WO2010035887A1 - 閉構造部材の製造方法、プレス成形装置及び閉構造部材 - Google Patents

閉構造部材の製造方法、プレス成形装置及び閉構造部材 Download PDF

Info

Publication number
WO2010035887A1
WO2010035887A1 PCT/JP2009/067129 JP2009067129W WO2010035887A1 WO 2010035887 A1 WO2010035887 A1 WO 2010035887A1 JP 2009067129 W JP2009067129 W JP 2009067129W WO 2010035887 A1 WO2010035887 A1 WO 2010035887A1
Authority
WO
WIPO (PCT)
Prior art keywords
press
hemming
pair
closed
closed structure
Prior art date
Application number
PCT/JP2009/067129
Other languages
English (en)
French (fr)
Inventor
樋貝和彦
山崎雄司
比良隆明
越智勝広
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CA2738292A priority Critical patent/CA2738292C/en
Priority to EP09816299.3A priority patent/EP2351624B1/en
Priority to US13/120,589 priority patent/US8844581B2/en
Priority to KR1020117007612A priority patent/KR101305927B1/ko
Priority to CN200980137930.9A priority patent/CN102164692B/zh
Publication of WO2010035887A1 publication Critical patent/WO2010035887A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/06Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles
    • B21D5/10Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles for making tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/26Deep-drawing for making peculiarly, e.g. irregularly, shaped articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/08Flanging or other edge treatment, e.g. of tubes by single or successive action of pressing tools, e.g. vice jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/02Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal by folding, e.g. connecting edges of a sheet to form a cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D47/00Making rigid structural elements or units, e.g. honeycomb structures
    • B21D47/01Making rigid structural elements or units, e.g. honeycomb structures beams or pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/02Making hollow objects characterised by the structure of the objects
    • B21D51/06Making hollow objects characterised by the structure of the objects folded objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/02Making hollow objects characterised by the structure of the objects
    • B21D51/10Making hollow objects characterised by the structure of the objects conically or cylindrically shaped objects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49915Overedge assembling of seated part
    • Y10T29/49922Overedge assembling of seated part by bending over projecting prongs

Definitions

  • the present invention is a closed structure having a closed cross-sectional shape from a metal plate by fixing the flange portions formed at a pair of joining end portions of the metal plate to each other by hemming while pressing the metal plate with a press mold.
  • the present invention relates to a press forming method for manufacturing a member, a press forming apparatus used in the press forming method, a closed structure member manufactured using the press forming method, and a closed structure member in which a flange portion is welded by a welding process.
  • the closed structural members When manufacturing structural members (closed structural members) having a closed cross-sectional structure such as side members and side doors in vehicles such as automobiles, the closed structural members are configured by press molding or the like using a metal plate such as a steel plate, for example. After molding a plurality of parts (press parts) to be performed, any one press-molded part is assembled to another press part, and these press parts are fixed to each other by a fixing method such as hemming or welding. Thus, a closed structural member is manufactured from a plurality of pressed parts.
  • a vehicle door structure described in Patent Document 1 As a closed structure member as described above, for example, a vehicle door structure described in Patent Document 1 is known.
  • the door of the vehicle described in patent document 1 consists of the inner panel and outer panel which were each formed so that it might become concave shape.
  • a hemming flange is provided at the edge of the inner panel so as to be folded back toward the outer panel. The hemming flange is bent so as to sandwich the edge of the outer panel, and the inner panel is hemmed to the outer panel. ing.
  • paragraphs [0002] to [0003] and FIGS. 5 to 10 of Patent Document 2 describe a hemming processing apparatus that performs hemming (press hemming) for joining the outer panel and the inner panel.
  • hemming press hemming
  • a front side member that is a closed structure part for absorbing a shock at the time of a vehicle collision
  • spot welding laser welding
  • arc welding or the like
  • a plurality of press parts constituting the closed structure member are respectively formed by pressing a steel plate or the like, and then these presses are formed.
  • a plurality of pressed parts are assembled into a closed structural member by hemming or welding the flanges formed on these pressed parts, with the parts being superposed on each other.
  • the weight of a closed structural member having a closed cross-sectional structure generally increases as the number of press parts constituting the closed structural member increases.
  • the number of press parts increases, it is necessary to provide each press part with a flange portion for joining, and such a flange portion is provided at least on both sides of the internal space of the press part. Therefore, as the number of pressed parts increases, the weight ratio of the flange portion to the total weight of the closed structural member increases, and as a result, the weight of the closed structural member increases.
  • the closed structure member as described above is used in the case of forming a plurality of press parts constituting the closed structure part by using a dedicated press mold or the like, and in the case where hemming is performed between the press parts. Although it is manufactured through a hemming process, in recent years, there has been a strong demand for reduction in manufacturing cost, and therefore, it has been required to manufacture a closed structure member more efficiently.
  • An object of the present invention is to provide a manufacturing method and a manufacturing apparatus for a closed structural member capable of efficiently manufacturing a closed structural member by reducing the number of parts and the number of manufacturing steps of the closed structural member in consideration of the above facts, and a configuration thereof.
  • An object of the present invention is to provide a lightweight closed structural member capable of reducing the number of parts.
  • the flange portion 20 and the flange portion 22 formed on the pair of joining end portions of the metal plate are fixed to each other while the metal plate is pressed by a press mold.
  • the pair of insertion guide surfaces 104 of the press mold are brought into contact with the front end portion of the flange portion having the hemming protrusion, and the press mold is moved in a predetermined pressing direction.
  • the pair of flange portions are brought close to each other by a component force along the direction perpendicular to the press generated by the pair of insertion guide surfaces.
  • the hemming projection 28 is bent by the pressing force transmitted from the inner surface portion of the slit groove to the distal end portion of the hemming projection.
  • the other flange portion 22 is sandwiched between the two flange portions 22 and the one flange portion 20 is fixed to the other flange portion 22, and at the same time, the press molding surfaces formed on the outer sides of the pair of insertion guide surfaces in the press mold.
  • the pair of insertion guide surfaces formed in the press mold are respectively pushed into the distal ends of the pair of flange parts.
  • the press mold is driven in a predetermined pressing direction, the pair of flange portions are brought close to each other by the component force along the press orthogonal direction generated by the pair of insertion guide surfaces, and the pair of flange portions are By guiding into the slit groove formed between the pair of insertion guide surfaces in the press mold, the pair of flange portions are formed against the deformation resistance (spring back) of the metal plate that is the material of the closed structure member.
  • the distance between the pair of flange portions can be made to correspond to the opening width of the slit groove along the direction perpendicular to the press, By appropriately setting the opening width of the slit grooves depending on the value or the like, and sufficiently reduce the distance between the pair of flange portions, can maintain its distance in the slit groove.
  • the press mold is further driven in the pressing direction to insert the pair of flange portions into the slit groove.
  • the hemming projection 28 is bent to sandwich the other flange portion 22 by the hemming projection, and the one flange portion 20 is joined to the other flange portion, and at the same time, formed on the outside of the pair of insertion guide surfaces in the press mold.
  • One flange part of the metal plate (closed structure member) can be fixed to the other flange part by a hemming protrusion (hemming joint). It is possible to press-forming the outer portion of the Nji portion into a predetermined shape.
  • a closed structure member having a closed cross-sectional shape can be manufactured using one metal plate as a raw material, and a pair of flange portions in the closed structure member are hemmed and joined. Since the work and the work of pressing the outer portion of the flange portion can be performed simultaneously, the number of parts and the number of manufacturing steps of the closed structural member can be reduced, and the closed structural member can be efficiently manufactured.
  • the manufacturing method of the closed structure member of [2] has the welding process which fixes a pair of said flange parts mutually by welding after the completion of the said hemming press process in the manufacturing method of the closed structure member of [1]. It is characterized by.
  • a press molding apparatus used for manufacturing a closed structure member according to [3] of the present invention is a press molding apparatus used in the method for manufacturing a closed structure member according to [1] or [2], wherein the press mold, Drive means for driving the press mold in the pressing direction during execution of the closing process and the hemming press process, and the press mold is an outer portion of the pair of flange portions in the closed structure member
  • a pair of press forming surfaces each having a shape corresponding to each of the press forming surfaces, and a pair of insertion guides disposed on the outside of the pair of press forming surfaces along the press orthogonal direction and inclined with respect to the press direction and the press orthogonal direction.
  • a single metal plate is loaded into a press mold, and the press mold is driven in a predetermined pressing direction by a driving unit.
  • one flange portion can be fixed to the other flange portion by a hemming protrusion (hemming joining), and a pair of metal plates (closed structure members) Since the outer portion of the flange portion can be press-formed into a predetermined shape, a closed structural member having a closed cross-sectional shape can be manufactured using a single metal plate as a raw material, and a pair of flange portions in the closed structural member are hemmed to each other Since the work and the work of pressing the outer part of the flange part can be performed at the same time, the number of parts of the closed structure member and the number of manufacturing processes can be reduced. Member can efficiently produce.
  • the press molding apparatus used for manufacturing the closed structure member according to [4] is the press molding apparatus used for manufacturing the closed structure member according to [3], wherein a depth of the slit groove from the insertion guide surface is 3 mm or more.
  • the opening width along the direction perpendicular to the press is 50 mm or less, and the opening width is set to be not less than twice and not more than 10 times the thickness of the metal plate as the material of the closed structure member.
  • the closed structure member of [5] of the present invention is a closed structure member manufactured using the method for manufacturing a closed structure member described in [1] or [2], and a main body portion having a closed cross-sectional shape; A flange portion formed at each of a pair of joining end portions in the main body portion, and a hemming process so as to protrude from the tip of one of the flange portions and sandwich the other flange portion. And a hemming protrusion fixed to the flange portion.
  • the main body portion, the pair of flange portions, and the hemming protrusion are each formed from one metal plate, and the hemming protrusion protruding from the tip of one flange portion is the other.
  • the main body which is a main component constituting the closed structural member, is hemmed so as to sandwich the flange portion, and one flange portion is fixed to the other flange portion (hemming joint).
  • the flange portion and the hemming projection can be integrally formed from a single metal plate, and the joint end portions of the main body portion can be joined only by a pair of flange portions to form a closed cross-sectional shape.
  • the number of parts constituting the closed structure member can be reduced and the total number of closed structure members can be reduced. Reducing the proportion by weight of the flange portion relative to the amount, it can be efficiently reduced the weight of the closed structure part.
  • the closed structure member according to [6] is the closed structure member according to [5], wherein the plurality of hemming protrusions are arranged at a predetermined separation interval PH along the width direction on one of the flange portions.
  • the width of the hemming protrusion is not less than twice the plate thickness and not more than the product length, and the protrusion length of the hemming protrusion from the front end of the flange portion is 1 of the thickness of the metal plate as the material of the closed structural member.
  • the separation interval PH is not less than 5 mm and not more than the length obtained by subtracting the hemming protrusion width from the product length.
  • the number of parts of the closed structure member and the number of manufacturing steps are reduced, and the closed structure member is made efficient. Can be manufactured. Further, according to the closed structure member of the present invention, the number of components can be reduced and the weight can be reduced.
  • FIGS. 1A to 1D show closed structural members manufactured using the closed structural member manufacturing method according to the embodiment of the present invention.
  • These closed structural members 10 to 16 are used as a part of a side member in a vehicle body such as an automobile, and are formed from a metal plate (in this embodiment, a high-tensile steel plate).
  • a metal plate in this embodiment, a high-tensile steel plate.
  • FIGS. 1A to 1D these closed structural members 10 to 16 are based on the state of being mounted on the vehicle, and the longitudinal direction of the vehicle is the longitudinal direction (arrow LP direction). It is formed in an elongated cylindrical shape, and both ends along the longitudinal direction are open ends.
  • the closed structural members 10 to 16 are formed with a main body portion 18 having a closed cross-sectional shape along the direction perpendicular to the longitudinal direction, and flange portions 20 and 22 are respectively provided at a pair of joining end portions of the main body portion 18. And is formed integrally.
  • the main body 18 and the pair of flange portions 20 and 22 are each formed by press molding using a single high-tensile steel plate as a material.
  • the main body 18 of the closed structural members 10 to 16 has various cross-sectional shapes depending on the installation space in the vehicle body, the required strength, and the like. Specifically, for example, in the closed structure member 10 (see FIG. 1A), the cross-sectional shape of the main body 18 is a substantially rectangular shape with the left-right direction of the vehicle as the longitudinal direction.
  • the cross-sectional shape of the main body portion 18 is a substantially regular hexagon.
  • the cross-sectional shape of the main body portion 18 is an irregular hexagonal shape in which the corner portions on both sides on the upper end side are respectively tapered downward.
  • the cross-sectional shape of the main body portion 18 is such that the corner portions on both sides on the upper end side taper downward and the corner portions on both sides on the lower end side respectively. It is an irregular octagon that tapers down toward the bottom.
  • the cross-sectional shape of the main body 18 is not limited to the shapes shown in FIGS. 1A to 1D, but may be other polygonal shapes, or the cross-sectional shape of the main body 18. It is also possible to make a part or all of the shape along a curve such as an arc or an elliptic curve.
  • the closed structural members 10 to 16 are formed with a pair of flange portions 20 and 22 at the upper end along the vertical direction (arrow HP direction), and the pair of flange portions 20 and 22 are formed in the width direction (arrow WP direction). ) Are symmetrical to each other.
  • the pair of flange portions 20 and 22 are formed by bending both end portions (a pair of joining end portions) along the direction perpendicular to the longitudinal direction of the main body portion 18 upward.
  • the pair of flange portions 20 and 22 are joined to each other by various welding methods such as spot welding, laser welding, and arc welding in the state (completed state) shown in FIGS.
  • a side member including the closed structure members 10 to 16 as components for example, high-capacity cap members are fitted and fixed to both ends in the longitudinal direction of the closed structure members 10 to 16, respectively.
  • a reinforcing member for reinforcing the closed structural members 10 to 16 on the outer peripheral side and inner peripheral side of the closed structural members 10 to 16 or a bracket for connecting the closed structural members 10 to 16 to the vehicle side By attaching bolts, nuts, etc., side members constituting a part of the vehicle body are manufactured.
  • FIGS. 2 to 4 show the configurations of a first press forming apparatus, a second press forming apparatus, and a hemming press apparatus, which are manufacturing apparatuses for a closed structure member according to an embodiment of the present invention, respectively.
  • a closed structural member undergoing processing is shown.
  • the first press molding device 30, the second press molding device 60, and the hemming press device 80 shown in FIGS. 2 to 4, respectively, are closed structural members 12 having a substantially regular hexagonal cross-sectional shape (see FIG. 1B). ).
  • the first press molding apparatus 30 includes a die 32 and a punch 34 that are a pair of press molds, and a hydraulic actuator 36 that is a driving means for the punch 34.
  • the die 32 has a press molding surface 38 on the upper surface side, and a press concave portion 40 that is recessed in a concave shape with respect to both ends is formed at the center of the press molding surface 38 in the width direction (arrow WM direction). Yes.
  • the press concave portion 40 has a substantially trapezoidal cross-sectional shape along the width direction, and a pair of inclined surfaces 42 are formed at both ends in the width direction so as to increase in width in a tapered shape.
  • the lower surface side of the punch 34 is a press molding surface 44, and a press convex portion 46 protruding in a convex shape with respect to both end portions is formed at the center portion in the width direction of the press molding surface 44.
  • the press protrusions 46 have a substantially trapezoidal shape in which the cross-sectional shape along the width direction corresponds to the press recesses 40, and inclined surfaces corresponding to the inclined surfaces 42 of the press recesses 40 at both ends in the width direction, respectively. 48 is formed.
  • the hydraulic actuator 36 is disposed on the support frame (not shown) side of the first press molding device 30 and is disposed on the inner peripheral side of the cylinder 50, and is moved in the height direction (arrow HM direction) by the cylinder 50.
  • a plunger 52 is slidably supported along the plunger 52, and the lower end of the plunger 52 is connected to the center of the upper surface of the punch 34.
  • the hydraulic actuator 36 follows the hydraulic control from a hydraulic control unit (not shown), the punch 34, the press position (see FIG. 2) where the press convex part 46 fits the press concave part 40 of the die 32, and the upper side of the die 32. It moves between the standby positions that are separated from each other.
  • the second press molding apparatus 60 includes a pair of press dies, a die 62 and a punch 64, as well as the first press molding apparatus 30, and hydraulic pressure that is a driving means for the punch 64.
  • An actuator 66 is provided.
  • the die 62 is formed with a blank insertion portion 67 that is recessed in a substantially V shape with respect to both ends at the center of the upper surface.
  • the blank insertion portion 67 is formed with a concave press-molding surface 68 composed of a pair of inclined surfaces at the bottom end, and a pair of blanks that taper upward from both ends of the press-molding surface 68.
  • a support surface 70 is formed.
  • the punch 64 has a cross-sectional shape that is substantially rectangular with the height direction (arrow HM) as the longitudinal direction, and a convex press molding surface 74 corresponding to the concave press molding surface 68 is formed on the lower end surface.
  • the hydraulic actuator 66 is disposed on the support frame (not shown) side of the second press molding device 60 and is disposed on the inner peripheral side of the cylinder 76, and can be slid along the height direction by the cylinder 76.
  • a supported plunger 78 is provided, and the lower end portion of the plunger 78 is connected to the central portion of the upper end surface of the punch 64.
  • the hydraulic actuator 66 follows the hydraulic control from a hydraulic control unit (not shown), the punch 64 and the press position (see FIG. 3) where the press molding surface 74 is fitted to the press molding surface 68 of the die 62 and the die 62. It moves between the standby positions that are separated upward.
  • the hemming press device 80 includes an insert core 82 having a cross-sectional shape corresponding to the cross-sectional shape of the main body 18 in the closed structural member 12 (see FIG. 1B) that is a completed part.
  • Each of the punches 84 disposed on the upper side of the insert core 82 is provided as a press mold, and a support pad 86 disposed on the lower side of the insert core 82 and a pair disposed on the outer side in the width direction of the insert core 82.
  • the pressing cam 88 is provided.
  • the hemming press device 80 includes a hydraulic actuator 90 that is a driving unit for the punch 84 and a cam drive mechanism 92 that operates in conjunction with the hydraulic actuator 90.
  • the support pad 86 has a concave blank support surface 94 formed of a pair of inclined surfaces on the upper surface side.
  • the blank support surface 94 has a shape corresponding to the bottom plate portion 54 of the main body portion 18.
  • the punch 84 is formed with press forming surfaces 96 each having an inclined surface at both end portions along the width direction at the lower end surface thereof.
  • the pair of press molding surfaces 96 has a shape corresponding to the shoulder portion 26 which is an outer portion of the pair of flange portions 20 and 22 in the main body portion 18.
  • the insert core 82 has a press molding surface 98 formed of inclined surfaces corresponding to the pair of press molding surfaces 96 on the upper end surface, and corresponds to the blank support surface 94 of the support pad 86 on the lower end surface.
  • a convex blank support surface 100 is formed.
  • the side surface portion of the pressing cam 88 in the width direction is a pressing surface 89 corresponding to the side surface portion 83 of the insert core 82.
  • a slit groove 102 is formed at the center between the pair of press molding surfaces 96 along the width direction.
  • An insertion guide surface 104 is formed between the pair of press molding surfaces 96.
  • the opening width WA is the material of the closed structural member 12.
  • the thickness is appropriately set in the range of not less than 2 times and not more than 10 times the thickness of the high-tensile steel plate, and the depth DG is appropriately set in the range of not less than 3 mm and not more than 50 mm.
  • Each of the pair of insertion guide surfaces 104 is formed by a convex curved surface having a constant curvature radius, and smoothly connects the side end portion of the press molding surface 96 and the lower end portion of the slit groove 102.
  • the radius of curvature of the insertion guide surface 104 is RG
  • the radius of curvature RG may be 0 mm (right angle) or may be curved, and is appropriately set.
  • the hydraulic actuator 90 is disposed on a support frame (not shown) side of the hemming press device 80 and is disposed on the inner peripheral side of the cylinder 106, and is supported by the cylinder 106 so as to be slidable along the height direction.
  • a plunger 108 is provided, and a lower end portion of the plunger 108 is connected to a central portion of the upper end surface of the punch 84.
  • the hydraulic actuator 90 has a press position where the press molding surface 96 is fitted to the press molding surface 98 of the insert core 82 according to the hydraulic control from a hydraulic control unit (not shown) (see FIG. 4C). And a standby position spaced apart above the insert core 82.
  • the pair of cam drive mechanisms 92 are linked to the operation of the hydraulic actuator 90, and each of the standby positions (see FIG. 4A) for separating the press cam 88 from the side surface portion of the insert core 82 along the width direction. 88 is moved between the pressing positions that press against the side surface portion of the insert core 82 along the width direction. Specifically, when the hydraulic actuator 90 lowers the punch 84 from the standby position to the press position, the cam drive mechanism 92 moves the pressing cam 88 from the standby position to the press position, and the hydraulic actuator 90 moves the punch 84 to the press position. If it raises to a stand-by position, press cam 88 will be moved from a press position to a stand-by position.
  • the apparatus shown in FIGS. 2 to 5 is a press molding apparatus that uses a hydraulic actuator to drive a punch
  • the press molding apparatus of the present invention is not limited to this, and a mechanical press including a crank press ( A general press) may be used.
  • the first press process is performed using the first press molding apparatus 30 shown in FIG.
  • a blank material 24 which is a high-strength steel sheet cut into a predetermined shape in advance, is placed between the press-forming surface 38 of the die 32 and the press-forming surface 44 of the punch 34 in the first press-forming device 30.
  • the punch 34 at the standby position is lowered to the press position by the hydraulic actuator 36.
  • the blank material 24 is formed (press-molded) into a shape corresponding to the press-molded surfaces 38 and 44.
  • the blank member 24 is formed with flange portions 20 and 22 at both end portions along the width direction, and a pair of shoulder portions 26 in the main body portion 18 are formed by the pair of inclined surfaces 42 and 48.
  • a preliminary hemming process is performed using a general-purpose press molding apparatus (not shown).
  • a general-purpose press forming apparatus used in the preliminary hemming step for example, an apparatus capable of bending an end portion of a flat plate high-tensile steel plate substantially at a right angle is used.
  • a plurality of hemming protrusions 28 are formed in advance on the side end portion corresponding to one flange portion 20 in the blank material 24.
  • a plurality of protruding side portions 27 are formed in advance corresponding to the plurality of hemming protrusions 28, respectively.
  • the projecting side 27 is formed in a rectangular shape protruding from the side end of the blank material 24.
  • the separation interval PH is PH
  • the protruding length from the side end of the blank material 24 is LH
  • the width of each protruding side portion 27 is BH
  • the separation interval PH is The protrusion length LH is appropriately set in a range not less than 5 mm and not more than the length obtained by subtracting the length of the hemming protrusion from the product length.
  • the width BH is appropriately set in a range not less than twice the plate thickness and not more than the product length.
  • a preliminary hemming process (not shown), a plurality of protruding side parts 27 protruding from the tip of one flange part 20 formed on the blank 24 in the first pressing process shown in FIG. It is bent at a right angle.
  • the plurality of protruding side portions 27 serve as hemming protrusions 28 for bonding (hemming bonding) between the pair of flange portions 20 and 22.
  • the second press process is performed using the second press molding apparatus 60 shown in FIG.
  • the blank material 24 in which the pair of shoulder portions 26 and the plurality of hemming projections 28 are formed through the first pressing step and the preliminary hemming step is inserted into the blank 62 of the die 62 in the second press molding apparatus 60.
  • the punch 64 in the standby position is lowered to the press position by the hydraulic actuator 66.
  • the central portion in the width direction of the blank member 24 is formed (press-molded) into a shape corresponding to the press-molded surfaces 68 and 74.
  • the blank member 24 is formed with a bottom plate portion 54 in the main body portion 18 at the center in the width direction, and between the pair of shoulder portions 26 and the bottom plate portion 54 is a side plate portion 56, respectively.
  • the side plate portions 56 are bent by a predetermined inclination angle with respect to the bottom plate portion 54 while being supported by the pair of blank support surfaces 70.
  • the closing process and the press hemming process are performed using the hemming press device 80 after the completion of the second pressing process.
  • the closing process and the press hemming process as shown in FIG. 4A, the bottom plate portion 54 of the blank member 24 is placed between the blank support surface 94 of the support pad 86 and the blank support surface 100 of the insert core 82. Sandwich.
  • the pressing cam 88 in the standby position brings the pressing surface 89 into contact with the vicinity of the boundary portion between the shoulder portion 26 and the side plate portion 56 in the blank material 24.
  • the cam driving mechanism 92 moves the pressing cam 88 at the standby position to the pressing position side.
  • the side plate portion 56 is moved (inclined) and pressed against the side surface portion 83 side of the insert core 82 by the pressing surface 89 of the pressing cam 88, and the punch 84 at the standby position is moved to the pressing position side by the hydraulic actuator 90.
  • the front ends of the pair of flange portions 20 and 22 move toward the slit groove 102 along the pair of press-molding surfaces 96 and the insertion guide surface of the punch 84.
  • the tip portions thereof are brought into pressure contact with the inner surface portion of the slit groove 102, and the inner surface of the slit groove 102 is lowered as the punch 84 is lowered.
  • the downward pressing force transmitted through the part it is bent downward with the vicinity of the boundary with the flange part 20 as a fulcrum, and the tip part of the other flange part 22 is sandwiched.
  • one flange part 20 is joined (hemming joining) to the other flange part 22 via the plurality of hemming protrusions 28.
  • the welding process is performed using a general-purpose welding apparatus such as a spot welding apparatus, a laser welding apparatus, or an arc welding apparatus.
  • a general-purpose welding apparatus such as a spot welding apparatus, a laser welding apparatus, or an arc welding apparatus.
  • a pair of flange portions 20 and 22 joined to each other by the hemming protrusions 28 are fixed to each other by a welding method such as spot welding, laser welding, or arc welding, and then flanged like a part such as a front side member.
  • a cutting method such as shearing or fusing in order to achieve further weight reduction.
  • a portion that needs to be joined to another component such as a rocker (joint of the rocker / floor in the case of a rocker) can be used as a flange for joining to another component without cutting off the flange portion.
  • the closed structure member 12 shown in FIG. 1B is manufactured.
  • the closed structural member to be manufactured is compared with the first press molding device 30, the second press molding device 60, and the hemming press device 80.
  • the dies 32 and 62, punches 34, 64 and 84, the support pad 86, the pressing cam 88 and the insert core 82 corresponding to the shape are loaded, and the strokes of the hydraulic actuators 36, 66 and 90 and the cam driving mechanism 92 are appropriately adjusted. Only by doing this, it can be manufactured through basically the same process as the closed structure member 12.
  • the hemming press device 80 includes an insert core 82 and a punch 84 as press molds, respectively.
  • the hemming press process is performed using the support pad 86 and the pair of pressing cams 88.
  • the insert core 82 is omitted from the hemming press device 80, and the punch core 84, the support pad 86, and the pair of press cams 88 are used without supporting the blank material 24 from the inside by the insert core 82. It is also possible to perform a hemming press process (press molding and hemming).
  • the hemming press process in the manufacturing method of the closed structure member based on this embodiment is demonstrated in detail.
  • the hemming press process when manufacturing the closed structural member 10 shown in FIG. 1A from the blank material 24 will be described.
  • the hemming protrusion 28 protruding from the tip of one flange portion 20 is subjected to a preliminary hemming step in advance, so that the other flange portion 22 is shown in FIGS. 7A and 7B. It is bent to the side.
  • the angle ⁇ P between the flange portion 20 and the hemming protrusion 28 is preferably set to an angle slightly larger than 90 ° to 90 °. That is, when the angle ⁇ P is smaller than 90 °, the preliminarily bent hemming protrusion 28 cannot be formed with respect to the other flange portion 22 as shown in FIG.
  • the distal end portions of the pair of flange portions 20 and 22 and the hemming projections 28 are inserted into the slit grooves 102, respectively.
  • the tip end portion of the hemming protrusion 28 is brought into pressure contact with the inner surface portion of the slit groove 102 at a predetermined contact angle ⁇ C.
  • the contact angle ⁇ C is larger than 90 °, and a large frictional resistance is generated between the tip of the hemming protrusion 28 and the inner surface of the slit groove 102.
  • the plurality of hemming projections 28 sandwich the tip of the other flange portion 22, respectively, and the one flange portion 20 includes the plurality of hemming projections 28.
  • the other flange portion 22 (hemming joining).
  • the hemming press device 80 raises the punch 84 from the press position to the standby position by the hydraulic actuator 90 as shown in FIG. Thereafter, the insert core 82 is extracted from the blank member 24 (main body portion 18) along the longitudinal direction of the closed structural member 10. Thereby, the closed structural member 10 having a closed cross-sectional shape is completed in shape.
  • the flange portions 20 and 22 in the blank material 24 subjected to the hemming press process are welded, and the front end side of the flange portions 20 and 22 is cut away for weight reduction, so that the closed structural member 10
  • a blank material subjected to a hemming press process 24 may be used as it is as a closed structure member (completed part).
  • the pair of flange portions 20 and 22 are brought close to each other against the deformation resistance (spring back) of the blank member 24, and the interval between the pair of flange portions 20 and 22 corresponds to the opening width WA of the slit groove 102. Therefore, the opening width WA of the slit groove 102 is appropriately set according to the allowable value for the distance between the pair of flange portions 20 and 22. If, sufficiently reduce the distance between the pair of flange portions 20 and 22 can maintain its spacing slit groove 102 within.
  • the punch 84 is further lowered to the press position side in the hemming press process, and the pair of flange portions 20 and 22 are slit into the slit groove 102. While being inserted, the hemming projection 28 is bent, the other flange portion 22 is sandwiched by the hemming projection 28, and one flange portion 20 is joined to the other flange portion 22, and at the same time, a pair of press forming surfaces 96 in the punch 84.
  • the distance between the pair of flange portions 20 and 22 is sufficiently reduced, and then one flange portion 20 Can be fixed to the other flange portion 22 by the hemming projection 28 (hemming joining), and at the same time, a pair of shoulder portions in the blank 24 It can be press-molded 6 into a predetermined shape.
  • the closed structure members 10 to 16 having the closed cross-sectional shape can be manufactured using one high-tensile steel plate as the blank member 24, and the closed structure members 10 to 16 can be manufactured. Since the work of hemming the pair of flange parts 20 and 22 and the work of press-molding the pair of shoulder parts 26 of the blank 24 can be performed simultaneously, the number of parts and the number of manufacturing steps of the closed structural members 10 to 16 are reduced. Thus, the closed structural members 10 to 16 can be efficiently manufactured.
  • the hemming press device 80 which is a manufacturing apparatus of the closed structure member according to the present embodiment, one metal plate is loaded as the blank material 24 into the insert core 82 and the punch 84, and the punch 84 is moved by the hydraulic actuator 90.
  • the distance between the pair of flange portions 20, 22 is made sufficiently small in the slit groove 102, and then one flange portion 20 is fixed to the other flange portion 22 by the hemming protrusion 28. (Hemming joining) and the pair of shoulders 26 in the blank member 24 can be press-molded into a predetermined shape, so that the closed structural members 10 to 16 having a closed cross-sectional shape using one metal plate as the blank member 24 are provided.
  • the main body portion 18, the pair of flange portions 2022, and the hemming projections 28 are each formed from one high-tensile steel plate (blank material 24) as a raw material.
  • the hemming protrusion 28 protruding from the tip of the flange portion 20 is hemmed so as to sandwich the other flange portion 22, and one flange portion 20 is fixed to the other flange portion 22 (hemming joining).
  • the main body 18, the pair of flange portions 20, 22 and the hemming projection 28, which are the main components constituting the closed structural members 10 to 16, can be integrally formed from one blank material 24, and the pair of flange portions Since the joining end portions of the main body portion 18 can be joined only by 20 and 22, the main body portion 18 can have a closed cross-sectional shape.
  • the number of parts constituting the closed structure members 10 to 16 can be reduced, and the flange portions 20 and 22 with respect to the total weight of the closed structure members 10 to 16 can be reduced.
  • the ratio occupied by the weight can be reduced, and the weight of the closed structural members 10 to 16 can be efficiently reduced.
  • the dimension of the principal part of the punch 84 in the hemming press apparatus 80 which concerns on embodiment of this invention, and its significance are demonstrated as an Example.
  • the opening width WA of the slit groove 102 in the punch 84 is appropriately set within a range of not less than twice the thickness of the blank member 24 serving as the material of the closed structural member 10 and not more than 10 times.
  • the opening width WA is less than twice the thickness of the blank 24, the frictional resistance between the inner surface portion of the slit groove 102 and the flange portions 20 and 22 becomes excessive when the punch 84 is lowered, If the blank material 24 may break or crack, and if the opening width WA exceeds 10 times the thickness of the blank material 24, the hemming protrusion 28 is moved to the other side even if the punch 84 is lowered to the press position. This is because the hemming process cannot be performed so as to press contact with the flange portion 22, and a gap (backlash) may occur between the flange portions 20 and 22.
  • the depth DG of the slit groove 102 in the punch 84 is appropriately set in the range of 3 mm or more and 50 mm or less. This is because the depth DG of the slit groove 102 needs to be deeper than the projecting length of the flange portions 20 and 22, and when the depth DG is less than 3 mm, the height of the flange portions 20 and 22 becomes narrow, This is because it becomes difficult to join the flange portions 20 and 22 by welding after hemming joining, and if the depth DG is larger than 50 mm, it is difficult to ensure the rigidity of the punch 84.
  • the protrusion length LH of the hemming protrusion 28 is appropriately set in a range of 1 time or more of the thickness of the blank member 24 and 1.5 times or less of the flange height. This is because when the protrusion length LH is less than 1 times the thickness of the blank member 24, the bonding strength between the flange portions 20 and 22 bonded by the hemming protrusion 28 cannot be sufficiently increased.
  • the hemming projection 28 occupies the total weight of the closed structural members 10 to 16 when the projection length LH exceeds 1.5 times the flange height. This is because the weight of the closed structural members 10 to 16 is increased.
  • the separation interval PH of the plurality of hemming protrusions 28 is appropriately set in a range of 5 mm or more and not more than the length obtained by subtracting the hemming protrusion width from the product length. This is because when the separation distance PH is less than 5 mm, the weight of the plurality of hemming protrusions 28 occupying the total weight of the closed structural members 10 to 16 becomes excessive, leading to an increase in the weight of the closed structural members 10 to 16. Further, the separation interval PH may be equal to or shorter than the length obtained by subtracting the hemming protrusion width from the product length.
  • the hemming protrusion width is less than twice the plate thickness, the bonding strength between the flange portions 20 and 22 cannot be sufficiently increased, and it is difficult to reliably perform hemming bonding, and the hemming protrusion width should be less than the product length. It ’s fine.
  • the closed structure member 120 has a substantially rectangular cross-sectional shape, and its width B is 120 mm and height H is 80 mm.
  • the total length of the closed structural member 120 is 800 mm.
  • the closed structural member 120 is not provided with a pair of flange portions and hemming protrusions according to the present invention. For this reason, even when the hemming press process is performed on the blank material 24, the hemming process on the hemming protrusion is naturally not performed. Therefore, the presence or absence of the insertion guide surface 104 and the slit groove 102 in the punch 84 does not affect the shape or the like of the closed structure member 120.
  • Comparative Example 2 a cold-rolled steel sheet having a thickness of 1.2 mm and a tensile strength of 1180 MPa was used as the blank material 24.
  • the blank material 24 was subjected to a closing process and a hemming press process by a hemming press device 80.
  • a closed structural member 122 which is an intermediate part shown in 11 (A), was molded (press molding).
  • the closed structural member 122 has a substantially rectangular cross-sectional shape, and its width B is 120 mm and height H is 80 mm.
  • the total length of the closed structural member 122 is 800 mm.
  • the protrusion length LF of the pair of flange portions 20 and 22 was 15 mm.
  • the closed structural member 122 is not provided with one hemming projection according to the present invention. For this reason, in the case where the closing process and the hemming press process are performed on the blank material 24, the closing process for bringing the pair of flange portions 20 and 22 close to each other is effectively performed. Is not done.
  • a slit having a depth DG of the slit groove 102 of 30 mm, an opening width WA of 5 mm, and a curvature radius RG of the insertion guide surface 104 of 30 mm was used.
  • Comparative Example 3 a cold-rolled steel sheet having a thickness of 1.2 mm and a tensile strength of 1180 MPa was used as the blank material 24.
  • the blank material 24 was subjected to a closing process and a hemming press process by a hemming press device 80.
  • the closed structure member 124 has a substantially rectangular cross-sectional shape, and its width B is 120 mm and height H is 80 mm.
  • the total length of the closed structural member 124 is 800 mm.
  • the protrusion length LF of the pair of flange portions 20 and 22 is 15 mm, and a plurality of hemming protrusions 28 protruding from the tip of the flange portion 20 are integrally formed. These hemming protrusions 28 are preliminarily bent by performing a preliminary hemming step before the blank material 24 is loaded into the hemming press device 80.
  • the width BH of the hemming protrusion 28 is 10 mm, and the protrusion length LH is also 10 mm. Further, the separation interval PH of the plurality of hemming protrusions 28 is 250 mm.
  • the punch 84 as shown in FIG. 12B, a punch having a depth DG of the slit groove 102 of 30 mm, an opening width WA of 20 mm, and a curvature radius RG of the insertion guide surface 104 of 30 mm was used.
  • the opening width WA is about 17 times the thickness of the blank member 24, and deviates from an appropriate range (2 to 10 times).
  • a cold-rolled steel sheet having a thickness of 1.2 mm and a tensile strength of 1180 MPa was used as the blank material 24.
  • the blank material 24 was subjected to a closing process and a hemming press process by a hemming press device 80.
  • 13 (A) A closed structural member 126, which is an intermediate part shown in the figure, was molded (press molded).
  • the closed structural member 126 has a substantially rectangular cross-sectional shape, and its width B is 120 mm and height H is 80 mm.
  • the total length of the closed structural member 126 is 800 mm.
  • the protrusion length LF of the pair of flange portions 20 and 22 is 15 mm, and a plurality of hemming protrusions 28 protruding from the tip of the flange portion 20 are integrally formed. These hemming protrusions 28 are preliminarily bent by performing a preliminary hemming step before the blank material 24 is loaded into the hemming press device 80.
  • the width BH of the hemming protrusion 28 is 10 mm, and the protrusion length LH is 1 mm. Further, the spacing PH of the plurality of hemming protrusions 28 is 780 mm.
  • the punch 84 as shown in FIG. 13B, a punch having a depth DG of the slit groove 102 of 30 mm, an opening width WA of 5 mm, and a curvature radius RG of the insertion guide surface 104 of 30 mm was used.
  • Example 0 a cold-rolled steel sheet having a thickness of 1.2 mm and a tensile strength of 1180 MPa was used as the blank material 24.
  • the blank material 24 was subjected to a closing process and a hemming press process by a hemming press device 80.
  • the closed structural member 128 has a substantially regular hexagonal cross-sectional shape, and the length S of one side thereof is 40 mm.
  • the total length of the closed structural member 128 is 800 mm.
  • the protrusion length LF of the pair of flange portions 20 and 22 is 15 mm, and a plurality of hemming protrusions 28 protruding from the tip of the flange portion 20 are integrally formed. These hemming protrusions 28 are preliminarily bent by performing a preliminary hemming step before the blank material 24 is loaded into the hemming press device 80.
  • the width BH of the hemming protrusion 28 is 10 mm, and the protrusion length LH is 10 mm. Further, the separation interval PH of the plurality of hemming protrusions 28 is 250 mm. Further, as shown in FIG. 14B, the punch 84 is one having a depth DG of the slit groove 102 of 30 mm, an opening width WA of 5 mm, and a curvature radius RG of the insertion guide surface 104 of 1 mm.
  • Example 1 using a cold-rolled steel sheet having a thickness of 1.2 mm and a tensile strength of 1180 MPa as the blank material 24, the blank material 24 is subjected to a closing process and a hemming press process by a hemming press device 80, A closed structural member 130 that is an intermediate part shown in FIG. 8A was molded (press molded).
  • the closed structural member 130 has a substantially rectangular cross-sectional shape, and the width B is 120 mm and the height H is 80 mm.
  • the total length of the closed structural member 130 is 800 mm.
  • the protrusion length LF of the pair of flange portions 20 and 22 is 15 mm, and a plurality of hemming protrusions 28 protruding from the tip of the flange portion 20 are integrally formed. These hemming protrusions 28 are preliminarily bent by performing a preliminary hemming step before the blank material 24 is loaded into the hemming press device 80.
  • the width BH of the hemming protrusion 28 is 10 mm, and the protrusion length LH is also 10 mm. Further, the separation interval PH of the plurality of hemming protrusions 28 is 250 mm. Further, as shown in FIG. 8B, the punch 84 is one having a depth DG of the slit groove 102 of 30 mm, an opening width WA of 5 mm, and a curvature radius RG of the insertion guide surface 104 of 30 mm.
  • Example 2 a cold-rolled steel sheet having a thickness of 1.2 mm and a tensile strength of 1180 MPa was used as the blank material 24.
  • the blank material 24 was subjected to a closing process and a hemming press process by a hemming press device 80.
  • a closed structural member 132 which is an intermediate part shown in FIG. 9 (A), was molded (press molded).
  • the closed structural member 132 has a substantially regular hexagonal cross-sectional shape, and the length S of one side thereof is 40 mm.
  • the total length of the closed structural member 132 is 800 mm.
  • the protrusion length LF of the pair of flange portions 20 and 22 is 15 mm, and a plurality of hemming protrusions 28 protruding from the tip of the flange portion 20 are integrally formed. These hemming protrusions 28 are preliminarily bent by performing a preliminary hemming step before the blank material 24 is loaded into the hemming press device 80.
  • the width BH of the hemming protrusion 28 is 10 mm, and the protrusion length LH is also 10 mm. Further, the separation interval PH of the plurality of hemming protrusions 28 is 250 mm.
  • a punch 84 having a depth DG of 30 mm, an opening width WA of 5 mm, and a curvature radius RG of the insertion guide surface 104 of 30 mm was used.
  • Example 3 a cold rolled steel sheet having a thickness of 1.2 mm and a tensile strength of 1180 MPa was used as the blank material 24.
  • the blank material 24 was subjected to a closing process and a hemming press process by a hemming press device 80.
  • a closed structural member 134 which is an intermediate part shown in 15 (A), was molded (press molding).
  • the closed structural member 134 has an irregular hexagonal cross-sectional shape, the width B of the bottom plate portion 54 is 120 mm, the width BS of the inclined portion 58 connecting the side plate portion and the top plate portion is 30 mm, and the height H is 70 mm.
  • the total length of the closed structural member 134 is 800 mm.
  • the protrusion length LF of the pair of flange portions 20 and 22 is 15 mm, and a plurality of hemming protrusions 28 protruding from the tip of the flange portion 20 are integrally formed. These hemming protrusions 28 are preliminarily bent by performing a preliminary hemming step before the blank material 24 is loaded into the hemming press device 80.
  • the width BH of the hemming protrusion 28 is 10 mm, and the protrusion length LH is also 10 mm. Further, the separation interval PH of the plurality of hemming protrusions 28 is 250 mm. Further, as shown in FIG. 15B, the punch 84 is one having a depth DG of the slit groove 102 of 30 mm, an opening width WA of 5 mm, and a curvature radius RG of the insertion guide surface 104 of 30 mm.
  • Example 4 a cold-rolled steel sheet having a thickness of 1.2 mm and a tensile strength of 1180 MPa was used as the blank material 24.
  • the blank material 24 was subjected to a closing process and a hemming press process by a hemming press device 80.
  • a closed structural member 136 which is an intermediate part shown in 16 (A), was molded (press molded).
  • the closed structural member 136 has an irregular octagonal cross-sectional shape, the width B of the bottom plate portion 54 and the side plate portion 56 is 60 mm, the width BS of the hypotenuse portion 30 and a pair positioned outside the flange portions 20 and 22.
  • the width BN of each top plate portion 59 is 30 mm.
  • the protrusion length LF of the pair of flange portions 20 and 22 is 15 mm, and a plurality of hemming protrusions 28 protruding from the tip of the flange portion 20 are integrally formed. These hemming protrusions 28 are preliminarily bent by performing a preliminary hemming step before the blank material 24 is loaded into the hemming press device 80.
  • the width BH of the hemming protrusion 28 is 10 mm, and the protrusion length LH is also 10 mm. Further, the separation interval PH of the plurality of hemming protrusions 28 is 250 mm.
  • a punch 84 having a slit groove depth DG of 30 mm, an opening width WA of 5 mm, and an insertion guide surface 104 having a curvature radius RG of 30 mm was used.
  • the gap distance GA (maximum value) between the pair of flange portions 20 and 22 (the closed structure member 120 is a pair of joining ends) immediately after the hemming press process was performed on the blank material 24 was measured.
  • the gap distance GA is preferably as small as possible from the viewpoint of weldability. If the gap distance GA is approximately 0.3 mm, the pair of flange portions 20 and 22 can be connected without restraining the pair of flange portions 20 and 22 from the outside. We can be surely welded.
  • [Table 1] shows the evaluation of the closed structural members 120, 122, 124, 126 and the closed structural parts 128, 130, 132, 134, 136.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

閉構造部材の部品点数及び製造工程数を減少し、閉構造部材を効率的に製造する。 ヘミングプレス工程では、パンチ84を更にプレス位置側へ下降させて、一対のフランジ部20、22 をスリット溝102内へ挿入しつつ、ヘミング突起28を屈曲してヘミング突起28により他方のフラ ンジ部22を挟み込み、一方のフランジ部20を他方のフランジ部22に接合すると同時に、パンチ8 4における一対のプレス成形面96により金属板を加圧して、ブランク材24における一対の肩部26 を所定の形状にプレス成形する。これにより、一方のフランジ部20をヘミング突起28により他方の フランジ部22に固定(ヘミング接合)できると同時に、ブランク材24における一対の肩部26を所 定形状にプレス成形することができる。

Description

閉構造部材の製造方法、プレス成形装置及び閉構造部材
 本発明は、金属板をプレス成形型によりプレス成形しつつ、金属板における一対の接合端部にそれぞれ形成されたフランジ部同士をヘミング加工により互いに固定し、金属板から閉断面形状を有する閉構造部材を製造するためのプレス成形方法、このプレス成形方法に用いられるプレス成形装置及び、このプレス成形方法を用いて製造された閉構造部材と溶接工程によってフランジ部を溶接した閉構造部材に関する。
 自動車等の車両におけるサイドメンバ、サイドドア等の閉断面構造を有する構造部材(閉構造部材)を製造する際には、例えば、鋼板等の金属板を素材としてプレス成形等により閉構造部材を構成する複数個の部品(プレス部品)をそれぞれ成形した後、何れか1個のプレス成形部品を他のプレス部品に組付け、これらのプレス部品同士をヘミング加工、溶接等の固定方法により互いに固定することにより、複数個のプレス部品から閉構造部材を製造する。
 上記のような閉構造部材としては、例えば、特許文献1に記載された車両のドア構造が知られている。特許文献1に記載された車両のドアは、それぞれ凹状になるように形成されたインナパネル及びアウタパネルから成る。前記インナパネルの縁部には、前記アウタパネル側に折り返されて設けられたヘミングフランジが備わっており、前記ヘミングフランジがアウタパネルの縁部を挟み込むように折り曲げられて、インナパネルがアウタパネルにヘミング接合されている。
 また特許文献2の段落〔0002〕~〔0003〕及び図5~図10には、アウタパネルとインナパネルとを接合するためのヘミング(プレスヘミング)を行うヘミング加工装置が記載されている。このヘミング加工装置によりアウタパネルとインナパネルとを接合する際には、インナパネルとアウタパネルとを重ね合わせ、アウタパネルのヘミングフランジの先端部にプリ刃を当接させて斜め下方へ押圧して折り曲げた後、ヘム刃を下降してヘミングフランジを更に折り曲げ、インナパネルの縁部をアウタパネルのヘミングフランジにより挟み込むことにより、アウタパネルとインナパネルとを互いに接合(ヘミング接合)する。
 また、車両衝突時における衝撃吸収用の閉構造部品であるフロントサイドメンバを製造する場合には、例えば、複数個のプレス部品にそれぞれ形成されたフランジ部同士をスポット溶接、レーザ溶接、アーク溶接等の溶接により強固に接合する。
 ところで、上記したような閉断面構造を有する閉構造部材を製造する場合には、閉構造部材を構成する複数個のプレス部品を、それぞれ鋼板等をプレス加工することにより成形した後、これらのプレス部品を互いに重ね合わせた状態とし、これらのプレス部品にそれぞれ形成されたフランジ部同士をヘミング接合する、もしくは溶接することで、複数個のプレス部品を閉構造部材に組立てる。
特開2007−176361号公報 特開平5−228557号
 しかしながら、閉断面構造を有する閉構造部材の重量は、一般的には、その閉構造部材を構成するプレス部品の点数が増加するに従って増大する。すなわち、プレス部品の点数が増加すると、各プレス部品にそれぞれ接合用フランジ部をそれぞれ設ける必要があることに加え、このようなフランジ部を、少なくともプレス部品における内部空間を挟んだ両側部分にそれぞれ設けておく必要があるために、プレス部品の点数が増加するに従って、閉構造部材全体の重量に対するフランジ部の重量比率が高くなり、結果として閉構造部材の重量を増加させる大きな要因となる。
 また、上記のような閉構造部材は、少なくとも閉構造部品を構成する複数個のプレス部品をそれぞれ専用のプレス成形型等を用いて成形するプレス工程及び、各プレス部品間をヘミング接合する場合はヘミング工程を経て製造されるが、近年、製造コストの低減が強く要求されていることから、閉構造部材を更に効率的に製造することが求められている。
 本発明の目的は、上記事実を考慮し、閉構造部材の部品点数及び製造工程数を減少し、閉構造部材を効率的に製造できる閉構造部材の製造方法及び製造装置を提供し、また構成部品の点数を減少できる軽量な閉構造部材を提供することにある。
 本発明[1]の閉構造部材の製造方法は、金属板をプレス成形型によりプレス加工しつつ、金属板における一対の接合端部にそれぞれ形成されたフランジ部20,フランジ部22同士を互いに固定し、金属板から閉断面形状を有する閉構造部材を製造するための製造方法であって、一方の前記フランジ部20の先端から突出するヘミング突起28を、前記フランジ部22側に対して屈曲させる予備ヘミング工程と、前記予備ヘミング工程の完了後、前記プレス成形型の一対の挿入ガイド面104を、前記ヘミング突起を有するフランジ部の先端部に突き当てつつ、前記プレス成形型を所定のプレス方向へ駆動して、一対の前記挿入ガイド面がそれぞれ発生するプレス直交方向に沿った分力により一対の前記フランジ部を近接させ、該一対のフランジ部を前記プレス成形型における一対の前記挿入ガイド面間に形成されたスリット溝内102へ案内する閉込み工程と、前記閉込み工程の完了後、前記プレス成形型を前記プレス方向へ更に駆動して、一対の前記フランジ部を前記スリット溝内へ挿入しつつ、該スリット溝の内面部から前記ヘミング突起の先端部に伝達される押圧力により該ヘミング突起28を屈曲して、該ヘミング突起により他方の前記フランジ部22を挟み込み、一方の前記フランジ部20を他方の前記フランジ部22に固定すると同時に、前記プレス成形型における一対の前記挿入ガイド面の外側にそれぞれ形成されたプレス成形面により金属板を加圧して、金属板における一対の前記フランジ部の外側部分を所定の形状にプレス成形するヘミングプレス工程と、を有することを特徴とする。
 上記[1]に係る閉構造部材の製造方法では、予備ヘミング工程の完了後、閉込み工程にて、プレス成形型に形成された一対の挿入ガイド面をそれぞれ一対のフランジ部の先端部に突き当てつつ、プレス成形型を所定のプレス方向へ駆動して、一対の前記挿入ガイド面がそれぞれ発生するプレス直交方向に沿った分力により一対のフランジ部を互いに近接させ、該一対のフランジ部を前記プレス成形型における一対の挿入ガイド面間に形成されたスリット溝内へ案内することにより、閉構造部材の素材となる金属板の変形抵抗(スプリングバック)に抗して、一対のフランジ部をプレス直交方向に沿って互いに近接させ、一対のフランジ部間の間隔をスリット溝の開口幅に対応するものにできるので、一対のフランジ部間の間隔に対する許容値等に応じてスリット溝の開口幅を適宜設定すれば、一対のフランジ部間の間隔を十分に小さくし、その間隔をスリット溝内で維持できる。
 また[1]に係る閉構造部材の製造方法では、閉込み工程の完了後、ヘミングプレス工程にて、プレス成形型を前記プレス方向へ更に駆動して、一対のフランジ部をスリット溝内へ挿入しつつ、ヘミング突起28を屈曲してヘミング突起により他方のフランジ部22を挟み込み、一方のフランジ部20を他方のフランジ部に接合すると同時に、プレス成形型における一対の挿入ガイド面の外側にそれぞれ形成されたプレス成形面により金属板を加圧して、金属板における一対の前記フランジ部の外側部分を所定の形状にプレス成形することにより、一対のフランジ部間の間隔を十分に小さくした後、一方のフランジ部をヘミング突起により他方のフランジ部に固定(ヘミング接合)できると同時に、金属板(閉構造部材)における一対のフランジ部の外側部分を所定形状にプレス成形することができる。
 従って、[1]に係る閉構造部材の製造方法によれば、1枚の金属板を素材として閉断面形状を有する閉構造部材を製造できると共に、閉構造部材における一対のフランジ部をヘミング接合する作業とフランジ部の外側部分をプレス成形する作業を同時に行えるので、閉構造部材の部品点数及び製造工程数をそれぞれ減少でき、閉構造部材を効率的に製造できる。
 また[2]の閉構造部材の製造方法は、[1]の閉構造部材の製造方法において、前記ヘミングプレス工程の完了後に、一対の前記フランジ部同士を溶接により互いに固定する溶接工程を有することを特徴とする。
 本発明の[3]の閉構造部材の製造に用いるプレス成形装置は、[1]又は[2]記載の閉構造部材の製造方法に用いられるプレス成形装置であって、前記プレス成形型と、前記閉込み工程及び前記ヘミングプレス工程の実行時に、前記プレス成形型を前記プレス方向へ駆動する駆動手段とを有し、前記プレス成形型は、前記閉構造部材における一対の前記フランジ部の外側部分にそれぞれ対応する形状を有する一対のプレス成形面、前記プレス直交方向に沿って一対の前記プレス成形面の外側にそれぞれ配置され、前記プレス方向及び前記プレス直交方向に対して傾斜した一対の挿入ガイド面及び、前記プレス直交方向に沿った一対の前記挿入ガイド面の間に形成されたスリット溝を具備することを特徴とする。
 上記[3]に係る閉構造部材の製造に用いるプレス成形装置によれば、1枚の金属板をプレス成形型に装填し、このプレス成形型を駆動手段により所定のプレス方向へ駆動することにより、一対のフランジ部間の間隔をスリット溝内で十分に小さくした後、一方のフランジ部をヘミング突起により他方のフランジ部に固定(ヘミング接合)できると共に、金属板(閉構造部材)における一対のフランジ部の外側部分を所定形状にプレス成形することができるので、1枚の金属板を素材として閉断面形状を有する閉構造部材を製造できると共に、閉構造部材における一対のフランジ部をヘミング接合する作業とフランジ部の外側部分をプレス成形する作業を同時に行えるので、閉構造部材の部品点数及び製造工程数をそれぞれ減少でき、閉構造部材を効率的に製造できる。
 また[4]の閉構造部材の製造に用いるプレス成形装置は、[3]記載の閉構造部材の製造に用いるプレス成形装置において、前記スリット溝の前記挿入ガイド面からの深さを3mm以上、50mm以下とすると共に、前記プレス直交方向に沿った開口幅を、前記閉構造部材の素材となる金属板の厚さの2倍以上で、10倍以下としたことを特徴とする。
 本発明の[5]の閉構造部材は、[1]又は[2]に記載の閉構造部材の製造方法を用いて製造される閉構造部材であって、閉断面形状を有する本体部と、前記本体部における一対の接合端部にそれぞれ形成されたフランジ部と、一方の前記フランジ部の先端から突出し、他方の前記フランジ部を挟み込むようにヘミング加工されて、一方の前記フランジ部を他方の前記フランジ部に固定するヘミング突起と、を有することを特徴とする。
 上記[5]に係る閉構造部材では、本体部、一対のフランジ部及びヘミング突起がそれぞれ1枚の金属板を素材として形成されると共に、一方のフランジ部の先端から突出するヘミング突起が、他方の前記フランジ部を挟み込むようにヘミング加工されて、一方のフランジ部が他方のフランジ部に固定(ヘミング接合)されることにより、閉構造部材を構成する主要な構成部分である本体部、一対のフランジ部及びヘミング突起をそれぞれ1枚の金属板から一体的に形成できると共に、一対のフランジ部のみにより本体部における接合端部間を接合して、この本体部を閉断面形状とすることができるので、2個以上の独立した部品により構成される閉構造部材と比較し、閉構造部材を構成する部品点数を減少できると共に、閉構造部材の全重量に対するフランジ部の重量が占める比率を低減し、閉構造部材の重量を効率的に低減できる。
 また[6]に係る閉構造部材は、[5]記載の閉構造部材において、一方の前記フランジ部に、その幅方向に沿って複数個の前記ヘミング突起を所定の離間間隔PHで配置し、前記ヘミング突起の幅を板厚の2倍以上で、製品長以下とすると共に、前記ヘミング突起の前記フランジ部の先端からの突出長を前記閉構造部材の素材となる金属板の厚さの1倍以上で、フランジ高さの1.5倍以下とし、前記離間間隔PHを5mm以上で、前記製品長からヘミング突起幅を差し引いた長さ以下に設定したことを特徴とする。
 以上説明したように、本発明に係る閉構造部材の製造方法及び閉構造部材の製造に用いるプレス成形装置によれば、閉構造部材の部品点数及び製造工程数を減少し、閉構造部材を効率的に製造できる。
 また本発明に係る閉構造部材によれば、構成部品の点数を減少できると共に、軽量化が可能になる。
本発明の実施形態に係る閉構造部材の製造方法を用いて製造された閉構造部材を示す斜視図である。 本発明の実施形態に係る閉構造部材の製造装置である第1プレス成形装置の構成を示す正面図である。 本発明の実施形態に係る閉構造部材の製造装置である第2プレス成形装置の構成を示す正面図である。 本発明の実施形態に係る閉構造部材の製造装置であるヘミングプレス装置の構成を示す正面図である。 本発明の実施形態に係る閉構造部材の製造装置であるヘミングプレス装置の変形例の構成を示す正面図である。 本発明の実施形態に係るヘミングプレス装置により行われるヘミングプレス工程を説明するためのインサートコア及びパンチの正面図である。 本発明の実施形態に係る閉構造部品におけるフランジ部及びヘミング突起の構成を示す正面図及び側面部である。 実施例1に係る閉構造部材及びパンチの構成を示す斜視図及び正面図である。 実施例2に係る閉構造部材及びパンチの構成を示す斜視図及び正面図である。 比較例1に係る閉構造部材の構成を示す斜視図である。 比較例2に係る閉構造部材及びパンチの構成を示す斜視図及び正面図である。 比較例3に係る閉構造部材及びパンチの構成を示す斜視図及び正面図である。 比較例4に係る閉構造部材及びパンチの構成を示す斜視図及び正面図である。 実施例0に係る閉構造部材及びパンチの構成を示す斜視図及び正面図である。 実施例3に係る閉構造部材及びパンチの構成を示す斜視図及び正面図である。 実施例4に係る閉構造部材及びパンチの構成を示す斜視図及び正面図である。
 以下、本発明の実施形態に係る閉構造部材の製造方法、この製造方法に用いられる製造装置及び、この製造方法を用いて製造された閉構造部材について図面を参照して説明する。
 (閉構造部材の構成)
 図1(A)~(D)には、それぞれ本発明の実施形態に係る閉構造部材の製造方法を用いて製造された閉構造部材が示されている。これらの閉構造部材10~16は、自動車等の車体におけるサイドメンバの一部として用いられるものであり、金属板(本実施形態では、高張力鋼板)を素材として形成されている。これらの閉構造部材10~16は、図1(A)~(D)にそれぞれ示されるように、車両に搭載された状態を基準とし、車両の前後方向を長手方向(矢印LP方向)とする細長い筒状に形成され、長手方向に沿った両端がそれぞれ開口端とされている。
 閉構造部材10~16には、長手直角方向に沿って閉断面形状を有する本体部18が形成されると共に、この本体部18における一対の接合端部にそれぞれフランジ部20、22が本体部18と一体的に形成されている。これらの本体部18及び一対のフランジ部20、22は、1枚の高張力鋼板を素材としてそれぞれプレス成形により形成されている。
 閉構造部材10~16の本体部18は、車体における設置スペースや要求される強度等に応じて種々の断面形状を有している。具体的には、例えば、閉構造部材10(図1(A)参照)では、本体部18の断面形状が車両の左右方向を長手方向とする略長方形とされている。また閉構造部材12(図1(B)参照)では、本体部18の断面形状が略正六角形とされている。また閉構造部材14(図1(C)参照)では、本体部18の断面形状が上端側の両側のコーナ部がそれぞれ下方へ向ってテーパ状に広がる変則六角形とされている。また閉構造部材16(図1(D)参照)では、本体部18の断面形状が上端側の両側のコーナ部がそれぞれ下方へ向ってテーパ状に広がると共に、下端側の両側のコーナ部がそれぞれ下方へ向ってテーパ状に狭くなる変則八角形とされている。
 なお、本体部18の断面形状については、図1(A)~(D)にそれぞれ示される形状に限定されるものではなく、他の多角形形状としても良いし、あるいは本体部18の断面形状の一部又は全部を円弧、楕円曲線等の曲線に沿った形状にすることも可能である。
 閉構造部材10~16には、上下方向(矢印HP方向)に沿った上端部に一対のフランジ部20、22が形成されており、一対のフランジ部20、22は、幅方向(矢印WP方向)において互いに対称的な形状とされている。一対のフランジ部20、22は、本体部18における長手直角方向に沿った両端部(一対の接合端部)がそれぞれ上方へ屈曲されることにより形成されている。これら一対のフランジ部20、22は、図1(A)~(D)に示される状態(完成状態)では、スポット溶接、レーザ溶接、アーク溶接等の各種の溶接方法により互いに接合されている。
 上記のような閉構造部材10~16を部品として含むサイドメンバを製造する際には、例えば、閉構造部材10~16の長手方向両端部にそれぞれ高剛性のキャップ部材を嵌挿固定すると共に、必要に応じて、閉構造部材10~16の外周側及び内周側に、閉構造部材10~16を補強するための補強部材や、閉構造部材10~16を車両側へ連結するためのブラケット、ボルト、ナット等を取り付けることにより、車体の一部を構成するサイドメンバが製造される。
 (閉構造部材の製造装置)
 図2~図4には、本発明の実施形態に係る閉構造部材の製造装置である第1プレス成形装置、第2プレス成形装置及びヘミングプレス装置の構成がそれぞれ示されると共に、これらの装置により加工を受けている製造途中の閉構造部材が示されている。なお、図2~図4にそれぞれ示される第1プレス成形装置30、第2プレス成形装置60及びヘミングプレス装置80は、略正六角形の断面形状を有する閉構造部材12(図1(B)参照)を製造するためのものである。
 図2に示されるように、第1プレス成形装置30は、一対のプレス成形型であるダイス32及びパンチ34を備えると共に、パンチ34の駆動手段である油圧アクチュエータ36を備えている。ダイス32は、その上面側がプレス成形面38とされており、このプレス成形面38の幅方向(矢印WM方向)中央部には、両端部に対して凹状に窪んだプレス凹部40が形成されている。プレス凹部40は、その幅方向に沿った断面形状が略台形状とされており、幅方向両端部に上方へ向ってテーパ状に幅が広がる一対の傾斜面42が形成されている。
 パンチ34は、その下面側がプレス成形面44とされており、このプレス成形面44の幅方向中央部には、両端部に対して凸状に突出するプレス凸部46が形成されている。このプレス凸部46は、幅方向に沿った断面形状がプレス凹部40に対応する略台形状とされており、その幅方向両端部には、それぞれプレス凹部40の傾斜面42に対応する傾斜面48が形成されている。
 油圧アクチュエータ36は、第1プレス成形装置30の支持フレーム(図示省略)側に固定されたシリンダ50及び、このシリンダ50の内周側に配置され、シリンダ50により高さ方向(矢印HM方向)に沿ってスライド可能に支持されたプランジャ52を備えており、プランジャ52の下端部はパンチ34の上面中央部に連結されている。油圧アクチュエータ36は、油圧制御部(図示省略)からの油圧制御に従って、パンチ34を、そのプレス凸部46がダイス32のプレス凹部40に嵌合するプレス位置(図2参照)とダイス32の上方へ離間する待機位置との間で移動させる。
 図3に示されるように、第2プレス成形装置60は、第1プレス成形装置30と同様に、一対のプレス成形型であるダイス62及びパンチ64を備えると共に、パンチ64の駆動手段である油圧アクチュエータ66を備えている。ダイス62には、その上面中央部に両端部に対して略V字状に窪んだブランク挿入部67が形成されている。ブランク挿入部67には、その底端部に一対の傾斜面からなる凹状のプレス成形面68が形成されると共に、このプレス成形面68の両端部から上方へ向かってテーパ状に広がる一対のブランク支持面70が形成されている。
 パンチ64は、その断面形状が高さ方向(矢印HM)を長手とする略長方形とされており、その下端面には、凹状のプレス成形面68に対応する凸状のプレス成形面74が形成されている。
 油圧アクチュエータ66は、第2プレス成形装置60の支持フレーム(図示省略)側に固定されたシリンダ76及び、このシリンダ76の内周側に配置され、シリンダ76により高さ方向に沿ってスライド可能に支持されたプランジャ78を備えており、このプランジャ78の下端部はパンチ64の上端面中央部に連結されている。油圧アクチュエータ66は、油圧制御部(図示省略)からの油圧制御に従って、パンチ64を、そのプレス成形面74がダイス62のプレス成形面68に嵌合したプレス位置(図3参照)とダイス62の上方へ離間する待機位置との間で移動させる。
 図4(A)に示されるように、ヘミングプレス装置80は、完成部品である閉構造部材12(図1(B)参照)における本体部18の断面形状に対応する断面形状を有するインサートコア82及び、このインサートコア82の上側に配置されたパンチ84をそれぞれプレス成形型として備えると共に、インサートコア82の下側に配置された支持パッド86及び、インサートコア82の幅方向外側に配置された一対の押圧カム88を備えている。またヘミングプレス装置80は、パンチ84の駆動手段である油圧アクチュエータ90及び、この油圧アクチュエータ90に連動して作動するカム駆動機構92を備えている。
 支持パッド86には、その上面側に一対の傾斜面からなる凹状のブランク支持面94が形成されている。このブランク支持面94は、その形状が本体部18の底板部54に対応する形状とされている。またパンチ84には、その下端面における幅方向に沿った両端部にそれぞれ傾斜面からなるプレス成形面96が形成されている。これら一対のプレス成形面96は、その形状が本体部18における一対のフランジ部20、22の外側部分である肩部26に対応する形状とされている。
 一方、インサートコア82には、その上端面に一対のプレス成形面96にそれぞれ対応する傾斜面からなるプレス成形面98が形成されると共に、下端面に支持パッド86におけるブランク支持面94に対応する凸状のブランク支持面100が形成されている。また押圧カム88は、その幅方向内側の側面部がインサートコア82の側面部83に対応する押圧面89とされている。
 図6(A)または図9(B)に示されるように、パンチ84には、幅方向に沿って一対のプレス成形面96間の中央部にスリット溝102が形成されると共に、スリット溝102と一対のプレス成形面96との間に挿入ガイド面104が形成されている。ここで、スリット溝102の開口幅をWA、一対のプレス成形面96を基準とするスリット溝102の深さをDGとすると、本実施形態では、開口幅WAが閉構造部材12の素材となる高張力鋼板の厚さの2倍以上で、10倍以下の範囲内で適宜設定され、また深さDGが3mm以上で、50mm以下の範囲で適宜設定されている。
 一対の挿入ガイド面104は、それぞれ曲率半径が一定の凸状の湾曲面により形成されており、プレス成形面96の側端部とスリット溝102の下端部とを滑らかに繋いでいる。ここで、挿入ガイド面104の曲率半径をRGとすると、この曲率半径RGは、0mm(直角)でもよいし、曲率をつけてもよく、適宜設定されている。
 油圧アクチュエータ90は、ヘミングプレス装置80の支持フレーム(図示省略)側に固定されたシリンダ106及び、このシリンダ106の内周側に配置され、シリンダ106により高さ方向に沿ってスライド可能に支持されたプランジャ108を備えており、このプランジャ108の下端部はパンチ84の上端面中央部に連結されている。油圧アクチュエータ90は、油圧制御部(図示省略)からの油圧制御に従って、パンチ84を、そのプレス成形面96がインサートコア82のプレス成形面98に嵌合するプレス位置(図4(C)参照)とインサートコア82の上方へ離間する待機位置との間で移動させる。
 一対のカム駆動機構92は、油圧アクチュエータ90の動作に連動し、それぞれ押圧カム88を幅方向に沿ってインサートコア82の側面部から離間させる待機位置(図4(A)参照)と、押圧カム88を幅方向に沿ってインサートコア82の側面部に押し当てる押圧位置との間で移動させる。具体的には、カム駆動機構92は、油圧アクチュエータ90がパンチ84を待機位置からプレス位置へ下降させると、押圧カム88を待機位置から押圧位置へ移動させ、油圧アクチュエータ90がパンチ84をプレス位置から待機位置へ上昇させると、押圧カム88を押圧位置から待機位置へ移動させる。
 図2~図5に示す前記装置は油圧アクチュエータを用いてパンチを駆動させる方式のプレス成形装置を示しているが、本発明のプレス成形装置はこれに限定されず、クランクプレスを含めメカプレス機(一般的なプレス機)を用いても良い。
 (閉構造部材の製造方法)
 次に、上記した製造装置を用いて閉構造部材12を製造する方法(閉構造部材の製造方法)について説明する。
 本実施形態に係る閉構造部材の製造方法では、先ず、図2に示す第1プレス成形装置30を用いて第1プレス工程が行われる。この第1プレス工程では、予め所定の形状に切断加工された高張力鋼板であるブランク材24を第1プレス成形装置30におけるダイス32のプレス成形面38とパンチ34のプレス成形面44との間に装填する。この後、油圧アクチュエータ36により待機位置にあるパンチ34をプレス位置まで下降させる。これにより、図2に示されるように、ブランク材24がプレス成形面38、44に対応する形状に成形(プレス成形)される。このとき、ブランク材24には、その幅方向に沿った両端部にそれぞれフランジ部20、22が形成されると共に、一対の傾斜面42、48により本体部18における一対の肩部26が形成される。
 本実施形態に係る閉構造部材の製造方法では、第1プレス工程の完了後に、図示しない汎用のプレス成形装置を用いて予備ヘミング工程が行われる。この予備ヘミング工程に用いられる汎用のプレス成形装置としては、例えば、平板状の高張力鋼板の端部を略直角に屈曲できるものが用いられる。また、図9(A)に示すように、ブランク材24における一方のフランジ部20に対応する側端部には、複数個のヘミング突起28が予め形成されている。複数個のヘミング突起28にそれぞれ対応して複数個の突辺部27が予め形成されている。図2示すように、突辺部27は、ブランク材24の側端から突出する矩形状に形成されている。
 ここで、複数個の突辺部27の長手方向に沿った離間間隔をPH、ブランク材24の側端からの突出長をLH、各突辺部27の幅をBHとすると、離間間隔PHは、5mm以上で、製品長からヘミング突起の長さを差し引いた長さ以下の範囲で適宜設定され、また突出長LHは、ブランク材24の厚さの1倍以上で、フランジ高さの1.5倍以下の範囲で適宜設定され、また幅BHは、板厚の2倍以上で、製品長以下の範囲で適宜設定される。
 図示しない予備ヘミング工程では、図2に示す第1プレス工程でブランク材24に形成された一方のフランジ部20の先端から突出する複数個の突辺部27がそれぞれ他方のフランジ部22側へ略直角に屈曲される。これにより、複数個の突辺部27がそれぞれ一対のフランジ部20、22間を接合(ヘミング接合)するためのヘミング突起28とされる。
 本実施形態に係る閉構造部材の製造方法では、予備ヘミング工程の完了後に、図3に示す第2プレス成形装置60を用いて第2プレス工程が行われる。この第2プレス工程では、第1プレス工程及び予備ヘミング工程を経て、一対の肩部26及び複数個のヘミング突起28が形成されたブランク材24を第2プレス成形装置60におけるダイス62のブランク挿入部67上に装填した後、油圧アクチュエータ66により待機位置にあるパンチ64をプレス位置まで下降させる。これにより、図3に示されるように、ブランク材24の幅方向中央部がプレス成形面68、74に対応する形状に成形(プレス成形)される。このとき、ブランク材24には、その幅方向中央部に本体部18における底板部54が形成されると共に、一対の肩部26と底板部54との間がそれぞれ側板部56とされ、これら一対の側板部56がそれぞれ一対のブランク支持面70により支持されつつ、底板部54に対して所定の傾斜角となるように屈曲される。
 本実施形態に係る閉構造部材の製造方法では、第2プレス工程の完了後に、ヘミングプレス装置80を用いて閉込み工程及びプレスヘミング工程が行われる。この閉込み工程及びプレスヘミング工程では、図4(A)に示されるように、ブランク材24の底板部54を支持パッド86のブランク支持面94とインサートコア82のブランク支持面100との間に挟み込む。このとき、待機位置にある押圧カム88は、その押圧面89をブランク材24における肩部26と側板部56との境界部付近に当接させる。
 次いで、図4(B)に示されるように、カム駆動機構92により待機位置にある押圧カム88を押圧位置側へ移動させる。これにより、押圧カム88の押圧面89により側板部56がそれぞれインサートコア82の側面部83側へ移動(傾斜)し押し当てられると共に、油圧アクチュエータ90により待機位置にあるパンチ84をプレス位置側へ下降させる。一対のフランジ部20、22の先端部がパンチ84における一対のプレス成形面96及び挿入ガイド面に沿ってスリット溝102側へ移動する。
 図4(C)に示されるように、一対の押圧カム88がそれぞれ押圧位置まで移動し、一対の押圧面89により一対の側板部56がそれぞれインサートコア82の側面部83に押し当てられると、一対のフランジ部20、22は幅方向に沿って実質的に閉じた状態になる。この後、待機位置とプレス位置との中間にあったパンチ84が油圧アクチュエータ90によりプレス位置まで下降する。これにより、複数個のヘミング突起28及び一対のフランジ部20、22がスリット溝102内へ挿入される。このとき、複数個のヘミング突起28は、スリット溝102内へ挿入されると、その先端部をスリット溝102の内面部へ圧接させた状態となり、パンチ84が下降するに従って、スリット溝102の内面部を介して伝達される下方への押圧力によりフランジ部20との境界部付近を支点として下方へ折り曲げられ、他方のフランジ部22の先端部を挟み込む。これにより、一方のフランジ部20が複数個のヘミング突起28を介して他方のフランジ部22に接合(ヘミング接合)される。
 本実施形態に係る閉構造部材の製造方法では、ヘミングプレス工程の完了後に、スポット溶接装置、レーザ溶接装置、アーク溶接装置等の汎用の溶接装置を用いて溶接工程が行われる。この溶接工程では、ヘミング突起28により互いに接合された一対のフランジ部20、22同士をスポット溶接、レーザ溶接、アーク溶等の溶接方法により互いに固定した後、フロントサイドメンバなどの部品のようにフランジ部を他の用途として用いない場合、さらに重量減を達成するために、フランジ部20、22における溶接部に対して先端側の部分を剪断、溶断等の切断方法により切り落とす。またロッカーなど他部品との接合が必要な部位(ロッカーの場合はロッカー/フロアの接合)については、フランジ部は切り落とさずに、他部品との接合用フランジとして用いることができる。これにより、図1(B)に示される閉構造部材12が製造される。
 なお、閉構造部材12以外の閉構造部材10、14、16を製造する場合について、第1プレス成形装置30、第2プレス成形装置60及びヘミングプレス装置80に対して、製造する閉構造部材の形状に対応するダイス32、62、パンチ34、64、84、支持パッド86、押圧カム88及びインサートコア82を装填すると共に、油圧アクチュエータ36、66、90及びカム駆動機構92のストローク等を適宜調整するだけで、閉構造部材12と基本的に同一の工程を経て製造できる。
 また本実施形態に係るヘミングプレス装置80は、図4(A)~(C)に示されるように、プレス成形型としてインサートコア82及びパンチ84をそれぞれ備え、これらのインサートコア82及びパンチ84並びに、支持パッド86及び一対の押圧カム88を用いてヘミングプレス工程を行うものである。しかし、閉構造部材10~16における寸法精度及び形状精度の若干の低下が許容される場合や、ブランク材24として塑性加工性が良好なものを用いる場合には、図5(A)~(C)に示されるように、ヘミングプレス装置80からインサートコア82を省略し、インサートコア82によりブランク材24を内側から支持することなく、パンチ84、支持パッド86及び一対の押圧カム88のみを用いてヘミングプレス工程(プレス成形及びヘミング加工)を行うことも可能である。
 次に、図6及び図7を参照して、本実施形態に係る閉構造部材の製造方法におけるヘミングプレス工程について更に詳細に説明する。なお、ここでは、ブランク材24から図1(A)に示される閉構造部材10を製造する際のヘミングプレス工程について説明する。
 前述したように、一方のフランジ部20の先端から突出するヘミング突起28は、予め予備ヘミング工程が行われることにより、図7(A)及び(B)に示されるように、他方のフランジ部22側へ屈曲されている。このとき、フランジ部20とヘミング突起28との角度θPは90°乃至90°よりも僅かに大きい角度とすることが好ましい。すなわち、角度θPは90°よりも小さくなると、予備的に屈曲されたヘミング突起28を他方のフランジ部22に対して図7(D)のようにできなくなる。
 閉込み工程及びヘミングプレス工程では、図6(A)に示されるように、パンチ84のプレス成形面96がブランク材24に接する前に、ブランク材24における一対の側板部56がそれぞれ一対の押圧カム88によりインサートコア82の側面部83へ押し当てられる。これにより、一対のフランジ部20、22の先端部の間隔がパンチ84における一対の挿入ガイド面104の外側端間の寸法よりも狭くなる。
 次いで、図6(B)に示されるように、油圧アクチュエータ90によりパンチ84を下降させると、フランジ部20の先端部がそれぞれ一対の挿入ガイド面104へ当接し、挿入ガイド面104からの押圧力を受ける。このとき、挿入ガイド面104がパンチ84の移動方向(プレス方向)及び幅方向(プレス直交方向)に対して傾斜していることから、一対のフランジ部20、22の先端部には幅方向に沿って互いに近接するような分力が作用する。この分力により一対のフランジ部20、22が互いに近接する。
 図6(D)に示されるように、パンチ84が更に下降すると、一対のフランジ部20、22の先端部及びヘミング突起28がそれぞれスリット溝102内へ挿入される。このとき、ヘミング突起28の先端部は、スリット溝102の内面部に所定の接触角θCで圧接した状態になる。ここで、接触角θCは90°より大きい角度になり、ヘミング突起28の先端部とスリット溝102の内面部との間には大きな摩擦抵抗が生じる。
 図6(E)に示されるように、パンチ84が図6(D)に示される位置からプレス位置まで下降すると、パンチ84における一対のプレス成形面96及びインサートコア82における一対のプレス成形面98によりブランク材24における一対の肩部26がそれぞれ所定の形状に成形されると同時に、ヘミング突起28がスリット溝102の内面部から伝達される摩擦力(押圧力)によりフランジ部20との境界部付近を支点として下方へ折り曲げられる。これにより、図7(C)及び(D)に示されるように、複数個のヘミング突起28がそれぞれ他方のフランジ部22の先端部を挟み込み、一方のフランジ部20が複数個のヘミング突起28を介して他方のフランジ部22に接合(ヘミング接合)される。
 一対のフランジ部20、22がヘミング接合により互いに接合されると、ヘミングプレス装置80は、図6(F)に示されるように、油圧アクチュエータ90によりパンチ84をプレス位置から待機位置に上昇させた後、インサートコア82を閉構造部材10の長手方向に沿ってブランク材24(本体部18)から抜き取る。これにより、閉断面形状を有する閉構造部材10が形状的に成形完了する。本実施形態では、ヘミングプレス工程が行われたブランク材24におけるフランジ部20、22間を溶接し、軽量化のためにフランジ部20、22の先端側を切除することにより、閉構造部材10の部品としての製造が完了するが、閉構造部材が過大な荷重を受けない構造部品として用いられる場合や、変形又は破壊が許容される部品として用いられる場合は、ヘミングプレス工程が行われたブランク材24をそのまま閉構造部材(完成部品)として用いても良い。
 (本実施形態に係る作用)
 本実施形態に係る閉構造部材の製造方法では、予備ヘミング工程の完了後、閉込み工程にて、パンチ84における一対の挿入ガイド面104をフランジ部20の先端部に突き当てつつ、パンチ84をプレス位置側へ下降させ、一対の挿入ガイド面104がそれぞれ発生する分力により一対のフランジ部20、22を近接させ、一対のフランジ部20、22をパンチ84におけるスリット溝102内へ案内することにより、ブランク材24の変形抵抗(スプリングバック)に抗して、一対のフランジ部20、22を互いに近接させ、一対のフランジ部20、22間の間隔をスリット溝102の開口幅WAに対応するものにできるので、一対のフランジ部20、22間の間隔に対する許容値等に応じてスリット溝102の開口幅WAを適宜設定すれば、一対のフランジ部20、22間の間隔を十分に小さくし、その間隔をスリット溝102内で維持できる。
 また本実施形態に係る閉構造部材の製造方法では、閉込み工程の完了後、ヘミングプレス工程にて、パンチ84を更にプレス位置側へ下降させて、一対のフランジ部20、22をスリット溝102内へ挿入しつつ、ヘミング突起28を屈曲してヘミング突起28により他方のフランジ部22を挟み込み、一方のフランジ部20を他方のフランジ部22に接合すると同時に、パンチ84における一対のプレス成形面96により金属板を加圧して、ブランク材24における一対の肩部26を所定の形状にプレス成形することにより、一対のフランジ部20、22間の間隔を十分に小さくした後、一方のフランジ部20をヘミング突起28により他方のフランジ部22に固定(ヘミング接合)できると同時に、ブランク材24における一対の肩部26を所定形状にプレス成形することができる。
 従って、本実施形態に係る閉構造部材の製造方法によれば、1枚の高張力鋼板をブランク材24として閉断面形状を有する閉構造部材10~16を製造できると共に、閉構造部材10~16における一対のフランジ部20、22をヘミング接合する作業と、ブランク材24における一対の肩部26をプレス成形する作業を同時に行えるので、閉構造部材10~16の部品点数及び製造工程数をそれぞれ減少でき、閉構造部材10~16を効率的に製造できる。
 また、本実施形態に係る閉構造部材の製造装置であるヘミングプレス装置80によれば、1枚の金属板をブランク材24としてインサートコア82及びパンチ84に装填し、パンチ84を油圧アクチュエータ90により待機位置からプレス位置へ下降させることにより、一対のフランジ部20、22間の間隔をスリット溝102内で十分に小さくした後、一方のフランジ部20をヘミング突起28により他方のフランジ部22に固定(ヘミング接合)できると共に、ブランク材24における一対の肩部26を所定形状にプレス成形することができるので、1枚の金属板をブランク材24として閉断面形状を有する閉構造部材10~16を製造できると共に、閉構造部材10~16における一対のフランジ部20、22をヘミング接合する作業と一対の肩部26をプレス成形する作業を同時に行えるので、閉構造部材10~16の部品点数及び製造工程数をそれぞれ減少でき、閉構造部材10~16を効率的に製造できる。
 また、本実施形態に係る閉構造部材10~16では、本体部18、一対のフランジ部2022及びヘミング突起28がそれぞれ1枚の高張力鋼板(ブランク材24)を素材として形成されると共に、一方のフランジ部20の先端から突出するヘミング突起28が、他方のフランジ部22を挟み込むようにヘミング加工されて、一方のフランジ部20が他方のフランジ部22に固定(ヘミング接合)されることにより、閉構造部材10~16を構成する主要な構成部分である本体部18、一対のフランジ部20、22及びヘミング突起28をそれぞれ1枚のブランク材24から一体的に形成できると共に、一対のフランジ部20、22のみにより本体部18における接合端部間を接合して、この本体部18を閉断面形状とすることができるので、2個以上の独立した部品により構成される閉構造部材と比較し、閉構造部材10~16を構成する部品点数を減少できると共に、閉構造部材10~16の全重量に対するフランジ部20、22の重量が占める比率を低減し、閉構造部材10~16の重量を効率的に低減できる。
 (ヘミングプレス装置の実施例)
 次に、本発明の実施形態に係るヘミングプレス装置80におけるパンチ84の主要部分の寸法及び、その意義を実施例として説明する。
 前述したように、パンチ84におけるスリット溝102の開口幅WAは、閉構造部材10の素材となるブランク材24の厚さの2倍以上で、10倍以下の範囲内で適宜設定されている。これは、開口幅WAがブランク材24の厚さの2倍未満である場合には、パンチ84の下降時に、スリット溝102の内面部とフランジ部20、22との摩擦抵抗が過大になり、ブランク材24に破断、クラックが生じるおそれがあり、また開口幅WAがブランク材24の厚さの10倍を越える場合には、パンチ84をプレス位置まで下降させても、ヘミング突起28を他方のフランジ部22へ圧接するようにヘミング加工することができず、フランジ部20、22間に隙間(ガタ)が生じるおそれがあるためである。
 また、パンチ84におけるスリット溝102の深さDGは、3mm以上で、50mm以下の範囲で適宜設定されている。これは、スリット溝102の深さDGはフランジ部20、22の突出長よりも深くする必要があり、深さDGが3mm未満の場合には、フランジ部20、22の高さが狭くなり、ヘミング接合後にフランジ部20、22間を溶接により接合することが困難になり、また深さDGを50mmよりも大きくすると、パンチ84の剛性を確保することが困難になるためである。
 (ヘミング突起の実施例)
 次に、本発明の実施形態に係る閉構造部材10~16におけるヘミング突起28の寸法及び、その意義を実施例として説明する。
 前述したように、ヘミング突起28の突出長LHは、ブランク材24の厚さの1倍以上で、フランジ高さの1.5倍以下の範囲で適宜設定されている。これは、突出長LHがブランク材24の厚さの1倍未満である場合には、ヘミング突起28により接合されたフランジ部20、22間の接合強度を十分に大きくできず、フランジ部20、22を確実にヘミング接合することが困難になり、また突出長LHがフランジ高さの1.5倍を越える場合には、閉構造部材10~16の全重量に占めるヘミング突起28の重量が過大になり、閉構造部材10~16の重量増加に繋がるためである。
 また複数個のヘミング突起28の離間間隔PHは、5mm以上で、製品長からヘミング突起幅を差し引いた長さ以下の範囲で適宜設定されている。これは、離間間隔PHが5mm未満である場合には、閉構造部材10~16の全重量に占める複数個のヘミング突起28の重量が過大になり、閉構造部材10~16の重量増加につながり、また離間間隔PHが製品長からヘミング突起幅を差し引いた長さ以下であれば良い。
 ヘミング突起幅が板厚の2倍未満では、フランジ部20、22間の接合強度が十分に大きくできず、確実にヘミング接合することが困難になる、また、ヘミング突起幅は製品長以下であれば良い。
 (閉構造部材の実施例及び比較例)
 次に、本発明の実施形態に係る閉構造部材の製造方法に従って製造された閉構造部材をそれぞれ実施例0~4として説明すると共に、本発明の実施形態に係る閉構造部材の製造方法に反する条件で製造された閉構造部材をそれぞれ比較例1~4として説明する。
 比較例1では、厚さ1.2mm、引張り強度が1180MPaの冷延鋼板をブランク材24として用い、このブランク材24に対してヘミングプレス装置80によりヘミングプレス工程を行い、図10に示される中間部品である閉構造部材120を成形(プレス成形)した。
 閉構造部材120は略長方形の断面形状を有しており、その幅Bが120mm、高さHが80mmとされている。また閉構造部材120の全長は800mmとされている。但し、閉構造部材120には、本発明に係る一対のフランジ部及びヘミング突起がそれぞれ設けられていない。このため、ブランク材24に対してヘミングプレス工程を行った場合でも、当然、ヘミング突起に対するヘミング加工は行われない。従って、パンチ84における挿入ガイド面104及びスリット溝102の有無は、閉構造部材120の形状等に影響を与えない。
 また比較例2では、厚さ1.2mm、引張り強度が1180MPaの冷延鋼板をブランク材24として用い、このブランク材24に対してヘミングプレス装置80により閉込み工程及びヘミングプレス工程を行い、図11(A)に示される中間部品である閉構造部材122を成形(プレス成形)した。
 閉構造部材122は略長方形の断面形状を有しており、その幅Bが120mm、高さHが80mmとされている。また閉構造部材122の全長は800mmとされている。また一対のフランジ部20、22の突出長LFは15mmとした。但し、閉構造部材122には、本発明に係る一ヘミング突起が設けられていない。このため、ブランク材24に対して閉込み工程及びヘミングプレス工程を行った場合では、一対のフランジ部20、22を互いに近接させる閉込み加工は有効に行われるが、当然、ヘミング突起に対するヘミング加工は行われない。
 またパンチ84としては、スリット溝102の深さDGが30mm、開口幅WAが5mm、挿入ガイド面104の曲率半径RGが30mmのものを用いた。
 また比較例3では、厚さ1.2mm、引張り強度が1180MPaの冷延鋼板をブランク材24として用い、このブランク材24に対してヘミングプレス装置80により閉込み工程及びヘミングプレス工程を行い、図12(A)に示される中間部品である閉構造部材124を成形(プレス成形)した。
 閉構造部材124は略長方形の断面形状を有しており、その幅Bが120mm、高さHが80mmとされている。また閉構造部材124の全長は800mmとされている。また一対のフランジ部20、22の突出長LFは15mmとし、一方のフランジ部20には、その先端から突出する複数個のヘミング突起28を一体的に形成した。これらのヘミング突起28は、ブランク材24がヘミングプレス装置80に装填される前に、予備ヘミング工程が行われ予備的に屈曲される。
 ここで、ヘミング突起28の幅BHは10mmとされ、突出長LHも10mmとされている。また複数個のヘミング突起28の離間間隔PHは250mmとされている。
 またパンチ84としては、図12(B)に示されるように、スリット溝102の深さDGが30mm、開口幅WAが20mm、挿入ガイド面104の曲率半径RGが30mmのものを用いた。ここで、開口幅WAは、ブランク材24の厚さの約17倍になっており、適正範囲(2倍以上~10倍以下)から逸脱している。
 また比較例4では、厚さ1.2mm、引張り強度が1180MPaの冷延鋼板をブランク材24として用い、このブランク材24に対してヘミングプレス装置80により閉込み工程及びヘミングプレス工程を行い、図13(A)示される中間部品である閉構造部材126を成形(プレス成形)した。
 閉構造部材126は略長方形の断面形状を有しており、その幅Bが120mm、高さHが80mmとされている。また閉構造部材126の全長は800mmとされている。また一対のフランジ部20、22の突出長LFは15mmとし、一方のフランジ部20には、その先端から突出する複数個のヘミング突起28を一体的に形成した。これらのヘミング突起28は、ブランク材24がヘミングプレス装置80に装填される前に、予備ヘミング工程が行われ予備的に屈曲される。
 ここで、ヘミング突起28の幅BHは10mmとされ、突出長LHは1mmとされている。また複数個のヘミング突起28の離間間隔PHは780mmとされている。
 またパンチ84としては、図13(B)に示されるように、スリット溝102の深さDGが30mm、開口幅WAが5mm、挿入ガイド面104の曲率半径RGが30mmのものを用いた。
 また実施例0では、厚さ1.2mm、引張り強度が1180MPaの冷延鋼板をブランク材24として用い、このブランク材24に対してヘミングプレス装置80により閉込み工程及びヘミングプレス工程を行い、図14(A)に示される中間部品である閉構造部材128を成形(プレス成形)した。
 閉構造部材128は略正六角形の断面形状を有しており、その一辺の長さSが40mmとされている。また閉構造部材128の全長は800mmとされている。また一対のフランジ部20、22の突出長LFは15mmとし、一方のフランジ部20には、その先端から突出する複数個のヘミング突起28を一体的に形成した。これらのヘミング突起28は、ブランク材24がヘミングプレス装置80に装填される前に、予備ヘミング工程が行われ予備的に屈曲される。
 ここで、ヘミング突起28の幅BHは10mmとされ、突出長LHは10mmとされている。また複数個のヘミング突起28の離間間隔PHは250mmとされている。
 またパンチ84としては、図14(B)に示されるように、スリット溝102の深さDGが30mm、開口幅WAが5mm、挿入ガイド面104の曲率半径RGが1mmのものを用いた。
 一方、実施例1では、厚さ1.2mm、引張り強度が1180MPaの冷延鋼板をブランク材24として用い、このブランク材24に対してヘミングプレス装置80により閉込み工程及びヘミングプレス工程を行い、図8(A)に示される中間部品である閉構造部材130を成形(プレス成形)した。
 閉構造部材130は略長方形の断面形状を有しており、その幅Bが120mm、高さHが80mmとされている。また閉構造部材130の全長は800mmとされている。また一対のフランジ部20、22の突出長LFは15mmとし、一方のフランジ部20には、その先端から突出する複数個のヘミング突起28を一体的に形成した。これらのヘミング突起28は、ブランク材24がヘミングプレス装置80に装填される前に、予備ヘミング工程が行われ予備的に屈曲される。
 ここで、ヘミング突起28の幅BHは10mmとされ、突出長LHも10mmとされている。また複数個のヘミング突起28の離間間隔PHは250mmとされている。
 またパンチ84としては、図8(B)に示されるように、スリット溝102の深さDGが30mm、開口幅WAが5mm、挿入ガイド面104の曲率半径RGが30mmのものを用いた。
 また実施例2では、厚さ1.2mm、引張り強度が1180MPaの冷延鋼板をブランク材24として用い、このブランク材24に対してヘミングプレス装置80により閉込み工程及びヘミングプレス工程を行い、図9(A)に示される中間部品である閉構造部材132を成形(プレス成形)した。
 閉構造部材132は略正六角形の断面形状を有しており、その一辺の長さSが40mmとされている。また閉構造部材132の全長は800mmとされている。また一対のフランジ部20、22の突出長LFは15mmとし、一方のフランジ部20には、その先端から突出する複数個のヘミング突起28を一体的に形成した。これらのヘミング突起28は、ブランク材24がヘミングプレス装置80に装填される前に、予備ヘミング工程が行われ予備的に屈曲される。
 ここで、ヘミング突起28の幅BHは10mmとされ、突出長LHも10mmとされている。また複数個のヘミング突起28の離間間隔PHは250mmとされている。
 またパンチ84としては、図9(B)に示されるように、スリット溝102の深さDGが30mm、開口幅WAが5mm、挿入ガイド面104の曲率半径RGが30mmのものを用いた。
 また実施例3では、厚さ1.2mm、引張り強度が1180MPaの冷延鋼板をブランク材24として用い、このブランク材24に対してヘミングプレス装置80により閉込み工程及びヘミングプレス工程を行い、図15(A)に示される中間部品である閉構造部材134を成形(プレス成形)した。
 閉構造部材134は変則六角形の断面形状を有しており、その底板部54の幅Bが120mm、側板部と頂板部との間を繋ぐ傾斜部58の幅BSが30mm、高さHが70mmとされている。また閉構造部材134の全長は800mmとされている。また一対のフランジ部20、22の突出長LFは15mmとし、一方のフランジ部20には、その先端から突出する複数個のヘミング突起28を一体的に形成した。これらのヘミング突起28は、ブランク材24がヘミングプレス装置80に装填される前に、予備ヘミング工程が行われ予備的に屈曲される。
 ここで、ヘミング突起28の幅BHは10mmとされ、突出長LHも10mmとされている。また複数個のヘミング突起28の離間間隔PHは250mmとされている。
 またパンチ84としては、図15(B)に示されるように、スリット溝102の深さDGが30mm、開口幅WAが5mm、挿入ガイド面104の曲率半径RGが30mmのものを用いた。
 また実施例4では、厚さ1.2mm、引張り強度が1180MPaの冷延鋼板をブランク材24として用い、このブランク材24に対してヘミングプレス装置80により閉込み工程及びヘミングプレス工程を行い、図16(A)に示される中間部品である閉構造部材136を成形(プレス成形)した。
 閉構造部材136は変則8角形の断面形状を有しており、その底板部54及び側板部56の幅Bがそれぞれ60mm、斜辺部30の幅BS及びフランジ部20、22の外側に位置する一対の頂板部59の幅BNがそれぞれ30mmとされている。また一対のフランジ部20、22の突出長LFは15mmとし、一方のフランジ部20には、その先端から突出する複数個のヘミング突起28を一体的に形成した。これらのヘミング突起28は、ブランク材24がヘミングプレス装置80に装填される前に、予備ヘミング工程が行われ予備的に屈曲される。
 ここで、ヘミング突起28の幅BHは10mmとされ、突出長LHも10mmとされている。また複数個のヘミング突起28の離間間隔PHは250mmとされている。
 またパンチ84としては、図16(B)に示されるように、スリット溝102の深さDGが30mm、開口幅WAが5mm、挿入ガイド面104の曲率半径RGが30mmのものを用いた。
 次に、比較例に係る閉構造部材120、122、124、126及び実施例に係る閉構造部品128、130、132、134、136に対する評価方法について説明する。ヘミングプレス装置80を用いてブランク材24に対してヘミングプレス工程を行う直前の一対のフランジ部20、22(閉構造部材120は、一対の接合端)間の隙間の距離GB(最大値)及び、ブランク材24に対してヘミングプレス工程を行った直後の一対のフランジ部20、22(閉構造部材120は、一対の接合端)間の隙間距離GA(最大値)をそれぞれ測定した。ここで、隙間距離GAは、溶接性の観点から小さい程、好ましく、概ね0.3mmであるならば、外部から一対のフランジ部20、22を拘束することなく、一対のフランジ部20、22を確実に溶接できる。
 閉構造部材120、122、124、126及び閉構造部品128、130、132、134、136に対する評価を、下記〔表1〕に示す。
Figure JPOXMLDOC01-appb-T000001
 10、12、14、16 閉構造部材、18 本体部、20、22 フランジ部、24 ブランク材、26 肩部、27 突辺部、28 ヘミング突起、30 第1プレス成形装置、32 ダイス、34 パンチ、36 油圧アクチュエータ、38 プレス成形面、40 プレス凹部、42 傾斜面、44 プレス成形面、46 プレス凸部、48 傾斜面、50 シリンダ、52 プランジャ、54 底板部、56 側板部、58 傾斜部、58 斜辺部、59 頂板部、60 第2プレス成形装置、62 ダイス、64 パンチ、66 油圧アクチュエータ、67 ブランク挿入部、68 プレス成形面、70 ブランク支持面、74 プレス成形面、76 シリンダ、78 プランジャ、80 ヘミングプレス装置、82 インサートコア(プレス成形型)、83 側面部、84 パンチ(プレス成形型)、86 支持パッド、88 押圧カム、
 89 押圧面、90 油圧アクチュエータ(駆動手段)、92 カム駆動機構、94 ブランク支持面、96 プレス成形面、98 プレス成形面、100 ブランク支持面、102 スリット溝、104 挿入ガイド面、106 シリンダ、108 プランジャ、120、122、124、126、128、130、132、134、136 閉構造部材、

Claims (6)

  1. 金属板をプレス成形型によりプレス加工しつつ、金属板における一対の接合端部にそれぞれ形成されたフランジ部同士を互いに固定し、金属板から閉断面形状を有する閉構造部材を製造するための製造方法であって、
     一方の前記フランジ部の先端から突出するヘミング突起を、該フランジ部の基端側に対して屈曲させる予備ヘミング工程と、
     前記予備ヘミング工程の完了後、前記プレス成形型に形成された一対の挿入ガイド面を、前記ヘミング突起を有するフランジ部の先端部に突き当てつつ、前記プレス成形型を所定のプレス方向へ駆動して、一対の前記挿入ガイド面がそれぞれ発生するプレス直交方向に沿った分力により一対の前記フランジ部を近接させ、該一対のフランジ部を前記プレス成形型における一対の前記挿入ガイド面間に形成されたスリット溝内へ案内する閉込み工程と、
     前記閉込み工程の完了後、前記プレス成形型を前記プレス方向へ更に駆動して、一対の前記フランジ部を前記スリット溝内へ挿入しつつ、該スリット溝の内面部から前記ヘミング突起の先端部に伝達される押圧力により該ヘミング突起を屈曲して、該ヘミング突起により他方の前記フランジ部を挟み込み、一方の前記フランジ部を他方の前記フランジ部に固定すると同時に、前記プレス成形型における一対の前記挿入ガイド面の外側にそれぞれ形成されたプレス成形面により金属板を加圧して、金属板における一対の前記フランジ部の外側部分を所定の形状にプレス成形するヘミングプレス工程と、
    を有することを特徴とする閉構造部材の製造方法。
  2. 前記ヘミングプレス工程の完了後に、一対の前記フランジ部同士を溶接により互いに固定する溶接工程を有することを特徴とする請求項1記載の閉構造部材の製造方法。
  3. 請求項1又は2記載の閉構造部材の製造方法に用いられるプレス成形装置であって、
     前記プレス成形型と、
     前記閉込み工程及び前記ヘミングプレス工程の実行時に、前記プレス成形型を前記プレス方向へ駆動する駆動手段とを有し、
     前記プレス成形型は、前記閉構造部材における一対の前記フランジ部の外側部分にそれぞれ対応する形状を有する一対のプレス成形面、前記プレス直交方向に沿って一対の前記プレス成形面の外側にそれぞれ配置され、前記プレス方向及び前記プレス直交方向に対して傾斜した一対の挿入ガイド面及び、前記プレス直交方向に沿った一対の前記挿入ガイド面の間に形成されたスリット溝を具備することを特徴とする閉構造部材の製造に用いるプレス成形装置。
  4. 前記スリット溝の前記挿入ガイド面からの深さを3mm以上、50mm以下とすると共に、前記スリット溝の前記プレス直交方向に沿った開口幅を、前記閉構造部材の素材となる金属板の厚さの2倍以上で、10倍以下としたことを特徴とする請求項3記載の閉構造部材の製造に用いるプレス成形装置。
  5. 請求項1又は2記載の閉構造部材の製造方法を用いて製造される閉構造部材であって、
     閉断面形状を有する本体部と、
     前記本体部における一対の接合端部にそれぞれ形成されたフランジ部と、
     一方の前記フランジ部の先端から突出し、他方の前記フランジ部を挟み込むようにヘミング加工されて、一方の前記フランジ部を他方の前記フランジ部に固定するヘミング突起と、
     を有することを特徴とする閉構造部材。
  6. 一方の前記フランジ部に、その幅方向に沿って複数個の前記ヘミング突起を所定の離間間隔PHで配置し、前記ヘミング突起の幅を板厚の2倍以上で、製品長以下とすると共に、前記ヘミング突起の前記フランジ部の先端からの突出長を前記閉構造部材の素材となる金属板の厚さの1倍以上で、フランジ高さの1.5倍以下とし、前記離間間隔PHを5mm以上で、前記製品長からヘミング突起幅を差し引いた長さ以下に設定したことを特徴とする請求項5記載の閉構造部材。
PCT/JP2009/067129 2008-09-25 2009-09-24 閉構造部材の製造方法、プレス成形装置及び閉構造部材 WO2010035887A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2738292A CA2738292C (en) 2008-09-25 2009-09-24 Closed structure parts, method and press forming apparatus for manufacturing the same
EP09816299.3A EP2351624B1 (en) 2008-09-25 2009-09-24 Method of manufacturing closed structural member, press-forming device, and closed structural member
US13/120,589 US8844581B2 (en) 2008-09-25 2009-09-24 Closed structure parts, method and press forming apparatus for manufacturing the same
KR1020117007612A KR101305927B1 (ko) 2008-09-25 2009-09-24 폐구조 부재의 제조 방법, 프레스 성형 장치 및 폐구조 부재
CN200980137930.9A CN102164692B (zh) 2008-09-25 2009-09-24 封闭结构构件的制造方法、冲压成形装置和封闭结构构件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008245464A JP5390152B2 (ja) 2008-09-25 2008-09-25 閉構造部材の製造方法、プレス成形装置及び閉構造部材
JP2008-245464 2008-09-25

Publications (1)

Publication Number Publication Date
WO2010035887A1 true WO2010035887A1 (ja) 2010-04-01

Family

ID=42059874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067129 WO2010035887A1 (ja) 2008-09-25 2009-09-24 閉構造部材の製造方法、プレス成形装置及び閉構造部材

Country Status (7)

Country Link
US (1) US8844581B2 (ja)
EP (1) EP2351624B1 (ja)
JP (1) JP5390152B2 (ja)
KR (1) KR101305927B1 (ja)
CN (1) CN102164692B (ja)
CA (1) CA2738292C (ja)
WO (1) WO2010035887A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130291615A1 (en) * 2012-05-04 2013-11-07 Seojin Industrial Co., Ltd. Manufacturing apparatus of stiffener for center-pillar

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378738B2 (ja) * 2008-09-25 2013-12-25 Jfeスチール株式会社 閉構造部材の製造方法、プレス成形装置
DE102011010385A1 (de) * 2011-02-05 2012-08-09 Eads Deutschland Gmbh Doppelwandiges Rohr und Herstellungsverfahren
CN102389916B (zh) * 2011-10-24 2013-09-18 中国船舶重工集团公司第七〇四研究所 一种利用咬合刀成型滚边的工艺
CN102555598B (zh) 2011-12-29 2015-02-04 贝发集团股份有限公司 一种扁形笔自动装配线
CN102529505B (zh) 2011-12-29 2014-05-07 贝发集团股份有限公司 一种用于实现颗粒状饰物均匀灌装的振动机
CN102529506B (zh) * 2011-12-31 2014-05-07 贝发集团股份有限公司 一种笔头打点机
KR101579028B1 (ko) * 2012-04-13 2015-12-18 제이에프이 스틸 가부시키가이샤 폐단면 구조 부품의 제조 방법 및 장치
TWI480110B (zh) * 2012-04-13 2015-04-11 Jfe Steel Corp 閉斷面構造部品的製造方法及裝置
JP5454619B2 (ja) * 2012-05-28 2014-03-26 Jfeスチール株式会社 閉断面構造体の成形方法及び閉断面構造体の成形装置
JP5966617B2 (ja) * 2012-05-28 2016-08-10 Jfeスチール株式会社 閉断面構造体の成形方法及び閉断面構造体の成形装置
KR101397850B1 (ko) * 2012-08-28 2014-05-20 김현성 도어 프레임커버의 압착장치 및 방법
JP5761275B2 (ja) * 2013-08-26 2015-08-12 Jfeスチール株式会社 曲がり形状を有する多角形閉断面構造部品の製造方法およびその方法で製造した多角形閉断面構造部品
KR101537162B1 (ko) * 2013-09-27 2015-07-15 현대제철 주식회사 부품 제조 방법
JP5613341B1 (ja) * 2014-01-27 2014-10-22 日新製鋼株式会社 しごき加工用金型及び成形材製造方法
RU2688112C1 (ru) 2015-05-22 2019-05-17 Ниппон Стил Энд Сумитомо Метал Корпорейшн Штампованное изделие и способ его конструирования
JP6504102B2 (ja) * 2016-04-18 2019-04-24 Jfeスチール株式会社 閉断面形状部品のプレス成形方法および製造方法、並びにプレス装置
JP6504103B2 (ja) * 2016-04-18 2019-04-24 Jfeスチール株式会社 閉断面形状部品のプレス成形方法および製造方法、並びにプレス装置
CN107695212B (zh) * 2017-11-07 2024-06-18 江西亨成实业有限公司 一种风道双折边组装机
CN109226569A (zh) * 2018-10-29 2019-01-18 福建南铝车辆零部件有限公司 一种槽铝加工方法及槽铝
CN109570342B (zh) * 2018-11-08 2020-07-28 东莞市翔龙泰达实业有限公司 一种具有缝隙宽厚比小于1的产品的冲压工艺
US11174908B2 (en) * 2019-04-04 2021-11-16 Warner Electric Technology Llc Miniature brake and method of assembly
CN112059020B (zh) * 2020-08-08 2022-03-22 宁波江北博盛刀具有限公司 一种用于自动化生产方环形刀片的设备
CN112792170B (zh) * 2020-12-31 2023-03-28 深圳市嘉和达管业有限公司 一种外带加固片油冷器管的制备工艺
CN114453518B (zh) * 2021-12-27 2023-06-30 鹤壁天淇汽车模具有限公司 一种口字型封闭汽车覆盖件模具制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124666U (ja) * 1974-08-10 1976-02-23
JPH05228557A (ja) 1992-02-17 1993-09-07 Toyota Motor Corp ヘミング加工装置
JP2000515432A (ja) * 1997-05-01 2000-11-21 ゼネラル・モーターズ・コーポレーション 時効硬化可能なアルミニウムシートのヘム成形容易性を改善する方法
JP2006247748A (ja) * 2005-03-11 2006-09-21 Muhr & Bender Kg フランジを一体的に備えた管、特に車両及びボディ構造用の柔軟に圧延された材料から成る、フランジを一体的に備えた管
JP2007176361A (ja) 2005-12-28 2007-07-12 Honda Motor Co Ltd 車両のドア構造、及び、車両用ドアの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818489A (en) 1972-10-20 1974-06-18 Libbey Owens Ford Co Antenna windshield with electrical connector and method of producing the same
JPS49113077U (ja) * 1973-01-31 1974-09-26
FR2319439A1 (fr) * 1975-07-31 1977-02-25 Gallay Sa Perfectionnement au procede de realisation du triple sertissage
US4238550A (en) * 1979-02-05 1980-12-09 Equipment Manufacturing, Inc. Dunnage bar and method of making it
US4395900A (en) * 1979-03-02 1983-08-02 Saurenman Phillip E Stiff metal ring and process for making it
US4441241A (en) * 1980-08-15 1984-04-10 Snyder General Corporation Method of manufacturing a heat exchanger unit
JPS57184520A (en) 1981-05-11 1982-11-13 Nissan Motor Co Ltd Die for hemming press
US4466267A (en) * 1981-10-28 1984-08-21 Casler William A Process for forming curved structures, and the resulting structures
US4734971A (en) * 1987-01-12 1988-04-05 Aro Metal Stamping Co., Inc. Method of mechanically crimping overlapping sheet metal
JPH02169131A (ja) * 1988-12-21 1990-06-29 Calsonic Corp 金属製筒体の製造方法
JPH05305367A (ja) * 1992-04-24 1993-11-19 Suzuki Motor Corp パネル状部品のフランジ部結合構造
JP3895538B2 (ja) 2000-11-24 2007-03-22 本田技研工業株式会社 縁曲げ加工装置
JP2005349464A (ja) * 2004-06-14 2005-12-22 Calsonic Kansei Corp 熱交換器のタンク加締め用工具
JP2007160352A (ja) * 2005-12-14 2007-06-28 Seiko Epson Corp 円筒軸およびその円筒軸の製造方法並びに前記円筒軸を用いた定着ローラ
JP4640481B2 (ja) * 2008-09-01 2011-03-02 マツダ株式会社 金属製閉断面部材の製造方法
JP5378738B2 (ja) * 2008-09-25 2013-12-25 Jfeスチール株式会社 閉構造部材の製造方法、プレス成形装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124666U (ja) * 1974-08-10 1976-02-23
JPH05228557A (ja) 1992-02-17 1993-09-07 Toyota Motor Corp ヘミング加工装置
JP2000515432A (ja) * 1997-05-01 2000-11-21 ゼネラル・モーターズ・コーポレーション 時効硬化可能なアルミニウムシートのヘム成形容易性を改善する方法
JP2006247748A (ja) * 2005-03-11 2006-09-21 Muhr & Bender Kg フランジを一体的に備えた管、特に車両及びボディ構造用の柔軟に圧延された材料から成る、フランジを一体的に備えた管
JP2007176361A (ja) 2005-12-28 2007-07-12 Honda Motor Co Ltd 車両のドア構造、及び、車両用ドアの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2351624A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130291615A1 (en) * 2012-05-04 2013-11-07 Seojin Industrial Co., Ltd. Manufacturing apparatus of stiffener for center-pillar

Also Published As

Publication number Publication date
CA2738292C (en) 2013-11-05
JP2010075945A (ja) 2010-04-08
CA2738292A1 (en) 2010-04-01
KR20110049914A (ko) 2011-05-12
KR101305927B1 (ko) 2013-09-09
EP2351624A4 (en) 2012-03-14
EP2351624B1 (en) 2013-11-06
US8844581B2 (en) 2014-09-30
US20110174409A1 (en) 2011-07-21
EP2351624A1 (en) 2011-08-03
CN102164692A (zh) 2011-08-24
JP5390152B2 (ja) 2014-01-15
CN102164692B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5390152B2 (ja) 閉構造部材の製造方法、プレス成形装置及び閉構造部材
JP5378738B2 (ja) 閉構造部材の製造方法、プレス成形装置
CN109414745B (zh) 冲压部件的制造方法及制造装置
TWI628013B (zh) 壓製成形裝置及壓製成形方法
US20160221068A1 (en) Hat-shaped cross-section component manufacturing apparatus
WO2015083812A1 (ja) プレス成形装置、プレス成形方法、およびプレス成形品
CN104349852A (zh) 闭截面结构体的成形方法及闭截面结构体的成形装置
KR101579028B1 (ko) 폐단면 구조 부품의 제조 방법 및 장치
JP2013027894A (ja) フレーム部品の製造方法及びフレーム部品
KR101867744B1 (ko) 프레스 성형 방법 및 프레스 제품의 제조 방법 그리고 프레스 성형 장치
KR20180104693A (ko) 프레스 장치 및 프레스 성형품의 제조 방법
JP5515279B2 (ja) プレス成形品、プレス成形品の製造方法および製造装置
CN111801175A (zh) 冲压成型品的设计方法、冲压成型模具、冲压成型品以及冲压成型品的制造方法
JP2005254279A (ja) プレス型
WO2023032953A1 (ja) 構造部材及びその製造方法
JP2011098370A (ja) 金属製閉断面部材の製造方法
JP2023075017A (ja) プレス成形方法およびプレス成形品の製造方法
JP2023029056A (ja) 成形装置及び該成形装置を用いた成形方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137930.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816299

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2738292

Country of ref document: CA

Ref document number: 13120589

Country of ref document: US

Ref document number: 1244/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117007612

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009816299

Country of ref document: EP