WO2010038359A1 - 無線到来方向推定装置及び無線到来方向推定方法 - Google Patents

無線到来方向推定装置及び無線到来方向推定方法 Download PDF

Info

Publication number
WO2010038359A1
WO2010038359A1 PCT/JP2009/004396 JP2009004396W WO2010038359A1 WO 2010038359 A1 WO2010038359 A1 WO 2010038359A1 JP 2009004396 W JP2009004396 W JP 2009004396W WO 2010038359 A1 WO2010038359 A1 WO 2010038359A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
antenna
arrival direction
signal
relative amplitude
Prior art date
Application number
PCT/JP2009/004396
Other languages
English (en)
French (fr)
Inventor
隆 深川
洋一 中川
裕人 向井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010531712A priority Critical patent/JP5504166B2/ja
Priority to US13/056,825 priority patent/US8400357B2/en
Publication of WO2010038359A1 publication Critical patent/WO2010038359A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems

Definitions

  • the present invention relates to a wireless arrival direction estimation device and a wireless arrival direction estimation method for estimating the radio wave arrival direction of a specific tag.
  • UWB Ultra Wide Band
  • the IEEE 802.15.4a standard discloses a four-point positioning method and a method of measuring a distance by measuring a round trip time.
  • a method for measuring the tag position there is a method for measuring the tag position by combining the distance measurement result described above and a technique for estimating the azimuth angle at which the tag exists as the arrival direction of the radio wave.
  • the position of the tag is obtained in principle from the principle of polar coordinates.
  • Non-Patent Document 1 is cited as a document covering the arrival direction estimation technology of radio waves.
  • a correlation matrix or covariance matrix is obtained from a signal obtained by an array antenna, and an eigenvector calculation method using the obtained matrix (for example, MUSIC method), beam sweep, null sweep (for example, there is a Capon method.
  • an actual IR-UWB (Impulse-Response-UWB) pulse has a wider band compared to a narrowband signal or a carrier wave as assumed in Non-Patent Document 1, and its frequency characteristics are also between general array element systems.
  • a large error occurs.
  • a wireless arrival direction estimation device using UWB for example, as shown in Patent Document 1, a plurality of distance measurement units are provided, and the arrival direction of radio waves is estimated using the arrival time difference of radio waves from a tag. Is disclosed.
  • FIG. 1 shows a configuration of an array antenna 10 having receiving units (antenna elements) 11 to 14.
  • the array antenna 10 calculates the azimuth angle of the object using the difference in timing at which the signal reflected from the object arrives at each receiving unit.
  • Patent Document 1 when the four receiving units are arranged at positions separated from each other, an accurate angle in the direction of arrival of radio waves can be obtained, but these receiving units are close to each other. When arranged at a position, it is difficult to obtain an accurate angle of the direction of arrival of radio waves. This is because the time difference between the timings of receiving signals at each receiving unit is very small.
  • the maximum interval between a plurality of receiving units constituting an array antenna is 20 cm
  • the pulse width is about 2 nanoseconds, and an error in the path length of about 30 cm occurs. Therefore, with the configuration shown in Patent Document 1, it is difficult to accurately estimate the arrival direction of radio waves when a plurality of receiving units are arranged at positions close to each other.
  • the present invention has been made in view of such a point, and even when a plurality of antenna elements are arranged at short intervals, a wireless arrival direction estimation device and a wireless communication device that accurately estimate the arrival direction of a radio wave from a desired tag
  • An object of the present invention is to provide an arrival direction estimation method.
  • the wireless arrival direction estimation apparatus of the present invention includes a UWB antenna that receives a signal transmitted from a tag, tag ID detection means that detects a tag ID from the signal received by the UWB antenna, and the tag ID is detected.
  • Timing detection means for detecting the timing and the sample timing of the ID bit string of the tag ID in association with each other, an array antenna composed of a plurality of antenna elements for receiving signals transmitted from the tag, and the array antenna Using calculation means for calculating relative amplitude phase information indicating a relative amplitude and a phase difference between the plurality of antenna elements from the signal, a timing associated with a sample timing of the ID bit string, and the relative amplitude phase information
  • Direction of arrival estimation for estimating the direction of arrival of the signal transmitted from the tag A configuration that includes a stage, the.
  • the wireless arrival direction estimation method of the present invention includes a tag ID detection step of detecting a tag ID from a signal transmitted from a tag and received by a UWB antenna, a timing at which the tag ID is detected, and an ID bit string of the tag ID.
  • the present invention it is possible to accurately estimate the arrival direction of radio waves from a desired tag even when a plurality of antennas are arranged at short intervals.
  • wireless arrival direction estimation apparatus The block diagram which shows the structure of the radio
  • the block diagram which shows the internal structure of the arrival direction estimation part shown in FIG. The figure which shows an example of the specific process timing of a radio
  • the figure which shows a radio arrival direction estimation result The block diagram which shows the structure of the radio
  • the figure which shows the relationship between the element distance of the array antenna which concerns on Embodiment 3 of this invention, and beam shape The block diagram which shows the structure of the radio
  • FIG. 2 is a block diagram showing a configuration of the wireless arrival direction estimation apparatus according to Embodiment 1 of the present invention.
  • the tag 100 radiates the ID assigned to the tag 100 to the reader using the IR-UWB signal in any of the active method, passive method, and semi-passive method.
  • the reader 110 receives the IR-UWB signal radiated from the tag by the UWB antenna 111 and outputs the received IR-UWB signal to the UWB demodulator 112.
  • the UWB demodulator 112 converts the received IR-UWB signal into a baseband signal and outputs it to the tag ID detector.
  • an impulse UWB demodulator can obtain a baseband signal by performing envelope detection using a diode having excellent high frequency characteristics.
  • the tag ID detection unit 113 compares the baseband signal output from the UWB demodulation unit 112 with a plurality of codes of a code sequence (for example, a PN code or a GOLD code) determined in advance between the tag and the reader. If the comparison results match, the tag ID detection unit 113 recognizes the acquired baseband signal as the desired tag ID. Specifically, in the IR-UWB, the tag ID is transmitted with a signal having a pulse width of about 2 nanoseconds, so that the tag ID detection unit 113 is sufficiently fast so that the signal can be detected with the pulse width of the impulse UWB. The tag ID signal is sampled with a clock.
  • a code sequence for example, a PN code or a GOLD code
  • the tag ID detection unit 113 holds both the timing of the change point of each bit (“0” or “1”) of the bit string representing the tag ID and the sample timing of the UWB pulse forming each ID, or The timing of only the change point of each bit (“0” or “1”) of the bit string representing the tag ID is held, and this timing is output to the timing detection unit 114.
  • the timing detection unit 114 detects the timing output from the tag ID detection unit 113 in association with each ID bit as the reception time.
  • the IR-UWB signal radiated from the tag is received by each of the antenna elements 120-1 to 120-3.
  • These antenna elements 120-1 to 120-3 constitute an array antenna, and the number of antenna elements is determined by the desired accuracy and the desired ID detection number.
  • the number of detected desired IDs is 1, and that the number of antennas is 3 assuming that there are other stationary reflected waves.
  • the UWB antenna 111 is an antenna that receives the entire band signal radiated from the tag, whereas the antenna elements 120-1 to 120-3 are narrow bands that receive a part of the IR-UWB band. Antenna.
  • the phase error between each antenna system becomes the estimation result error of the direction of arrival estimation, so the phase error between antenna systems is managed within the desired error range by calibration etc. There is a need to. For this reason, in a wideband signal such as UWB, it is necessary to manage the phase accuracy in all bands of the wideband, which is difficult to realize.
  • a single continuous wave (hereinafter referred to as “CW: Continuous Wave”) signal included in an IR-UWB signal can be used.
  • the UWB signal in the IR-UWB system is generated when an edge signal having a frequency oscillated by a crystal oscillation circuit on the transmission side passes through a band-pass filter.
  • the IR-UWB signal is a signal in which CWs with 10 MHz intervals are arranged in the UWB lower band 3.4 to 4.8 GHz or the UWB upper band 7.25 to 10.6 GHz.
  • the IR-UWB signal can be handled as 4 GHz or 8 GHz CW, and the center frequency of each antenna element of the array antenna can be set to a frequency of 4 GHz or 8 GHz.
  • Signals received by the antenna elements pass through bandpass filters 121-1 to 121-3, are subjected to interference cancellation, and then converted to IF signals or IQ baseband signals by down converters 122-1 to 122-3.
  • the IF signal is converted into an IF signal of 10 MHz.
  • the local signal is a signal separated by 10 Mz above or below 4 GHz / 8 GHz, and it is desirable to use an image rejection mixer in order to remove a close image.
  • the adjacent CW signal is cut by a baseband filter having a cutoff frequency of about 5 MHz.
  • the IF signals or IQ baseband signals generated by the down converters 122-1 to 122-3 are input to the AD converters 123-1 to 123-3, converted into digital signals, and input to the relative amplitude phase information calculation unit 124. Entered.
  • the relative amplitude phase information calculation unit 124 calculates a correlation matrix or a covariance matrix for the input signal of each antenna element for each sample, using the digital signals output from the AD conversion units 123-1 to 123-3. To do.
  • the pulse is an OOK (On-Off-Keying) type IR-UWB, since the signal has a DC component, generally a covariance matrix is calculated by subtracting the signal average component from the correlation matrix.
  • a correlation matrix may be generally used.
  • the correlation matrix or covariance matrix is stored in the memory in the relative amplitude phase information calculation unit 124.
  • the arrival direction estimation unit 125 uses the correlation matrix or covariance matrix accumulated in the relative amplitude phase information calculation unit 124 and the timing output from the timing detection unit 114 to determine the arrival direction of the radio wave from the tag 100. presume. Details of the arrival direction estimation unit 125 will be described below.
  • FIG. 3 is a block diagram showing an internal configuration of the arrival direction estimation unit 125 shown in FIG.
  • the reference clock is shared within the same casing of the reader 110, and the ID detection timing output from the timing detection unit 114 is given to the switch 201 as a counter or memory address value for the clock.
  • the arrival direction estimation unit 125 obtains relative amplitude phase information related to either the digital value “1” or “0” of the tag ID.
  • the first addition unit 202 that adds the relative amplitude phase information related to the digital value “1” of the tag ID for each element of the matrix and the relative value related to the digital value “0” of the tag ID.
  • the second addition unit 203 that adds the amplitude phase information for each element of the matrix, the relative amplitude phase information is obtained for each unit period (bit period in which one bit of the tag ID generated from a plurality of UWB pulses is transmitted). One is formed.
  • the arithmetic unit 204 subtracts the relative amplitude phase information generated by the second adder 203 from the relative amplitude phase information generated by the first adder 202, The phase of the signal corresponding to the value “1” phase is extracted.
  • the information corresponding to the digital value “1” includes an incoming signal from the tag (a signal indicating the bit “1” included in the bit string indicating the tag ID) and a noise component such as a reflected wave from other than the tag.
  • the information corresponding to the digital value “0” is an unnecessary signal (noise component) including a reflected wave from other than the tag ID.
  • the reflected wave signal from other than the tag is removed with a simple configuration. It is possible to improve the accuracy of estimation of the direction of arrival of radio waves from the tag.
  • the Fourier beam sweep unit 205 can obtain the arrival direction distribution as the signal intensity by sweeping the Fourier beam with respect to the azimuth angle or the elevation angle using the relative amplitude phase information.
  • the peak detection unit 206 can detect the arrival direction of the radio wave by obtaining the peak value of the signal intensity of the azimuth spectrum signal.
  • the horizontal axis in FIG. 4 is the sample timing, and the vertical axis is the intensity of the signal received by the antenna elements 120-1 to 120-3 at each sample timing.
  • a periodic impulse signal is transmitted from the reader 110 by a passive method or a semi-passive method, and a reflected wave arrives from the direction of 30 degrees, and the antennas 120-1 to 120 when receiving the reflected wave are shown.
  • the direction of 30 degrees is an angle formed with the normal direction of the straight line where the antennas 120-1 to 120-3 are arranged.
  • the reader 110 transmits area notification information corresponding to a wireless LAN beacon from the reader 110 side.
  • an impulse signal having a constant period of about 10 MHz is transmitted.
  • the pulse signal has a pulse width of about 2 nanoseconds due to the characteristics of UWB.
  • the phase of the signal from each antenna element of the array antenna varies in accordance with the path length difference between the antenna element and the wall surface with respect to each frequency component of the broadband pulse. For example, in an array antenna designed with an element spacing of 1/2 wavelength when applying 4 GHz, a signal arriving from the 30 degree direction arrives at the antenna element due to a phase difference of 1/4 wavelength, but at 3 GHz and 5 GHz About 25 percent phase error occurs. In the present invention, since the impulse signal is down-converted and handled as a narrowband signal, this error does not occur.
  • FIG. 4B shows an antenna 120 ⁇ when the tag 100 existing in the ⁇ 30 ° direction adds an ID to the passive impulse signal from the reader 110 and the reader 110 receives the signal with the ID added. It is a waveform in 1-120-3. The direction of ⁇ 30 degrees is an angle formed with the normal direction of the straight line where the antennas 120-1 to 120-3 are arranged.
  • the horizontal axis shows an example of sampling timing, but the tag 100 shows an example in which the ID bit is returned in units of 50 samples in response to the periodic pulse from the reader 110.
  • FIG. 4B shows a code “1” from 0 to 50 samples, a code “0” from 51 samples to 100 samples, a code “1” from 101 samples to 150 samples, and a code “1” from 151 samples to 200 samples.
  • the amplitude shows an example in which the array antenna receives a signal from the tag 100 at half the amplitude in FIG. 4A so that FIG. 4A and FIG. 4B can be compared.
  • the phase of the signal at each antenna element of the array antenna varies in accordance with the path length difference between the reader antenna element and the wall surface with respect to each frequency component of the broadband pulse.
  • FIG. 4C is an IF signal or IQ baseband signal output from the down converter when the signal shown in FIG. 4A and the signal shown in FIG. 4B are combined.
  • the signal is down-converted to a pulse generation period (for example, 10 MHz)
  • the two signals are combined.
  • the phase of the combined signal is observed as the amplitude of the I signal (solid line) and the amplitude of the Q signal (dashed line).
  • the tag 100 returns an ID bit to the reader 110 in units of 50 samples.
  • the fact that the code “0” is sent from the sample to 256 samples can be identified by the ID detection timing signal obtained from the timing detection unit 114.
  • the code “0” does not include the incoming signal from the tag and includes only the reflected wave
  • the code “1” includes the incoming signal and the reflected wave from the tag. Therefore, as relative amplitude phase information at the time of code “0”, covariance is obtained from a plurality of sample data (50 samples of data in the above example) sampled at the intracode timing of the ID bit of code “0”. Deriving a matrix. Further, as relative amplitude phase information at the time of code “1”, covariance is obtained from a plurality of sample data (50 samples of data in the above example) sampled at the intracode timing of the ID bit of code “1”. Deriving a matrix.
  • the relative amplitude phase information when the code is “0” and the relative amplitude phase information when the code is “1” are the same number.
  • a covariance matrix obtained as a 3 ⁇ 3 matrix is derived.
  • the arrival direction of the radio wave may be detected by the Fourier beam and peak detection that are generated by using one 3 ⁇ 3 covariance matrix.
  • the covariance matrix is used as the relative amplitude phase information.
  • any information other than the covariance matrix may be used as long as the phase difference information between the antenna elements can be detected.
  • the relative amplitude and phase information is detected using the signals of all 50 samples of code “0” and code “1”, but the phase is not discontinuous at the boundary of code switching.
  • the relative amplitude phase information may be calculated using a sample of a partial section of each code.
  • FIG. 5A shows an output result of the Fourier beam sweep unit 205 when the signal shown in FIG. 4A and the signal shown in FIG. 4B are combined and the covariance matrix is not identified by the ID.
  • the horizontal axis in FIG. 5 is an estimated azimuth (azimuth, in a horizontal plane) angle (unit: degree), and the vertical axis is a signal intensity at each angle.
  • the result is that the Fourier beam is calculated using the covariance matrix derived using each sample timing from 0 to 256 samples.
  • the Fourier beam is a method of adding the received signal over all antenna elements while correcting the relative phase difference of the received signal of the array element assumed in the estimated azimuth direction with respect to the received signal.
  • the received signal is added in phase and the signal strength is maximized.
  • the direction in which the received addition signal becomes maximum is estimated as the arrival direction.
  • the relative amplitude and phase between the antenna phases are calculated, so the direction can be estimated by a Fourier beam.
  • the Fourier beam has a peak in two directions, that is, the direction of the tag is ⁇ 30 degrees and the direction of the wall reflected wave is 30 degrees. Have. Further, since the reflected wall wave is stronger than the tag, a maximum peak occurs in the direction of wall reflection, and erroneous detection occurs.
  • FIG. 5B shows the output result of the Fourier beam sweep unit 205 when the arrival direction estimation unit 125 of FIG. 3 is used.
  • the reflected wave component is subtracted and the influence is exerted. Since it becomes weaker, the maximum peak is obtained in the tag direction.
  • the IR-UWB system reader down-converts the received signal to narrow the band, and uses the relative amplitude phase information at the timing when the specific tag ID is detected, and the radio wave
  • the arrival direction of the radio wave can be estimated with high accuracy even in a reader whose interval between the plurality of antenna elements constituting the array antenna is as small as one wavelength.
  • the influence of wall reflection is shown in the passive method and the semi-passive method, but the ID of a specific tag is detected even for the interference of multiple tags and the influence of multiple waves in the active method. Then, the arrival direction of the radio wave may be estimated based on the timing.
  • the array antenna is configured by three antenna elements.
  • the number of antenna elements is not limited as long as the number of antenna elements is two or more.
  • the array antenna may be configured by using a linear array, a circular array (including an unequal interval array), or a V-shape.
  • a UWB antenna for ID detection may be used as a part of the array antenna.
  • FIG.6 is a block diagram showing a configuration of radio arrival direction estimation apparatus 110A according to Embodiment 2 of the present invention.
  • FIG. 6 differs from FIG. 2 in that antennas 420-1 to 420-3, bandpass filters 421-1 to 421-3, and down converters 422-1 to 422-3 are added, and AD converters 123-1 to 123-3 are added. 123-3 is changed to AD converters 423-1 to 423-3.
  • Antennas 420-1 to 420-3 receive signals in a band different from the UWB band received by antennas 120-1 to 120-3.
  • the bandpass filters 421-1 to 421-3 and the down converters 422-1 to 422-3 also have different bands from the bandpass filters 121-1 to 121-3 and the down converters 122-1 to 122-3. Process the signal.
  • the AD converters 423-1 to 423-3 include two types of narrowband signals, the signals output from the down converters 122-1 to 122-3 and the signals output from the down converters 422-1 to 422-3. Then, a signal with a good reception level is selected, or AD conversion is performed by synthesizing these two types of narrowband signals.
  • the reader receives signals in a plurality of bands, so that even when the reception level of some bands decreases due to fading, the fading frequency correlation of signals in other frequency bands. Is low, the signal can be received with a sufficiently high reception level, and the direction of arrival estimation accuracy can be maintained with high accuracy.
  • two types of narrowband signals of UWB are used, but three or more types of narrowband signals may be used.
  • FIG. 7 is a block diagram showing a configuration of radio arrival direction estimation apparatus 110B according to Embodiment 3 of the present invention.
  • FIG. 7 differs from FIG. 2 in that an antenna element 120-4, a band pass filter 121-4, a down converter 122-4, and an AD converter 123-4 are added. That is, the wireless arrival direction estimation device 110B has four antenna elements that constitute an array antenna used for estimating the arrival direction of radio waves.
  • the relative amplitude phase information calculation unit 124 uses the digital signals output from the AD conversion units 123-1 to 123-4 to calculate the correlation matrix or covariance matrix for the input signal of each antenna element for each sample. Is calculated.
  • FIG. 8 is a diagram showing an arrangement example of the entire antenna unit composed of the array antenna composed of the antenna elements 120-1 to 120-4 and the UWB antenna 111.
  • the antenna elements 120-1 to 120-3 are arranged at the vertices of an equilateral triangle whose side is d.
  • the antenna element 120-4 is arranged at the center of gravity of the equilateral triangle.
  • the UWB antenna 111 is separated by a distance L from one of the three antenna elements arranged at the apex of the equilateral triangle (the antenna element 120-2 in FIG. 8) that is closest to the UWB antenna 111. Placed in a different position.
  • the distance d between the antenna elements 120-1 to 120-3 and the separation distance L between the antenna element 120-2 and the UWB antenna 111 depend on the frequency of the IR-UWB signal and the center frequency of each antenna element 120. Based on this, it is determined as follows.
  • the IR-UWB signal is treated as a CW of 4 GHz or 8 GHz, and the center frequency of each antenna element 120 of the array antenna is set to a frequency of 4 GHz or 8 GHz.
  • the inter-element distance d of the antenna elements 120 constituting the outer periphery of the array antenna can be set in the range of 0.36 to 0.44 ⁇ or in the range of 0.72 to 0.88 ⁇ . desirable.
  • which is a unit of d, indicates a wavelength calculated from the speed of light C ( ⁇ 2.998 ⁇ 10 ⁇ 8 m / sec) and the center frequency f.
  • FIG. 9 shows a directional beam shape when the array antenna is excited with equal amplitude.
  • 9A to 9F show directional beam shapes at different inter-element distances d.
  • the inter-element distances d in FIGS. 9A to 9F are 0.4 ⁇ , 0.5 ⁇ , 0.3 ⁇ , 0.7 ⁇ , 0.8 ⁇ , and 0.9 ⁇ , respectively.
  • the horizontal axis represents the horizontal plane (Azimuth) angle
  • the vertical axis represents the directivity gain of the array antenna normalized by the maximum value.
  • the side lobe rises as shown in FIG. 9B, it becomes difficult to separate two incoming waves having a level difference.
  • the side lobe is about ⁇ 4 dB relative to the main beam. Therefore, if the two incoming waves have a level difference of 4 dB or more, the arrival directions of the two waves cannot be estimated separately. Further, when the main beam spreads as shown in FIG. 9C, it becomes easy to be affected by receiver noise, so that the estimation accuracy of the arrival direction is deteriorated even when there is one incoming wave.
  • the configuration of the wireless arrival direction estimation device 110B is configured to suppress the mutual coupling by increasing the separation distance between the antenna elements. That is, in many cases, it is more practical to adopt a configuration that agrees well with the theoretical analysis result even if the size of the entire antenna unit in radio arrival direction estimation apparatus 110B is somewhat larger.
  • the inter-element distance d of the antenna elements 120-1 to 120-3 constituting the outer periphery is such that two incoming waves are separated and one incoming wave is separated. This parameter is determined by a trade-off with the estimation accuracy.
  • the inter-element distance d is preferably about 0.4 ⁇ or about 0.8 ⁇ . Specifically, when the center frequency of the IR-UWB signal is handled as 4 GHz, for example, d is about 30 mm when 0.4 ⁇ , and about 60 mm when 0.8 ⁇ . Further, when the center frequency of the IR-UWB signal is handled as 8 GHz, for example, d is about 15 mm when 0.4 ⁇ , and about 30 mm when 0.8 ⁇ .
  • the above-described separation distance L is preferably 1 ⁇ or more in the same wavelength unit. This is a separation distance that serves as a guide for reducing the degree of mutual coupling between antennas to -30 dB or less.
  • Non-Patent Document 2 describes the relationship between the distance between two microstrip antennas and the degree of mutual coupling. When the degree of mutual coupling increases, the directivity of each of the two antennas that are mutually coupled is distorted, and the direction of arrival estimation accuracy and IR-UWB reception sensitivity are degraded.
  • antenna elements 120-1 to 120-3 are arranged at three vertices of an equilateral triangle, and antenna element 120-4 is arranged in the equilateral triangle. Located at the center of gravity.
  • the symmetry of the array antenna shape is improved, so that it is possible to realize an array antenna that can receive signals coming from any direction with a good balance.
  • the length d of one side of the equilateral triangle is in the range of 0.36 to 0.44 ⁇ or 0.72 to 0 when the wavelength of the received signal of the wireless arrival direction estimation apparatus 110B is ⁇ . Desirably it is in the range of .88 ⁇ . Further, it is desirable that the distance L between the UWB antenna 111 and the nearest antenna element 120-2 among the antenna elements 120-1 to 120-3 is 1 ⁇ or more.
  • the sharpness of the main beam can be maintained at a constant level while suppressing the side lobe level, so that the receiving sensitivity of the array antenna can be improved.
  • the arrival direction estimation accuracy in the wireless arrival direction estimation device 110B is also improved.
  • the antenna elements 120-1 to 120-4 are particularly preferably a monopole antenna, a sleeve dipole antenna, or a microstrip antenna, but are not limited thereto. Further, by arranging the antenna elements 120-1 to 120-3 on the ground plane as monopole antennas or sleeve dipole antennas, or by using the antenna elements 120-1 to 120-3 as microstrip antennas, the radio arrival direction In the estimation device 110B, it is possible to estimate the three-dimensional direction of arrival for the hemisphere above the ground plane.
  • FIG. 10 is a block diagram showing a configuration of radio arrival direction estimation apparatus 100C according to Embodiment 4 of the present invention.
  • FIG. 10 is different from FIG. 7 in that a distributor 800 is provided at the subsequent stage of the UWB antenna 111 and the UWB antenna 111 is shared as one of the antenna elements constituting the array antenna used for direction of arrival estimation. It is. That is, the received signal of the UWB antenna 111 is distributed to two using the distributor 800, and then one is input to the UWB demodulator 112 and the other is input to the bandpass filter 121-4 for estimating the arrival direction. Is done.
  • the relative amplitude phase information calculation unit 124 uses the digital signals output from the AD conversion units 123-1 to 123-4 to calculate the correlation matrix or covariance matrix for the input signal of each antenna element for each sample. Is calculated.
  • FIG. 11 is a diagram illustrating a configuration example of an antenna unit including the antenna elements 120-1 to 120-3 and the UWB antenna 111.
  • the antenna elements 120-1 to 120-3 are arranged at the vertices of an equilateral triangle whose side is d.
  • UWB antenna 111 is arranged at the center of gravity of the equilateral triangle. That is, the UWB antenna 111 is arranged at the center of gravity and is shared as one of the antenna elements of the array antenna. Therefore, an array antenna having a beam shape similar to that shown in FIG. 9A can be realized by setting the inter-element distance d to about 0.4 ⁇ .
  • antenna elements 120-1 to 120-3 are arranged at three vertices of an equilateral triangle, and UWB antenna 111 is arranged at the center of gravity of the equilateral triangle. Then, the relative amplitude phase information calculation unit 124 calculates relative amplitude phase information indicating the relative amplitude and the phase difference between the antenna elements from the signals received by the antenna elements 120-1 to 120-3 and the UWB antenna 111.
  • the antenna elements 120-1 to 120-3 and the UWB antenna 111 constitute an array antenna, and the symmetry of the shape of the array antenna is improved. Therefore, an array that can receive signals from any direction in a well-balanced manner. An antenna can be realized.
  • UWB antenna 111 may be arranged at the center of gravity of an equilateral triangle in which antenna elements 120-1 to 120-3 are arranged. That is, in this case, the UWB antenna 111 functions only as an antenna that receives the entire band signal radiated from the tag, and is not shared as one of the antenna elements constituting the array antenna for direction of arrival estimation. .
  • the antenna elements 120-1 to 120-3 are particularly preferably a monopole antenna, a sleeve dipole antenna, or a microstrip antenna, but are not limited thereto. Further, by arranging the antenna elements 120-1 to 120-3 on the ground plane as monopole antennas or sleeve dipole antennas, or by using the antenna elements 120-1 to 120-3 as microstrip antennas, the radio arrival direction In the estimation device 110C, it is possible to estimate the three-dimensional direction of arrival for the hemisphere above the ground plane.
  • the wireless arrival direction estimation device and wireless arrival direction estimation method according to the present invention can be applied to a wireless tag system including a reader / writer and a wireless tag.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

 短い間隔で複数のアンテナが配置された場合でも、所望のタグからの電波の到来方向を正確に推定する無線到来方向推定装置。タイミング検出部(114)からID検出タイミングがスイッチ(201)に与えられると、到来方向推定部(125)では、タグIDのディジタル値“1”又は“0”に関係付けられた相対振幅位相情報が得られる。タグIDのディジタル値“1”と関係付けられた相対振幅位相情報を行列の要素毎に加算する第1加算部(202)と、タグIDのディジタル値“0”と関係付けられた相対振幅位相情報を行列の要素毎に加算する第2加算部(203)とにおいて、単位周期毎に相対振幅位相情報がそれぞれ1個形成される。OOK信号は、演算器(204)にて、第1加算部(202)で生成された相対振幅位相情報から第2加算部(203)で生成された相対振幅位相情報が減算され、ディジタル値“1”位相に対応する信号の位相が抽出される。

Description

無線到来方向推定装置及び無線到来方向推定方法
 本発明は、特定のタグの電波到来方向を推定する無線到来方向推定装置及び無線到来方向推定方法に関する。
 UWB(Ultra Wide Band)無線においては、その広帯域性を利用した高精度の測距が可能となった。例えば、IEEE802.15.4a規格においては4点測位方式や、ラウンドトリップ時間を測定することにより測距する方法が開示されている。また、タグの位置を測定する方式としては、上記の測距結果と、タグが存在する方位角を無線電波の到来方向と推定する技術とを組み合わせることによって、タグの位置を測定する方式があり、タグの位置は原理的には極座標の原理から得られる。
 無線電波の到来方向推定技術を網羅した文献としては、例えば非特許文献1が挙げられる。非特許文献1に示されるように、アレーアンテナによって得られる信号から相関行列又は共分散行列を求め、求めた行列を用いて、固有ベクトル計算する方法(例えば、MUSIC法など)、ビームスイープ、ナルスイープ(例えば、Capon法など)がある。
 しかしながら、実際のIR-UWB(Impulse Response-UWB)のパルスは、非特許文献1において前提としているような狭帯域信号又は搬送波と比較して広帯域であり、その周波数特性も一般のアレー素子系統間での誤差が多くなることから、上記方式を用いると大きな誤差が生じる。
 これに対して、UWBを用いた無線到来方向推定装置としては、例えば、特許文献1に示すように、距離測定ユニットを複数備え、タグからの電波の到来時間差を用いて電波の到来方向を推定することが開示されている。
 図1は、受信ユニット(アンテナ素子)11~14を有するアレーアンテナ10の構成を示す。アレーアンテナ10は、物体から反射された信号が各受信ユニットに到着するタイミングの差を用いて、物体の方位角を計算する。
特表2007-518968号公報
菊間信良著、"アレーアンテナによる適応信号処理"、科学技術出版、1998年 羽石操監修、"最新平面アンテナ技術"、(株)総合技術センター、p.319-320
 しかしながら、上記特許文献1に示すような構成では、4つの受信ユニットがお互いに離れた位置に配置された場合、電波の到来方向の正確な角度が得られるが、これらの受信ユニットが互いに近接した位置に配置された場合、電波の到来方向の正確な角度を求めることが困難となる。これは、各受信ユニットで信号を受信するタイミングの時間差が非常に小さいためである。
 例えば、アレーアンテナを構成する複数の受信ユニットの最大間隔が20cmと仮定したとき、10m先に存在する物体(送信ユニット)を2.5度の精度(30cm程度の精度)で測定する場合、それぞれの受信ユニットにおける測定距離差は6mmが必要となる。しかしながら、実際のUWBを用いた無線到来方向推定装置においては、特許文献1にも示されているように、パルス幅は2ナノ秒程度であり、30cm程度の行路長の誤差が生じる。従って、特許文献1に示すような構成では、複数の受信ユニットが互いに近接した位置に配置された場合に、電波の到来方向を精度よく推定することは困難であった。
 本発明はかかる点に鑑みてなされたものであり、短い間隔で複数のアンテナ素子が配置された場合においても、所望のタグからの電波の到来方向を正確に推定する無線到来方向推定装置及び無線到来方向推定方法を提供することを目的とする。
 本発明の無線到来方向推定装置は、タグから送信された信号を受信するUWBアンテナと、前記UWBアンテナによって受信した前記信号からタグIDを検出するタグID検出手段と、前記タグIDが検出されたタイミングと、前記タグIDのIDビット列のサンプルタイミングとを対応付けて検出するタイミング検出手段と、前記タグから送信された信号を受信する複数のアンテナ素子からなるアレーアンテナと、前記アレーアンテナによって受信した前記信号から前記複数のアンテナ素子間の相対振幅及び位相差を示す相対振幅位相情報を算出する算出手段と、前記IDビット列のサンプルタイミングと対応付けられたタイミングと、前記相対振幅位相情報とを用いて、前記タグから送信された信号の到来方向を推定する到来方向推定手段と、を具備する構成を採る。
 本発明の無線到来方向推定方法は、タグから送信され、UWBアンテナによって受信した信号からタグIDを検出するタグID検出工程と、前記タグIDが検出されたタイミングと、前記タグIDのIDビット列のサンプルタイミングとを対応付けて検出するタイミング検出工程と、前記タグから送信され、複数のアンテナ素子からなるアレーアンテナによって受信した信号から前記複数のアンテナ素子間の相対振幅及び位相差を示す相対振幅位相情報を算出する算出工程と、前記IDビット列のサンプルタイミングと対応付けられたタイミングと、前記相対振幅位相情報とを用いて、前記タグから送信された信号の到来方向を推定する到来方向推定工程と、を具備するようにした。
 本発明によれば、短い間隔で複数のアンテナが配置された場合においても、所望のタグからの電波の到来方向を正確に推定することができる。
無線到来方向推定装置のアレーの概略構成を示す図 本発明の実施の形態1に係る無線到来方向推定装置の構成を示すブロック図 図2に示した到来方向推定部の内部構成を示すブロック図 無線到来方向推定装置の具体的処理タイミングの一例を示す図 無線到来方向推定結果を示す図 本発明の実施の形態2に係る無線到来方向推定装置の構成を示すブロック図 本発明の実施の形態3に係る無線到来方向推定装置の構成を示すブロック図 本発明の実施の形態3に係るアンテナ部全体の構成例を示す図 本発明の実施の形態3に係るアレーアンテナの素子間距離とビーム形状の関係を示す図 本発明の実施の形態4に係る無線到来方向推定装置の構成を示すブロック図 本発明の実施の形態4に係るアンテナ部全体の構成例を示す図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。ただし、実施の形態において、同一の機能を有する構成には同一の符号を付し、重複する説明は省略する。
 (実施の形態1)
 図2は、本発明の実施の形態1に係る無線到来方向推定装置の構成を示すブロック図である。この図において、タグ100は、アクティブ方式、パッシブ方式、セミパッシブ方式のいずれの方式においても、タグ100に付与されたIDをIR-UWB信号を用いてリーダに放射する。
 リーダ110では、タグから放射されたIR-UWB信号をUWBアンテナ111で受信し、受信したIR-UWB信号をUWB復調部112に出力する。
 UWB復調部112は、受信したIR-UWB信号をベースバンド信号へ変換し、タグID検出部に出力する。なお、インパルス型のUWB復調部としては、一般的には、高周波特性の優れたダイオードを用いて包絡線検波を行うことにより、ベースバンド信号を得ることができる。
 タグID検出部113は、UWB復調部112から出力されたベースバンド信号と、タグとリーダとの間で予め定められた符号系列(例えば、PN符号やGOLD符号)の複数の符号と比較する。比較の結果が一致した場合、タグID検出部113は、取得したベースバンド信号を所望のタグIDであると認識する。具体的には、IR-UWBでは、2ナノ秒程度のパルス幅の信号でタグIDが送出されるため、タグID検出部113は、インパルスUWBのパルス幅で信号を検出できるように十分高速のクロックにてタグID信号をサンプリングする。本実施の形態においては、タグIDを表すビット列の各ビットとして、複数のUWBパルス列を用いて符号“0”及び“1”が送出されるので、1ビットのID検出のためには複数のパルスをサンプリングする。従って、タグID検出部113は、タグIDを表すビット列の各ビット(“0”または“1”)の変化点のタイミング及び各IDを形成するUWBパルスのサンプルタイミングの両者を保持するか、又は、タグIDを表すビット列の各ビット(“0”または“1”)の変化点のみのタイミングを保持しており、このタイミングをタイミング検出部114に出力する。
 タイミング検出部114は、タグID検出部113から出力されたタイミングを受信時刻としてIDのビット毎に対応付けて検出する。
 一方、タグより放射されたIR-UWB信号をアンテナ素子120-1~120-3の各々で受信する。これらのアンテナ素子120-1~120-3はアレーアンテナを構成し、アンテナ素子の数は、所望精度、所望ID検出数によりその数が決定される。ここでは所望ID検出数を1とし、その他に定常反射波がある場合を想定してアンテナ数を3として説明する。
 上記UWBアンテナ111は、タグから放射された全帯域信号を受信するアンテナであるのに対して、アンテナ素子120-1~120-3は、IR-UWB帯域の一部の帯域を受信する狭帯域のアンテナである。電波の到来方向を推定する際には、基本原理として各アンテナ系統間の位相誤差が到来方向推定の推定結果誤差となるため、アンテナ系統間の位相誤差をキャリブレーション等により所望誤差範囲内に管理する必要がある。このため、UWBのような広帯域信号においては、広帯域すべての帯域で位相精度を管理する必要があり、この実現には困難が伴う。
 狭帯域信号として最も簡易な例としては、IR-UWB信号に含まれる単一連続波(以下、「CW:Continuous Wave」という)信号を用いることができる。IR-UWB方式におけるUWB信号は、送信側の水晶発振回路で発振される周波数のエッジ信号がバンドパスフィルタを通過することにより生成される。IR-UWB信号は、例えば、水晶発振子の周波数が10MHzであるとすれば、UWB下帯域3.4~4.8GHz又はUWB上帯域7.25~10.6GHzに10MHz間隔のCWが並ぶ信号と考えることができる。従って、本実施の形態において、例えばIR-UWB信号を4GHz又は8GHzのCWとして扱い、アレーアンテナの各アンテナ素子の中心周波数を4GHz又は8GHzの周波数に設定することができる。
 各アンテナ素子で受信された信号は、バンドパスフィルタ121-1~121-3を通過して干渉除去された後、ダウンコンバータ122-1~122-3でIF信号又はIQベースバンド信号に変換される。IF信号としては、例えば10MHzのIF信号に変換する。この場合、ローカル信号は4GHz/8GHzの上方又は下方に10Mz離れた信号であり、近接したイメージを除去するためにイメージリジェクションミキサを用いることが望ましい。IQベースバンド信号に変換される場合には、イメージ信号が無いため遮断周波数5MHz程度のベースバンドフィルタにより隣接CW信号がカットされる。
 ダウンコンバータ122-1~122-3で生成されたIF信号又はIQベースバンド信号は、AD変換部123-1~123-3へ入力され、ディジタル信号に変換されて相対振幅位相情報算出部124に入力される。
 相対振幅位相情報算出部124は、AD変換部123-1~123-3から出力されたディジタル信号を用いて、サンプル毎に各アンテナ素子の入力信号に対して、相関行列又は共分散行列を算出する。パルスがOOK(On-Off-Keying)方式のIR-UWBの場合には、信号がDC成分を持つため、一般的には、相関行列から信号平均成分を減算する共分散行列を算出する。また、パルスがバイフェーズ方式のIR-UWBの場合には、信号はDC成分を持たないため、一般的には、相関行列を用いてもよい。相関行列又は共分散行列は相対振幅位相情報算出部124内のメモリに蓄積される。
 到来方向推定部125は、相対振幅位相情報算出部124に蓄積された相関行列又は共分散行列と、タイミング検出部114から出力されたタイミングとを用いて、タグ100からの無線電波の到来方向を推定する。以下、到来方向推定部125の詳細について説明する。
 図3は、図2に示した到来方向推定部125の内部構成を示すブロック図である。ここで、リーダ110の同一筐体内では基準クロックを共有し、タイミング検出部114から出力されたID検出タイミングが、クロックに対するカウンタ又はメモリのアドレス値としてスイッチ201に与えられるとする。到来方向推定部125では、タグIDのディジタル値“1”又は“0”のいずれかに関係付けられた相対振幅位相情報が得られる。
 従って、これらのタグIDのディジタル値“1”と関係付けられた相対振幅位相情報を行列の要素毎に加算する第1加算部202と、タグIDのディジタル値“0”と関係付けられた相対振幅位相情報を行列の要素毎に加算する第2加算部203とにおいて、単位周期(複数のUWBパルスから生成されるタグIDの1ビットが送出されるビット周期)毎に相対振幅位相情報がそれぞれ1個形成される。
 タグが1個のみ存在する場合、OOK信号では、演算器204において、第1加算部202で生成された相対振幅位相情報から第2加算部203で生成された相対振幅位相情報が減算され、ディジタル値“1”位相に対応する信号の位相が抽出される。ここで、ディジタル値“1”に対応する情報は、タグからの到来信号(タグIDを示すビット列に含まれるビット“1”を示す信号)と、タグ以外からの反射波などのノイズ成分を含む。一方、ディジタル値“0”に対応する情報は、タグID以外からの反射波を含む不要な信号(ノイズ成分)である。従って、上記のように、ディジタル値“1”と関係付けられた情報からディジタル値“0”と関係付けられた情報を減算することにより、簡便な構成でタグ以外からの反射波の信号を除去することができ、タグからの電波の到来方向推定の精度を向上することができる。
 また、バイフェーズ信号は、位相が逆転されて加えられるために、位相が同相合成される。フーリエビームスイープ部205は、この相対振幅位相情報を用いて、フーリエビームをアジマス角又はエレベーション角に対してスイープさせることにより、信号強度として到来方向分布を得ることができる。ピーク検出部206は、この方位角スペクトル信号の信号強度のピーク値を得ることにより、無線電波の到来方向を検知することができる。
 次に、無線到来方向推定装置の具体的処理タイミングの一例について図4を用いて説明する。図4の横軸は、サンプルタイミングであり、縦軸は、各サンプルタイミングにおけるアンテナ素子120-1~120-3で受信する信号の強度である。図4Aは、パッシブ方式又はセミパッシブ方式によりリーダ110から周期的なインパルス信号が送出され、それに対して30度方向から反射波が到来し、この反射波を受信したときのアンテナ120-1~120-3における波形である。なお、30度方向とは、アンテナ120-1~120-3が配置された直線の法線方向とのなす角度である。
 リーダ110は、パッシブ方式又はセミパッシブ方式の場合には、リーダ110側から無線LANのビーコンに相当するエリア報知情報を送出する。IR-UWBの場合には、10MHz程度の一定周期のインパルス信号が送出される。パルス信号はUWBの特性から2ナノ秒程度のパルス幅になる。
 実際の電波伝搬環境においては、リーダ110の周辺に壁や机などの什器が置かれている場合が多く、リーダ110からのパルス波形が壁面等から反射されてそのままリーダ110に戻ってくる。そのため、リーダ110のアレーアンテナでは、不要な反射波のパルスが受信される。この場合、アレーアンテナの各アンテナ素子での信号は、広帯域パルスの各周波数成分に対してアンテナ素子と壁面との行路長差に対応して位相が変動する。例えば、4GHzを適用する場合に1/2波長の素子間隔で設計されたアレーアンテナにおいて、30度方向から到来する信号は1/4波長の位相差によりアンテナ素子に到来するが、3GHz及び5GHzでは25パーセントほど位相誤差が生じる。本発明においては、インパルス信号をダウンコンバートして狭帯域信号として扱うので、この誤差は生じない。
 図4Bは、-30度方向に存在するタグ100が、リーダ110からのパッシブ方式によるインパルス信号に対してIDを付加し、IDが付加された信号をリーダ110が受信したときの、アンテナ120-1~120-3における波形である。なお、―30度方向とは、アンテナ120-1~120-3が配置された直線の法線方向とのなす角度である。図4において、横軸はサンプリングタイミングの一例を示すが、タグ100はリーダ110からの周期的パルスに対して、50サンプルずつの単位でIDビットを返送する例を示している。
 図4Bは、0から50サンプルまでは符号“1”、51サンプルから100サンプルまでは符号“0”、101サンプルから150サンプルまでは符号“1”、151サンプルから200サンプルまでは符号“1”、201サンプルから256サンプルまでは符号“0”が送られている様子を示しているものとする。振幅は、図4Aと図4Bとを比較できるように、タグ100からの信号を図4Aの振幅の1/2でアレーアンテナが受信している例を示している。この場合も同様に、アレーアンテナの各アンテナ素子での信号は、広帯域パルスの各周波数成分に対してリーダアンテナ素子と壁面との行路長差に対応して位相が変動する。例えば、4GHzを適用する場合に1/2波長の素子間隔で設計されたアレーアンテナにおいては、-30度方向から到来する信号は1/4波長の位相差によりアンテナ素子に到来するが、3GHz及び5GHzでは25パーセントほど位相誤差が生じる。本発明においては、インパルス信号をダウンコンバートして狭帯域信号として扱うので、この誤差は生じない。
 図4Cは、図4Aに示した信号と図4Bに示した信号とが合成されたときのダウンコンバータ出力のIF信号又はIQベースバンド信号である。図4Cに示すように、信号は、パルス発生の周期(例えば、10MHz)にダウンコンバートされるため、2つの信号が合成される。そして、その合成信号の位相がI信号(実線)の振幅、Q信号(波線)の振幅として観測されている。ここでも、タグ100がリーダ110に対し、50サンプルずつの単位でIDビットを返送する例を示している。すなわち、0から50サンプルまでは符号“1”、51サンプルから100サンプルまでは符号“0”、101サンプルから150サンプルまでは符号“1”、151サンプルから200サンプルまでは符号“1”、201サンプルから256サンプルまでは符号“0”が送られていることは、タイミング検出部114より得られるID検出タイミング信号により識別可能である。
 ここで、符号“0”のときは、タグからの到来信号を含まず、反射波のみを含み、符号“1”のときはタグからの到来信号及び反射波を含む信号である。従って、符号“0”のときの相対振幅位相情報として、符号“0”のIDビットの符号内タイミングでサンプルされた複数のサンプルデータ(上記の例で言えば50サンプルのデータ)から、共分散行列を導出する。また、符号“1”のときの相対振幅位相情報として、符号“1”のIDビットの符号内タイミングでサンプルされた複数のサンプルデータ(上記の例で言えば50サンプルのデータ)から、共分散行列を導出する。符号“0”のときの相対振幅位相情報と、符号“1”のときの相対振幅位相情報は同数である。アンテナが3本であるときには、結果として3行3列の行列として得られる共分散行列を導出する。次に、符号“0”、“1”それぞれについて、各符号に対応する共分散行列をそれぞれ加算し、符号“1”のときの加算結果から符号“0”のときの加算結果を減算した後、結果として1個の3行3列の共分散行列を用いて生成されるフーリエビーム及びピーク検出により電波の到来方向を検出すればよい。ここでは、相対振幅位相情報として共分散行列を用いたが、アンテナ素子間位相差情報を検出できるものであればよく、共分散行列以外のものを用いてもよい。なお、ここまでは符号“0”、符号“1”の50サンプル全ての区間の信号を使って相対振幅位相情報を検出するとしているが、符号の切り替えの境目で位相が不連続とならないように、各符号の一部の区間のサンプルを用いて相対振幅位相情報を計算してもよい。
 次に、図5Aは、図4Aに示した信号と図4Bに示した信号とが合成されたときに、IDによる共分散行列の識別を行わない場合のフーリエビームスイープ部205の出力結果である。図5の横軸は、推定アジマス(Azimuth、水平面内)角度(単位:度)であり、縦軸は、各角度における信号強度である。この場合では、本発明と動作が異なるが、0から256サンプルまでの各サンプルタイミングを用いて導出された共分散行列を用いて、フーリエビームを計算した結果となる。なお、フーリエビームとは、受信信号に対して、推定アジマス方向で想定されるアレー素子受信信号の相対位相差を補正しながら、受信信号をアンテナ素子すべてに渡り加算する方式であり、推定アジマス方向から信号が到来している場合には、受信信号が同相加算されるため信号強度が最大となる。推定アジマス角を-90度から90度又は-180度から180度までスイープすることにより、受信加算信号が最大となる方向を到来方向として推定する。共分散行列を計算することにより、アンテナ位相間の相対振幅及び位相が計算されるため、フーリエビームにより方向が推定できる。
 図5Aから分かるように、この場合、タグによる到来信号の識別を行わないため、フーリエビームはタグの方向である-30度と、壁面反射波の方向である30度の2つの方向にピークを持つ。また、壁面反射波の方がタグより強いため、壁面反射の方向に最大ピークが生じ、誤検出が生じる。
 これに対して、図5Bは、図3の到来方向推定部125を用いた場合のフーリエビームスイープ部205出力結果である。上述したように、符号“1”のときの相対振幅位相情報の加算結果から符号“0”のときの相対振幅位相情報の加算結果を減算することにより、反射波の成分が減算されて影響が弱くなるため、タグ方向に最大ピークが得られる。
 このように実施の形態1によれば、IR-UWB方式のリーダは受信信号をダウンコンバートして狭帯域化すると共に、特定のタグIDを検出したタイミングにて相対振幅位相情報を用いて無線電波の到来方向を推定することにより、アレーアンテナを構成する複数のアンテナ素子の間隔が1波長程度の小さなリーダにおいても、無線電波の到来方向を高精度に推定することができる。
 なお、本実施の形態では、パッシブ方式及びセミパッシブ方式において、壁面反射の影響のみを示しているが、アクティブ方式における複数タグの干渉及び多重波の影響に対しても、特定タグのIDを検出してそのタイミングにより無線電波の到来方向を推定してもよい。
 また、本実施の形態では、アレーアンテナが3つのアンテナ素子で構成される場合について説明したが、アンテナ素子の数は2つ以上であれば、本数は限定しない。また、アレーの形状も直線アレー、円形アレー(不等間隔アレーも含む)やV字型の形状を用いてアレーアンテナを構成してよい。また、アレーアンテナの一部としてID検出用のUWBアンテナを用いてもよい。
 (実施の形態2)
 図6は、本発明の実施の形態2に係る無線到来方向推定装置110Aの構成を示すブロック図である。図6が図2と異なる点は、アンテナ420-1~420-3、バンドパスフィルタ421-1~421-3、ダウンコンバータ422-1~422-3を追加し、AD変換部123-1~123-3をAD変換部423-1~423-3に変更した点である。
 アンテナ420-1~420-3は、アンテナ120-1~120-3で受信するUWBの帯域とは異なる帯域の信号を受信する。同様に、バンドパスフィルタ421-1~421-3、ダウンコンバータ422-1~422-3も、バンドパスフィルタ121-1~121-3、ダウンコンバータ122-1~122-3とは異なる帯域の信号を処理する。
 AD変換部423-1~423-3は、ダウンコンバータ122-1~122-3から出力された信号及びダウンコンバータ422-1~422-3から出力された信号の2種類の狭帯域信号のうち、受信レベルの良好な信号を選択するか、これら2種類の狭帯域信号を合成してAD変換する。
 このように実施の形態2によれば、リーダは複数の帯域の信号を受信することにより、一部の帯域がフェージングにより受信レベルが下がった場合においても、他の周波数帯域の信号のフェージング周波数相関が低ければ、受信レベルが十分高い状態で信号を受信することができ、到来方向の推定精度を高精度に維持することができる。
 なお、本実施の形態では、UWBの2種類の狭帯域信号を用いたが、3種類以上の狭帯域信号を用いてもよい。
 (実施の形態3)
 図7は、本発明の実施の形態3に係る無線到来方向推定装置110Bの構成を示すブロック図である。図7が図2と異なる点は、アンテナ素子120-4、バンドパスフィルタ121-4、ダウンコンバータ122-4、及びAD変換部123-4が追加された点である。すなわち、無線到来方向推定装置110Bは、電波の到来方向推定に用いるアレーアンテナを構成する4つのアンテナ素子を有している。また、相対振幅位相情報算出部124は、AD変換部123-1~123-4から出力されたディジタル信号を用いて、サンプル毎に各アンテナ素子の入力信号に対して、相関行列又は共分散行列を算出する。
 また、図8はアンテナ素子120-1~120-4からなるアレーアンテナとUWBアンテナ111からなるアンテナ部全体の配置例を示す図である。
 図8において、アンテナ素子120-1~3は、一辺の長さがdの正三角形の頂点に配置されている。そして、アンテナ素子120-4は、その正三角形の重心に配置されている。また、図8において、UWBアンテナ111は、正三角形の頂点に配置された3つのアンテナ素子の内でUWBアンテナ111と最も近い1つ(図8では、アンテナ素子120-2)と距離Lだけ離れた位置に配置される。
 ここで、アンテナ素子120-1~3のアンテナ素子間距離d、及び、アンテナ素子120-2とUWBアンテナ111との離間距離Lは、IR-UWB信号の周波数及び各アンテナ素子120の中心周波数に基づいて、以下のように決定される。なお、ここでは、IR-UWB信号を4GHz又は8GHzのCWとして扱い、アレーアンテナの各アンテナ素子120の中心周波数を4GHz又は8GHzの周波数に設定する。
 無線到来方向推定装置110Bでは、アレーアンテナの外周を構成するアンテナ素子120の素子間距離dを、0.36~0.44λの範囲、又は0.72~0.88λの範囲で設定することが望ましい。ここで、dの単位であるλは、光速C(≒2.998×10^8m/秒)と中心周波数fとより算出される波長を示している。
 図9は、アレーアンテナを等振幅励振させた場合の指向性ビーム形状が示されている。図9A~Fは、それぞれ異なる素子間距離dでの指向性ビーム形状が示されている。図9A~Fの素子間距離dは、それぞれ、0.4λ、0.5λ、0.3λ、0.7λ、0.8λ、0.9λである。図9において、横軸は、水平面内(Azimuth)角度であり、縦軸は、最大値で正規化したアレーアンテナの指向性利得である。
 図9AとBとを比較すると、図9Bの方が、0度方向のメインビームに対して±180方向のサイドローブが上昇していることが分かる。また、図9AとCとを比較すると、図9Cの方が、メインビームの幅が広がっていることが分かる。
 図9Bのようにサイドローブが上昇すると、レベル差の有る2つの到来波の分離が困難となる。例えば、図9Bの場合、サイドローブはメインビームに対して約-4dBである。従って、到来する2波に4dB以上のレベル差が有ると、その2波の到来方向を分離して推定できない。また、図9Cのようにメインビームが広がると、受信機ノイズの影響を受け易くなるので、到来波が1つの場合でも、到来方向の推定精度が劣化する。
 また、図9D~Fを見て分かるように、dが長くなるに従って、0度方向のメインビームは鋭くなる一方で、サイドローブは上昇する傾向がある。上述の通り、メインビーム幅及びサイドローブレベルは、到来方向推定の精度に影響を与えるので、無線到来方向推定装置110Bの使用環境等を考慮して、最適な素子間距離dを設定する必要がある。さらに、アンテナ素子間には、アンテナ素子同士の離間距離に応じた電磁界的な相互結合が生じる。この相互結合は、アンテナ素子の指向性パターンを歪ませ、アンテナとしての放射効率を低下させる。従って、無線到来方向推定装置110Bの構成をアンテナ素子間の離間距離を大きくして相互結合を抑えるような構成とすることが、工業製品としては好まれる。すなわち、無線到来方向推定装置110Bにおいてアンテナ部全体の寸法が多少大きくなっても、理論的な解析結果と良く一致する構成をとる方が、実用的である場合が多い。
 従って、図8のように構成された到来方向推定用のアレーアンテナでは、その外周を構成するアンテナ素子120-1~3の素子間距離dが、2つの到来波の分離性能と1つの到来波の推定精度とのトレードオフによって決定されるパラメータとなっている。これらの条件を考慮して、本実施の形態の無線到来方向推定装置110Bでは、素子間距離dは、略0.4λ、又は、略0.8λであることが望ましい。具体的には、IR-UWB信号の中心周波数を例えば4GHzとして扱う場合、dは、0.4λとすれば、約30mmとなり、0.8λとすれば、約60mmとなる。また、IR-UWB信号の中心周波数を例えば8GHzとして扱う場合、dは、0.4λとすれば、約15mmとなり、0.8λとすれば、約30mmとなる。
 また、上記した離間距離Lは、同じく波長単位で1λ以上であることが好ましい。これは、アンテナ間の相互結合度を-30dB以下にするために目安となる離間距離である。例えば、2つのマイクロストリップアンテナの離間距離と相互結合度との関係は、非特許文献2に記載されている。この相互結合度が大きくなると、相互結合する2つのアンテナそれぞれの指向性に歪が生じて、到来方向の推定精度やIR-UWBの受信感度が劣化する。
 以上のように本実施の形態によれば、無線到来方向推定装置110Bにおいて、アンテナ素子120-1~3は、正三角形の3つの頂点に配置され、アンテナ素子120-4は、その正三角形の重心に配置される。
 こうすることで、アレーアンテナ形状の対称性が向上するので、いずれの方向から到来する信号もバランス良く受信可能なアレーアンテナを実現することができる。
 より具体的には、その正三角形の一辺の長さdは、無線到来方向推定装置110Bの受信信号の波長をλとする場合、0.36~0.44λの範囲、又は0.72~0.88λの範囲であることが望ましい。また、アンテナ素子120-1~3の内でUWBアンテナ111と最も近いアンテナ素子120-2との離間距離Lは、1λ以上であることが望ましい。
 こうすることで、サイドローブレベルを抑えつつ、メインビームの鋭さを一定レベルに維持できるので、アレーアンテナの受信感度を向上できる。結果として、無線到来方向推定装置110Bにおける到来方向の推定精度も向上する。
 なお、アンテナ素子120-1~120-4としては、モノポールアンテナ、スリーブダイポールアンテナ、又はマイクロストリップアンテナが特に好適であるが、これに限定されるものではない。また、アンテナ素子120-1~120-3をモノポールアンテナ若しくはスリーブダイポールアンテナとして地板上に配置するか、又は、アンテナ素子120-1~120-3をマイクロストリップアンテナとすることにより、無線到来方向推定装置110Bにおいて、地板より上側の半球面に対する3次元の到来方向推定が可能となる。
 (実施の形態4)
 図10は、本発明の実施の形態4に係る無線到来方向推定装置100Cの構成を示すブロック図である。図10が図7と異なる点は、UWBアンテナ111の後段に分配器800が設けられるとともに、UWBアンテナ111が、到来方向推定に用いるアレーアンテナを構成するアンテナ素子の一つとして共用されている点である。つまり、UWBアンテナ111の受信信号は、分配器800を用いて2つに分配された後、一方はUWB復調部112へ入力され、他方は到来方向推定用としてバンドパスフィルタ121-4へと入力される。また、相対振幅位相情報算出部124は、AD変換部123-1~123-4から出力されたディジタル信号を用いて、サンプル毎に各アンテナ素子の入力信号に対して、相関行列又は共分散行列を算出する。
 図11は、アンテナ素子120-1~3及びUWBアンテナ111からなるアンテナ部の構成例を示す図である。実施の形態3と同様に、図11においても、アンテナ素子120-1~3は、一辺の長さがdの正三角形の頂点に配置されている。そして、実施の形態4においては、UWBアンテナ111が、その正三角形の重心に配置されている。すなわち、UWBアンテナ111は、重心に配置され、アレーアンテナのアンテナ素子の1つとして共用される。従って、素子間距離dを0.4λ程度とすることで、図9Aと同様のビーム形状となるアレーアンテナを実現できる。
 以上のように本実施の形態によれば、無線到来方向推定装置110Cにおいて、アンテナ素子120-1~3は、正三角形の3つの頂点に配置され、UWBアンテナ111は、正三角形の重心に配置され、相対振幅位相情報算出部124が、アンテナ素子120-1~3及びUWBアンテナ111によって受信した信号から、アンテナ素子間の相対振幅及び位相差を示す相対振幅位相情報を算出する。
 こうすることで、アンテナ素子120-1~3及びUWBアンテナ111がアレーアンテナを構成し、このアレーアンテナの形状の対称性が向上するので、いずれの方向から到来する信号もバランス良く受信可能なアレーアンテナを実現することができる。
 なお、以上の説明では、アレーアンテナを構成するアンテナ素子としてUWBアンテナ111が用いられる場合について説明した。これに対して、実施の形態1に係る無線到来方向推定装置110において、アンテナ素子120-1~3が配置された正三角形の重心にUWBアンテナ111を配置しても良い。すなわち、この場合には、UWBアンテナ111はタグから放射された全帯域信号を受信するアンテナとしてのみ機能し、到来方向推定用のアレーアンテナを構成するアンテナ素子の1つとして共用されることはない。
 なお、アンテナ素子120-1~120-3としては、モノポールアンテナ、スリーブダイポールアンテナ、又はマイクロストリップアンテナが特に好適であるが、これに限定されるものではない。また、アンテナ素子120-1~120-3をモノポールアンテナ若しくはスリーブダイポールアンテナとして地板上に配置するか、又は、アンテナ素子120-1~120-3をマイクロストリップアンテナとすることにより、無線到来方向推定装置110Cにおいて、地板より上側の半球面に対する3次元の到来方向推定が可能となる。
 2008年9月30日出願の特願2008-253659及び2009年5月13日出願の特願2009-116829の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明にかかる無線到来方向推定装置及び無線到来方向推定方法は、リーダ/ライタ及び無線タグを備える無線タグシステム等に適用できる。

Claims (9)

  1.  タグから送信された信号を受信するUWBアンテナと、
     前記UWBアンテナによって受信した前記信号からタグIDを検出するタグID検出手段と、
     前記タグIDが検出されたタイミングと、前記タグIDのIDビット列のサンプルタイミングとを対応付けて検出するタイミング検出手段と、
     前記タグから送信された信号を受信する複数のアンテナ素子からなるアレーアンテナと、
     前記アレーアンテナによって受信した前記信号から前記複数のアンテナ素子間の相対振幅及び位相差を示す相対振幅位相情報を算出する算出手段と、
     前記IDビット列のサンプルタイミングと対応付けられたタイミングと、前記相対振幅位相情報とを用いて、前記タグから送信された信号の到来方向を推定する到来方向推定手段と、
     を具備する無線到来方向推定装置。
  2.  前記到来方向推定手段は、
     前記IDビット列のビット1に関係付けられたタイミングでサンプルされた複数のサンプルデータを用いて生成される相対振幅位相情報を加算する第1加算手段と、
     前記IDビット列のビット0に関係付けられたタイミングでサンプルされた複数のサンプルデータを用いて生成される相対振幅位相情報を加算する第2加算手段と、
     前記第1加算手段によって加算された相対振幅位相情報から前記第2加算手段によって加算された相対振幅位相情報を減算する演算手段と、
     前記演算手段の減算結果を用いて、フーリエビームをスイープさせて角度スペクトルを算出するフーリエビームスイープ手段と、
     前記角度スペクトルのピークを検出するピーク検出手段と、
     を具備する請求項1に記載の無線到来方向推定装置。
  3.  前記複数のアンテナ素子は、前記UWBアンテナが受信する信号より狭帯域の信号を受信する請求項1に記載の無線到来方向推定装置。
  4.  前記算出手段は、前記受信信号から相関行列又は共分散行列を前記相対振幅位相情報として算出する請求項1に記載の無線到来方向推定装置。
  5.  前記アレーアンテナは、
     第1中心周波数を有する第1の複数のアンテナ素子と、
     前記第1中心周波数とは異なる第2中心周波数を有する第2の複数のアンテナ素子と、
     を具備する請求項1に記載の無線到来方向推定装置。
  6.  前記第1の複数のアンテナ素子によって受信した受信信号と前記第2複数のアンテナ素子によって受信した受信信号とを切り替え又は合成する切り替え合成手段を具備する請求項5に記載の無線到来方向推定装置。
  7.  前記複数のアンテナ素子は、正三角形の3つの頂点に配置された第1乃至第3のアンテナ素子と、前記正三角形の重心に配置された第4のアンテナ素子とから構成される、
     請求項1に記載の無線到来方向推定装置。
  8.  前記複数のアンテナ素子は、正三角形の3つの頂点に配置された第1乃至第3のアンテナ素子から構成され、
     前記UWBアンテナは、前記正三角形の重心に配置される、
     請求項1に記載の無線到来方向推定装置。
  9.  タグから送信され、UWBアンテナによって受信した信号からタグIDを検出するタグID検出工程と、
     前記タグIDが検出されたタイミングと、前記タグIDのIDビット列のサンプルタイミングとを対応付けて検出するタイミング検出工程と、
     前記タグから送信され、複数のアンテナ素子からなるアレーアンテナによって受信した信号から前記複数のアンテナ素子間の相対振幅及び位相差を示す相対振幅位相情報を算出する算出工程と、
     前記IDビット列のサンプルタイミングと対応付けられたタイミングと、前記相対振幅位相情報とを用いて、前記タグから送信された信号の到来方向を推定する到来方向推定工程と、
     を具備する無線到来方向推定方法。
     
PCT/JP2009/004396 2008-09-30 2009-09-04 無線到来方向推定装置及び無線到来方向推定方法 WO2010038359A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010531712A JP5504166B2 (ja) 2008-09-30 2009-09-04 無線到来方向推定装置及び無線到来方向推定方法
US13/056,825 US8400357B2 (en) 2008-09-30 2009-09-04 Radio arrival direction estimation device and radio arrival direction estimation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-253659 2008-09-30
JP2008253659 2008-09-30
JP2009116829 2009-05-13
JP2009-116829 2009-05-13

Publications (1)

Publication Number Publication Date
WO2010038359A1 true WO2010038359A1 (ja) 2010-04-08

Family

ID=42073145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004396 WO2010038359A1 (ja) 2008-09-30 2009-09-04 無線到来方向推定装置及び無線到来方向推定方法

Country Status (3)

Country Link
US (1) US8400357B2 (ja)
JP (1) JP5504166B2 (ja)
WO (1) WO2010038359A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521301A (ja) * 2015-04-10 2018-08-02 オシア,インク. 無線電力供給環境を画像化してその内部の物体を追跡する技術
CN113156363A (zh) * 2021-03-04 2021-07-23 西北工业大学 阵元互耦和幅相误差下的近场源智能定位方法
JP2022137978A (ja) * 2021-03-09 2022-09-22 トヨタ自動車株式会社 認証装置、車両、認証方法及び認証プログラム
JP2022549891A (ja) * 2019-09-26 2022-11-29 アッサ アブロイ アーベー 物理アクセス制御システムのための超広帯域アンテナ構成

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10228443B2 (en) * 2012-12-02 2019-03-12 Khalifa University of Science and Technology Method and system for measuring direction of arrival of wireless signal using circular array displacement
WO2017079839A1 (en) * 2015-11-10 2017-05-18 Xco Tech Inc. System and method for ultrawideband position location
JP6832794B2 (ja) * 2017-06-05 2021-02-24 ルネサスエレクトロニクス株式会社 無線通信システム
US10965386B1 (en) * 2020-03-06 2021-03-30 Rockwell Collins, Inc. System and method for calibrating antenna array
US11619700B2 (en) * 2020-04-07 2023-04-04 Parsons Corporation Retrospective interferometry direction finding
US11175370B1 (en) * 2020-05-27 2021-11-16 Bae Systems Information And Electronic Systems Integration Inc. Multiple long baseline interferometry geolocation
DE102021202365A1 (de) 2021-03-11 2022-10-20 Trumpf Werkzeugmaschinen Gmbh + Co. Kg UWB-Anker mit Doppelantenne

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105723A (ja) * 2004-10-04 2006-04-20 Nippon Telegr & Teleph Corp <Ntt> 無線タグ位置検知システム、無線タグ位置検知装置及び無線タグ
JP2007518968A (ja) * 2003-11-03 2007-07-12 ケンブリッジ コンサルタンツ リミテッド 位置情報の決定
JP2008008887A (ja) * 2006-06-27 2008-01-17 Sony Corp 信号到来角決定方法及び信号到来角決定装置、並びに信号の到来角を決定するためのシステム
JP2008045954A (ja) * 2006-08-11 2008-02-28 Brother Ind Ltd 方向検出装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128806A (ja) * 2006-11-21 2008-06-05 Matsushita Electric Works Ltd 電波到来方位測定装置および該方法
JP2008128958A (ja) * 2006-11-24 2008-06-05 Matsushita Electric Works Ltd 電波到来方位測定装置および該方法
US20090002165A1 (en) * 2007-06-28 2009-01-01 Micron Technology, Inc. Method and system of determining a location characteristic of a rfid tag
US8427372B2 (en) * 2008-12-05 2013-04-23 Sakura Tech Corporation Array antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518968A (ja) * 2003-11-03 2007-07-12 ケンブリッジ コンサルタンツ リミテッド 位置情報の決定
JP2006105723A (ja) * 2004-10-04 2006-04-20 Nippon Telegr & Teleph Corp <Ntt> 無線タグ位置検知システム、無線タグ位置検知装置及び無線タグ
JP2008008887A (ja) * 2006-06-27 2008-01-17 Sony Corp 信号到来角決定方法及び信号到来角決定装置、並びに信号の到来角を決定するためのシステム
JP2008045954A (ja) * 2006-08-11 2008-02-28 Brother Ind Ltd 方向検出装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521301A (ja) * 2015-04-10 2018-08-02 オシア,インク. 無線電力供給環境を画像化してその内部の物体を追跡する技術
US10649063B2 (en) 2015-04-10 2020-05-12 Ossia Inc. Techniques for imaging wireless power delivery environments and tracking objects therein
US11131745B2 (en) 2015-04-10 2021-09-28 Ossia Inc. Techniques for imaging wireless power delivery environments and tracking objects therein
US11994572B2 (en) 2015-04-10 2024-05-28 Ossia Inc. Techniques for imaging wireless power delivery environments and tracking objects therein
JP2022549891A (ja) * 2019-09-26 2022-11-29 アッサ アブロイ アーベー 物理アクセス制御システムのための超広帯域アンテナ構成
JP7411789B2 (ja) 2019-09-26 2024-01-11 アッサ アブロイ アーベー 物理アクセス制御システムのための超広帯域アンテナ構成
CN113156363A (zh) * 2021-03-04 2021-07-23 西北工业大学 阵元互耦和幅相误差下的近场源智能定位方法
CN113156363B (zh) * 2021-03-04 2023-10-10 西北工业大学 阵元互耦和幅相误差下的近场源智能定位方法
JP2022137978A (ja) * 2021-03-09 2022-09-22 トヨタ自動車株式会社 認証装置、車両、認証方法及び認証プログラム
JP7396317B2 (ja) 2021-03-09 2023-12-12 トヨタ自動車株式会社 認証装置、車両、認証方法及び認証プログラム

Also Published As

Publication number Publication date
US20110133988A1 (en) 2011-06-09
US8400357B2 (en) 2013-03-19
JPWO2010038359A1 (ja) 2012-02-23
JP5504166B2 (ja) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5504166B2 (ja) 無線到来方向推定装置及び無線到来方向推定方法
Azzouzi et al. New measurement results for the localization of uhf rfid transponders using an angle of arrival (aoa) approach
US10539645B2 (en) Angle of arrival estimation
EP3254133B1 (en) Direction finding using signal power
Kronberger et al. UHF RFID localization system based on a phased array antenna
EP1872149A2 (en) Positioning system with a sparse antenna array
RU2444755C1 (ru) Способ обнаружения и пространственной локализации воздушных объектов
RU2444754C1 (ru) Способ обнаружения и пространственной локализации воздушных объектов
US20110068980A1 (en) Direction finding method and device
JP2008536121A (ja) ローカル測位用の改良レーダシステム
US20120014412A1 (en) Positioning system and positioning method
US8670802B2 (en) Wireless network radiolocation apparatuses, systems and methods
US20160291123A1 (en) Css localization system
KR20080019613A (ko) 두개의 안테나들 또는 이의 균등물을 사용하여 네비게이션비컨 신호를 검출하는 방법
Maddio et al. RSSI/DoA based positioning systems for wireless sensor network
CN115542243A (zh) 基于阵列天线的干涉仪测向方法及系统
JPWO2020090681A1 (ja) アンテナ装置、移動体、及びターゲット判別方法
Garg et al. Sirius: A self-localization system for resource-constrained iot sensors
Cremer et al. Improved UHF RFID localization accuracy using circularly polarized antennas
JP5604746B2 (ja) 電波到来方向推定装置および電波到来方向推定方法
BniLam et al. Angle of arrival estimation system for LoRa technology based on phase detectors
Rath et al. Multipath-assisted indoor positioning enabled by directional UWB sector antennas
US5812091A (en) Radio interferometric antenna for angle coding
EP2815249B1 (en) Method and apparatus for estimating a distance and a location through near-field multi-frequency radio transmissions
Ma et al. Passive ranging by low-directivity antennas with quality estimate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010531712

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 137/MUMNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13056825

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817403

Country of ref document: EP

Kind code of ref document: A1