishing method using the polishing apparatus in the above embodiment can be used for polishing in the production of various spherical members.
  • the hardness is high, high hardness abrasive grains are required and high surface finishing accuracy is achieved. It can be particularly advantageously employed for polishing in the production of balls of rolling bearings made of silicon nitride or sialon, which requires
  • Example 1 Embodiment 1 of the present invention will be described below.
  • a surface plate having the same structure as the surface plate described with reference to FIG. 4 was manufactured, and an investigation was conducted to confirm the effect of reducing the manufacturing cost. Specifically, a 3 mm thick abrasive-containing layer mixed with abrasive grains made of diamond particles and metal bonds was formed on an iron platen body, and a 1.6 mm thick bond layer made of metal bonds was further formed. . Then, it baked and produced the member by which the abrasive grain layer and the retention layer were formed on the surface plate main body.
  • a comparative surface plate outside the scope of the present invention was also manufactured.
  • the formation of the bond layer is omitted in the same procedure as the surface plate of Example A, and the thickness of the abrasive-containing layer is increased by the thickness of the bond layer.
  • the thickness of the abrasive layer was increased by the thickness of the holding layer in Example A (Comparative Example A). That is, referring to FIG. 5, the surface plate 110 of the comparative example includes a surface plate main body 117 and an abrasive layer 118 formed on the surface plate main body 117 and containing abrasive grains made of diamond particles. .
  • the platen of Example A has a manufacturing cost of 25% with respect to the platen of the comparative example, although a step of forming a bond layer on the abrasive-containing layer is added.
  • the reduction of can be achieved. This is because the material cost can be reduced by reducing the thickness of the abrasive layer containing expensive diamond abrasive grains, and the processing for the abrasive layer in forming the groove has been replaced by the processing for the holding layer having low hardness. This is because the processing cost is reduced.
  • the abrasive grain layer 18 that contributes to the polishing of the spherical body is exposed at the bottom of the groove portion as shown in FIG. 4, so that the surface plate of Comparative Example A shown in FIG. A similar polishing process can be performed.
  • a surface plate having the same configuration as that of the example and the comparative example prepared in Example 1 was prepared, and three types of diameters of 5/16 inch, 1/2 inch, and 1.7 / 8 inch were used.
  • a ceramic sphere made of silicon nitride having a size was actually polished.
  • the depth of the groove was determined to an optimum value according to the size of the ceramic sphere to be polished.
  • the surface layer portion of the holding layer or the abrasive layer is removed to reduce the depth of the groove portion (groove portion). The depth was corrected) and polishing was continued.
  • Table 2 shows the experimental results.
  • Table 2 the results of the surface plates of Examples when 5/16 inch, 1/2 inch, and 1/7/8 inch ceramic spheres are polished are shown in Examples B, C, and D, and Comparative Example.
  • the wheel results are shown as Comparative Examples B, C, and D, respectively, and the lifespan of Comparative Examples B, C, and D is set to 1, and the wheel life is displayed.
  • the grindstone life is 5.2 to 9.3 times that when the surface plate of the comparative example is used. This is because the thickness of the abrasive layer existing between the bottom of the groove and the surface plate main body is small in the surface plate of the comparative example, although the thickness of the abrasive layer is thicker than in the example. is there.
  • the larger the diameter of the ceramic sphere to be polished the greater the effect of using the surface plate of the example. This is because the depth of the groove portion needs to be increased as the size of the ceramic sphere to be polished increases, and thus the thickness of the abrasive layer existing between the bottom of the groove portion and the surface plate body is reduced. It is thought to do.
  • Embodiment 3 of the present invention will be described below.
  • the experimental procedure is as follows.
  • the ceramic spheres were polished by a polishing apparatus provided with the surface plates of the examples and comparative examples prepared in Example 1 above. Then, when the abrasive layer wears and the depth of the groove portion increases and polishing cannot be continued, the surface layer portion of the holding layer or the abrasive layer is removed to reduce the depth of the groove portion (groove depth). The cost required for the correction processing of the groove depth was calculated.
  • Table 3 the result of the example is shown as Example E, the result of the comparative example is set as Comparative Example E, the cost of Comparative Example E is set as 1, and the cost required for the modification processing of the groove depth is displayed.
  • the cost for correcting the groove depth can be reduced to about 1/50 when the surface plate of the comparative example is used. This is because in the surface plate of the comparative example, it was necessary to remove the surface plate from the polishing apparatus in order to carry out the correction processing of the groove depth, and to perform electric discharge machining, whereas in the surface plate of the example, This is because the groove depth can be corrected by removing a surface layer portion of the holding layer by bringing a general dresser into contact with the holding layer without removing it from the polishing apparatus.
  • the spherical body polishing apparatus, the spherical body polishing method, and the spherical member manufacturing method of the present invention include a spherical body polishing apparatus, a spherical body polishing method, and a spherical member manufacturing method that are required to reduce polishing costs. It can be applied particularly advantageously.

Abstract

 研磨コストを低減することが可能な球状体の研磨装置は、回転盤研磨面(10A)を有する回転盤(10)と、回転盤研磨面(10A)に対向する固定盤研磨面を有する固定盤とを備えている。回転盤研磨面(10A)は固定盤研磨面に対して対向する状態を維持しつつ、相対的な回転が可能となっている。回転盤研磨面(10A)には、上記回転に沿った周方向に延在する溝部(11)が形成されている。溝部(11)が形成された回転盤(10)は、球状体である素球よりも高い硬度を有する砥粒層(18)と、砥粒層(18)上に形成され、砥粒層(18)よりも低い硬度を有する保持層(19)とを含んでいる。そして、溝部(11)は深さ方向において保持層(19)を貫通し、砥粒層(18)に至るように形成されている。

Description

球状体の研磨装置、球状体の研磨方法および球状部材の製造方法
 本発明は球状体の研磨装置、球状体の研磨方法および球状部材の製造方法に関し、より特定的には、研磨コストを低減することが可能な球状体の研磨装置、球状体の研磨方法および球状部材の製造方法に関するものである。
 転がり軸受の転動体やボールバルブの弁体などとして使用される球状部材の製造プロセスは、球状体の表面を研磨する工程を含む場合が多い。この球状体を研磨する工程に対しては、効率の向上、コストの低減などの要求がある。ここで、球状体の研磨は、一般に球状体よりも硬度の大きい砥粒を用いて実施される。したがって、球状体が窒化珪素、サイアロンなどのセラミックスのような硬度の高い素材からなる場合、砥粒としては、ダイヤモンド、CBN(Cubic Boron Nitride;立方晶窒化硼素)などの極めて高い硬度を有するとともに、高価な砥粒を用いる必要がある。
 これに対し、効率の向上やコストの低減を目的とした検討が行なわれ、種々の提案がなされている(特開2000-210862号公報(特許文献1)および特開2000-326238号公報(特許文献2)参照)。
特開2000-210862号公報 特開2000-326238号公報
 上記特許文献1に記載のように、ダイヤモンド砥粒を遊離砥粒としてラップ液に混入することにより、ラップ液が研磨定盤の目立てに作用し、研磨効率が向上する。しかし、遊離砥粒に高価なダイヤモンド砥粒等を用いる必要があること、および遊離砥粒の作用により研磨定盤の摩耗が促進されることから、ランニングコストが上昇するという問題がある。
 また、上記特許文献2にように、炭化硼素からなる砥粒を結合剤により結合した構成を有する砥石を採用することにより、ダイヤモンドやCBNからなる砥粒を採用する場合に比べて砥石のコストを低減することができる。しかし、この場合、ダイヤモンドやCBNからなる砥粒を採用する場合に比べて加工効率も同時に低下するため、研磨コスト自体を十分に低減することは難しいという問題がある。
 そこで、本発明の目的は、研磨コストを低減することが可能な球状体の研磨装置、球状体の研磨方法および球状部材の製造方法を提供することである。
 本発明に従った球状体の研磨装置は、球状体の表面を研磨する球状体の研磨装置であって、第1の研磨面を有する第1部材と、当該第1の研磨面に対向する第2の研磨面を有する第2部材とを備えている。第1の研磨面と第2の研磨面とは、互いに対向する状態を維持しつつ互いに相対的な回転が可能となっている。第1の研磨面および第2の研磨面の少なくともいずれか一方には、上記回転に沿った周方向に延在する溝部が形成されている。溝部が形成された第1部材および第2部材の少なくともいずれか一方は、球状体よりも高い硬度を有する砥粒を含む砥粒層と、砥粒層上に形成され、砥粒層よりも低い硬度を有する保持層とを含んでいる。そして、溝部は深さ方向において保持層を貫通し、砥粒層に至るように形成されている。
 球状体の研磨装置においては、相対する研磨面を有する1対の部材(定盤)の間に被研磨物である球状体が挟持され、当該1対の定盤の研磨面が相対的に回転することにより研磨が実施される構成が採用される場合がある。この場合、1対の定盤の研磨面のうち少なくともいずれか一方には、当該球状体が保持され、研磨されるための周方向に延在する溝部が形成される場合が多い。ここで、従来の球状体の研磨装置においては、定盤の研磨面全体が球状体よりも高い硬度を有する砥粒を含む砥粒層となっており、当該砥粒層に上記溝部が形成されている。そして、1対の定盤に挟持された球状体は、砥粒層に形成された溝部により保持されつつ当該溝部上を転走しつつ滑ることにより研磨される。
 このような従来の球状体の研磨装置では、球状体を安定して保持する観点から、砥粒層に十分な深さの溝部を形成する必要がある。また、溝部のうち球状体の研磨に寄与する領域は、球状体と接触する溝部の底部付近のみである。したがって、球状体を安定して保持可能な深さを確保しつつ、溝部の底部が砥粒層内に位置する必要があるため、これに対応する十分な厚みを有する砥粒層が必要となる。これは、特に砥粒が高硬度かつ高価な場合、砥粒層の素材費および加工費の増大の原因となる。また、球状体の研磨装置を継続して使用すると、球状体と接触する溝部の底部が徐々に摩耗し、溝部の深さが増大する結果、相対する研磨面同士が接触する可能性がある。これを回避するため、所定の期間継続して使用された球状体の研磨装置に対しては、溝部の深さを小さくする加工(溝部深さの修正加工)が必要となる。具体的には、当該加工は、砥粒層の表面層を除去する研削加工などを実施することにより達成される。しかし、砥粒層は加工される球状体よりも高い硬度を有する砥粒を含むことから、当該加工のコストは大きくなる場合が多い。特に、砥粒がダイヤモンドやCBNなどの極めて高硬度な砥粒を含む場合、研削加工による溝部深さの修正加工は難しく、よりコストの高い放電加工などを実施する必要があるため、溝部深さの修正加工に要するコストは極めて大きくなる。
 これに対し、本発明の球状体の研磨装置においては、溝部が形成される部材は砥粒層と、砥粒層上に形成され、砥粒層よりも硬度の低い保持層を含んでおり、溝部は深さ方向において保持層を貫通し、砥粒層に至るように形成されている。これにより、球状体の研磨に寄与する溝部の底部において砥粒層が露出するとともに、球状体の保持に寄与する溝部の側壁部は保持層からなっている。
 このような構成を有することにより、本発明の球状体の研磨装置では、保持層の厚みを大きくすることにより、球状体を安定して保持することができるため、砥粒層に形成する溝部の深さを抑制するとともに、砥粒層の厚みを低減することが可能となる。その結果、上記構成によれば、砥粒層の素材費および加工費を抑制することができる。さらに、上記本発明の球状体の加工装置においては、硬度の高い砥粒層ではなく、保持層の表層部を除去する加工を実施することにより、溝部深さの修正加工を達成することができる。そのため、球状体の加工装置を継続して使用する場合のランニングコストを低減することができる。
 以上のように、本発明の球状体の研磨装置によれば、研磨コストを低減することが可能な球状体の研磨装置を提供することができる。
 上記球状体の研磨装置において好ましくは、上記砥粒は、ダイヤモンドの粒子、立方晶窒化硼素の粒子および炭化硼素の粒子からなる群から選択される少なくともいずれか1つを含んでいる。
 このような極めて硬度の高い粒子を砥粒として採用することにより、セラミックスなどの高硬度の材料からなる球状体の研磨を実施することが可能となる。そして、上記砥粒は極めて硬度が高く、高価であるため、砥粒層の厚みを低減することにより砥粒の使用量を抑制し、かつ砥粒層に対する加工を抑制することが可能な本発明の球状体の加工装置に採用することで、研磨コストの低減効果が特に大きくなる。
 上記球状体の研磨装置において好ましくは、砥粒層は、上記砥粒が結合剤により結合されて構成されている。これにより、種々の砥粒を含む砥粒層を容易に形成することができる。
 上記球状体の研磨装置においては、結合剤は、レジノイドボンド、ビトリファイドボンドおよびメタルボンドからなる群から選択される少なくともいずれか1つを含むものとすることができる。これにより、十分な強度を有する砥粒層を容易に形成することができる。
 上記球状体の研磨装置においては、上記保持層は砥粒層において砥粒を結合する結合剤からなるものとすることができる。
 これにより、砥粒と結合剤とを混合した層を形成した後、当該層の上に結合剤からなる層を形成し、その後焼成などの処理を実施することにより、砥粒層と砥粒層上の保持層とを効率よく作製することができる。
 上記球状体の研磨装置においては、上記保持層は鋼または鋳物からなっていてもよい。これにより、十分な強度を有するとともに、安価な保持層を形成することができる。
 本発明に従った球状体の研磨方法は、第1の研磨面を有する第1部材と、第1の研磨面に対向する第2の研磨面を有する第2部材との間に被加工物である球状体を配置する工程と、第1の研磨面と第2の研磨面とに対し、互いに対向する状態を維持しつつ相対的な回転を与えることにより、球状体を研磨する工程とを備えている。第1の研磨面および第2の研磨面の少なくともいずれか一方には、上記回転に沿った周方向に延在する溝部が形成されている。溝部が形成された第1部材および第2部材の少なくともいずれか一方は、球状体よりも高い硬度を有する砥粒を含む砥粒層と、砥粒層上に形成され、砥粒層よりも低い硬度を有する保持層とを含んでいる。溝部は深さ方向において保持層を貫通し、砥粒層に至るように形成されている。そして、球状体を研磨する工程では、球状体は、溝部の保持層において保持されつつ、砥粒層に接触することにより研磨される。
 本発明の球状体の研磨方法においては、球状体を研磨する工程において、球状体が溝部の砥粒層上に形成された保持層において保持されつつ、砥粒層に接触することにより研磨される。そして、砥粒層に比べて硬度低い保持層の厚みを大きくしておくことにより、球状体を安定して保持することができるため、砥粒層に形成する溝部の深さを抑制するとともに、砥粒層の厚みを低減することが可能となる。これにより、球状体の研磨に使用する砥粒層の素材費および加工費を抑制することができる。さらに、溝部深さの修正加工が必要となった場合、硬度の高い砥粒層ではなく、保持層の表層部を除去する加工により、当該修正加工が可能である。そのため、球状体の加工装置のランニングコストを低減することができる。
 以上のように、本発明の球状体の研磨方法によれば、研磨コストを低減することが可能な球状体の研磨方法を提供することができる。
 上記球状体の研磨方法において好ましくは、球状体は、セラミックスからなっている。そして、上記砥粒は、ダイヤモンドの粒子、立方晶窒化硼素の粒子および炭化硼素の粒子からなる群から選択される少なくともいずれか1つを含んでいる。
 砥粒層の厚みを低減することにより砥粒の使用量を抑制し、かつ砥粒層に対する加工を抑制することが可能な本発明の球状体の研磨方法は、上述のような極めて硬度の高い粒子を砥粒として採用して、高硬度なセラミックスからなる球状体の研磨に適用することにより、特に大きい研磨コストの低減効果を得ることができる。
 上記球状体の研磨方法において好ましくは、砥粒層は、上記砥粒が結合剤により結合されて構成されている。これにより、種々の砥粒を含む砥粒層を容易に形成することが可能となり、研磨コストを一層低減することができる。
 上記球状体の研磨方法においては、結合剤は、レジノイドボンド、ビトリファイドボンドおよびメタルボンドからなる群から選択される少なくともいずれか1つを含むものとすることができる。これにより、十分な強度を有する砥粒層を用いて球状体の研磨を実施することができる。
 上記球状体の研磨方法においては、上記保持層は砥粒層において砥粒を結合する結合剤からなるものとすることができる。
 これにより、砥粒と結合剤とを混合した層を形成した後、当該層の上に結合剤からなる層を形成し、その後焼成などの処理を実施することにより、砥粒層と砥粒層上の保持層とを効率よく作製できるため、研磨コストを一層抑制することができる。
 上記球状体の研磨方法においては、上記保持層は鋼または鋳物からなっていてもよい。これにより、十分な強度を有するとともに、安価な保持層を用いて球状体の研磨を実施することができる。
 本発明に従った球状部材の製造方法は、球状体を準備する工程と、当該球状体を研磨する工程とを備えている。そして、球状体を研磨する工程では、上記本発明の球状体の研磨方法により、球状体が研磨される。
 本発明の球状部材の製造方法によれば、研磨コストを低減可能な上記球状体の研磨方法が採用されることにより、球状部材を安価に製造することができる。
 以上の説明から明らかなように、本発明の球状体の研磨装置、球状体の研磨方法および球状部材の製造方法によれば、研磨コストを低減することが可能な球状体の研磨装置、球状体の研磨方法および球状部材の製造方法を提供することができる。
実施の形態1における球状体の研磨装置の構成を示す概略図である。 図1の球状体の研磨装置が備える定盤の構成を示す概略断面図である。 実施の形態1における軸受の玉の製造方法の概略を示すフローチャートである。 実施の形態2における球状体の研磨装置が備える定盤の構成を示す概略断面図である。 比較例の定盤の構成を示す概略断面図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
 (実施の形態1)
 以下、本発明の一実施の形態である実施の形態1について説明する。図1を参照して、実施の形態1における研磨装置1は、回転盤研磨面10Aを有する円盤状の定盤である回転盤10と、回転盤研磨面10Aに対向する固定盤研磨面20Aを有する円盤状の定盤である固定盤20と、回転盤10と固定盤20との間に球状体である素球91を導入する入口シュート30と、研磨された素球91が取り出される出口シュート40とを備えている。
 固定盤20と回転盤10とは、固定盤研磨面20Aと回転盤研磨面10Aとが平行になるように、かつ中心軸が回転軸αに一致するように所定の間隔を空けて配置されている。また、固定盤20は固定盤20を保持する架台(図示しない)に対して固定される一方、回転盤10は回転軸α周りに(回転盤10の周方向に沿った回転の向きβに沿って)回転可能となっている。
 図1および図2を参照して、回転盤研磨面10Aには、回転軸αと回転盤研磨面10Aとの交点を中心とした同心円状の複数の(本実施例では3本の)溝部11が形成されている。つまり、回転盤研磨面10Aには、回転盤10の回転に沿った周方向に延在する3本の溝部11が形成されている。
 固定盤20には、厚み方向(回転軸αに沿った方向)に固定盤20を貫通する開口部24が形成されている。そして、この開口部24から、回転盤研磨面10Aに形成された3本の溝部11が露出している。一方、入口シュート30は、それぞれ平行に延在する複数の溝31が形成された上面を有している。そして、当該溝31が延在する方向が回転盤研磨面10Aに形成された溝部11に交差するように、かつ溝31の一方の端部が溝部11に隣接するように、入口シュート30はその一部が開口部24に挿入されるように配置されている。また、入口シュート30は、溝31が開口部24に向けて傾斜するように、上面が水平面に対して交差する態様で図示しない架台に固定されている。これにより、入口シュート30の溝31に供給された素球91は、溝31に沿って転走し、回転盤10と固定盤20との間に投入される。
 出口シュート40は、入口シュート30に対して回転盤10の回転の向きβとは反対側に隣接して、かつ固定盤20を回転軸α方向に貫通するように配置されている。
 次に、図2を参照して、回転盤10の詳細について説明する。なお、図2は、回転盤研磨面10Aに垂直であり、かつ回転盤研磨面10Aの径方向に沿った面における回転盤10の断面図に相当する。ここで、固定盤20の固定盤研磨面20Aには、回転盤研磨面10Aと同様に、回転軸αと固定盤研磨面20Aとの交点を中心とした同心円状の複数の(本実施例では3本の)溝部(図示しない)が形成されており、当該複数の(3本の)溝部と回転盤研磨面10Aの3本の溝部11とは互いに対向するように配置されている。そして、固定盤20は、以下に説明する回転盤10と同様の構成を有している。
 図2を参照して、実施の形態1における回転盤10は、鉄、鋳物などの素材からなる円盤状の定盤本体17と、定盤本体17上に配置されたダイヤモンドの粒子を砥粒として含む砥粒層18と、砥粒層18上に形成された鋼からなる保持層19とを備えている。保持層19の硬度は、砥粒層18よりも低くなっている。そして、保持層19の砥粒層18とは反対側の表面である回転盤研磨面10Aから深さ方向に保持層19を貫通し、砥粒層18に至るように、溝部11が形成されている。つまり、溝部11の底部は、砥粒層18内に位置している。また、溝部11は、延在方向に垂直な断面において、その壁面は円弧状の形状を有している。これにより、素球91の研磨に寄与する溝部11の底部において砥粒層18が露出するとともに、素球91の保持に寄与する溝部11の側壁部(溝部11の壁面と溝部11が形成されていない回転盤研磨面10Aの領域とが交差する部位)は保持層19内に位置している。砥粒層18は、砥粒が結合剤により結合されて構成されている。
 すなわち、実施の形態1における球状体の研磨装置1は、球状体の表面を研磨する球状体の研磨装置であって、第1の研磨面としての回転盤研磨面10Aを有する第1部材である回転盤10と、回転盤研磨面10Aに対向する第2の研磨面としての固定盤研磨面20Aを有する第2部材である固定盤20とを備えている。回転盤研磨面10Aは固定盤研磨面20Aに対して対向する状態を維持しつつ、相対的な回転が可能となっている。回転盤研磨面10Aには、上記回転に沿った周方向に延在する溝部11が形成されている。溝部11が形成された回転盤10は、球状体である素球91よりも高い硬度を有するダイヤモンド粒子からなる砥粒を含む砥粒層18と、砥粒層18上に形成され、砥粒層18よりも低い硬度を有する保持層19とを含んでいる。そして、溝部11は深さ方向において保持層19を貫通し、砥粒層18に至るように形成されている。
 次に、上記実施の形態1における球状体の研磨装置1を用いた研磨方法を採用して実施される球状部材としての軸受の玉の製造方法について説明する。
 図3を参照して、実施の形態1における軸受の玉の製造方法では、まず、工程(S10)として被加工球準備工程が実施される。具体的には、図1~図3を参照して、たとえば窒化珪素、サイアロンなどのセラミックスの原料粉末が準備され、当該原料粉末が球状に成形された後、加圧焼結あるいは常圧焼結などが実施されることにより、セラミックスの焼結体からなる球状体としての素球91が作製される。
 次に、工程(S20)として被加工球投入工程が実施される。この工程(S20)では、工程(S10)において準備された素球91が図1に示す研磨装置に投入される。具体的には、図1を参照して、工程(S10)において準備された素球91が入口シュート30の溝31上に供給される。供給された素球91は、入口シュート30の溝31上を転走し、開口部24を通って回転盤10の溝部11に接触する位置まで進行する。このとき、回転盤10を回転の向きβに沿って回転させておくことにより、素球91は向かい合う回転盤10と固定盤20との間に引き込まれる。
 次に、工程(S30)として加工工程が実施される。この工程(S30)では、回転盤10と固定盤20との間に引き込まれた素球91が回転盤10に形成された溝部11と固定盤20に形成された溝部との間において保持され、回転盤10の回転の向きβの向きに転走することにより、研磨される。具体的には、図2を参照して、回転盤10と固定盤20との間に引き込まれた素球91は、溝部11内の保持層19によって回転盤10の径方向に保持されつつ、溝部11において露出した砥粒層18に対して滑りつつ転走することにより研磨される。なお、この工程(S30)では、回転盤10と固定盤20との間に遊離砥粒を含む研磨液が供給されてもよい。
 次に、工程(S40)として、排出工程が実施される。この工程(S40)では、研磨が終了した素球91が、出口シュート40から排出される。具体的には、図1を参照して、工程(S30)において回転盤10の回転の向きβの向きに転走することにより研磨された素球91は、出口シュート40が配置された位置まで進行することにより溝部11から離脱し、出口シュート40を介して研磨装置1の外部に排出される。
 次に、工程(S50)として仕上げ工程が実施される。この工程(S50)では、工程(S10)において準備され、(S20)~(S40)において研磨された素球91に対して仕上げ加工が実施されることにより、球状部材としての軸受の玉が完成する。具体的には、工程(S40)までが完了した素球91に対して、図1に基づいて説明した研磨装置1において、砥粒層18に含まれる砥粒がより細かいダイヤモンドの粒子からなる他の研磨装置を用いて、上述の場合と同様の手順により、素球91の表面粗さがさらに低減される仕上げ加工が実施される。この仕上げ加工は、砥粒を構成するダイヤモンドの粒子を徐々に細かくしつつ、複数回実施されてもよい。また、最終研磨として、公知のラップ盤を用いたラッピング加工が実施されてもよい。以上の工程により、本実施の形態における球状部材としての転がり軸受の玉(転動体)が完成する。
 上記本実施の形態における研磨装置1を用いた研磨方法では、図1および図2を参照して、保持層19の厚みを大きくすることにより、素球91を安定して保持することができるため、砥粒層18に形成する溝部11の深さを抑制するとともに、砥粒層18の厚みを低減することが可能となる。その結果、極めて高価なダイヤモンドからなる砥粒を含み、加工が困難な砥粒層の素材費および加工費を抑制することができる。
 また、軸受の玉の生産ラインにおいて研磨装置1を継続的に使用した場合、素球91の研磨に寄与する砥粒層18の摩耗が進行し、溝部11の深さが大きくなっていく。そして、溝部11の深さが限度を超えて大きくなると、固定盤20と回転盤10とが接触することとなるため、溝部深さの修正加工が必要となる。本実施の形態における研磨装置1においては、砥粒層18よりも硬度の低い保持層19が砥粒層18上に形成されているため、加工の容易な保持層19の表面層を除去することにより、この溝部深さの修正加工を達成することができる。その結果、砥粒層18および保持層19が一層の砥粒層で形成された従来の研磨装置に比べて、溝部深さの修正加工に要する費用が抑制され、ランニングコストを低減することができる。
 より具体的には、図1および図2を参照して、たとえば回転盤10の溝部深さの修正加工が必要となった場合、砥粒層18および保持層19が一層の砥粒層で形成された従来の研磨装置では、研磨装置から回転盤10を取り外し、コストの高い放電加工などの方法により修正加工が実施される。さらに、回転盤10を再度研磨装置に取り付ける場合、この取付精度が素球91の加工精度に大きな影響を与えるため、取付後の微調整が必要となる。この微調整は、たとえば素球91を実際に研磨する慣らし運転を実施し、素球91の研磨状態を確認することにより行なうことができる。このような取付後の微調整のため、生産ラインの休止時間が長くなり、コストの上昇を招来する。
 これに対し、本実施の形態における研磨装置1を用いた研磨方法では、回転盤10の回転盤研磨面10Aの表層部が、硬度の低い保持層19から構成されているため、回転盤10を研磨装置1から取り外すことなく、かつ安価な方法で溝部深さの修正加工を実施することができる。たとえば、図1を参照して、回転盤10の溝部深さの修正加工が必要となった場合、回転盤10を回転させた状態で開口部24からドレッサーを挿入して保持層19に接触させ、保持層19の表層部を除去することにより、修正加工を実施することができる。すなわち、本実施の形態における研磨装置1においては、インラインでの溝部深さの修正加工が可能である。その結果、放電加工などのコストの高い加工が必要ないため、溝部深さの修正加工の加工費が抑制できるだけでなく、修正加工に伴う生産ラインの休止時間を大幅に低減することが可能となり、生産コストの低減に寄与することができる。
 以上のように、本実施の形態におけるの球状体の研磨装置を用いた球状体の研磨方法によれば、球状体である素球の研磨コストを低減することができる。
 (実施の形態2)
 次に、本発明の他の実施の形態である実施の形態2について説明する。実施の形態2における球状体の研磨装置は、基本的には実施の形態1の場合と同様の構成を有し、同様に動作するとともに、同様の効果を奏する。しかし、実施の形態2における球状体の研磨装置は、保持層の構成において実施の形態2の場合とは異なっている。
 図4を参照して、実施の形態2における回転盤10の砥粒層18は、実施の形態1の場合と同様に、ダイヤモンドからなる砥粒が結合剤により結合されて構成されている。そして、実施の形態2における回転盤10では、図2に示す鋼からなる保持層19に代えて、砥粒層18において砥粒を結合する結合剤からなる保持層59が採用されている。
 これにより、砥粒と結合剤とを混合した層を形成した後、当該層の上に結合剤からなる層を形成し、その後焼成などの処理を実施することにより、砥粒層18と砥粒層18上の保持層59とを効率よく作製することが可能となっている。
 なお、図1を参照して、実施の形態2における固定盤20は、実施の形態1における回転盤10と同様の構成を有していてもよいし、上記実施の形態2における回転盤10と同様の構成を有していてもよい。また、実施の形態1における固定盤20は、上記実施の形態2における回転盤10と同様の構成を有していてもよい。
 さらに、上記実施の形態においては、研磨装置が回転盤および固定盤を備える場合について説明したが、本発明の球状体の研磨装置はこれに限られず、たとえば互いに対向する定盤が異なる回転の向きで回転し、かつ/または異なる回転速度で回転することにより、一方が他方に対して相対的に回転するものであればよい。
 また、上記実施の形態における砥粒としては、素球91よりも硬度の高いものであれば種々の素材からなる粒子を採用することができるが、硬度の高いダイヤモンド、CBN、炭化硼素、アルミナおよび炭化珪素の粒子からなる群から選択される少なくともいずれか1つを含んでいることが好ましい。特に、硬度が極めて高く、かつ高価であるダイヤモンド、CBNおよび炭化硼素からなる群から選択される少なくともいずれか1つを含む場合、本発明の効果がより顕著となる。
 さらに、砥粒層18において砥粒を結合する結合剤としては、任意の結合剤を採用することができるが、たとえばレジノイドボンド、ビトリファイドボンドおよびメタルボンドからなる群から選択される少なくともいずれか1つを含むものを採用することができる。
 また、保持層としては、上記実施の形態2にように、砥粒層18を構成する結合剤からなる保持層59を採用してもよいし、JIS規格S53Cなどの鋼からなる保持層19を採用してもよい。さらに、保持層を構成する素材としては、ミーハナイト鋳鉄やねずみ鋳鉄などの鋳鉄(鋳物)を採用してもよい。
 また、上記実施の形態における研磨装置を用いた研磨方法は、種々の球状部材の製造における研磨に採用することができるが、硬度が高いため硬度の高い砥粒を必要とし、かつ高い表面仕上げ精度が要求される窒化珪素またはサイアロンからなる転がり軸受の玉の製造における研磨に、特に有利に採用することができる。
 (実施例1)
 以下、本発明の実施例1について説明する。実施の形態2において図4に基づいて説明した定盤と同様の構成を有する定盤を製作し、製作コストの低減効果を確認する調査を行なった。具体的には、鉄製の定盤本体上にダイヤモンド粒子からなる砥粒とメタルボンドと混合した厚み3mmの砥粒含有層を形成し、さらにメタルボンドからなる厚み1.6mmのボンド層を形成した。その後、焼成し、定盤本体上に砥粒層および保持層が形成された部材を作製した。そして、当該部材の保持層側の表面に曲率半径4.37mm、深さ2.6mmの溝部を放電加工により形成した。溝部は同心状に半径145mm、132mm、119mmの3本形成した。これにより図4と同様の構成を有する定盤を完成させた(実施例A)。
 一方、比較のため、本発明の範囲外である比較例の定盤も製作した。図5を参照して、比較例の定盤として、上記実施例Aの定盤と同様の手順においてボンド層の形成を省略し、上記ボンド層の厚みの分だけ砥粒含有層の厚みを増加させることにより、実施例Aにおいて保持層の厚みの分だけ砥粒層の厚みが増加したものを製作した(比較例A)。つまり、図5を参照して、比較例の定盤110は、定盤本体117と、定盤本体117上に形成され、ダイヤモンドの粒子からなる砥粒を含む砥粒層118とを備えている。そして、定盤110の表面である研磨面110Aには、砥粒118内に底部を有する溝部110が形成されている。そして、実施例Aおよび比較例Aの製作に要した製作コストを算出した。表1に、算出された実施例Aおよび比較例Aの製作コストを、比較例Aの製作コストを1として示す。
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、実施例Aの定盤は、砥粒含有層上にボンド層を形成する工程が追加されているにもかかわらず、比較例の定盤に対して25%の製作コストの低減を達成することができた。これは、高価なダイヤモンド砥粒を含む砥粒層の厚みを低減できたことによる素材コストの低減、および溝部の形成における砥粒層に対する加工の相当部分が硬度の低い保持層に対する加工に置き換わったことによる加工コストの低減によるものである。なお、実施例Aの定盤においては、図4に示すように溝部の底部に球状体の研磨に寄与する砥粒層18が露出しているため、図5に示す比較例Aの定盤と同様の研磨加工を実施することができる。
 以上の調査結果より、本発明の球状体の研磨装置によれば、研磨加工に対する機能を維持しつつ、定盤の大幅なコスト低減が可能であることが確認された。
 (実施例2)
 以下、本発明の実施例2について説明する。本発明の球状体の研磨装置を用いて種々のサイズのセラミック球を研磨し、砥石寿命を確認する実験を行なった。実験の手順は以下の通りである。
 まず上記実施例1において作製した実施例および比較例と同様の構成を有する定盤を作製し、これを用いて直径5/16インチ、1/2インチおよび1・7/8インチの3種類のサイズの窒化珪素からなるセラミック球を実際に研磨した。なお、溝部の深さは研磨されるセラミック球の大きさに応じて最適な値に決定した。そして、研磨により砥粒層が摩耗して溝部の深さが大きくなり、研磨を続行できなくなった時点で保持層または砥粒層の表層部を除去して溝部の深さを減少させる加工(溝部深さの修正加工)を行ない、研磨を続行した。そして、この手順を繰り返すことにより砥粒層が摩滅し、溝部の底部に定盤本体が露出した時点を寿命(砥石寿命)として記録した。表2に実験結果を示す。表2においては、5/16インチ、1/2インチおよび1・7/8インチのセラミック球を研磨した場合の実施例の定盤の結果をそれぞれ実施例B、CおよびD、比較例の定盤の結果をそれぞれ比較例B、CおよびDとし、比較例B、CおよびDの寿命を1として砥石寿命を表示している。
Figure JPOXMLDOC01-appb-T000002
 表2を参照して、実施例の定盤を用いて研磨を行なった場合、比較例の定盤を用いた場合に対して砥石寿命が5.2~9.3倍となっている。これは、比較例の定盤においては、砥粒層の厚みは実施例に比べて厚いにもかかわらず、溝部の底と定盤本体との間に存在する砥粒層の厚みが小さいためである。また、研磨されるセラミック球の直径が大きいほど、実施例の定盤を使用する効果が大きくなっている。これは、研磨されるセラミック球のサイズが大きくなるほど溝部の深さを大きくする必要があるため、溝部の底と定盤本体との間に存在する砥粒層の厚みがより小さくなることに起因するものと考えられる。
 以上の実験結果より、本発明の球状体の研磨装置によれば、研磨加工に対する機能を維持しつつ、定盤の砥石寿命を向上させることが可能であることが確認された。
 (実施例3)
 以下、本発明の実施例3について説明する。本発明の球状体の研磨装置が備える定盤について、溝部深さの修正加工を実施した場合の加工コストを調査する実験を行なった。実験の手順は以下の通りである。
 上記実施例1において作製した実施例および比較例の定盤を備えた研磨装置によりセラミック球の研磨を行なった。そして、砥粒層が摩耗して溝部の深さが大きくなり、研磨を続行できなくなった時点で保持層または砥粒層の表層部を除去して溝部の深さを減少させる加工(溝部深さの修正加工)を行ない、当該溝部深さの修正加工に要したコストを算出した。実験結果を表3に示す。表3においては、実施例の結果を実施例E、比較例の結果を比較例Eとし、比較例Eのコストを1として、溝部深さの修正加工に要したコスト表示している。
Figure JPOXMLDOC01-appb-T000003
 表3を参照して、実施例の定盤を用いることにより、比較例の定盤を用いた場合の1/50程度にまで溝部深さの修正加工のコストを低減できることが分かった。これは、比較例の定盤では、溝部深さの修正加工を実施するために研磨装置から定盤を取り外し、さらに放電加工を実施する必要があったのに対し、実施例の定盤では、研磨装置から取り外すことなく、一般的なドレッサーを保持層に接触させて当該保持層の表層部を除去することにより、溝部深さの修正加工が実施できたことによる。
 以上の実験結果より、本発明の球状体の研磨装置によれば、溝部深さの修正加工に要するコストを低減可能であるため、研磨装置のランニングコストを低減し、球状部材の製造コストを抑制できることが確認された。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の球状体の研磨装置、球状体の研磨方法および球状部材の製造方法は、研磨コストを低減することが求められる球状体の研磨装置、球状体の研磨方法および球状部材の製造方法に、特に有利に適用され得る。
 1 研磨装置、10 回転盤、10A 回転盤研磨面、11 溝部、17 定盤本体、18 砥粒層、19 保持層、20 固定盤、20A 固定盤研磨面、24 開口部、30 入口シュート、31 溝、40 出口シュート、59 保持層、91 素球。

Claims (13)

  1.  球状体(91)の表面を研磨する球状体の研磨装置(1)であって、
     第1の研磨面(10A)を有する第1部材(10)と、
     前記第1の研磨面(10A)に対向する第2の研磨面(20A)を有する第2部材(20)とを備え、
     前記第1の研磨面(10A)と前記第2の研磨面(20A)とは、互いに対向する状態を維持しつつ互いに相対的な回転が可能となっており、
     前記第1の研磨面(10A)および前記第2の研磨面(20A)の少なくともいずれか一方には、前記回転に沿った周方向に延在する溝部(11)が形成されており、
     前記溝部(11)が形成された前記第1部材(10)および前記第2部材(20)の少なくともいずれか一方は、
     前記球状体(91)よりも高い硬度を有する砥粒を含む砥粒層(18)と、
     前記砥粒層(18)上に形成され、前記砥粒層(18)よりも低い硬度を有する保持層(19)とを含み、
     前記溝部(11)は深さ方向において前記保持層(19)を貫通し、前記砥粒層(18)に至るように形成されている、球状体の研磨装置(1)。
  2.  前記砥粒は、ダイヤモンドの粒子、立方晶窒化硼素の粒子および炭化硼素の粒子からなる群から選択される少なくともいずれか1つを含んでいる、請求の範囲第1項に記載の球状体の研磨装置(1)。
  3.  前記砥粒層(18)は、前記砥粒が結合剤により結合されて構成されている、請求の範囲第1項に記載の球状体の研磨装置(1)。
  4.  前記結合剤は、レジノイドボンド、ビトリファイドボンドおよびメタルボンドからなる群から選択される少なくともいずれか1つを含んでいる、請求の範囲第3項に記載の球状体の研磨装置(1)。
  5.  前記保持層(19)は前記結合剤からなっている、請求の範囲第3項に記載の球状体の研磨装置(1)。
  6.  前記保持層(19)は鋼または鋳物からなっている、請求の範囲第1項に記載の球状体の研磨装置(1)。
  7.  第1の研磨面(10A)を有する第1部材(10)と、前記第1の研磨面(10A)に対向する第2の研磨面(20A)を有する第2部材(20)との間に被加工物である球状体(91)を配置する工程と、
     前記第1の研磨面(10A)と前記第2の研磨面(20A)とに対し、互いに対向する状態を維持しつつ相対的な回転を与えることにより、前記球状体(91)を研磨する工程とを備え、
     前記第1の研磨面(10A)および前記第2の研磨面(20A)の少なくともいずれか一方には、前記回転に沿った周方向に延在する溝部(11)が形成されており、
     前記溝部(11)が形成された前記第1部材(10)および前記第2部材(20)の少なくともいずれか一方は、
     前記球状体(91)よりも高い硬度を有する砥粒を含む砥粒層(18)と、
     前記砥粒層(18)上に形成され、前記砥粒層(18)よりも低い硬度を有する保持層(19)とを含み、
     前記溝部(11)は深さ方向において前記保持層(19)を貫通し、前記砥粒層(18)に至るように形成されており、
     前記球状体を研磨する工程では、前記球状体(91)は、前記溝部(11)の前記保持層(19)において保持されつつ、前記砥粒層(18)に接触することにより研磨される、球状体の研磨方法。
  8.  前記球状体(91)は、セラミックスからなっており、
     前記砥粒は、ダイヤモンドの粒子、立方晶窒化硼素の粒子および炭化硼素の粒子からなる群から選択される少なくともいずれか1つを含んでいる、請求の範囲第7項に記載の球状体の研磨方法。
  9.  前記砥粒層(18)は、前記砥粒が結合剤により結合されて構成されている、請求の範囲第7項に記載の球状体の研磨方法。
  10.  前記結合剤は、レジノイドボンド、ビトリファイドボンドおよびメタルボンドからなる群から選択される少なくともいずれか1つを含んでいる、請求の範囲第9項に記載の球状体の研磨方法。
  11.  前記保持層(19)は前記結合剤からなっている、請求の範囲第9項に記載の球状体の研磨方法。
  12.  前記保持層(19)は鋼または鋳物からなっている、請求の範囲第7項に記載の球状体の研磨方法。
  13.  球状体(91)を準備する工程と、
     前記球状体(91)を研磨する工程とを備え、
     前記球状体(91)を研磨する工程では、請求の範囲第7項に記載の球状体の研磨方法により前記球状体(91)が研磨される、球状部材の製造方法。
PCT/JP2009/066503 2008-10-03 2009-09-24 球状体の研磨装置、球状体の研磨方法および球状部材の製造方法 WO2010038646A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980139747.2A CN102170999B (zh) 2008-10-03 2009-09-24 球状体的研磨装置、研磨方法及球状构件制造方法
EP09817680.3A EP2351630B1 (en) 2008-10-03 2009-09-24 Apparatus for polishing spherical body, method for polishing spherical body and method for manufacturing spherical member
US13/122,372 US9089947B2 (en) 2008-10-03 2009-09-24 Spherical body polishing apparatus, method for polishing spherical body and method for manufacturing spherical member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-258419 2008-10-03
JP2008258419A JP5334040B2 (ja) 2008-10-03 2008-10-03 球状体の研磨装置、球状体の研磨方法および球状部材の製造方法

Publications (1)

Publication Number Publication Date
WO2010038646A1 true WO2010038646A1 (ja) 2010-04-08

Family

ID=42073411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066503 WO2010038646A1 (ja) 2008-10-03 2009-09-24 球状体の研磨装置、球状体の研磨方法および球状部材の製造方法

Country Status (5)

Country Link
US (1) US9089947B2 (ja)
EP (1) EP2351630B1 (ja)
JP (1) JP5334040B2 (ja)
CN (1) CN102170999B (ja)
WO (1) WO2010038646A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104440512A (zh) * 2014-12-02 2015-03-25 新乡日升数控轴承装备股份有限公司 一种卧式钢球机出球口上的调整装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548707B (zh) * 2009-09-29 2015-06-24 Ntn株式会社 生坯球的抛光方法、陶瓷球的制造方法及抛光装置
US8932111B2 (en) * 2011-06-28 2015-01-13 Lori Tessmar Apparatus for altering a surface of a bowling ball
CN103286674A (zh) * 2013-06-08 2013-09-11 上海泛联科技股份有限公司 用于研磨陶瓷球的研磨板
JP6345564B2 (ja) * 2014-09-30 2018-06-20 株式会社ノリタケカンパニーリミテド 砥石及び砥石製造方法
JP6536175B2 (ja) * 2015-05-27 2019-07-03 株式会社ジェイテクト 球体研磨装置及び球体研磨方法
FR3037519B1 (fr) * 2015-06-17 2017-07-28 Ntn-Snr Roulements Procede de rectification d'une surface d'un corps roulant pour un palier a roulement
JP2017080735A (ja) * 2015-10-29 2017-05-18 Ntn株式会社 洗浄装置、球体の洗浄システムおよび球体の洗浄方法
US10118274B2 (en) 2015-10-30 2018-11-06 Aktiebolaget Skf Apparatus for producing compressive residual stress in balls
US10480578B2 (en) 2015-10-30 2019-11-19 Aktiebolaget Skf Method of imparting compressive residual stress to balls
JP5941236B1 (ja) * 2016-02-12 2016-06-29 株式会社天辻鋼球製作所 高精度球体寸法測定装置および球体研磨装置
US10508525B2 (en) * 2016-03-10 2019-12-17 Bubbletight, LLC Degradable downhole tools and\or components thereof, method of hydraulic fracturing using such tools or components, and method of making such tools or components
CN108237464B (zh) * 2016-12-27 2020-12-29 上海崇明机床厂 一种卧式钢球研磨机
CN109531281A (zh) * 2018-07-19 2019-03-29 上海伊泰科钢球有限公司 一种铝合金球加工工艺
CN108723979B (zh) * 2018-07-28 2023-09-19 天津大学 一种用于圆锥滚子滚动表面精加工的研磨盘套件、设备及方法
DE102019122711A1 (de) * 2019-08-23 2021-02-25 Atlantic Gmbh Dreischichtige Schleifscheibe
CN111347512B (zh) * 2019-12-31 2021-11-19 沭阳安宏木制品厂 一种木制品连接处半榫卯结构制备工艺
CN113001422A (zh) * 2021-03-08 2021-06-22 天津职业技术师范大学(中国职业培训指导教师进修中心) 球团堆积金属玻璃粉结合剂烧结内冷砂轮及其制备方法
TWI769832B (zh) * 2021-05-26 2022-07-01 天工精密股份有限公司 研磨機健康預兆診斷系統
WO2023054611A1 (ja) 2021-09-29 2023-04-06 株式会社 東芝 セラミックボール用素材およびセラミックボール及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210862A (ja) 1999-01-22 2000-08-02 Nsk Ltd 球体研磨方法および球体研磨装置
JP2000326238A (ja) 1999-05-17 2000-11-28 Noritake Co Ltd 低速研磨用砥石
JP2001025948A (ja) * 1999-07-16 2001-01-30 Noritake Co Ltd 球体研磨砥石
JP2002263994A (ja) * 2001-03-12 2002-09-17 Nsk Ltd 転がり軸受用転動体、転がり軸受用転動体の製造方法、及び転がり軸受

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734317A (en) * 1956-02-14 Technique and apparatus for making crystal spheres
US455879A (en) * 1891-07-14 Machine for grinding metal balls
US921739A (en) * 1908-04-03 1909-05-18 Otto George Rieske Device for straightening metal disks.
US1176099A (en) * 1910-10-06 1916-03-21 New Departure Mfg Co Grinding-machine.
US1337079A (en) * 1918-11-29 1920-04-13 Kobayashi Kanjiro Steel-ball-making machine
US1516749A (en) * 1922-04-15 1924-11-25 Monta J Moore Polishing machine
US1624642A (en) * 1923-05-16 1927-04-12 New Departure Mfg Co Grinding machine
US1973922A (en) * 1933-12-12 1934-09-18 Eugene D Dumas Ball grinding disk
US2828582A (en) * 1954-02-15 1958-04-01 Messerschmidt Sebastian Magazines for lapping machines
US2964886A (en) * 1957-01-10 1960-12-20 Messerschmidt Sebastian Ball grinding machines
US3104502A (en) * 1962-07-17 1963-09-24 Jr Roy F Burch Apparatus for grinding spherical bodies
DE1623239A1 (de) * 1967-05-11 1971-03-11 Sebastian Messerschmidt Vorrichtung zur photoelektrischen Sichtkontrolle von Kugeln
US3545139A (en) * 1968-09-17 1970-12-08 Vyzk Ustav Stroj Tech Method and apparatus for the manufacture of spherical bodies
US3999330A (en) * 1969-02-28 1976-12-28 Vyskumny Ustav Strojirenske Technologie E Economiky Apparatus for manufacture of bearing balls
US3660942A (en) * 1970-10-27 1972-05-09 Sebastian Messerschmidt Ball lapping device
US3984945A (en) * 1972-01-18 1976-10-12 Sebastian Messerschmidt Spezial-Maschinenfabrik Device for lapping balls in continuous operation
US3847000A (en) * 1973-04-23 1974-11-12 G Teague Ball sprue swage method and means
US3924356A (en) * 1974-12-09 1975-12-09 George B Kitchel Machine and method for grinding and polishing beads and marbles
US4095373A (en) * 1976-01-29 1978-06-20 National Research Development Corporation Machine for producing spherical objects
JPS53105786A (en) * 1977-02-28 1978-09-14 Hitachi Ltd Polishing concave surfaces
SU831560A1 (ru) * 1978-05-03 1981-05-23 Fejgin Ruvim N Устройство дл обработки шариков
SU1030147A1 (ru) * 1978-06-15 1983-07-23 Витебский Станкостроительный Завод Им.Кирова Станок дл магнитно-абразивной обработки шариков
DE2953543A1 (en) 1979-02-09 1981-02-26 B Gustafsson Method and device for gentle treatment of spherical balls
US4370772A (en) * 1980-09-18 1983-02-01 Projectus Industriprodukter Ab Device for gentle treatment of spherical balls
NL8006681A (nl) * 1980-12-09 1982-07-01 Skf Ind Trading & Dev Werkwijze voor het tot een zuivere bolvorm slijpen van ruw gevormde bolvormige voorwerpen.
JP3245900B2 (ja) * 1991-09-02 2002-01-15 日本精工株式会社 ボールラップ盤及びその使用方法
JPH07314325A (ja) * 1994-05-20 1995-12-05 Nippon Seiko Kk 球体研磨装置
US7465219B2 (en) * 1994-08-12 2008-12-16 Diamicron, Inc. Brut polishing of superhard materials
US6349458B1 (en) * 1999-08-27 2002-02-26 Steven Al-Rawi Burnishing apparatus
TW427232U (en) * 2000-01-13 2001-03-21 Nat Science Council Polishing and processing machine for ceramic ball
US6752696B2 (en) 2001-03-12 2004-06-22 Nsk Ltd. Rolling elements for rolling bearing, method of producing the same, and rolling bearing
JP2003214435A (ja) * 2001-11-13 2003-07-30 Allied Material Corp 微小硬質研磨ボールとその製造方法及び装置
DE102005004038A1 (de) * 2005-01-27 2006-08-03 Guilleaume-Werk Gmbh Verfahren und Vorrichtung zum Schleifen von keramischen Kugeln
DE102005060883B4 (de) * 2005-10-21 2014-04-30 Universität of California Verwendung von Hohlkugeln mit einer Umhüllung sowie Vorrichtung zu ihrer Herstellung
CN201109060Y (zh) * 2007-09-14 2008-09-03 包德宏 陶瓷球软硬加工机床

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210862A (ja) 1999-01-22 2000-08-02 Nsk Ltd 球体研磨方法および球体研磨装置
JP2000326238A (ja) 1999-05-17 2000-11-28 Noritake Co Ltd 低速研磨用砥石
JP2001025948A (ja) * 1999-07-16 2001-01-30 Noritake Co Ltd 球体研磨砥石
JP2002263994A (ja) * 2001-03-12 2002-09-17 Nsk Ltd 転がり軸受用転動体、転がり軸受用転動体の製造方法、及び転がり軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2351630A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104440512A (zh) * 2014-12-02 2015-03-25 新乡日升数控轴承装备股份有限公司 一种卧式钢球机出球口上的调整装置

Also Published As

Publication number Publication date
EP2351630A1 (en) 2011-08-03
CN102170999B (zh) 2015-05-13
EP2351630B1 (en) 2013-07-24
US9089947B2 (en) 2015-07-28
EP2351630A4 (en) 2012-11-07
CN102170999A (zh) 2011-08-31
US20110177760A1 (en) 2011-07-21
JP5334040B2 (ja) 2013-11-06
JP2010089170A (ja) 2010-04-22

Similar Documents

Publication Publication Date Title
JP5334040B2 (ja) 球状体の研磨装置、球状体の研磨方法および球状部材の製造方法
JP5294637B2 (ja) セラミック球を研摩するための方法及び装置
JP2005262341A (ja) Cmpパッドコンディショナー
WO2007069629A1 (ja) 半導体ウエーハの面取り部の加工方法及び砥石の溝形状の修正方法
CN110125731B (zh) 保持面的磨削方法
JP2017170554A (ja) ラップ盤用低圧加工ビトリファイド砥石とそれを用いた研磨加工方法
KR101837320B1 (ko) 총형 드레싱 롤러
JP2015199138A (ja) 砥石、研磨装置、研磨方法およびセラミックス部材の製造方法
JP2000301468A (ja) 研削用砥石及び縦軸研削用砥石
KR20140105993A (ko) 웨이퍼 그라인딩 장치
JP2010036303A (ja) 半導体ウェーハ裏面研削用砥石及び半導体ウェーハ裏面研削方法
JP2003291069A (ja) 研削盤用の砥石及びこの砥石を使用する研削方法
JP2004050313A (ja) 研削用砥石および研削方法
JP2003039334A (ja) 平面ホーニング加工用超砥粒ホイール及びそのドレス方法ならびに同ホイールを使用する研削装置
JP2006205330A (ja) 砥石
JP2004243465A (ja) ダイヤモンドラップ定盤
JP6231334B2 (ja) 薄板基板の研削加工方法およびそれに用いる研削加工装置
JP2977508B2 (ja) 表面粗さ0.08μm以下の鏡面仕上を行うためのダイヤモンド砥石のツルーイング・ドレッシング方法
JP2000190199A (ja) 定盤平面修正方法
WO2023234152A1 (ja) 超砥粒ホィールおよびこの超砥粒ホィールを用いた加工方法
JPH05269671A (ja) ダイヤモンドホイール
JP2007266441A (ja) 半導体ウェーハ裏面研削用カップ型砥石及び研削方法
JP7048335B2 (ja) 保持面の研削方法
JP2003071723A (ja) ビトリファイド砥石
JP4785822B2 (ja) 球体加工用ビトリファイド砥石の溝成形方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139747.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817680

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13122372

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009817680

Country of ref document: EP