WO2010034235A1 - 位置检测装置 - Google Patents
位置检测装置 Download PDFInfo
- Publication number
- WO2010034235A1 WO2010034235A1 PCT/CN2009/074112 CN2009074112W WO2010034235A1 WO 2010034235 A1 WO2010034235 A1 WO 2010034235A1 CN 2009074112 W CN2009074112 W CN 2009074112W WO 2010034235 A1 WO2010034235 A1 WO 2010034235A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensors
- degrees
- detecting device
- sensor
- comb structure
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title abstract description 10
- 238000012886 linear function Methods 0.000 claims abstract description 11
- 239000002689 soil Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 239000012780 transparent material Substances 0.000 claims description 3
- 230000033001 locomotion Effects 0.000 description 15
- 230000003287 optical effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/347—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
- G01D5/34707—Scales; Discs, e.g. fixation, fabrication, compensation
- G01D5/34715—Scale reading or illumination devices
Definitions
- the present invention relates to the field of position detection technology, and in particular, to a position detecting device.
- the position detecting device comprises a position template and a sensor assembly; wherein the position template is composed of two inner and outer structures
- the inner cymbal consists of a cymbal and a tooth whose state jumps to represent the absolute reference position; the outer cymbal is a cyclically variable comb-like mouth and teeth representing the relative position; the sensor assembly consists of 3 sensors, one of which is used for detection The transition of the ⁇ state is taken as the absolute position; the other two sensor output pulses form a phase difference of 90°, and the phase difference allows an error within 45°; the state change order of the output pulses of the other two sensors described above indicates the direction of motion, state The count indicates the relative position and the purpose of position detection is achieved.
- the position template has a large volume in the design of the two-turn structure, so that the volume of the detecting device is large, so that the product cannot be made compact and compact.
- a technical problem to be solved by embodiments of the present invention is to provide a position detecting device capable of making a product compact and compact.
- the position detecting device embodiment provided by the present invention can be implemented by the following technical solutions: including a position template and a sensor component;
- the position template includes a comb-like structure consisting of a loop-changing jaw and teeth;
- the comb structure comprises a working area and a disabled area; one end of the working area is provided with an absolute reference mark, and both ends of the disabled area have a braking device; [13] a sensor assembly comprising at least three sensors, said at least three sensors being movable in a work area
- the brake device prevents the sensor component from entering the disable zone after a sensor crosses the absolute reference mark
- phase difference between two adjacent sensors is a linear function of the reciprocal of the number of sensors.
- the above technical solution has the following beneficial effects:
- the design of the position template using a loop-shaped comb structure has a smaller volume than the design of the two-turn structure, and the volume of the detecting device can be reduced, thereby The product is compact and compact.
- FIG. 1 is a top view of a device according to a second embodiment of the present invention.
- Figure 2 is a side view of a second embodiment of the present invention.
- Figure 3 is a cross-sectional view showing a second embodiment of the present invention.
- FIG. 4 is a schematic diagram of a pulse according to a second embodiment of the present invention.
- Figure 5 is a top plan view of a third embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of a device for a transmissive optical sensor according to an embodiment of the present invention.
- FIG. 7 is a schematic structural view of a device for a reflective optical sensor according to an embodiment of the present invention.
- Figure 8 is a top plan view showing the structure of a device according to a fourth embodiment of the present invention.
- Figure 9 is a cross-sectional view showing the structure of a device according to a fourth embodiment of the present invention.
- Figure 10 is a front elevational view showing the structure of a device according to a fourth embodiment of the present invention.
- FIG. 11 is a structural diagram of two other devices according to Embodiment 4 of the present invention.
- FIG. 12 is a schematic diagram of a five-pulse according to an embodiment of the present invention.
- a technical problem to be solved by embodiments of the present invention is to provide a position detecting device that makes the product compact and compact.
- a position detecting device includes a position template and a sensor assembly; [33] wherein the position template comprises a loop-shaped comb and a comb-like structure;
- the comb structure comprises a working area and a disabled area; one end of the working area is provided with an absolute reference mark; the two ends of the disabled area are provided with a braking device; the structure of the disabled area can be arbitrarily designed, and there is no position detection influences;
- the sensor assembly includes at least three sensors, and the at least three sensors are movable in a work area, and the braking device prevents the sensor assembly from entering the disabled area after a sensor passes the absolute reference mark;
- phase difference between two adjacent sensors is a linear function of the reciprocal of the number of sensors (the number of sensors)
- the design of the position template with a loop-shaped comb structure is smaller than that of the design with two turns, which reduces the volume of the detector and makes the product compact and compact.
- the comb structure may be circular or linear, although the use of other shaped comb structures does not affect the implementation of the embodiments of the present invention.
- the subsequent embodiment will be described in more detail by taking a circular shape for detecting a change in the angle and a linear shape for detecting a change in the position of the straight line.
- the senor may be a transmissive light sensor; when the mouth and teeth have a reflective ⁇ , the sensor may be a reflective light sensor; The teeth have magnetic enthalpy and the sensor can be a Hall sensor.
- One end of the work area is provided with an absolute reference mark, which may be one end of the work area to remove the tooth or fill the mouth
- phase difference between the two adjacent sensors is a linear function of the reciprocal of the number of sensors and allows for errors within the quotient of 180 degrees and the number of sensors; it is possible to set the distance between two adjacent sensors.
- the distance between two adjacent sensors is a linear function of the reciprocal of the number of sensors twice, and allows for an error within the quotient of the position template pitch and twice the number of sensors.
- the location template pitch is twice the sum of the number of sensors, and then the sum of the positive integer multiples of the position template pitch
- N is an integer greater than or equal to zero.
- the design of the position template using a loop-shaped comb structure has a smaller volume than the design of the two-turn structure, and the volume of the detecting device can be reduced, thereby making the product compact. compact.
- the comb structure is circular, and a tooth is removed at the end A of the working area to form a long mouth, and a mouth is formed at the B end to form a long mouth.
- the position detection device of the sensor assembly consisting of three transmissive optical sensors S[0], S[l], and S[2] is used as an example.
- the position detecting device in the first embodiment is described in detail; the comb structure may include: a tooth 202, a mouth 20 3; wherein the tooth 202 and the mouth 203 are on the support plate 201;
- the phase difference between S[0] and S[l], S[l] and S[2] is plus or minus 60 degrees or plus or minus 120 degrees, and allows errors within 60 degrees;
- the sum of the negative phase difference and the 360 degree can be converted into a positive phase difference; plus or minus 60 degrees, plus or minus 120 degrees is equivalent to 60 degrees, 120 degrees, 240 degrees, 300 degrees.
- the pulse change of S[2..0] can indicate the direction of motion, relative position, and absolute reference position.
- the phase difference is 120 degrees. For example, how to participate can be shown in Figure 4:
- the position detecting device provided by the above embodiment is described by taking the shape of the position template as a circle as an example.
- the design of the position template using a loop-shaped comb structure has a smaller volume than the design of the two-turn structure, which can reduce the volume of the detecting device, thereby making the product compact and compact.
- the comb structure of the position template may be: a comb structure formed by printing a black strip on a transparent material, and the comb structure includes a black strip 502.
- the transparent portion 503; the comb structure is on the transparent support plate 501; the sensor can use the reflective optical sensors S[0], S[l] and S[2, see FIG. 7,
- the comb structure of the position template can be:
- the white opaque material is printed with a comb-like structure formed by a black and white pattern, the sensor can use a reflective optical sensor, and the teeth 702 can reflect light.
- the comb structure of the position template can also be: a magnetic comb structure formed by alternating the south pole and the north pole.
- the position detecting device provided in the above embodiment further provides several implementations of the comb structure on the basis of the first embodiment, such as printing a black strip on a transparent material, and printing a black and white pattern on a white opaque material. , the alternation of the South Pole and the North Pole, etc.; the design of the positional template with a loop-shaped comb structure has a smaller volume than the design of the two-turn structure, which can reduce the volume of the detection device, thereby making the product Small and compact.
- the comb structure is linear as an example.
- the comb structure includes a tooth 802, a cornice 803, a tooth is removed at A to form a long mouth, and a mouth is filled at B to form a long tooth.
- This embodiment is similar to the second embodiment except that the disabled area is placed at both ends of the linear comb structure, and the portion shown as shown in Fig. 804 is the disabled area at one end.
- the tooth or filling port can be removed at one end of the work area as an absolute reference position.
- the position detecting device provided by the above embodiment further provides an embodiment in which the comb structure is linear in addition to the first embodiment, and the design of the position template is compared with the design of a comb structure with a cyclic change.
- the design of the two-turn structure has a smaller volume, which can reduce the volume of the detecting device, thereby making the product compact and compact.
- the sensor component includes four sensors S[0], S[l], S.
- the position detecting device provided by the above embodiment further provides an implementation of the sensor assembly including four sensors ⁇ based on the first embodiment, and the design of the position template is compared with the design of a loop-shaped comb structure.
- the design of the two-turn structure has a smaller volume, which can reduce the volume of the detecting device, thereby making the product compact and compact.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Transform (AREA)
- Endoscopes (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
位置检测装置
[1] 本申请要求于 2008年 9月 28日提交中国专利局、 申请号为 200810169527.1、 发明 名称为 "位置检测装置"的中国专利申请的优先权, 其全部内容通过引用结合在本 申请中。
[2] 技术领域
[3] 本发明涉及位置检测技术领域, 特别涉及一种位置检测装置。
[4] 发明背景
[5] 在现实生活中很多地方需要用到位置检测技术, 如电动窗帘、 电动幕布、 电动 车窗、 电动玩具、 电动机器人、 PTZ摄像机 (Pan, 水平旋转 /Tilt, 上下旋转 /Zoo m, 缩放) 、 电动云台等。
[6] 位置检测装置包括位置模板和传感器组件; 其中位置模板由内外两圏结构构成
: 内圏由一个垛口和一个齿, 其状态跳变代表绝对参考位置; 外圏为循环变化 的梳状垛口和齿, 代表相对位置; 传感器组件由 3个传感器组成, 其中一个传感 器用于检测内圏状态的跳变, 作为绝对位置; 另外两个传感器输出脉冲形成 90° 的相位差, 相位差允许 45°以内的误差; 通过上述的另外两个传感器输出脉冲的 状态变化顺序指示运动方向, 状态计数指示相对位置, 达到位置检测的目的。
[7] 现有技术至少存在下述问题: 位置模板釆用两圏结构的设计具有较大的体积, 使检测装置的体积较大, 从而使产品无法做的小巧紧凑。
[8] 发明内容
[9] 本发明实施例要解决的技术问题是提供一种位置检测装置, 能够使产品做得小 巧紧凑。
[10] 为解决上述技术问题, 本发明所提供的位置检测装置实施例可以通过以下技术 方案实现: 包括位置模板、 传感器组件;
[11] 位置模板, 包括一个循环变化的垛口和齿组成的梳状结构;
[12] 其中, 所述梳状结构包括工作区和禁用区; 所述工作区的一端设置有绝对参考 标识, 禁用区的两端具有制动装置;
[13] 传感器组件, 包含至少三个传感器, 所述的至少三个传感器可以在工作区移动
, 当一个传感器越过所述绝对参考标识后所述制动装置阻止所述传感器组件进 入禁用区;
[14] 相邻两个传感器之间的相位差为, 传感器数的倒数的线性函数。
[15] 上述技术方案具有如下有益效果: 位置模板釆用一个循环变化的梳状结构的设 计相比于釆用两圏结构的设计具有更小的体积, 能够减小检测装置的体积, 从 而使产品做得小巧紧凑。
[16] 附图简要说明
[17] 图 1为本发明实施例二装置顶视图;
[18] 图 2为本发明实施例二侧面图;
[19] 图 3为本发明实施例二剖面图;
[20] 图 4为本发明实施例二脉冲示意图;
[21] 图 5为本发明实施例三装置顶视图;
[22] 图 6为本发明实施例三釆用透射式光学传感器的装置结构示意图;
[23] 图 7为本发明实施例三釆用反射式光学传感器的装置结构示意图;
[24] 图 8为本发明实施例四装置结构顶视图;
[25] 图 9为本发明实施例四装置结构剖面图;
[26] 图 10为本发明实施例四装置结构正视图;
[27] 图 11为本发明实施例四另两种装置结构图;
[28] 图 12为本发明实施例五脉冲示意图。
[29] 实施本发明的方式
[30] 本发明实施例要解决的技术问题是提供一种位置检测装置, 使产品做得小巧紧 凑。
[31] 实施例一
[32] 本发明实施例一提供的一种位置检测装置, 包括位置模板、 传感器组件; [33] 其中位置模板, 包括一个循环变化的垛口和齿组成的梳状结构;
[34] 上述垛口和齿的描述是为了更形象的说明状态的变化, 不应理解为纯物理意义 上的垛口和齿, 垛口和齿表示为两种不同的状态, 如是否反光, 是否透光, 磁
性的两极, 等等; 所述循环变化的垛口和齿组成的梳状结构应该理解为可以检 测到的状态循环变化的结构。 在后续实施例中将以是否反光, 是否透光, 磁性 的两极为例进行详细说明。
[35] 其中, 上述梳状结构包括工作区和禁用区; 上述工作区的一端设置绝对参考标 识; 禁用区的两端设置有制动装置; 禁用区的结构可以任意设计, 对位置检测 没有任何影响;
[36] 其中传感器组件包含至少三个传感器, 上述至少三个传感器可以在工作区移动 , 当一个传感器越过所述绝对参考标识后所述制动装置阻止所述传感器组件进 入禁用区;
[37] 相邻两个传感器之间的相位差为传感器数 (传感器的数量) 的倒数的线性函数
[38] 位置模板釆用一个循环变化的梳状结构的设计相比于釆用两圏结构的设计具有 更小的体积, 能够减小检测装置的体积, 从而使产品做得小巧紧凑。
[39] 所述梳状结构可以为圆型或直线形, 当然釆用其它形状的梳状结构不影响本发 明实施例的实现。 后续实施例将以釆用圆形用于检测角度的变化, 釆用直线形 用于检测直线位置的变化为例进行更详细的说明。
[40] 当所述垛口和齿具有透光性吋, 所述传感器可以为透射式光传感器; 当所述垛 口和齿具有反光性吋, 所述传感器可以为反射式光传感器; 当所述垛口和齿具 有磁性吋, 所述传感器可以为霍尔传感器。
[41] 所述工作区的一端设置绝对参考标识, 可以是工作区的一端去掉齿或填充垛口
; 或工作区的一端去掉齿, 另一端填充垛口。
[42] 上述传感器数的倒数的线性函数可以是:
[43] 180度与传感器数的商; 或
[44] 180度与传感器数的商再与 180度的和; 或
[45] 负 180度与传感器数的商再与 180度的和; 或
[46] 负 180度与传感器数的商, 再与 360度的和。
[47] 上述相邻两个传感器之间的相位差为传感器数的倒数的线性函数, 并允许有 18 0度与传感器数的商以内的误差; 可以通过设置相邻两个传感器之间的距离来实
现, 具体为:
[48] 相邻两个传感器之间的距离为两倍的传感器数的倒数的线性函数, 并允许有位 置模板节距与两倍的传感器数的商以内的误差。
[49] 所述两倍的传感器数的倒数的线性函数可以是:
[50] 位置模板节距与两倍的传感器数的商;
[51] 或, 位置模板节距与两倍的传感器数的商, 再与传感器数减 1的积;
[52] 或, 位置模板节距与两倍的传感器数的商, 再与位置模板节距的正整数倍的和
[53] 或, 位置模板节距与两倍的传感器数的商, 再与传感器数减 1的积, 再与位置 模板节距的正整数倍的和。
[54] 上述相邻两个传感器的相位差和相邻两个传感器的距离用数学表述方法可以: [55] 假如使用 K个传感器 (K≥3) , 在工作区使用 Κ个编码, 可用相位差 φ=± (180°/
Κ) , 或屮=
180。土 (180 K) ' 或 φ=360。— (180 K) ; 允许的偏差小于 180 K, 显然 Κ为 整数; 由于两个相邻的传感器的相位差为相对概念, 当选取参考对象变换吋相 位差反号, 为保持与本领域的描述习惯一致, 令相位差都为正的相位差。 则 φ=1 80 Κ, 或 φ= 180。— (180 K) 或 φ=360。— (180 K) 或 φ= 180。十 (180 K) 。
[56] 假如使用 Κ个传感器 (Κ≥3) , 传感器之间的距离 D, 位置模板节矩 t之间的关 系为: D= (N土 1/2K) *t, 或 D=[N土 (K 1) /2K]*t
, 其中 N为大于或等于零的整数。 上述变量的意义已经给出, 在后续的图和实施 例变量意义相同, 不再赞述。
[57] 上述实施例中位置模板釆用一个循环变化的梳状结构的设计相比于釆用两圏结 构的设计具有更小的体积, 能够减小检测装置的体积, 从而使产品做得小巧紧 凑。
[58] 实施例二
[59] 作为实施例一的一个实例, 请参阅图 1至图 3, 以梳状结构为圆形, 在工作区的 A端去掉了一个齿形成长垛口, 在 B端填充了一个垛口形成长齿, 釆用三个透射 式光学传感器 S[0]、 S[l]、 S[2]组成的传感器组件的位置检测装置为例, 对实施
例一中的位置检测装置进行详细说明; 上述梳状结构可以包括: 齿 202, 垛口 20 3; 其中齿 202和垛口 203在支撑板 201上;
[60] 此吋, S[0]与 S[l], S[l]与 S[2]之间的相位差为正负 60度或正负 120度, 并允许 6 0度以内的误差; 负的相位差度数与 360度的和可以转换为正的相位差; 正负 60 度、 正负 120度相当于 60度, 120度, 240度, 300度。 S[2..0]的脉冲变化可以指示 运动方向、 相对位置、 绝对参考位置, 以相位差为 120度为例, 具体如何进行可 以参与图 4:
[61] 设光线被遮档的状态为 0, 光线通过的状态为 1, 从图 4可以看出, 在 A处去掉一 个齿形成了一个长垛口的同吋, 把 B处的垛口填充形成一个长齿, 这样可以形成 2个绝对参考位置: 在 A处 S[2..0] (表示传感器 S[2]、 S[l]、 S[0]的状态) 在 000和 101之间转换, 在 B处 S[2..0]在 000和 010之间转换; 因为禁用区的存在, 在传感器 组件可达的范围内 S[2..0]仅在一个位置出现 000, 仅在另外一个位置出现 111 ; S[ 2..0]状态的变化顺序代表了运动方向, 001→000' 000→010' 011→001 ' 001→1 01, 101→100, 100→110, 110→010, 010→011 , 101→111 , 111→011为正向运 动, 001—000, 000—010, 011—001, 001—101, 101—100, 100—110, 110—0 10, 010—011, 101— 111, 111— 011为反向运动; 对 S[2..0]状态的变化计数可以 代表了相对位置变化的大小。 缓冲区可以认为是工作区的一部分, 在禁用区的 两端可以设置制动装置, 使传感器 S[l]不能够到达去掉齿和填充垛口的位置, 同 吋使传感器组件不能够进入禁用区。
[62] 也可以把 B处的垛口填充形成一个长齿, A处保持原有的状态, 这样在绝对参 考位置 B处 S[2..0]在 000和 010之间转换; 因为禁用区的存在, 在传感器组件可达 的范围内 S[2..0]仅在一个位置出现 000; S[2..0]状态的变化顺序代表了运动方向, 001→000, 000→010, 011→001 , 001→101 , 101→100, 100→110, 110→010, 010→011为正向运动, 001—000, 000—010, 011—001 ' 001—101 ' 101—100' 100—110, 110—010, 010— 011为反向运动; 对 S[2..0]状态的变化计数可以代表 了相对位置变化的大小。
[63] 也可以把 A处的齿去掉形成一个长垛口, B处保持原有的状态, 在绝对参考位 置 A处 S[2..0]在 111和 101之间转换; 因为禁用区的存在, 在传感器组件可达的范
围内 S[2..0]仅在一个位置出现 111 ; S[2..0]状态的变化顺序可以代表运动方向, 01 1→001 , 001→101 , 101→100, 100→110, 110→010, 010→011 , 101→111 , 11 1→011为正向运动, 011—001, 001— 101, 101— 100, 100—110, 110—010, 01 0—011, 101— 111, 111— 011为反向运动; 对 S[2..0]状态的变化计数可以代表了 相对位置变化的大小。
[64] 上述实施例提供的位置检测装置以位置模板的形状为圆形为例进行了详细说明
, 位置模板釆用一个循环变化的梳状结构的设计相比于釆用两圏结构的设计具 有更小的体积, 能够减小检测装置的体积, 从而使产品做得小巧紧凑。
[65] 实施例三
[66] 请参阅图 5和图 6, 作为实施例一的另一个实例, 位置模板的梳状结构可以是: 在透明材料上印刷黑条形成的梳状结构, 梳状结构包括黑条 502, 透明部分 503 ; 梳状结构在透明支撑板 501上; 传感器可以釆用反射式光学传感器 S[0]、 S[l]和 S[2 请参阅图 7, 位置模板的梳状结构可以是: 在白色不透明材料上印刷黑白 相间的图案形成的梳状结构, 传感器可以釆用反射式光学传感器, 齿 702能够反 射光线。 可以理解的是位置模板的梳状结构还可以是: 南极与北极交替变化形 成的磁性梳状结构。 具体如何运用此装置可以参考实施例二。
[67] 上述实施例提供的位置检测装置, 在实施例一的基础上进一步提供了梳状结构 的几种实现方式, 如在透明材料上印刷黑条, 在白色不透明材料上印刷黑白相 间的图案, 南极与北极交替变化等; 位置模板釆用一个循环变化的梳状结构的 设计相比于釆用两圏结构的设计具有更小的体积, 能够减小检测装置的体积, 从而使产品做得小巧紧凑。
[68] 实施例四
[69] 请参阅图 8至图 10, 与实施例二的不同点在于: 以梳状结构为直线形为例进行 说明。 梳状结构包括齿 802, 垛口 803, 在 A处去掉了齿形成了长垛口, 在 B处填 充了垛口形成了长齿。
[70] 本实施例与实施例二类似, 不同点在于, 禁用区被放在了直线形梳状结构的两 端, 如图 804所示部分为一端的禁用区。
[71] 当本实施例参阅实施例三吋, 可以得到, 本实施例四的直线形的梳状结构也可
以釆用实施例三所述的形成的梳状结构的实施方式。
[72] 请参阅图 11, 与实施例二相同, 可以在工作区的一端去掉齿或填充垛口, 作为 绝对参考位置。 包括齿 1102, ±朵口 1102, 传感器 S[0]、 S[l]和 S[2], 禁用区 1, 禁 用区 2, 缓冲区 1, 缓冲区 2, 工作区;
[73] 上述实施例提供的位置检测装置, 在实施例一的基础上进一步提供了梳状结构 为直线形的实施方式, 位置模板釆用一个循环变化的梳状结构的设计相比于釆 用两圏结构的设计具有更小的体积, 能够减小检测装置的体积, 从而使产品做 得小巧紧凑。
[74] 实施例五
[75] 本实施例与实施例二的不同点在于, 传感器组件包括四个传感器 S[0]、 S[l]、 S
[2]、 S[3], 此吋, S[0]与 S[l], S[l]与 S[2], S[2]与 S[3]之间的相位差为, 正负 45 度或正负 135度, 并允许 45度以内的误差; 负的相位差度数与 360度的和可以转 换为正的相位差; 正负 45度, 正负 135度相当于 45度, 135度, 225度, 315度。 传感器 S[3..0] (表示传感器 S[3]、 S[2]、 S[l]、 S[0]) 的脉冲变化可以指示运动方 向、 相对位置、 绝对参考位置, 以相位差为 45度为例, 具体如何进行可以参见 图 12:
[76] 设光线被遮档的状态为 0, 光线通过的状态为 1, 从图 12可以看出, 在 A处去掉 一个齿形成了一个长垛口的同吋, 把 B处的垛口填充形成一个长齿, 这样可以形 成 2个绝对参考位置: 在 A处 S[3..0]在 0001和 1001之间转换, 在8处8[3..0]在0111 和 0110之间转换; 因为禁用区的存在, 在传感器组件可达的范围内 S[3..0]仅在一 个位置出现 1001, 仅在另外一个位置出现 0110; S[3..0]状态的变化顺序代表了运 动方向, 0000→0100, 0100→0110' 0110→0111 ' 0111→0011 ' 0011→0001 ' 00 01→0000, 0000→1000, 1000→1100, 1100→1110, 1110→1111, 1111→0111, 0111→0011 , 0011→0001, 0001→0000, 0001→1001 ' 1001→1101 , 1101→1111 为正向运动, 0000—0100, 0100—0110' 0110—0111 ' 0111—0011 ' 0011—0001 , 0001—0000, 0000—1000, 1000—1100, 1100—1110, 1110—1111, 1111—01 11 , 0111—0011, 0011—0001, 0001—0000, 0001—1001 ' 1001—1101, 1101— 1111为反向运动; S[3..0]状态的变化的计数代表了相对位置。 对 S[2..0]状态的变
化计数可以代表了相对位置变化的大小。
[77] 上述实施例提供的位置检测装置, 在实施例一的基础上进一步提供传感器组件 包括四个传感器吋的实现方式, 位置模板釆用一个循环变化的梳状结构的设计 相比于釆用两圏结构的设计具有更小的体积, 能够减小检测装置的体积, 从而 使产品做得小巧紧凑。
[78] 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以 通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储 介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
[79] 以上对本发明实施例所提供的一种位置检测装置进行了详细介绍, 本文中应用 了具体个例对本发明的原理及实施方式进行了阐述, 以上实施例的说明只是用 于帮助理解本发明的方法及其核心思想; 同吋, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用范围上均会有改变之处, 综上所述 , 本说明书内容不应理解为对本发明的限制。
Claims
[1] 一种位置检测装置, 包括位置模板、 传感器组件, 其特征在于,
位置模板, 包括一个循环变化的垛口和齿组成的梳状结构; 其中, 所述梳状结构包括工作区和禁用区; 所述工作区的一端设置有绝对 参考标识, 禁用区的两端具有制动装置;
传感器组件, 包含至少三个传感器, 所述的至少三个传感器可以在工作区 相对所述位置模板移动, 当一个传感器越过所述绝对参考标识后所述制动 装置阻止所述传感器组件进入禁用区;
相邻两个传感器之间的相位差为传感器数的倒数的线性函数。
[2] 根据权利要求 1所述位置检测装置, 其特征在于,
所述梳状结构为圆形或直线形。
[3] 根据权利要求 1所述位置检测装置, 其特征在于,
当所述循环变化的垛口和齿组成透光性梳状结构吋, 所述传感器为透射式 光传感器; 或
当所述循环变化的垛口和齿组成反光性梳状结构吋, 所述传感器为反射式 光传感器; 或
当所述循环变化的垛口和齿组成磁性梳状结构吋, 所述传感器为霍尔传感 器。
[4] 根据权利要求 3所述位置检测装置, 其特征在于,
循环变化的垛口和齿组成透光性梳状结构包括: 循环变化的透光性垛口和 不透光的齿组成梳状结构;
循环变化的垛口和齿组成反光性梳状结构包括: 透明的材料上印刷有黑条 形成梳状结构; 或白色不透明材料上印刷有黑白相间的图案形成梳状结构 循环变化的垛口和齿组成磁性梳状结构包括: 南极与北极相间隔组成的磁 性梳状结构。
[5] 根据权利要求 1所述位置检测装置, 其特征在于, 所述工作区的一端设置绝 对参考标识包括:
工作区的一端去掉齿或填充垛口, 另一端不变; 或
工作区的一端去掉齿, 另一端填充垛口。
[6] 根据权利要求 1至 5任意一项所述位置检测装置, 其特征在于, 所述传感器 数的倒数的线性函数包括:
180度与传感器数的商; 或
180度与传感器数的商, 再与 180度的和; 或
负 180度与传感器数的商, 再与 180度的和; 或
负 180度与传感器数的商, 再与 360度的和。
[7] 根据权利要求 1至 5任意一项所述位置检测装置, 其特征在于,
所述传感器组件包括 K个传感器, K≥3且 K为整数;
相邻两个传感器之间的相位差 φ为: φ=± (180°/Κ) , 或 =
180。土 (180 K) ' 或 φ=360。— (180 K) ; 允许的相位差偏差小于 180 K
[8] 根据权利要求 7所述位置检测装置, 其特征在于,
所述传感器组件包括三个传感器;
相邻两个传感器之间的相位差为: 60度、 120度、 240度或 300度, 并允许 60 度以内的误差。
[9] 根据权利要求 7所述位置检测装置, 其特征在于,
所述传感器组件包括四个传感器;
相邻两个传感器之间的相位差为: 45度、 135度、 225度或 315度, 并允许 45 度以内的误差。
[10] 根据权利要求 1所述位置检测装置, 其特征在于, 所述相邻两个传感器之间 的相位差为传感器数的倒数的线性函数包括:
相邻两个传感器之间的距离为: 两倍的传感器数的倒数的线性函数。
[11] 根据权利要求 9所述位置检测装置, 其特征在于, 所述两倍的传感器数的倒 数的线性函数包括:
位置模板节距与两倍的传感器数的商; 或
位置模板节距与两倍的传感器数的商, 再与传感器数减 1的积; 或
位置模板节距与两倍的传感器数的商, 再与位置模板节距的正整数倍的和 ; 或
位置模板节距与两倍的传感器数的商, 再与传感器数减 1的积, 再与位置模 板节距的正整数倍的和。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011528169A JP2012503759A (ja) | 2008-09-28 | 2009-09-22 | 位置検出機器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810169527.1 | 2008-09-28 | ||
CN2008101695271A CN101377424B (zh) | 2008-09-28 | 2008-09-28 | 一种位置检测装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010034235A1 true WO2010034235A1 (zh) | 2010-04-01 |
Family
ID=40421075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/074112 WO2010034235A1 (zh) | 2008-09-28 | 2009-09-22 | 位置检测装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2012503759A (zh) |
CN (1) | CN101377424B (zh) |
WO (1) | WO2010034235A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101377424B (zh) * | 2008-09-28 | 2010-09-22 | 华为终端有限公司 | 一种位置检测装置 |
CN106017506A (zh) * | 2016-06-22 | 2016-10-12 | 浙江工商职业技术学院 | 一种电动窗帘的行程及手拉启动方向检测装置 |
CN111313942A (zh) * | 2020-02-12 | 2020-06-19 | 惠州Tcl移动通信有限公司 | Mimo系统,mimo系统区分信号的方法及其移动终端 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2113467U (zh) * | 1992-02-02 | 1992-08-19 | 程修诚 | 测长及正反转判别光电传感器 |
US6564168B1 (en) * | 1999-09-14 | 2003-05-13 | Immersion Corporation | High-resolution optical encoder with phased-array photodetectors |
WO2004094957A1 (en) * | 2003-04-22 | 2004-11-04 | Trimble Ab | Method and apparatus for absolute optical encoders with reduced sensitivity to scale or disk mounting errors |
WO2006003230A1 (en) * | 2004-06-30 | 2006-01-12 | Nokia Corporation | Optical encoder |
JP2007248117A (ja) * | 2006-03-14 | 2007-09-27 | Japan Aerospace Exploration Agency | エレクトロ・ルミネッセンスを用いた光学的エンコーダ |
CN101377424A (zh) * | 2008-09-28 | 2009-03-04 | 深圳华为通信技术有限公司 | 一种位置检测装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4075375B2 (ja) * | 2001-12-26 | 2008-04-16 | アイシン・エィ・ダブリュ株式会社 | モータの回転検出装置及びそれを備えた車輌駆動装置 |
US7394061B2 (en) * | 2005-08-31 | 2008-07-01 | Avago Technologies Ecbu Pte Ltd | Optical encoder with integrated index channel |
-
2008
- 2008-09-28 CN CN2008101695271A patent/CN101377424B/zh not_active Expired - Fee Related
-
2009
- 2009-09-22 WO PCT/CN2009/074112 patent/WO2010034235A1/zh active Application Filing
- 2009-09-22 JP JP2011528169A patent/JP2012503759A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2113467U (zh) * | 1992-02-02 | 1992-08-19 | 程修诚 | 测长及正反转判别光电传感器 |
US6564168B1 (en) * | 1999-09-14 | 2003-05-13 | Immersion Corporation | High-resolution optical encoder with phased-array photodetectors |
WO2004094957A1 (en) * | 2003-04-22 | 2004-11-04 | Trimble Ab | Method and apparatus for absolute optical encoders with reduced sensitivity to scale or disk mounting errors |
WO2006003230A1 (en) * | 2004-06-30 | 2006-01-12 | Nokia Corporation | Optical encoder |
JP2007248117A (ja) * | 2006-03-14 | 2007-09-27 | Japan Aerospace Exploration Agency | エレクトロ・ルミネッセンスを用いた光学的エンコーダ |
CN101377424A (zh) * | 2008-09-28 | 2009-03-04 | 深圳华为通信技术有限公司 | 一种位置检测装置 |
Also Published As
Publication number | Publication date |
---|---|
CN101377424A (zh) | 2009-03-04 |
JP2012503759A (ja) | 2012-02-09 |
CN101377424B (zh) | 2010-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106353949B (zh) | 照相机系统、抖动校正方法、照相机机身以及更换镜头 | |
CN110378968A (zh) | 相机和惯性测量单元相对姿态的标定方法及装置 | |
WO2010034235A1 (zh) | 位置检测装置 | |
KR20090068205A (ko) | 인코더신호처리방법 | |
CN104677394A (zh) | 一种位置或角位置传感的编码及装置 | |
TW201015054A (en) | Encoder system, signal processing method, and transmission signal generation output device | |
TW201218748A (en) | System and method for 3D video stabilization by fusing orientation sensor readings and image alignment estimates | |
JP6103927B2 (ja) | 位置検出装置、駆動制御装置及びレンズ装置 | |
JP2006234688A (ja) | モータの回転角度検出装置及びモータの回転角度制御装置 | |
JP2006119082A (ja) | 操舵角検出装置 | |
JP5384320B2 (ja) | レンズ装置の位置検出装置 | |
JP5249281B2 (ja) | 磁気式位置検出装置 | |
JP5105244B2 (ja) | 原点検出装置及び原点検出方法 | |
KR101641782B1 (ko) | 검출 장치에 있어서의 데이터 검출 방법 및 검출 장치 | |
JP3846371B2 (ja) | 回転検出装置 | |
CN204944451U (zh) | 微型三维扫描装置 | |
JP2004020501A (ja) | 磁気式多回転エンコーダ装置および磁気歯車の製造方法 | |
JPH04147009A (ja) | 多回転式絶対値ロータリーエンコーダ | |
GB2257522A (en) | Utility meters | |
JP2010063315A5 (zh) | ||
JP6031415B2 (ja) | レンズ装置及び可動光学素子の位置検出方法 | |
US20230072836A1 (en) | High-resolution pwm wheel speed sensor protocol | |
JPH109896A (ja) | リニヤモータのエンコーダ | |
JP2010063315A (ja) | 回転直動位置検出装置および回転直動位置検出方法 | |
JP6541392B2 (ja) | フォーカス制御装置、光学機器およびフォーカス制御プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09815604 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011528169 Country of ref document: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09815604 Country of ref document: EP Kind code of ref document: A1 |