WO2010034791A1 - Verfahren und vorrichtung zur trockenen entstaubung und reinigung von bei der eisenerzeugung oder kohlevergasung produziertem gas - Google Patents

Verfahren und vorrichtung zur trockenen entstaubung und reinigung von bei der eisenerzeugung oder kohlevergasung produziertem gas Download PDF

Info

Publication number
WO2010034791A1
WO2010034791A1 PCT/EP2009/062411 EP2009062411W WO2010034791A1 WO 2010034791 A1 WO2010034791 A1 WO 2010034791A1 EP 2009062411 W EP2009062411 W EP 2009062411W WO 2010034791 A1 WO2010034791 A1 WO 2010034791A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
dedusting
gas stream
additive
solid particles
Prior art date
Application number
PCT/EP2009/062411
Other languages
English (en)
French (fr)
Inventor
Alexander Fleischanderl
Andreas Hackl
Original Assignee
Siemens Vai Metals Technologies Gmbh & Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Vai Metals Technologies Gmbh & Co filed Critical Siemens Vai Metals Technologies Gmbh & Co
Priority to BRMU8903155-5U priority Critical patent/BRMU8903155U2/pt
Priority to DE212009000108U priority patent/DE212009000108U1/de
Priority to PL120022A priority patent/PL120022A1/pl
Priority to KR2020117000012U priority patent/KR200474985Y1/ko
Priority to AT0900509U priority patent/AT12170U1/de
Priority to SK5016-2011U priority patent/SK6016Y1/sk
Priority to CN2009901004977U priority patent/CN202173873U/zh
Publication of WO2010034791A1 publication Critical patent/WO2010034791A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/32Purifying combustible gases containing carbon monoxide with selectively adsorptive solids, e.g. active carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/002Evacuating and treating of exhaust gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/22Dust arresters
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • C21C5/40Offtakes or separating apparatus for converter waste gases or dust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/12Influencing the filter cake during filtration using filter aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/10Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1621Compression of synthesis gas
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/64Controlling the physical properties of the gas, e.g. pressure or temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for dry dedusting and dry cleaning of dust and polluted gas, such as produced in pig iron production units in the production of pig iron or iron production aggregates in the iron production gas or gas produced in coal gasification, and an apparatus for performing the method.
  • the object of the present invention is to provide a process for dry dedusting for the exhaust gas produced during the production of pig iron, in which the risk of sticking and clogging of the filter for dedusting is reduced and at the same time the exhaust gas is cleaned of pollutants.
  • an apparatus for carrying out the method is to be provided.
  • This object is achieved by a method for dry dedusting and dry cleaning of dust and polluted gas, such as in pig iron production units in the production of pig iron or in iron-making aggregates in the production of iron gas or in
  • Coal gasification plants produced gas, in which one of this existing gas
  • the gas stream is subjected to dedusting, in which dedusting the solid particles contained in the gas stream, optionally already subjected to the preseparation, are separated from the gas stream, and the temperature of the gas stream prior to dedusting is adjusted so that its temperature is above 60 ° C., preferably above 100 ° C., and less than a damage to the temperature causing the dedusting devices.
  • the inventive method is characterized that additive is added to the gas stream prior to commencement of dedusting, the additive containing reagent and optionally adsorbent.
  • An iron making unit can be for example a blast furnace, a reduction shaft or gasifier according COREX ® - or FINEX ® - process. In such aggregates, solid or liquid pig iron or steel precursor is produced.
  • An iron production unit for example, a MIDREX ® - be a HYL ® plant or based COREX ® / ® FINEX export gas direct reduction plant. In such aggregates sponge iron or briquetted iron is produced.
  • the separation of coarse solid particles which are carried in the gas stream, for example, in gravity chambers (dust bag) or cyclones occur.
  • Coarse solid particles are solid particles with particle diameters> 10 microns to understand.
  • the temperature of the gas stream is adjusted prior to dedusting according to an embodiment of the method according to the invention after the pre-separation.
  • the temperature of the gas in the production of pig iron or iron production varies, for example, depending on the method used, or depending on the occurrence of transient conditions of the process, such as collapse of a column of material in the reduction or melting shaft, starting and Abfahrsituation.
  • the dust removal takes place in filtering devices such as fabric filters made of glass or plastic fiber such as aramid or P84 ® ® (polyimide) of circular construction, metal or ceramic filters.
  • filtering devices such as fabric filters made of glass or plastic fiber such as aramid or P84 ® ® (polyimide) of circular construction, metal or ceramic filters.
  • the temperature of the gas stream before dedusting, after any pre-separation so adjusted in that the temperature of the dedusted gas stream is above 60 ° C, preferably above 100 ° C, and less than a damage to the temperature causing the dedusting devices.
  • the temperature has to be below 260 ° C., preferably below 200 ° C., since fabric filters suffer heat-induced decomposition of the filter fabric at gas temperatures above 260 ° C.
  • gas temperatures up to 1000 0 C can be used.
  • Gas generated in pig iron production in pig ironmaking plants or in ironmaking in ironmaking plants contains, among others, hydrogen sulphide, hydrogen chloride, hydrogen fluoride, heavy metals, organic pollutants such as dioxins / furans, polycyclic aromatics and other hydrocarbon compounds. These environmentally harmful exhaust gas components are to be removed as economically feasible before discharge of the exhaust gas into the environment.
  • the additive is added to the gas stream before the start of dedusting as a particulate dry additive or as a suspension of additive in water.
  • the additive contains reagent and optionally adsorbent.
  • the reagent is selected so that it reacts with the pollutants contained in the exhaust gas from pig iron to particulate products, which are removable by dedusting from the gas stream.
  • the reagent used is, for example, CaCO 3 Ca (OH) 2 , Mg (OH) 2 , sodium bicarbonate, or mixtures of two or more of these substances.
  • the main purpose of the reagent is to deposit acidic pollutant components such as H 2 S, HCl or HF.
  • the additive may also contain organic and / or inorganic adsorbents, for example hearth furnace coke (HOK), activated carbon / coke or finely ground zeolite.
  • adsorbent pollutants contained in the exhaust gas such as heavy metals or organic pollutants can be removed by adsorption from the gas stream, wherein the product resulting from adsorption of pollutant loaded adsorbent is particulate and therefore also in the dedusting from the gas stream is removable.
  • the additive can also be a lime-carbon mixture with additives, as is known as under the trade name Sorbalit ®.
  • Sorbalit ® The particulate additive or particulate reaction products or particulate adsorptively laden additive constituents are removed from the gas stream during dedusting.
  • the additive can also be injected as a suspension in water, for example, lime milk, into the gas stream.
  • a correspondingly high gas temperature> 150 ° C is required. If additive is added as a suspension in the gas stream, the liquid evaporates in the hot gas stream, so that the additive is removable as a particulate dry additive by dedusting. Since gas cooling takes place during the addition as a suspension, this type of addition can be coupled with process steps for adjusting the gas temperature.
  • Pollutants are removed simultaneously with the dedusting of the gas stream.
  • both reagent and adsorbent can bind moisture contained in the gas stream and thus reduce the risk of moisture condensation from the gas stream.
  • the additive, or the particulate products formed on the adsorbent in the case of reaction with reagent or adsorption is deposited on the filtering and separating devices for dedusting and, as a result, coating of these devices takes place.
  • Coating of deposited filter cake containing additive on the one hand contributes to dedusting, since the gas flow must pass through them.
  • it protects the filtering and separating system parts of the devices for dedusting, since the exhaust gas stream meets only after the coating has been passed through.
  • the risk of clogging or sticking of the filtering and depositing system parts of the devices for dedusting is reduced because organic gaseous ingredients of the gas stream or moisture and / or fine adhesive solid particles can be partially already deposited in the filter cake.
  • the resulting protection of the system components results in extended service life.
  • the coating by additive is periodically removed together with the filter dust cake which forms in the course of dedusting on the filtering and separating components of the dedusting apparatus; this removal is less complicated and difficult than the removal of solid particles which have penetrated into the filtering and separating components of the devices for dedusting.
  • the addition of additive is carried out as a function of the loading of the gas with pollutants.
  • the content of pollutants is measured and a corresponding addition of additive triggered or increased when the operator predefined thresholds in the raw or clean gas are exceeded.
  • raw gas is to be understood as the gas before dry cleaning, and gas under clean gas after dry cleaning. It is preferred that individual types of pollutants can be considered.
  • the type of reagent in the additive is selected according to the pollutant being considered.
  • the optimally suitable for the relevant pollutant reagent can be added. Accordingly, the costs for reagent consumption can be minimized and the resulting amounts of solid particles deposited in the dedusting can be reduced. A corresponding further utilization is thereby facilitated.
  • the gas stream is added according to an embodiment of the method according to the invention prior to the start of dedusting after the pre-separation additive. This avoids the removal of additive from the gas stream before dedusting. Otherwise, the residence time of the additive in the gas stream would be reduced compared to a separation in the dedusting and accordingly the cleaning capacity of the additive are less well utilized. Since the addition of additive into the gas stream takes place only after the pre-separation, the material obtained in the pre-separation contains no additive. Due to the absence of additive, it is particularly well suited for use. Because the material contains no additive, no consideration must be given to the existing additive in such use.
  • the use may be an at least partial recirculation of the material into the process in which the gas to be purified is produced. It can also be used in other processes.
  • the gas to be purified is produced in pig ironmaking plants or in ironmaking factories in ironmaking, the material obtained in the pre-separation contains iron-containing dust - a valuable raw material which, for example, can be traced back to pig ironmaking or ironmaking. If the gas to be purified in
  • Coal gasification plants produced contains the material obtained in the pre-separation carbonaceous dust - a valuable raw material, which can be returned, for example, back into the coal gasification plant.
  • a pre-separation has the advantage that system parts, which are traversed by the pre-separation of the gas, are less burdened by contact with solid particles.
  • Pollutant cleaning is feasible, there is hardly any need to release dust and se h ad substance in the case of astetes gas via bypass in the environment.
  • the additive consists of one or both of the reagent and adsorbent components, because additional ingredients of the additive that do not act as a reagent or adsorbent reduce the effect of the additive that can be achieved per unit mass of additive.
  • Admitted particulate dry additive has a particle size of 0.1 to 200 microns This grain size range ensures that the additive homogeneously distributed in the gas stream. If a significant particle size fraction is concerned, a homogeneous distribution in the gas stream would be difficult, which would lead to low separation rates during dedusting.
  • the smaller the grain size of the additive the greater its specific surface area. The larger the specific surface area, the better the processes of reaction with and adsorption of pollutants as well as binding of moisture can proceed. However, the price of the additive increases with decreasing grain size, so that the use of additive with a particle size below 0.1 microns economically no longer makes sense.
  • the exhaust gas from pig iron production units is generally under high pressure.
  • the absolute pressure of the exhaust gases from pig iron production units is between 2 x 10 5 Pa and 6 x 10 5 Pa, ie between 2 and 5 bar. This pressure must be overcome when the additive is added to the gas stream. This is preferably done by pneumatic pressure injection of the additive.
  • the introduction of dry additive can also be done by gravity dosing, in which case a seal of the overpressure to the outside, for example by means of rotary valves or double pendulum valves is to ensure.
  • the additive When the additive is added to the gas stream, homogeneous distribution of the additive must be ensured. This can be achieved, for example, by a so-called static mixer (with gravity metering) or a corresponding number of injection lances (with pressure injection).
  • static mixer with gravity metering
  • injection lances with pressure injection
  • the introduction of suspensions is preferably carried out by two-fluid nozzles, wherein the liquid suspension is atomized by means of gas or steam.
  • the solid particles deposited during dedusting on filtering and separating devices for dedusting are removed periodically from these devices.
  • the separated solid particles is also additive, which can still react with pollutants contained in the exhaust gas, adsorb pollutants or bind moisture.
  • a partial amount of the solid particles separated off during the dedusting as a filter cake is added to the gas stream before the dedusting begins, after completion of the optional pre-separation.
  • the exhaust gas pressure preferably by means of pneumatic pressure injection, but can also be done for example by means of gravity dosing.
  • carbon sources such as coal dust, open hearth HOK, Sorbalit ®, and erz inconveniencer dust and iron-containing dust.
  • this material in pig iron production or iron production or coal gasification, according to an advantageous embodiment of the method according to the invention at least a subset of deposited in the pre-separation and / or dedusting as a filter cake solid particles as starting material for pig iron production or iron production or gas produced in coal gasification used. This improves their efficiency and utilizes the separated solid particles in a simpler manner than it would a landfill.
  • the material can also be utilized, for example, after any pretreatment steps in the steelmaking process (converter, electric furnace) or the sintering process.
  • the adjustment of the temperature of the dedusting gas stream is carried out according to an embodiment of the method according to the invention by means of evaporative cooler. This has the advantage that the temperature can be stably stabilized to a set temperature for longer periods of time.
  • the temperature is adjusted by means of plate heat exchanger.
  • This has the advantage that no additional water injection must be provided and the average gas temperature or the sensible heat of the gas is higher. This increases, for example, the energy efficiency of a downstream use in a Gasentpressivessturbine against a temperature setting by evaporative coolers.
  • Gas from coal gasification plants is used, among other things, in the production of pig iron or iron as a reducing gas.
  • the gas to be subjected to the dry dedusting and dry cleaning originates from a coal gasification plant.
  • Apparatus comprising a feed line carrying a gas stream from a pig iron production unit or an ironmaking plant or coal gasification plant, in which a pre-separation device is present, wherein the supply line branches at a branch into a bypass line and into a primary gas line, with at least one dedusting device, wherein the primary gas line via a Connection line with the
  • Dust removal device is connected, and wherein before the dedusting in the supply line or the primary gas line, a device for adjusting the temperature of the gas stream is present.
  • This device is characterized in that there is a device for adding additive in the primary gas line, wherein there is device for adding additive between the branch and the first connection line seen from the branch.
  • the pig iron production unit, the exhaust gas to be cleaned and dusted such as a blast furnace, a reduction shaft or gasifier according COREX ® can - or FINEX ® process be.
  • An iron production unit for example, a MIDREX ® - be a HYL ® plant or based COREX ® / ® FINEX export gas direct reduction plant.
  • the a gas stream from a pig iron production unit or a Ferrous generator leading supply line is connected to the pig iron production unit or iron production unit.
  • the pre-separation device includes, for example, gravitational settling chamber, cyclone, hurriclon, electrostatic precipitator. With such devices, coarse particulate matter can be effectively separated from the gas stream.
  • the dedusting device comprises, for example, round filter with filter bags made of textile fabric, ceramic or metal fabric. With such devices, the finest solid particles ⁇ 10 microns can be effectively separated from the gas stream.
  • Such preseparation devices and dedusting devices are capable of operating under the pressure of the gas to be dedusted.
  • the device for adjusting the temperature of the gas flow is located between the pre-separation device and the dedusting device,
  • the device for adding particulate dry additive is a device for pneumatic pressure injection.
  • the device for adding additive is a device for gravity dosing
  • the dedusting device comprises a device for removing separated solid particles.
  • the pre-separation device (2) comprises a device for removing separated solid particles from the pre-separation device (22).
  • the device for removing separated solid particles is preceded by a solid particle line, which, viewed in the flow direction of the gas stream or from the branching in the bypass line and the primary gas line, opens into the primary gas line.
  • the mouth is provided with a device for pneumatic pressure injection, by means of which the solid particles can be introduced against the pressure of the gas stream in the primary gas line.
  • the device for removing separated solid particles and / or the device for removing separated solid particles from the pre-separation device (22) emits a metering line which opens into a device for adding material to the pig iron production unit or the iron production unit ,
  • the device for adjusting the temperature of the gas stream comprises an evaporative cooler.
  • the device for adjusting the temperature of the gas stream comprises a plate heat exchanger or other types of heat exchangers, such as tube bundles, forced draft cooler, lungs.
  • the device for adjusting the temperature of the gas stream comprises a burner.
  • Burner can increase the temperature of the gas flow above the lower limit
  • the fuel supplied to the burner is a combustible gas or a combustible gas mixture. It is preferred to use at least part of the dry dedusted and dry-cleaned gas obtained in the process according to the invention as fuel for the burner.
  • the supply line carries a gas stream from a coal gasification plant connected to it.
  • the present invention also solves the problem of using the energy contained in the gas - for example, to generate electricity in a turbine downstream of the dedusting and cleaning process, for example an expansion turbine, - or the components of the gas - for example in chemical processes - simplify.
  • a turbine downstream of the dedusting and cleaning process for example an expansion turbine
  • the components of the gas - for example in chemical processes - simplify.
  • Such uses are simplified by the cleaning and dedusting according to the invention, since the system components used for these uses are less exposed to the attacks of solid particles and pollutants, which may, for example, have an abrasive and corrosive effect.
  • blast furnace gas has a specific heat capacity of approx. 1, 4 kJ / Nm 3 K - a heating of around 500,000 Nm 3 / h requires around 200 kW / K heating power.
  • 40 about 8 MW heating power required, which must be applied for example by burners or heat exchangers.
  • About a TRT gas relaxation turbine can be recovered about 10 MW.
  • the present invention solves the problem of making the solids contained in the gas and other substances entrained in the gas accessible for use, as the materials obtained in the pre-separation, dedusting and purification are obtained separately from each other.
  • FIG. 1 shows an apparatus for carrying out an embodiment of the method according to the invention.
  • FIG. 2 shows a modified version of the device according to FIG. 1.
  • a pre-separation device 2 in this case a cyclone, is present.
  • Precipitated deposited coarse solid particles with a particle size of 10 to 200 microns can be removed from the cyclone, which is represented by an outgoing from the cyclone arrow.
  • the material removed from the cyclone contains no additive. It contains iron-containing dust - a valuable raw material - which is particularly well suited due to the absence of additive, in the not shown Pig iron production unit to be introduced. Because the material contains no additive, such an additive does not introduce any additive into the pig iron production unit.
  • the supply line 1 branches into a bypass line 4, which opens into a chimney 5, and into a primary gas line 6.
  • the primary gas line 6 is connected to three connecting lines 7,8,9, which in turn in each case a dedusting device 10, 11th , 12 open.
  • Preseparation device discharged gas stream present, in this case, an arrangement of parallel plate heat exchangers 21 a and 21 b. If the outlet temperature of the one plate heat exchanger exceeds the maximum permissible gas temperature for the dedusting devices, the system switches over to the other, with the hot plate heat exchanger, for example, being recooled with ambient air in the meantime.
  • a further device for adjusting the temperature of the gas flow discharged from the preseparation device is present in the primary gas line 6, in this case an evaporative cooler 13, in which the gas flow with water and / or additive suspension is treated.
  • a device for adding particulate dry solid additive 14 in this case a device for pneumatic pressure injection is present in the primary gas line 6, in this case a device for pneumatic pressure injection. This is located behind the plate cooler and in front of the evaporative cooler. The addition of additive is symbolized by an arrow.
  • the dedusting devices 10, 11, 12 comprise
  • the dedusted in accordance with the invention and in purified gas in pig iron production units in the production of pig iron or in iron-making aggregates in the iron production according to the invention dedusted and purified in the dedusting downstream processes such For example, superheaters, coke oven plants, raw material drying plants such as coal drying plant or fine coal drying plant, steam power plants, gas and steam power plants, are used thermally. It can also in the internal process of pig iron or iron production as a reducing gas after gas spreading, recordable by CO 2 reforming with natural gas, or CO 2
  • the dedusted and purified gas is used in a downstream process.
  • the dedusting exhaust gas which is under a pressure between 2-6 x 10 5 Pa, ie 2 to 6 bar, passed to a gas expansion turbine (TRT) 20.
  • TRT gas expansion turbine
  • the pressure energy of the exhaust gas is used to generate electricity.
  • the bypass line 5 the gas flow is passed only in the event of malfunction of Entustaubungsvortechnischen.
  • FIG. 2 shows a device according to FIG. 1 with the following differences from FIG. 1.
  • An evaporative cooler is not present.
  • a device for removing separated solid particles from the pre-separation device 22 is shown.
  • Plate heat exchanger 21 a, 21 b is a burner 23 in the supply line 1 as part of a device for adjusting the temperature of the gas stream.
  • the heat energy supplied by the burner is used in the gas relaxation turbine, the downstream unit to use the heat energy of the purified and dedusted gas in electricity generation and energy use in part. This makes the process more economical.
  • TRT Gas expansion turbine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Industrial Gases (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur trockenen Entstaubung und trockenen Reinigung von staub- und Schadstoff belastetem Gas, wie bei in Roheisenerzeugungsaggregaten bei der Roheisenerzeugung oder in Eisenerzeugungsaggregaten bei der Eisenerzeugung anfallendem Gas oder in Kohlevergasungsanlagen produziertem Gas, sowie eine Vorrichtung zur Durchführung des Verfahrens. Dabei wird dem Gasstrom nach einer Vorabscheidung und nach Einstellung seiner Temperatur auf eine Temperatur, die über 60°C und weniger als eine Schaden an den die Entstaubung durchführenden Vorrichtungen hervorrufende Temperatur beträgt, vor Beginn der Entstaubung Additiv, welches Reagenz und gegebenenfalls Adsorptionsmittel enthält, zugegeben. Dieses Additiv reinigt den Gasstrom und wird zusammen mit den im Gasstrom schon vor der Additivzugabe vorhandenen Feststoffpartikeln bei der Entstaubung wieder aus dem Gasstrom entfernt.

Description

VERFAHREN UND VORRICHTUNG ZUR TROCKENEN ENTSTAUBUNG
UND REINIGUNG VON BEI DER EISENERZEUGUNG
ODER KOHLEVERGASUNG PRODUZIERTEM GAS
Die Erfindung betrifft ein Verfahren zur trockenen Entstaubung und trockenen Reinigung von staub- und schadstoffbelastetem Gas, wie bei in Roheisenerzeugungsaggregaten bei der Roheisenerzeugung oder in Eisenerzeugungsaggregaten bei der Eisenerzeugung anfallendem Gas oder in Kohlevergasungsanlagen produziertem Gas, sowie eine Vorrichtung zur Durchführung des Verfahrens.
Bei der Roheisenerzeugung in Roheisenerzeugungsaggregaten, beispielsweise Hochofen, COREX®-Anlage, FINEX®-Anlage, Einschmelzvergaser, oder der Eisenerzeugung in Eisenerzeugungsaggregaten, beispielsweise MIDREX®-Anlagen, HYL®-Anlagen, Direktreduktions(DR)-Anlagen basierend auf COREX®/FINEX® Exportgas, fallen große Mengen von Gasen an. Diese Gase tragen eine große Fracht von Staub mit großen Anteilen feiner Feststoffpartikel sowie eine Vielzahl gasförmiger Schadstoffe mit sich. Vor allem bei instationärem Betrieb, also besonderen Betriebssituationen wie beispielsweise Start oder Stopp des Roheisen- oder Eisenerzeugungsprozesses oder spontane Prozessanomalien, wie beispielsweise spontaner Rutsch der Materialsäule, in den Aggregaten, kann es zu besonders hohen Staub- und Schadstofffrachten der Gase sowie zu Spitzen der Gastemperatur kommen. Vor der Entlassung der Gase in die Umwelt oder ihrer Nutzung in nachgeschalteten Prozessen muss der Staub abgetrennt und eine Reinigung des Gases von Schadstoffen vorgenommen werden.
Beispielhaft sind die Eigenschaften der bei der Roheisenerzeugung in Hochofen, COREX®-Anlage, oder FINEX®-Anlage anfallenden Gasen dargestellt:
Figure imgf000004_0001
Es ist bekannt, das anfallende Gas mittels Nassverfahren von Staub und Schadstoffen zu befreien, jedoch werfen solche Verfahren das Problem auf, anfallenden Schlamm und Waschwasser aufbereiten zu müssen.
In der chinesischen Patentanmeldung CN1818080 ist ein Verfahren zur trockenen Entstaubung eines aus Hochöfen stammendem Gasstromes offenbart. Dabei wird nach einer trockenen Vorabscheidung in einer Abscheidekammer der Gasstrom einer trockenen Entstaubung mittels filternder Abscheider unterzogen. Bei Betriebssituationen außerhalb des stationären Betriebes des Hochofens, beispielsweise beim Anfahren oder Herunterfahren, oder bei Abgastemperaturen unterhalb des Wasser- beziehungsweise Säuretaupunktes der im Gasstrom enthaltenen Feuchtigkeit kann bei derartigen Verfahren jedoch das Problem auftreten, dass das Filtermaterial der Abscheider verklebt und verstopft, weil im Gas mitgeführte Verbindungen, beispielsweise wässrige Feuchtigkeit oder organische Verbindungen, kondensieren. Das führt zu einem erheblichen Druckverlust am Filtermaterial sowie zu Verlust der Filterwirkung und kann den Tausch des Filtermaterials mit damit verbundenem Betriebsstillstand notwendig machen. Ist die Vorrichtung, in der die Entstaubung durchgeführt wird, wegen solcher Probleme nicht verfügbar, muss das staubbelastete Gas via Bypass ohne weitere Reinigung in die Umwelt entlassen werden. Solche Bypass-Situationen belasten die Umwelt und sind in vielen Industriestaaten nicht zulässig. Um die Gefahr des Verklebens oder Verstopfens aufgrund von Taupunktunterschreitungen der Gastemperatur und damit verbundenen Kondensationen zu senken, sind in CN1818080 Wärmeaustauscher vorgesehen, die im Falle zu tiefer Temperatur des die Vorabscheidung verlassenden Gasstromes durchlaufen werden und die Gastemperatur über die Taupunkte heben. Maßnahmen zur Reinigung des Abgases von Schadstoffen werden in CN1818080 nicht ergriffen.
Die vorliegende Erfindung stellt sich die Aufgabe, für das bei der Roheisenerzeugung entstehende Abgas ein Verfahren zur trockenen Entstaubung bereitzustellen, bei dem die Gefahr des Verklebens und Verstopfens der Filter zur Entstaubung reduziert und gleichzeitig das Abgas von Schadstoffen gereinigt wird. Ebenso soll eine Vorrichtung zur Durchführung des Verfahrens bereitgestellt werden.
Diese Aufgabe wird gelöst durch ein Verfahren zur trockenen Entstaubung und trockenen Reinigung von staub- und schadstoffbelastetem Gas, wie in Roheisenerzeugungsaggregaten bei der Roheisenerzeugung oder in Eisenerzeugungsaggregaten bei der Eisenerzeugung anfallendem Gas oder in
Kohlevergasungsanlagen produziertem Gas, bei dem ein aus diesem Gas bestehender
Gasstrom nach einer Vorabscheidung zur Abscheidung grober Feststoffteilchen einer Entstaubung unterzogen wird, bei welcher Entstaubung die im, gegebenenfalls bereits der Vorabscheidung unterworfenen, Gasstrom enthaltenen Feststoffpartikel aus dem Gasstrom abgeschieden werden, und die Temperatur des Gasstromes vor der Entstaubung so eingestellt wird, dass seine Temperatur über 600C, bevorzugt über 1000C, und weniger als eine Schaden an den die Entstaubung durchführenden Vorrichtungen hervorrufende Temperatur beträgt. Das erfinderische Verfahren ist dadurch gekennzeichnet, dass dem Gasstrom vor Beginn der Entstaubung Additiv zugegeben wird, wobei das Additiv Reagenz und gegebenenfalls Adsorptionsmittel enthält. Ein Roheisenerzeugungsaggregat kann beispielsweise sein ein Hochofen, ein Reduktionsschacht oder Einschmelzvergaser entsprechend COREX®- oder FINEX®- Prozess. In solchen Aggregaten wird festes oder flüssiges Roheisen oder Stahlvorprodukt hergestellt.
Ein Eisenerzeugungsaggregat kann beispielsweise eine MIDREX® -, eine HYL®-Anlage oder eine auf COREX®/FINEX® Exportgas basierende Direktreduktionsanlage sein. In solchen Aggregaten wird Eisenschwamm oder brikettiertes Eisen hergestellt.
Bei der optional vorhandenen Vorabscheidung kann die Abscheidung von groben Feststoffteilchen, die im Gasstrom mitgeführt werden, beispielsweise in Schwerkraftkammern (Staubsack) oder Zyklonen erfolgen. Unter groben Feststoffteilchen sind dabei Feststoffteilchen mit Teilchendurchmessern > 10 μm zu verstehen.
Da die Vorabscheidung effektiv nur grobe Feststoffteilchen bis zur oben genannten Untergrenze der Größenordnung abtrennt, sind danach im Gasstrom diese Untergrenze unterschreitende Feststoffpartikel noch enthalten. Solche Feststoffpartikel inklusive Feinstaubpartikel < 2,5 μm und, wenn keine Vorabscheidung durchgeführt wird, auch grobe Feststoffteilchen, werden bei der Entstaubung bis auf Staubkonzentrationen < 5 mg/Nm3 aus dem Gasstrom entfernt.
Ist eine Vorabscheidung vorhanden, erfolgt die Einstellung der Temperatur des Gasstromes vor der Enstaubung gemäß einer Ausführungsform des erfindungsgemäßen Verfahrens nach der Vorabscheidung.
Die Temperatur des Gases bei der Roheisenerzeugung oder der Eisenerzeugung schwankt, beispielsweise je nach verwendetem Verfahren, beziehungsweise in Abhängigkeit vom Auftreten instationärer Zustände des Verfahrens, beispielsweise Einsturz einer Materialsäule im Reduktions- oder Einschmelzschacht, Anfahr- und Abfahrsituation.
Die Entstaubung findet in filternden Vorrichtungen wie Gewebefiltern aus Glas- oder Kunstfaser wie etwa Aramid® oder P84® (Polyimidfaser) in Rundbauweise, Metall- oder Keramikfiltern statt. Um die Vorrichtungen, in denen die Entstaubung durchgeführt wird, vor Kondensationsproblemen, die ein Verkleben des bei der Entstaubung abgeschiedenen Filterkuchens verursachen, und vor Temperaturspitzen des Gasstromes zu schützen, wird die Temperatur des Gasstromes vor der Entstaubung, nach der gegebenenfalls vorhandenen Vorabscheidung, so eingestellt, dass die Temperatur des der Entstaubung unterzogenen Gasstromes über 600C, bevorzugt über 100 0C, und weniger als eine Schaden an den die Entstaubung durchführenden Vorrichtungen hervorrufende Temperatur beträgt. Im Fall von Gewebefiltern hat die Temperatur unter 2600C, bevorzugt unter 2000C, zu liegen, da Gewebefilter bei Gastemperaturen über 260 0C hitzebedingte Zersetzung des Filtergewebes erleiden. Im Fall von Keramik- oder Metallfiltern können Gastemperaturen bis zu 10000C eingesetzt werden.
Bei der Roheisenerzeugung in Roheisenerzeugungsaggregaten oder bei der Eisenerzeugung in Eisenerzeugungsaggregaten anfallendes Gas enthält unter anderem Schwefelwasserstoff, Chlorwasserstoff, Fluorwasserstoff, Schwermetalle, organische Schadstoffe wie Dioxine/Furane, polycyclische Aromaten und andere Kohlenwasserstoffverbindungen. Diese umweltschädlichen Abgaskomponenten sind vor Entlassung des Abgases in die Umwelt so weit wirtschaftlich sinnvoll zu entfernen.
Erfindungsgemäß wird dem Gasstrom vor Beginn der Entstaubung Additiv als partikelförmiges trockenes Additiv oder als Suspension aus Additiv in Wasser zugegeben. Das Additiv enthält Reagenz und gegebenenfalls Adsorptionsmittel. Das Reagenz wird so ausgewählt, dass es mit den im Abgas aus Roheisenerzeugungsanlagen enthaltenen Schadstoffen zu partikulären Produkten reagiert, die mittels Entstaubung aus dem Gasstrom entfernbar sind. Als Reagenz wird beispielsweise CaCO3 Ca(OH)2, Mg(OH)2, Natriumbikarbonat verwendet, oder Mischungen aus zwei oder mehreren dieser Stoffe. Das Reagenz hat vornehmlich die Aufgabe saure Schadstoffkomponenten wie beispielsweise H2S, HCl oder HF abzuscheiden.
Das Additiv kann auch organische oder/und anorganische Adsorptionsmittel enthalten, beispielsweise Herdofenkoks (HOK), Aktivkohle/-koks oder fein gemahlenen Zeolith. Durch das Adsorptionsmittel können im Abgas enthaltene Schadstoffe, wie etwa Schwermetalle oder organische Schadstoffe, durch Adsorption aus dem Gasstrom entfernt werden, wobei das durch Adsorption entstehende Produkt aus schadstoffbeladenem Adsorptionsmittel partikulär ist und daher auch bei der Entstaubung aus dem Gasstrom entfernbar ist.
Das Additiv kann auch ein Kalk-Kohle-Gemisch mit Zusatzstoffen sein, wie es etwa unter dem Markennamen Sorbalit® bekannt ist. Das partikelförmige Additiv beziehungsweise partikelförmige Reaktionsprodukte oder partikelförmige adsorptiv beladene Additiv-Bestandteile werden bei der Entstaubung wieder aus dem Gasstrom entfernt.
Das Additiv kann auch als Suspension in Wasser, beispielsweise Kalkmilch, in den Gasstrom eingedüst werden. Für die Zugabe in Suspension ist eine entsprechend hohe Gastemperatur >150°C vorausgesetzt. Wird Additiv als Suspension in den Gasstrom zugegeben, so verdampft die Flüssigkeit im heißen Gasstrom, so dass das Additiv als partikelförmiges trockenes Additiv durch Entstaubung entfernbar ist. Da bei der Zugabe als Suspension auch eine Gaskühlung stattfindet, kann diese Zugabeart mit Verfahrensschritten zur Einstellung der Gastemperatur gekoppelt werden.
Die erfindungsgemäße Zugabe von Additiv hat den Vorteil, dass im Gas enthaltene
Schadstoffe gleichzeitig mit der Entstaubung des Gasstromes entfernbar sind.
Ein weiterer Vorteil besteht darin, dass sowohl Reagenz als auch Adsorptionsmittel im Gasstrom enthaltene Feuchtigkeit binden können und damit die Gefahr von Feuchtigkeitskondensation aus dem Gasstrom vermindert wird. Zusätzlich ist es von Vorteil, dass das Additiv, beziehungsweise die bei Reaktion mit Reagenz oder Adsorption am Adsorptionsmittel entstandenen partikulären Produkte, an den filternd und abscheidend wirkenden Vorrichtungen zur Entstaubung abgeschieden wird und dadurch eine Beschichtung (Coating) dieser Vorrichtungen erfolgt. Diese
Beschichtung aus abgeschiedenem Filterkuchen enthaltend Additiv trägt einerseits zur Entstaubung bei, da der Gasstrom sie durchlaufen muss. Andererseits schützt sie die filternd und abscheidend wirkenden Anlagenteile der Vorrichtungen zur Entstaubung, da der Abgasstrom erst dann auf diese trifft, nachdem die Beschichtung durchlaufen wurde. Die Gefahr des Verstopfens oder Verklebens der filternd und abscheidend wirkenden Anlagenteile der Vorrichtungen zur Entstaubung wird dadurch vermindert, denn organische gasförmige Inhaltsstoffe des Gasstromes oder Feuchtigkeit und/oder feine adhäsive Feststoffpartikel können zum Teil bereits in dem Filterkuchen abgeschieden werden. Die damit erzielte Schonung der Anlagenteile resultiert in verlängerter Lebensdauer-Standzeit. Die Beschichtung durch Additiv wird zusammen mit dem sich im Verlauf der Entstaubung auf den filternd und abscheidend wirkenden Anlagenteilen der Vorrichtungen zur Entstaubung bildende Filterkuchen aus Staub periodisch entfernt; diese Entfernung ist weniger aufwändig und schwierig als die Entfernung von in die filternd und abscheidend wirkenden Anlagenteile der Vorrichtungen zur Entstaubung eingedrungenen Feststoffpartikeln.
Nach einer Ausführungsform wird die Zugabe von Additiv in Abhängigkeit von der Belastung des Gases mit Schadstoffen durchgeführt. Dabei wird der Gehalt an Schadstoffen gemessen und eine entsprechende Zugabe von Additiv ausgelöst beziehungsweise erhöht, wenn vom Betreiber vordefinierte Schwellenwerte im Roh- beziehungsweise Reingas überschritten werden. Dabei ist unter Rohgas das Gas vor der trockenen Reinigung zu verstehen, und unter Reingas das Gas nach der trockenen Reinigung. Bevorzugt ist es, dass einzelne Schadstoffarten betrachtet werden können. Nach einer bevorzugten Ausführungsform wird die Art des Reagenzes im Additiv entsprechend dem Schadstoff gewählt, der betrachtet wird. Damit kann das für den betreffenden Schadstoff optimal geeignete Reagenz zugegeben werden. Entsprechend können die Kosten für Reagenzverbrauch minimiert sowie die anfallenden Mengen von bei der Entstaubung abgeschiedenen Feststoffpartikeln reduziert werden. Eine entsprechende weiterführende Verwertung wird dadurch erleichtert.
Ist eine Vorabscheidung vorhanden, wird dem Gasstrom gemäß einer Ausführungsform des erfindungsgemäßen Verfahrens vor Beginn der Entstaubung nach der Vorabscheidung Additiv zugegeben. Damit wird eine Entfernung von Additiv aus dem Gasstrom noch vor der Entstaubung vermieden. Ansonsten würde gegenüber einer Abscheidung bei der Entstaubung die Aufenthaltsdauer des Additives im Gasstrom vermindert und entsprechend die Reinigungskapazität des Additives weniger gut ausgenutzt werden. Da die Zugabe von Additiv in den Gasstrom erst nach der Vorabscheidung erfolgt, enthält das bei der Vorabscheidung erhaltene Material kein Additiv. Aufgrund der Abwesenheit von Additiv ist es besonders gut geeignet, einer Nutzung zugeführt zu werden. Weil das Material kein Additiv enthält, muss bei einer solchen Nutzung keine Rücksicht auf vorhandenes Additiv genommen werden. Beispielsweise kann die Nutzung eine zumindest teilweise Rückführung des Materials in den Prozess, bei dem das zu reinigende Gas anfällt, sein. Es kann aber auch in anderen Prozessen genutzt werden. Wenn das zu reinigende Gas in Roheisenerzeugungsaggregaten bei der Roheisenerzeugung oder in Eisenerzeugungsaggregaten bei der Eisenerzeugung anfällt, enthält das bei der Vorabscheidung erhaltene Material eisenhaltigen Staub - einen wertvollen Rohstoff, der beispielsweise wieder in die Roheisenerzeugung oder Eisenerzeugung zurückgeführt werden kann. Wenn das zu reinigende Gas in
Kohlevergasungsanlagen produziert wird, enthält das bei der Vorabscheidung erhaltene Material kohlenstoffhaltigen Staub - einen wertvollen Rohstoff, der beispielsweise wieder in die Kohlevergasungsanlage zurückgeführt werden kann.
Eine Vorabscheidung hat den Vorteil, dass Anlagenteile, die nach der Vorabscheidung von dem Gas durchströmt werden, weniger durch Kontakt mit Feststoffteilchen belastet werden.
Mit dem erfindungsgemäßen Verfahren wird somit erreicht, dass selbst in Betriebszuständen wie dem Anfahren, Herunterfahren oder bei Betriebsstörungen der Roheisen- oder Eisenerzeugungsaggregate, während denen die Gefahr des Verstopfens oder Verklebens der filternd und abscheidend wirkenden Anlagenteile der Vorrichtungen zur Entstaubung aufgrund der Gefahr des Auskondensierens besonders groß ist, die Entstaubung im Vergleich zum Stand der Technik störungsfreier durchgeführt werden kann. Da also auch in solchen Betriebszuständen die Entstaubung und
Schadstoffreinigung durchführbar ist, besteht kaum mehr die Notwendigkeit, staub- und seh ad stoff bei astetes Gas via Bypass in die Umwelt zu entlassen.
Nach einer Ausführungsform besteht das Additiv aus einer oder beiden der Komponenten Reagenz und Adsorptionsmittel, denn zusätzliche Bestandteile des Additivs, die nicht als Reagenz oder Adsorptionsmittel wirken, vermindern den pro Masseneinheit Additiv erzielbaren Effekt des Additivs.
Zugegebenes partikelförmiges trockenes Additiv hat eine Korngröße von 0,1 bis 200 μm Durch diesen Korngrößenbereich wird sichergestellt, dass sich das Additiv im Gasstrom homogen verteilt. Liegt ein wesentlicher Korngrößenanteil darüber wäre eine homogene Verteilung im Gasstrom schwierig, was zu geringen Abscheideraten bei der Entstaubung führen würde. Je kleiner die Korngröße des Additivs ist, desto größer ist seine spezifische Oberfläche. Je größer die spezifische Oberfläche ist, desto besser können die Vorgänge Reaktion mit und Adsorption von Schadstoffen sowie Bindung von Feuchtigkeit ablaufen. Jedoch steigt der Preis des Additivs mit sinkender Korngröße, so dass der Einsatz von Additiv mit einer Korngröße unter 0,1 μm wirtschaftlich nicht mehr sinnvoll ist. Das Abgas aus Roheisenerzeugungsaggregaten steht generell unter hohem Druck. Der absolute Druck der Abgase aus Roheisenerzeugungsaggregate beträgt zwischen 2 x105 Pa und 6 x105 Pa, also zwischen 2 und 5 bar. Dieser Druck muss bei der Zugabe des Additives in den Gasstrom überwunden werden. Das geschieht bevorzugterweise durch pneumatische Druckinjektion des Additivs.
Alternativ kann die Einbringung von trockenem Additiv auch über Schwerkraftdosierung erfolgen, wobei hier eine Abdichtung des Überdrucks nach außen beispielsweise mittels Zellradschleusen oder Doppelpendelklappen sicherzustellen ist.
Bei der Zugabe des Additives in den Gasstrom ist ein homogenes Verteilen des Additivs zu gewährleisten. Dies ist beispielsweise durch einen sogenannten statischen Mischer (bei Schwerkraftdosierung) oder eine entsprechende Anzahl an Eindüselanzen (bei Druckinjektion) realisierbar. Das Einbringen von Suspensionen erfolgt bevorzugt durch Zweistoffdüsen, wobei die flüssige Suspension mittels Gas oder Dampf zerstäubt wird.
Die bei der Entstaubung an filternd und abscheidend wirkenden Vorrichtungen zur Entstaubung abgeschiedenen Feststoffpartikel werden periodisch von diesen Vorrichtungen entfernt. Unter den abgeschiedenen Feststoffpartikeln befindet sich auch Additiv, das noch mit im Abgas enthaltenen Schadstoffen reagieren, Schadstoffe adsorbieren oder Feuchtigkeit binden kann.
Daher wird nach einer Ausführungsform des erfindungsgemäßen Verfahrens eine Teilmenge der bei der Entstaubung als Filterkuchen abgeschiedenen Feststoffpartikel dem Gasstrom vor Beginn der Entstaubung, nach Abschluss der gegebenenfalls vorhandenen Vorabscheidung, zugegeben. Durch diese Rückführung von Additiv in den Gasstrom wird der pro Mengeneinheit Additiv erzielbare Effekt vergrößert, denn nach der erstmaliger Zugabe einer Stoffmenge Additiv noch nicht genutzte Reaktions-, Adsorptions- und Feuchtigkeitsbindungspotentiale können nach der erneuten Zugabe in den Gasstrom genutzt werden. Damit kann gegenüber einem Verfahren ohne Rückführung der gleiche Effekt mit weniger frischem Additiv erzielt werden, was automatisch die Menge an auszuschleusendem Filterkuchen senkt. Die Zugabe erfolgt aufgrund des Abgasdruckes vorzugsweise mittels pneumatischer Druckinjektion, kann aber auch beispielsweise mittels Schwerkraftdosierung erfolgen. Unter den von den filternd und abscheidend wirkenden Vorrichtungen zur Entstaubung abgeschiedenen Feststoffpartikeln befinden sich auch Kohlenstoffträger wie Kohlestaub, Herdofenkoks HOK, Sorbalit®, und erzhaltiger Staub und eisenhaltiger Staub. Um dieses Material in der Roheisenerzeugung oder Eisenerzeugung oder der Kohlevergasung zu nutzen, wird gemäß einer vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens zumindest eine Teilmenge der bei der Vorabscheidung und/oder Entstaubung als Filterkuchen abgeschiedenen Feststoffpartikel als Ausgangsmaterial für die Roheisenerzeugung oder Eisenerzeugung oder für in Kohlevergasungsanlagen produziertes Gas verwendet. Das verbessert deren Wirtschaftlichkeit und verwertet die abgeschiedenen Feststoffpartikel auf einfachere Weise als es eine Deponierung wäre. Das Material kann aber beispielweise auch nach eventuellen Vorbehandlungsschritten im Stahlerzeugungsprozess (Konverter, Elektroofen) oder dem Sinterprozess verwertet werden.
Die Einstellung der Temperatur des der Entstaubung unterzogenen Gasstromes erfolgt nach einer Ausführungsform des erfindungsgemäßen Verfahrens mittels Verdampfungskühler. Das hat den Vorteil, dass die Temperatur auch über längere Zeiträume hinweg stabil auf eine Solltemperatur geregelt werden kann.
Nach einer anderen Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Temperatureinstellung mittels Plattenwärmetauscher. Das hat den Vorteil, dass keine zusätzliche Wassereindüsung vorgesehen werden muss und die mittlere Gastemperatur beziehungsweise die fühlbare Wärme des Gases höher ist. Das erhöht beispielsweise den energetischen Wirkungsgrad einer nachgeschalteten Nutzung in einer Gasentspannungsturbine gegenüber einer Temperatureinstellung durch Verdampfungskühler.
Dabei gibt es generell zwei Ausführungsvarianten. Entweder wird das Gas nur bei Überschreitung der maximalen Betriebstemperatur der die Entstaubung durchführenden Vorrichtungen von beispielsweise 260 0C über den Wärmespeicher geführt und bei Unterschreitung wieder daran vorbeigeführt, oder aber zwei Plattenwärmetauscher werden parallel geschaltet. Überschreitet die Austrittstemperatur des einen Wärmespeichers die maximale Betriebstemperatur, wird auf den anderen umgeschaltet, wobei in der Zwischenzeit der heiße Speicher beispielsweise mit Umgebungsluft rückgekühlt wird. Kohlevergasungsanlagen, die beispielsweise als Festbettvergaser oder als Flugstromvergaser angelegt sein können, erzeugen ein Gas, das in seinen Eigenschaften, besonders bezüglich Staubfracht und Schadstoffbelastung, mit Gas aus Roheisen- und Eisenerzeugungsaggregaten vergleichbar ist. Gas aus Kohlevergasungsanlagen wird unter anderem bei der Roheisen- oder Eisenerzeugung als Reduktionsgas genutzt. Nach einer Ausführungsform des erfindungsgemäßen Verfahrens stammt das der trockenen Entstaubung und trockenen Reinigung zu unterziehende Gas aus einer Kohlevergasungsanlage.
Zur Durchführung des erfindungsgemäßen Verfahrens dient eine
Vorrichtung mit einer einen Gasstrom aus einem Roheisenerzeugungsaggregat oder einem Eisenerzeugungsaggregat oder einer Kohlevergasungsanlage führenden Zufuhrleitung, in der eine Vorabscheidungsvorrichtung vorhanden ist, wobei sich die Zufuhrleitung an einer Verzweigung in eine Bypassleitung und in eine Primärgasleitung verzweigt, mit mindestens einer Entstaubungsvorrichtung, wobei die Primärgasleitung über eine Verbindungsleitung mit der
Entstaubungsvorrichtung verbunden ist, und wobei vor der Entstaubungsvorrichtung in der Zufuhrleitung oder der Primärgasleitung eine Vorrichtung zur Einstellung der Temperatur des Gasstromes vorhanden ist.
Diese Vorrichtung ist dadurch gekennzeichnet, dass eine Vorrichtung zur Zugabe von Additiv in der Primärgasleitung vorhanden ist, wobei sich Vorrichtung zur Zugabe von Additiv zwischen der Verzweigung und der von der Verzweigung aus gesehen ersten Verbindungsleitung befindet.
Das Roheisenerzeugungsaggregat, dessen Abgas gereinigt und entstaubt werden soll, kann beispielsweise ein Hochofen, ein Reduktionsschacht oder Einschmelzvergaser entsprechend COREX®- oder FINEX®-Prozess sein.
Ein Eisenerzeugungsaggregat kann beispielsweise eine MIDREX® -, eine HYL®-Anlage oder eine auf COREX®/FINEX® Exportgas basierende Direktreduktionsanlage sein.
Die einen Gasstrom aus einem Roheisenerzeugungsaggregat oder einem Eisenerzeugungsaggregat führenden Zufuhrleitung ist mit dem Roheisenerzeugungsaggregat oder Eisenerzeugungsaggregat verbunden.
Die Vorabscheidungsvorrichtung umfasst beispielsweise Schwerkraftabsetzkammer, Zyklon, Hurriclon, Elektrofilter. Mit solchen Vorrichtungen lassen sich grobe Feststoffteilchen effektiv aus dem Gasstrom abtrennen.
Die Entstaubungsvorrichtung umfasst beispielsweise Rundfilter mit Filterschläuchen aus Textilgewebe, Keramik oder Metallgewebe. Mit solchen Vorrichtungen lassen sich feinste Feststoffpartikel < 10 μm effektiv aus dem Gasstrom abtrennen. Derartige Vorabscheidungsvorrichtungen und Entstaubungsvorrichtungen sind unter dem Druck, unter dem das zu entstaubende Gas steht, arbeitsfähig.
Gemäß einer Ausführungsform der erfindungsgemäßen Vorrichtung befindet sich die Vorrichtung zur Einstellung der Temperatur des Gasstromes zwischen der Vorabscheidungseinrichtung und der Entstaubungsvorrichtung,
Nach einer Ausführungsform der erfindungsgemäßen Anlage ist die Vorrichtung zur Zugabe von partikelförmigem trockenem Additiv eine Vorrichtung zur pneumatischen Druckinjektion. Gemäß einer anderen Ausführungsform der erfindungsgemäßen Anlage ist ist die Vorrichtung zur Zugabe von Additiv eine Vorrichtung zur Schwerkraftdosierung
Gemäß einer Ausführungsform der erfindungsgemäßen Vorrichtung umfasst die Entstaubungsvorrichtung eine Vorrichtung zur Entnahme abgeschiedener Feststoffpartikel.
Gemäß einer Ausführungsform der erfindungsgemäßen Vorrichtung umfasst die Vorabscheidungseinrichtung (2) eine Vorrichtung zur Entnahme abgeschiedener Feststoffpartikel aus der Vorabscheidungseinrichtung (22).
Gemäß einer weiteren Ausführungsform der erfindungsgemäßen Vorrichtung geht von der Vorrichtung zur Entnahme abgeschiedener Feststoffpartikel eine Feststoffpartikelleitung aus, die vor der in Strömungsrichtung des Gasstromes gesehen, beziehungsweise von der Verzweigung in Bypassleitung und Primärgasleitung aus gesehen, ersten Verbindungsleitung in die Primärgasleitung mündet. Vorteilhafterweise ist die Mündung mit einer Vorrichtung zur pneumatischen Druckinjektion versehen, mittels derer die Feststoffpartikel gegen den Druck des Gasstromes in die Primärgasleitung eingebracht werden können.
Gemäß einer weiteren Ausführungsform der erfindungsgemäßen Vorrichtung geht von der Vorrichtung zur Entnahme abgeschiedener Feststoffpartikel und/oder von der Vorrichtung zur Entnahme abgeschiedener Feststoffpartikel aus der Vorabscheidungseinrichtung (22) eine Zugabeleitung aus, die in eine Vorrichtung zur Zugabe von Material in das Roheisenerzeugungsaggregat oder das Eisenerzeugungsaggregat mündet.
Gemäß einer weiteren Ausführungsform der erfindungsgemäßen Vorrichtung umfasst die Vorrichtung zur Einstellung der Temperatur des Gasstromes einen Verdampfungskühler.
Gemäß einer anderen Ausführungsform der erfindungsgemäßen Vorrichtung umfasst die Vorrichtung zur Einstellung der Temperatur des Gasstromes einen Plattenwärmetauscher oder andere Arten von Wärmetauschern wie etwa Rohrbündel, Forced Draught (Zwangs)kühler, Lungstrom.
Gemäß einer weiteren Ausführungsform der erfindungsgemäßen Vorrichtung umfasst die Vorrichtung zur Einstellung der Temperatur des Gasstromes einen Brenner. Mit einem
Brenner kann eine Erhöhung der Temperatur des Gasstromes über die untere Grenze
600C schnell - und im Allgemeinen apparativ einfach und einfach regelbar - erreicht werden.
Der Brennstoff, mit dem der Brenner versorgt wird, ist ein brennbares Gas beziehungsweise ein brennbares Gasgemisch. Bevorzugt ist es, zumindest einen Teil des bei dem erfindungsgemäßen Verfahren erhaltenen trocken entstaubten und trocken gereinigten Gases als Brennstoff für den Brenner zu verwenden.
Gemäß einer weiteren Ausführungsform führt die Zufuhrleitung einen Gasstrom aus einer mit ihr verbundenen Kohlevergasungsanlage.
Die vorliegende Erfindung löst auch die Aufgabe, eine Nutzung der in dem Gas enthaltenen Energie - beispielsweise zur Stromerzeugung in einer dem Entstaubungsund Reinigungsverfahren nachgeschalteten Turbine, beispielsweise einer Entspannungsturbine, -, beziehungsweise der Bestandteile des Gases - beispielsweise in chemischen Verfahren - zu vereinfachen. Derartige Nutzungen werden durch die erfindungsgemäße Reinigung und Entstaubung vereinfacht, da die für diese Nutzungen verwendeten Anlagenteile weniger den Angriffen von Feststoffteilchen und Schadstoffen, die beispielsweise abrasiv und korrosiv wirken können, ausgesetzt sind. Für den Fall, dass zur Einstellung der Temperatur des Gasstromes eine Aufheizung - beispielsweise mittels eines Brenners - notwendig ist, ist es vorteilhaft, die dabei zugeführte Wärmeenergie zumindest teilweise in einer der Entstaubung und Reinigung nachgeschalteten Nutzung der Wärmeenergie des Gases zurückzugewinnen. Beispielsweise hat Gichtgas hat eine spezifische Wärmekapazität von ca 1 ,4 kJ/Nm3K - eine Erwärmung von rund 500.000 Nm3/h erfordert rund 200 kW/K Heizleistung. Um von den 600C auf 1000C zu kommen sind 200*40 = circa 8 MW Heizleistung erforderlich, die beispielsweise durch Brenner oder Wärmetauscher Aufgebracht werden müssen. Über eine TRT-Gasentspannungsturbine können davon etwa 10 MW zurückgewonnen werden.
Ebenso löst die vorliegende Erfindung die Aufgabe, die in dem Gas enthaltenen Feststoffe und sonstige im Gas mitgeführte Stoffe einer Nutzung zugänglich zu machen, da die bei der Vorabscheidung, Entstaubung und Reinigung erhaltenen Materialien getrennt voneinander erhalten werden.
Die vorliegende Erfindung wird anhand der angeschlossenen Figuren beispielhaft und schematisch dargestellt und anhand der folgenden Beschreibung erläutert.
Fig. 1 zeigt eine Vorrichtung zur Ausführung einer Ausführungsform des erfindungsgemäßen Verfahrens. Figur 2 zeigt eine abgewandelte Version der Vorrichtung nach Figur 1.
In einer Zufuhrleitung 1 der Figur 1 wird ein Gasstrom aus in einem nicht dargestellten Roheisenerzeugungsaggregat, mit welchem die Zufuhrleitung 1 verbunden ist, bei der Roheisenerzeugung anfallendem Gas geführt. In der Zufuhrleitung 1 ist eine Vorabscheidungsvorrichtung 2, in diesem Fall einem Zyklon, vorhanden. Die bei der
Vorabscheidung abgeschiedenen groben Feststoffteilchen mit einer Korngröße von 10 bis 200 μm können aus dem Zyklon entnommen werden, was durch einen vom Zyklon ausgehenden Pfeil dargestellt ist. Das aus dem Zyklon entnommene Material enthält kein Additiv. Es enthält eisenhaltigen Staub - einen wertvollen Rohstoff -, der aufgrund der Abwesenheit von Additiv besonders gut geeignet ist, in das nicht dargestellte Roheisenerzeugungsaggregat eingebracht zu werden. Weil das Material kein Additiv enthält, wird bei einer solchen Einbringung kein Additiv in das Roheisenerzeugungsaggregat eingebracht. An der Verzweigung 3 verzweigt sich die Zufuhrleitung 1 in eine Bypassleitung 4, die in einen Kamin 5 mündet, und in eine Primärgasleitung 6. Die Primärgasleitung 6 ist mit drei Verbindungsleitungen 7,8,9 verbunden, die ihrerseits in jeweils eine Entstaubungsvorrichtung 10, 11 , 12 münden. Durch die Primärgasleitung 6 und die Verbindungsleitungen 7, 8, 9 wird der bereits der Vorabscheidung unterzogene Gasstrom in die Entstaubungsvorrichtung 10, 1 1 , 12 geleitet. Zwischen der Vorabscheidungsvorrichtung 2 und der Verzweigung 3 ist in der Primärgasleitung 6 eine Vorrichtung zur Einstellung des Temperatur des aus der
Vorabscheidungsvorrichtung ausgeleiteten Gasstromes vorhanden, in diesem Fall ein Arrangement von parallel geschalteten Plattenwärmetauschern 21 a und 21 b. Überschreitet die Austrittstemperatur des einen Plattenwärmetauschers die für die Entstaubungsvorrichtungen maximal zulässige Gastemperatur, wird auf den anderen umgeschaltet, wobei in der Zwischenzeit der heiße Plattenwärmetauscher beispielsweise mit Umgebungsluft rückgekühlt wird.
Zwischen der Vorabscheidungsvorrichtung 2 und den Entstaubungsvorrichtungen 10,1 1 ,12 ist in der Primärgasleitung 6 eine weitere Vorrichtung zur Einstellung des Temperatur des aus der Vorabscheidungsvorrichtung ausgeleiteten Gasstromes vorhanden, in diesem Fall ein Verdampfungskühler 13, in dem der Gasstrom mit Wasser und/oder Additivsuspension behandelt wird. Weiterhin ist in der Primärgasleitung 6 eine Vorrichtung zur Zugabe von partikelförmigem trockenem Feststoff Additiv 14, in diesem Fall eine Vorrichtung zur pneumatischen Druckinjektion, vorhanden. Diese ist hinter dem Plattenkühler und vor dem Verdampfungskühler angeordnet. Die Zugabe von Additiv ist durch einen Pfeil symbolisiert. Die Entstaubungsvorrichtungen 10, 1 1 , 12 umfassen
Vorrichtungen zur Entnahme abgeschiedener Feststoffpartikel 15, 16, 17. Über die von diesen ausgehende Feststoffpartikelleitung 18, welche vor der in Strömungsrichtung des Gasstromes beziehungsweise von der Verzweigung 3 aus gesehen ersten Verbindungsleitung 7 in die Primärgasleitung 6 mündet, werden bei der Entstaubung abgeschiedene Feststoffpartikel dem Gasstrom zugegeben. Die Zugabe erfolgt über eine hier nicht dargestellte Vorrichtung zur pneumatischen Druckinjektion.
Das in Roheisenerzeugungsaggregaten bei der Roheisenerzeugung oder in Eisenerzeugungsaggregaten bei der Eisenerzeugung anfallende, erfindungsgemäß entstaubte und gereinigte Gas kann in der Entstaubung nachgeschalteten Prozessen wie beispielsweise Winderhitzern, Koksofenanlagen, Rohstofftrocknungsanlagen wie beispielsweise Kohletrocknungsanlage oder Feinkohletrocknungsanlage, Dampfkraftwerken, Gas- und Dampfkraftwerken, thermisch genutzt werden. Es kann auch im internen Prozess der Roheisen- oder Eisenerzeugung als Reduktionsgas nach Gasaufbreitung, bespielsweise durch CO2 Reformierung mit Erdgas, oder CO2
Entfernung, genutzt und wieder in den Prozess der Roheisen- oder Eisenerzeugung rückgeführt werden. In der in der Figur dargestellten Ausführungsform der Erfindung wird das entstaubte und gereinigte Gas in einem nachgeschalteten Prozess genutzt. Über die Exhaustleitung 19, die in alle Entstaubungsvorrichtungen mündet, wird das der Entstaubung unterzogene Abgas, das unter einem Druck zwischen 2-6 x 105 Pa, also 2 bis 6 bar, steht, zu einer Gasentspannungsturbine (TRT) 20 geleitet. In dieser wird die Druckenergie des Abgases zur Stromerzeugung genutzt. Durch die Bypassleitung 5 wird der Gasstrom nur im Fall von Betriebsstörungen der Entstaubungsvorrichtungen geleitet.
Figur 2 zeigt eine Vorrichtung nach Figur 1 mit folgenden Unterschieden zu Figur 1. Ein Verdampfungskühler ist nicht vorhanden. Eine Vorrichtung zur Entnahme abgeschiedener Feststoffpartikel aus der Vorabscheidungseinrichtung 22 ist eingezeichnet. Auf die Darstellung ihrer Mündung in eine Vorrichtung zur Zugabe von Material in das Roheisenerzeugungsaggregat, aus dem der Gasstrom stammt, wurde aus Gründen der Übersichtlichkeit verzichtet. In Strömungsrichtung des Gasstromes gesehen vor dem
Plattenwärmeaustauscher 21 a, 21 b ist ein Brenner 23 in der Zufuhrleitung 1 als Teil einer Vorrichtung zur Einstellung der Temperatur des Gasstromes. Die durch den Brenner zugeführte Wärmeenergie wird in der Gasentspannungsturbine, dem nachgeschalteten Aggregat zur Nutzung der Wärmeenergie des gereinigten und entstaubten Gases, bei Verstromung und energetischer Nutzung zum Teil genutzt. Das macht das Verfahren wirtschaftlicher.
Zufuhrleitung 1
Vorabscheidungsvorrichtung 2
Verzweigung 3
Bypassleitung 4
Kamin 5
Primärgasleitung 6
Verbindungsleitung 7,8,9
Entstaubungsvorrichtung 10,11 ,12
Vorrichtung zur Einstellung des Temperatur des Gasstromes 13
Vorrichtung zur Zugabe von Additiv 14
Vorrichtung zur Entnahme abgeschiedener Feststoffpartikel 15,16,17
Feststoffpartikelleitung 18
Exhausleitung 19
Gasentspannungsturbine (TRT) 20
Plattenwärmetauscher 21a und 21 b
Vorrichtung zur Entnahme abgeschiedener Feststoffpartikel aus der
Vorabscheidungseinrichtung 22
Brenner 23

Claims

Patentansprüche
1 ) Verfahren zur trockenen Entstaubung und trockenen Reinigung von staub- und schadstoffbelastetem Gas, wie bei in Roheisenerzeugungsaggregaten bei der Roheisenerzeugung oder in Eisenerzeugungsaggregaten bei der Eisenerzeugung anfallendem Gas oder in Kohlevergasungsanlagen produziertem Gas, bei dem ein aus diesem Gas bestehender Gasstrom nach einer Vorabscheidung zur Abscheidung grober Feststoffteilchen einer Entstaubung unterzogen wird, bei welcher Entstaubung die im bereits der Vorabscheidung unterworfenen Gasstrom enthaltenen Feststoffpartikel aus dem
Gasstrom abgeschieden werden, und die Temperatur des Gasstromes vor der Entstaubung so eingestellt wird, dass seine Temperatur über 600C, bevorzugt über 1000C, und weniger als eine Schaden an den die Entstaubung durchführenden Vorrichtungen hervorrufende Temperatur beträgt, dadurch gekennzeichnet, dass dem Gasstrom vor Beginn der Entstaubung Additiv zugegeben wird, wobei das Additiv Reagenz und gegebenenfalls Adsorptionsmittel enthält.
2) Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Additiv dem
Gasstrom mittels pneumatischer Druckinjektion zugegeben wird.
3) Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Additiv dem Gasstrom mittels Schwerkraftdosierung zugegeben wird.
4) Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Teilmenge der bei der Entstaubung abgeschiedenen Feststoffpartikel dem Gasstrom vor Beginn der Entstaubung nach Abschluss der Vorabscheidung, zugegeben wird, vorzugsweise mittels pneumatischer Druckinjektion.
5) Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest eine Teilmenge der bei der Vorabscheidung und/oder Entstaubung abgeschiedenen Feststoffpartikel als Ausgangsmaterial für die Roheisenerzeugung oder Eisenerzeugung verwendet wird. 6) Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest eine Teilmenge der bei der Vorabscheidung und/oder Entstaubung abgeschiedenen Feststoffpartikel als Ausgangsmaterial für das in Kohlevergasungsanlagen produzierte Gas verwendet wird.
7) Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Temperatur des Gasstromes vor der Entstaubung mittels Verdampfungskühler eingestellt wird.
8) Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die
Temperatur des Gasstromes vor der Entstaubung mittels Plattenwärmetauscher eingestellt wird.
9) Vorrichtung zur Durchführung eines Verfahrens nach einem der voranstehenden Ansprüche, mit einer einen Gasstrom aus einem Roheisenerzeugungsaggregat oder einem Eisenerzeugungsaggregat oder einer Kohlevergasungsanlage führenden Zufuhrleitung (1 ), in der eine Vorabscheidungsvorrichtung (2) vorhanden ist, wobei sich die Zufuhrleitung (1 ) an einer Verzweigung (3) in eine Bypassleitung (4) und in eine Primärgasleitung (6) verzweigt, mit mindestens einer Entstaubungsvorrichtung (10,1 1 ,12), wobei die Primärgasleitung (6) über eine Verbindungsleitung (7,8,9) mit der Entstaubungsvorrichtung (10,1 1 ,12) verbunden ist, und wobei vor der Entstaubungsvorrichtung (10,11 ,12) in der Zufuhrleitung (1 ) oder der Primärgasleitung (6) eine Vorrichtung zur Einstellung der Temperatur des Gasstromes (13) vorhanden ist, dadurch gekennzeichnet, dass eine Vorrichtung zur Zugabe von Additiv (14) in der Primärgasleitung vorhanden ist, wobei sich Vorrichtung zur Zugabe von Additiv (14) zwischen der Verzweigung (3) und der von der Verzweigung (3) aus gesehen ersten Verbindungsleitung (7,8,9) befindet.
10) Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Vorrichtung zur Zugabe von Additiv (14) eine Vorrichtung zur pneumatischen Druckinjektion ist.
11 ) Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Vorrichtung zur Zugabe von Additiv (14) eine Vorrichtung zur Schwerkraftdosierung ist.
12) Vorrichtung nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, dass die Entstaubungsvorrichtung (10,11 ,12) eine Vorrichtung zur Entnahme abgeschiedener Feststoffpartikel (15,16,17) umfasst.
13) Vorrichtung nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, dass die Vorabscheidungseinrichtung (2) eine Vorrichtung zur Entnahme abgeschiedener Feststoffpartikel aus der Vorabscheidungseinrichtung (22) umfasst.
14) Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass von der Vorrichtung zur Entnahme abgeschiedener Feststoffpartikel (15,16,17) eine Feststoffpartikelleitung (18) ausgeht, die vor der von der Verzweigung (3) aus gesehen ersten Verbindungsleitung (7) in die Primärgasleitung (6) mündet.
15) Vorrichtung nach einem der Ansprüche 13 bis 14, dadurch gekennzeichnet, dass von der Vorrichtung zur Entnahme abgeschiedener Feststoffpartikel (15,16,17) und/oder von der Vorrichtung zur Entnahme abgeschiedener Feststoffpartikel aus der Vorabscheidungseinrichtung (22) eine Zugabeleitung ausgeht, die in eine
Vorrichtung zur Zugabe von Material in das Roheisenerzeugungsaggregat oder das Eisenerzeugungsaggregat mündet.
16) Vorrichtung nach einem der Ansprüche 9-15, dadurch gekennzeichnet, dass die Vorrichtung zur Einstellung der Temperatur des Gasstromes (13) einen
Verdampfungskühler und/oder einen Plattenwärmetauscher (21a, 21 b) umfasst.
17) Vorrichtung nach einem der Ansprüche 9-15, dadurch gekennzeichnet, dass die Vorrichtung zur Einstellung der Temperatur des Gasstromes (13) einen Brenner (23) umfasst.
PCT/EP2009/062411 2008-09-26 2009-09-25 Verfahren und vorrichtung zur trockenen entstaubung und reinigung von bei der eisenerzeugung oder kohlevergasung produziertem gas WO2010034791A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BRMU8903155-5U BRMU8903155U2 (pt) 2008-09-26 2009-09-25 processo e aparelho para a remoção a seco de poeira a partir de e para a limpeza de gás produzido durante a produção de ferro ou gaseificação de carvão
DE212009000108U DE212009000108U1 (de) 2008-09-26 2009-09-25 Vorrichtung zur trockenen Reinigung von bei der Roheisen/Eisenerzeugung anfallendem Gas
PL120022A PL120022A1 (pl) 2008-09-26 2009-09-25 Sposób i urządzenie do suchego odpylania i oczyszczania gazu produkowanego przy produkcji żelaza albo gazyfikacji węgla
KR2020117000012U KR200474985Y1 (ko) 2008-09-26 2009-09-25 건식 세정 및 건식 제거를 위한 시스템
AT0900509U AT12170U1 (de) 2008-09-26 2009-09-25 Verfahren und vorrichtung zur trockenen entstaubung und reinigung von bei der eisenerzeugung oder kohlevergasung produziertem gas
SK5016-2011U SK6016Y1 (sk) 2008-09-26 2009-09-25 Device for separating dust and dry-cleaning gas in the manufacture of iron or coal gasification
CN2009901004977U CN202173873U (zh) 2008-09-26 2009-09-25 用于对在钢铁生产或者煤炭气化时产生的气体进行干燥除尘和净化的系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT15042008 2008-09-26
ATA1504/2008 2008-09-26

Publications (1)

Publication Number Publication Date
WO2010034791A1 true WO2010034791A1 (de) 2010-04-01

Family

ID=41459779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/062411 WO2010034791A1 (de) 2008-09-26 2009-09-25 Verfahren und vorrichtung zur trockenen entstaubung und reinigung von bei der eisenerzeugung oder kohlevergasung produziertem gas

Country Status (11)

Country Link
KR (1) KR200474985Y1 (de)
CN (1) CN202173873U (de)
AT (1) AT12170U1 (de)
BR (1) BRMU8903155U2 (de)
CZ (1) CZ22736U1 (de)
DE (1) DE212009000108U1 (de)
PL (1) PL120022A1 (de)
RU (1) RU111024U1 (de)
SK (1) SK6016Y1 (de)
UA (2) UA65957U (de)
WO (1) WO2010034791A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011144401A1 (de) * 2010-05-20 2011-11-24 Siemens Vai Metals Technologies Gmbh Verfahren und vorrichtung zur regelung der temperatur von prozessgasen aus anlagen zur roheisenherstellung für die nutzung einer entspannungsturbine
AT510586B1 (de) * 2011-05-12 2012-05-15 Siemens Vai Metals Tech Gmbh Verfahren und vorrichtung zum ausschleusen von staubpartikeln aus einer staublinie
WO2013011089A1 (de) * 2011-07-21 2013-01-24 Siemens Vai Metals Technologies Gmbh Verfahren und vorrichtung zur entstaubung und kühlung von konvertergas
EP2596847A1 (de) * 2011-11-25 2013-05-29 Alstom Technology Ltd Gasreinigungssystem für eine Sinteranlage
WO2013030056A3 (de) * 2011-08-31 2013-06-20 Siemens Vai Metals Technologies Gmbh Verfahren und vorrichtung zur gichtgasaufheizung
CN104397660A (zh) * 2014-11-20 2015-03-11 安徽唐人药业有限公司 速溶姜辣素低温高效提取工艺
CN104771996A (zh) * 2015-04-17 2015-07-15 杭州兴环科技开发有限公司 一种具有调温调质功能的高效防腐尾气净化方法及系统
EP3165271A1 (de) 2015-11-04 2017-05-10 Danieli Corus BV Verfahren und vorrichtung zur behandlung von gichtgas
EP3323495A1 (de) * 2016-11-16 2018-05-23 Glock Gaston Produktgasfilter umfassend filterkerzen und eine zeolith-einspeisung
CN109897926A (zh) * 2017-12-11 2019-06-18 上海梅山钢铁股份有限公司 高炉重力除尘灰装置
CN114164025A (zh) * 2021-11-03 2022-03-11 北京铝能清新环境技术有限公司 一种高炉煤气精脱硫方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2557840C1 (ru) * 2014-01-10 2015-07-27 Государственное предприятие "Украинский научно-технический центр металлургической промышленности "Энергосталь" (ГП "УкрНТЦ "Энергосталь") Комплекс установок газоочистки
JP6370684B2 (ja) * 2014-11-14 2018-08-08 エドワーズ株式会社 除害装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2528525A1 (de) * 1975-06-26 1976-12-30 Heinz Hoelter Verfahren zum reinigen von bei der kohledruckvergasung anfallendem gas
US4668253A (en) * 1984-03-02 1987-05-26 Emile Lonardi Apparatus for the processing and scrubbing of gas entrained with particulate matter
EP0310584A2 (de) * 1987-10-02 1989-04-05 TPS Termiska Processer Aktiebolag Reinigung von Rohgas
US20040247509A1 (en) * 2003-06-06 2004-12-09 Siemens Westinghouse Power Corporation Gas cleaning system and method
WO2006099948A1 (de) * 2005-03-24 2006-09-28 Siemens Vai Metals Technologies Gmbh & Co Verfahren und vorrichtung zur behandlung von abgas aus sinteranlagen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100588720C (zh) 2006-01-01 2010-02-10 广东韶钢松山股份有限公司 高炉煤气全干式净化除尘工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2528525A1 (de) * 1975-06-26 1976-12-30 Heinz Hoelter Verfahren zum reinigen von bei der kohledruckvergasung anfallendem gas
US4668253A (en) * 1984-03-02 1987-05-26 Emile Lonardi Apparatus for the processing and scrubbing of gas entrained with particulate matter
EP0310584A2 (de) * 1987-10-02 1989-04-05 TPS Termiska Processer Aktiebolag Reinigung von Rohgas
US20040247509A1 (en) * 2003-06-06 2004-12-09 Siemens Westinghouse Power Corporation Gas cleaning system and method
WO2006099948A1 (de) * 2005-03-24 2006-09-28 Siemens Vai Metals Technologies Gmbh & Co Verfahren und vorrichtung zur behandlung von abgas aus sinteranlagen

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011144401A1 (de) * 2010-05-20 2011-11-24 Siemens Vai Metals Technologies Gmbh Verfahren und vorrichtung zur regelung der temperatur von prozessgasen aus anlagen zur roheisenherstellung für die nutzung einer entspannungsturbine
CN102985567A (zh) * 2010-05-20 2013-03-20 西门子Vai金属科技有限责任公司 调节来自生铁制造设备的用于在膨胀涡轮中使用的工艺气体的温度的方法和装置
AT510586B1 (de) * 2011-05-12 2012-05-15 Siemens Vai Metals Tech Gmbh Verfahren und vorrichtung zum ausschleusen von staubpartikeln aus einer staublinie
WO2013011089A1 (de) * 2011-07-21 2013-01-24 Siemens Vai Metals Technologies Gmbh Verfahren und vorrichtung zur entstaubung und kühlung von konvertergas
WO2013030056A3 (de) * 2011-08-31 2013-06-20 Siemens Vai Metals Technologies Gmbh Verfahren und vorrichtung zur gichtgasaufheizung
EP2596847A1 (de) * 2011-11-25 2013-05-29 Alstom Technology Ltd Gasreinigungssystem für eine Sinteranlage
WO2013076610A1 (en) * 2011-11-25 2013-05-30 Alstom Technology Ltd Sinter plant gas cleaning system
US9120045B2 (en) 2011-11-25 2015-09-01 Alstom Technology Ltd Sinter plant gas cleaning system
CN104397660A (zh) * 2014-11-20 2015-03-11 安徽唐人药业有限公司 速溶姜辣素低温高效提取工艺
CN104771996A (zh) * 2015-04-17 2015-07-15 杭州兴环科技开发有限公司 一种具有调温调质功能的高效防腐尾气净化方法及系统
EP3165271A1 (de) 2015-11-04 2017-05-10 Danieli Corus BV Verfahren und vorrichtung zur behandlung von gichtgas
WO2017076894A1 (en) 2015-11-04 2017-05-11 Danieli Corus B.V. Process and device for treating furnace gas
US10518216B2 (en) 2015-11-04 2019-12-31 Danieli Corus B.V. Process and device for treating furnace gas
EA036818B1 (ru) * 2015-11-04 2020-12-23 Даниели Корус Б.В. Способ и устройство для обработки печного газа
EP3323495A1 (de) * 2016-11-16 2018-05-23 Glock Gaston Produktgasfilter umfassend filterkerzen und eine zeolith-einspeisung
WO2018091371A1 (de) 2016-11-16 2018-05-24 Gaston Glock Produktgasfilter umfassend filterkerzen und eine zeolith-einspeisung
US11260332B2 (en) 2016-11-16 2022-03-01 Glock Health, Science And Research Gmbh Product gas filter
CN109897926A (zh) * 2017-12-11 2019-06-18 上海梅山钢铁股份有限公司 高炉重力除尘灰装置
CN114164025A (zh) * 2021-11-03 2022-03-11 北京铝能清新环境技术有限公司 一种高炉煤气精脱硫方法
CN114164025B (zh) * 2021-11-03 2023-03-28 北京铝能清新环境技术有限公司 一种高炉煤气精脱硫方法

Also Published As

Publication number Publication date
SK6016Y1 (sk) 2012-02-03
PL120022A1 (pl) 2011-09-26
UA67105U (ru) 2012-01-25
CN202173873U (zh) 2012-03-28
SK50162011U1 (sk) 2011-09-05
KR200474985Y1 (ko) 2014-11-04
AT12170U1 (de) 2011-12-15
BRMU8903155U2 (pt) 2013-01-01
KR20110006780U (ko) 2011-07-06
UA65957U (ru) 2011-12-26
CZ22736U1 (cs) 2011-09-26
DE212009000108U1 (de) 2012-02-02
RU111024U1 (ru) 2011-12-10

Similar Documents

Publication Publication Date Title
WO2010034791A1 (de) Verfahren und vorrichtung zur trockenen entstaubung und reinigung von bei der eisenerzeugung oder kohlevergasung produziertem gas
EP2118602B1 (de) Verfahren und anlage zur trocknung von staubförmigen, insbesondere einer vergasung zuzuführenden brennstoffen
AT511543B1 (de) Verfahren und vorrichtung zur quecksilberabscheidung bei der zementklinkerherstellung
US4220478A (en) Method for removing particulate matter from a gas stream and a method for producing a product using the removed particulate matter
EP1706361A2 (de) Zementklinkerherstellung mit teilstromabzug schadstoffhaltigen drehofenabgases
EP2427271B1 (de) Verfahren zur vermahlung von mahlgut
WO2011018409A1 (de) Verfahren und anlage zur abscheidung von quecksilber aus abgasen eines zementherstellungsprozesses
AT505227B1 (de) Verfahren zur herstellung von formlingen
EP2595724A1 (de) Verfahren zur reinigung eines mit stäuben beladenen gasstroms
EP0743875B1 (de) Anordnung und verfahren zur umweltverträglichen rauchgasreinigung
DE102008049579A1 (de) Heißgasreinigung
EP2011558B1 (de) Anlage und Verfahren zum Entfernen von Schadstoffen aus Abgas
DE69931924T2 (de) Verfahren zur reinigung von abgas
DE2934109A1 (de) Verfahren zur trockenen behandlung von abgasstroemen in abgasreinigungssystemen
CH701016B1 (de) Verfahren zum Entfernen von Stickstoff aus Gichtgas um eine zusätzliche Einspeisung in eine Gasturbinenmaschine zu bilden.
EP3323495B1 (de) Produktgasfilter für abgase von holz-gasreaktoren umfassend filterkerzen und eine zeolith-einspeisung
EP0040857B1 (de) Verfahren und Vorrichtung zur Abscheidung von gasförmigen und festen Schadstoffen aus Rückständen, die bei thermischen Prozessen, insbesondere der Pyrolyse von Abfallstoffen, anfallen
WO2016146637A1 (de) Verfahren zur abgasnachbehandlung und abgasnachbehandlungssystem
DE102009023600B4 (de) Verfahren und Vorrichtung zur Reinigung von Abgasströmen
EP2563940A1 (de) Verfahren zur herstellung von roheisen oder flüssigen stahlvorprodukten
DE3003124A1 (de) Verfahren zur staubabscheidung aus einem gasstrom
DE102008035604A1 (de) Vorrichtung und Verfahren zur Entgasung von Stäuben
EP1035224B1 (de) Verfahren und Anordnung zur Behandlung von chloridhaltigem Staub aus Abgas einer Sinteranlage in Verbindung mit Hochofengichtgasbehandlung
DE2460312A1 (de) Verfahren und vorrichtung zum entfernen von schwefeldioxid und anderen schadstoffen aus rauchgas
DD264859A1 (de) Verfahren zur abscheidung von schadgasen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200990100497.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09736876

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 900509

Country of ref document: AT

Kind code of ref document: U

WWE Wipo information: entry into national phase

Ref document number: GM 9005/2009

Country of ref document: AT

WWE Wipo information: entry into national phase

Ref document number: PUV2011-24079

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 120022

Country of ref document: PL

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117000012

Country of ref document: KR

Kind code of ref document: U

122 Ep: pct application non-entry in european phase

Ref document number: 09736876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: MU8903155

Country of ref document: BR

Kind code of ref document: U2

Effective date: 20110328