WO2010034187A1 - 抗压耐磨的不锈钢处理工艺 - Google Patents

抗压耐磨的不锈钢处理工艺 Download PDF

Info

Publication number
WO2010034187A1
WO2010034187A1 PCT/CN2009/070161 CN2009070161W WO2010034187A1 WO 2010034187 A1 WO2010034187 A1 WO 2010034187A1 CN 2009070161 W CN2009070161 W CN 2009070161W WO 2010034187 A1 WO2010034187 A1 WO 2010034187A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
resistant
wear
steel substrate
vacuum
Prior art date
Application number
PCT/CN2009/070161
Other languages
English (en)
French (fr)
Inventor
宋存科
Original Assignee
Sung Chunke
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sung Chunke filed Critical Sung Chunke
Publication of WO2010034187A1 publication Critical patent/WO2010034187A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/46Salt baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated

Definitions

  • the invention relates to the technical field of stainless steel treatment, in particular to a stainless steel treatment process for pressure and wear resistance.
  • the present application is based on a Chinese patent application filed on Sep. 23, 2008, filed on Jan. 23, 2008, the content of which is incorporated herein by reference.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a stainless steel treatment process for pressure and wear resistance.
  • the stainless steel treated by the process has high hardness and good compressive and wear resistance.
  • the technical solution adopted by the invention is: pressure-resistant and wear-resistant stainless steel
  • the stainless steel substrate is first hardened, and then subjected to vacuum ion plating treatment to become a pressure-resistant and wear-resistant stainless steel.
  • the hardening treatment of the stainless steel substrate is specifically as follows: immerse the stainless steel substrate in the treatment liquid at 350 to 500 ° C, and soak for 4 to 12 hours.
  • the treatment liquid is, in terms of weight percent, urea is 85 to 95%, and nitric acid is 5 to 15%.
  • the stainless steel substrate is subjected to a hardening treatment by specifically placing a stainless steel substrate in a vacuum apparatus having a degree of vacuum of 5 X 10 - 2 to 8 X 10 - 2 Pa, and introducing a nitrogen gas for 10 to 40 hours.
  • the vacuum ion plating treatment is specifically: cleaning the treated stainless steel substrate, and then placing it in an ion vacuum coating machine, and plating the ion film layer at a vacuum degree of 5 X 10 - 2 to 8 X 10 - 2 Pa.
  • the coating time is 1 ⁇ 5h, and nitrogen or acetylene gas is introduced into the coating.
  • the plated ion-exchange membrane layer includes TiN, CTiN, TiC, TiAlN, ZrN.
  • the thickness of the ionized layer is 0. 5 ⁇ 10 microns.
  • the beneficial effects of the invention are as follows: The invention firstly hardens the stainless steel substrate, then performs vacuum ion plating treatment to become a pressure-resistant and wear-resistant stainless steel, and the stainless steel substrate is hardened to be a stainless steel base at 350 to 500 ° C. The material is immersed in the treatment liquid, soaked for 4 to 12 hours, or the stainless steel substrate is placed in a vacuum apparatus having a vacuum of 5 X 10 - 2 to 8 X 10 - 2 Pa, and a nitrogen reaction is carried out for 10 to 40 hours.
  • the anti-pressure and wear-resistant stainless steel treatment process first hardens the stainless steel substrate, and immerses the stainless steel substrate in the treatment liquid at 400 ° C. According to the weight percentage, the treatment liquid is 95% of urea. The mixed solution of nitric acid accounts for 5%. The stainless steel substrate is immersed in the treatment liquid for 5 hours, so that the crystal form of the stainless steel substrate is changed, and the hardness reaches HV1000, which greatly enhances the compressive and wear-resistant ability of the stainless steel, and is not easy to use after use.
  • the hardened stainless steel substrate is cleaned, and then placed in an ion vacuum coating machine, and a TiN ion film layer is plated at a vacuum degree of 7 X 10 - 2 Pa, and the coating time is 1 hour.
  • the coating is simultaneously filled with nitrogen gas, so that the hardened stainless steel substrate is coated with a 2 micron thick TiN dense ion film layer.
  • the TiN dense ion film layer makes the surface hardness of the stainless steel substrate reach HV1800, which greatly enhances the stainless steel.
  • the surface's compressive and wear-resistant ability makes the hardness, compression and wear resistance of stainless steel superior.
  • the stainless steel substrate is first hardened, and the stainless steel substrate is immersed in the treatment liquid at 500 ° C.
  • the treatment liquid is, the urea accounts for 90%.
  • 10% mixed solution of nitric acid the stainless steel substrate is immersed in the treatment liquid for 10 hours, so that the crystal form of the stainless steel substrate is changed, the hardness reaches HV1200, which greatly enhances the compressive and wear-resistant ability of the stainless steel, and is not easy to use after use.
  • the coating time is 2 hours, and the coating is simultaneously introduced with nitrogen gas, so that the hardened stainless steel substrate is plated with one.
  • 4 micron thick CTiN dense ion film layer this CTiN dense ion film layer makes the surface hardness of stainless steel substrate up to HV2500, which greatly enhances the pressure and wear resistance of stainless steel surface, making the hardness, compressive and wear resistance of stainless steel more superior.
  • the stainless steel substrate is first hardened, and the stainless steel substrate is immersed in the treatment liquid at 450 ° C. According to the weight percentage, the treatment liquid is, the urea accounts for 85%. The mixed solution of nitric acid in 15%, the stainless steel substrate is immersed in the treatment liquid for 12 hours, so that the crystal form of the stainless steel substrate is changed, the hardness reaches HV1100, which greatly enhances the compressive and wear-resistant ability of the stainless steel, and is not easy to use after use.
  • the hardened stainless steel substrate is cleaned, and then placed in an ion vacuum coating machine, and the TiAIN ion film layer is plated at a vacuum of 8 X 10 - 2 Pa, and the coating time is 4 hours.
  • the coating is simultaneously introduced with acetylene gas, so that the hardened stainless steel substrate is coated with a layer of 8 micron thick TiAIN dense ion film.
  • the TiAIN dense ion film layer makes the surface hardness of the stainless steel substrate reach HV2800, which greatly enhances.
  • the pressure and wear resistance of the stainless steel surface makes the hardness, compression and wear resistance of stainless steel superior.
  • the stainless steel substrate is first hardened, and the stainless steel substrate is immersed in the treatment liquid at 350 ° C. According to the weight percentage, the treatment liquid is 95% of urea. The 5% mixed solution of nitric acid is immersed in the treatment liquid for 12 hours to change the crystal form of the stainless steel substrate.
  • HV1000 greatly enhances the compressive and wear-resistant ability of stainless steel, and is not easily deformed after use. Then it is vacuum ion-coated, and the hardened stainless steel substrate is cleaned and placed in an ion vacuum coater at a vacuum degree of 8 X.
  • 10— 2 Pa is plated with ZrN ion film layer, the coating time is 5 hours, and the coating is simultaneously introduced with acetylene gas, so that the hardened stainless steel substrate is coated with a 10 ⁇ m thick ZrN dense ion film layer.
  • the dense ionized membrane layer makes the surface hardness of the stainless steel substrate up to HV3000, which greatly enhances the pressure and wear resistance of the stainless steel surface, making the hardness, compression and wear resistance of the stainless steel superior.
  • the stainless steel substrate is first hardened, and the stainless steel substrate is immersed in the treatment liquid at 350 ° C. According to the weight percentage, the treatment liquid is 95% of urea. a mixed solution of 5% nitric acid, placed in a vacuum apparatus with a vacuum of 5 X 10 - 2 to 8 X 10 - 2 Pa, and subjected to a nitrogen reaction for 15 hours to make a crystal form of the stainless steel substrate.
  • the ion vacuum coating film of the present invention can also be plated with various film layers as needed, and the thickness of the plating film can also be plated with different thicknesses as needed, so that the present invention can be processed.
  • the stainless steel material has a wider practical range; the gas introduced during the ion vacuum coating process can also select the desired gas depending on the film layer.
  • the invention is mainly used in the hardening treatment process of the stainless steel substrate, and adopts the treatment process of the invention.
  • the hardness of the stainless steel substrate is HV1500 ⁇ HV3000 after hardening treatment, and the stainless steel has high hardness, strong resistance to pressure and wear, and is not easily deformed after use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

说 明 书 抗压耐磨的不锈钢处理工艺
技术领域
本发明涉及不锈钢处理技术领域,特别涉及抗压耐磨的不锈钢处 理工艺。 本申请是基于申请日为 2008 年 9 月 23 日、 申请号为 200810198687. 9 的中国发明专利申请, 上述申请的内容作为参考引 入本文本。
背景技术
现有的不锈钢制品, 用于餐具、 医疗器械、 按钮、 拉手、 门把、 手表、 首饰等许多制品, 应用广泛。 目前的不锈钢硬度较低, 主要是 由于在不锈钢处理工艺中,大多只对不锈钢的表面进行热处理或者只 对不锈钢表面进行镀膜处理, 如中国专利号为: 200610046946. 7, 专 利名称为: 一种沉淀硬化不锈钢激光表面硬化工艺, 采用激光对不锈 钢表面进行硬化处理,处理后硬度达到 HV350〜HV650,其硬度较低, 抗压耐磨能力差, 使用后容易变形; 而只对不锈钢表面进行镀膜处理 的不锈钢, 虽然其表面有致密的镀膜层, 但是其基材的硬度不够, 抗 压耐磨能力差, 也容易产生变形, 甚至表面的镀膜层发生脱落现象。 发明内容
本发明的目的在于克服现有技术的不足,而提供抗压耐磨的不锈 钢处理工艺, 本工艺处理的不锈钢硬度高, 抗压耐磨性能好。
为实现上述目的, 本发明采用的技术方案是: 抗压耐磨的不锈钢 处理工艺, 先对不锈钢基材进行硬化处理, 然后进行真空离子镀膜处 理, 成为抗压耐磨不锈钢。
所述的不锈钢基材进行硬化处理具体为: 在 350〜500 °C下, 将 不锈钢基材浸泡在处理液中, 浸泡 4〜12小时。
所述的处理液为,按重量百分数计,尿素 85〜95%、硝酸 5〜15%。 所述的不锈钢基材进行硬化处理具体为:将不锈钢基材置于真空 度为 5 X 10— 2〜8 X 10— 2 Pa的真空装置中, 并通入氮气反应 10〜40小 时。
所述的真空离子镀膜处理具体为:将经过处理的不锈钢基材清洗 干净, 再置于离子真空镀膜机中, 在真空度为 5 X 10— 2〜8 X 10—2 Pa镀 上离子膜层,镀膜时间为 1〜5h,镀膜的同时通入氮气或者乙炔气体。
所镀的离子膜层包括 TiN、 CTiN、 TiC、 TiAlN、 ZrN。
所镀的离子膜层厚度为 0. 5〜10微米。
本发明的有益效果为: 本发明先对不锈钢基材进行硬化处理, 然 后进行真空离子镀膜处理, 成为抗压耐磨不锈钢, 不锈钢基材进行硬 化处理为在 350〜500 °C下, 将不锈钢基材浸泡在处理液中, 浸 泡 4〜12小时,或者,将不锈钢基材置于真空度为 5 X 10— 2〜8 X 10— 2 Pa 的真空装置中, 并通入氮气反应 10〜40小时; 真空离子镀膜为将经 硬化处理的不锈钢基材清洗干净, 再置于离子真空镀膜机中, 在真空 度为 5 X 10— 2〜8 X 10—2 Pa镀上离子膜层, 镀膜的同时通入氮气或者乙 炔气体, 不锈钢基材硬化处理后硬度达 HV1500〜HV3000, 不锈钢的 硬度高, 抗压耐磨能力强, 使用后不易变形。 具体实施方式
下面的实施例可以使本专业技术人员更全面的理解本发明,但不 以任何方式限制本发明。
实施例 1
抗压耐磨的不锈钢处理工艺, 先对不锈钢基材进行硬化处理, 在 400°C下, 将不锈钢基材浸泡在处理液中, 按重量百分数计, 所述的 处理液为, 尿素占 95%、 硝酸占 5%的混合溶液, 将不锈钢基材浸泡在 处理液中处理 5 小时, 使得不锈钢基材的晶型发生改变, 硬度达 HV1000, 大大增强了不锈钢的抗压耐磨能力, 使用后不易变形; 然后 进行真空离子镀膜处理, 将经过硬化处理的不锈钢基材清洗干净, 再 置于离子真空镀膜机中, 在真空度 7 X 10— 2 Pa镀上 TiN离子膜层, 镀 膜时间为 1小时, 镀膜的同时通入氮气, 使得经过硬化处理的不锈钢 基材镀上一层 2微米厚的 TiN致密离子膜层,这种 TiN致密离子膜层 使得不锈钢基材表面硬度达 HV1800 , 大大增强了不锈钢表面的抗压 耐磨能力, 使得不锈钢的硬度、 抗压耐磨性能更优越。
实施例 2
抗压耐磨的不锈钢处理工艺, 先对不锈钢基材进行硬化处理, 在 500°C下, 将不锈钢基材浸泡在处理液中, 按重量百分数计, 所述的 处理液为, 尿素占 90%、 硝酸占 10%的混合溶液, 将不锈钢基材浸泡 在处理液中处理 10小时, 使得不锈钢基材的晶型发生改变, 硬度达 HV1200, 大大增强了不锈钢的抗压耐磨能力, 使用后不易变形; 然后 进行真空离子镀膜处理, 将经过硬化处理的不锈钢基材清洗干净, 再 置于离子真空镀膜机中,在真空度 7. 5 X 10— 2 Pa镀上 CTiN离子膜层, 镀膜时间为 2小时, 镀膜的同时通入氮气, 使得经过硬化处理的不锈 钢基材镀上一层 4微米厚的 CTiN致密离子膜层,这种 CTiN致密离子 膜层使得不锈钢基材表面硬度达 HV2500, 大大增强了不锈钢表面的 抗压耐磨能力, 使得不锈钢的硬度、 抗压耐磨性能更优越。
实施例 3
抗压耐磨的不锈钢处理工艺, 先对不锈钢基材进行硬化处理, 在 450°C下, 将不锈钢基材浸泡在处理液中, 按重量百分数计, 所述的 处理液为, 尿素占 85%、 硝酸占 15%的混合溶液, 将不锈钢基材浸泡 在处理液中处理 12小时, 使得不锈钢基材的晶型发生改变, 硬度达 HV1100, 大大增强了不锈钢的抗压耐磨能力, 使用后不易变形; 然后 进行真空离子镀膜处理, 将经过硬化处理的不锈钢基材清洗干净, 再 置于离子真空镀膜机中, 在真空度 8 X 10— 2 Pa镀上 TiAIN离子膜层, 镀膜时间为 4小时, 镀膜的同时通入乙炔气体, 使得经过硬化处理的 不锈钢基材镀上一层 8微米厚的 TiAIN致密离子膜层,这种 TiAIN致 密离子膜层使得不锈钢基材表面硬度达 HV2800, 大大增强了不锈钢 表面的抗压耐磨能力, 使得不锈钢的硬度、 抗压耐磨性能更优越。 实施例 4
抗压耐磨的不锈钢处理工艺, 先对不锈钢基材进行硬化处理, 在 350°C下, 将不锈钢基材浸泡在处理液中, 按重量百分数计, 所述的 处理液为, 尿素占 95%、 硝酸占 5%的混合溶液, 将不锈钢基材浸泡在 处理液中处理 12 小时, 使得不锈钢基材的晶型发生改变, 硬度达 HV1000 , 大大增强了不锈钢的抗压耐磨能力, 使用后不易变形; 然后 进行真空离子镀膜处理, 将经过硬化处理的不锈钢基材清洗干净, 再 置于离子真空镀膜机中, 在真空度 8 X 10— 2 Pa镀上 ZrN离子膜层, 镀 膜时间为 5小时, 镀膜的同时通入乙炔气体, 使得经过硬化处理的不 锈钢基材镀上一层 10微米厚的 ZrN致密离子膜层, 这种 ZrN致密离 子膜层使得不锈钢基材表面硬度达 HV3000 , 大大增强了不锈钢表面 的抗压耐磨能力, 使得不锈钢的硬度、 抗压耐磨性能更优越。
实施例 5
抗压耐磨的不锈钢处理工艺, 先对不锈钢基材进行硬化处理, 在 350 °C下, 将不锈钢基材浸泡在处理液中, 按重量百分数计, 所述的 处理液为, 尿素占 95%、 硝酸占 5%的混合溶液, 将不锈钢基材置于真 空度为 5 X 10— 2〜8 X 10— 2 Pa的真空装置中,并通入氮气反应 15小时, 使得不锈钢基材的晶型发生改变, 硬度达 HV1100 , 大大增强了不锈 钢的抗压耐磨能力, 使用后不易变形; 然后进行真空离子镀膜处理, 将经过硬化处理的不锈钢基材清洗干净, 再置于离子真空镀膜机中, 在真空度 7. 8 X 10—2 Pa镀上 ZrN离子膜层, 镀膜时间为 5小时, 镀膜 的同时通入乙炔气体,使得经过硬化处理的不锈钢基材镀上一层 9微 米厚的 ZrN致密离子膜层,这种 ZrN致密离子膜层使得不锈钢基材表 面硬度达 HV3000 , 大大增强了不锈钢表面的抗压耐磨能力, 使得不 锈钢的硬度、 抗压耐磨性能更优越。
此外本发明的离子真空镀膜还可以根据需要镀上各种不同的膜 层, 镀膜的厚度也可以根据需要, 镀上不同的厚度, 使得本发明处理 过的不锈钢材料实用范围更大;离子真空镀膜过程中所通入的气体也 可以根据膜层的不同, 而选择所需的气体。
当然, 以上所述之实施例, 只是本发明的较佳实施方式而已, 并 非来限制本发明实施范围, 故凡依本发明申请专利范围所述的工艺、 处理方法及原理所做的等效变化或修饰,均包括于本发明申请专利范 围内。
工业应用性
本发明主要用于不锈钢基材的硬化处理工艺中,采用本发明的处 理工艺, 不锈钢基材硬化处理后硬度达 HV1500〜HV3000, 不锈钢的 硬度高, 抗压耐磨能力强, 使用后不易变形。

Claims

权 利 要 求 书
1、 抗压耐磨的不锈钢处理工艺, 其特征在于: 先对不锈钢基材 进行硬化处理, 然后进行真空离子镀膜处理, 成为抗压耐磨不锈钢。
2、 根据权利要求 1所述的抗压耐磨的不锈钢处理工艺, 其特征 在于: 所述的不锈钢基材进行硬化处理具体为: 在 350〜500°C下, 将不锈钢基材浸泡在处理液中, 浸泡 4〜12小时。
3、 根据权利要求 2所述的抗压耐磨的不锈钢处理工艺, 其特征 在于: 所述的处理液为, 按重量百分数计, 尿素 85〜95%、 硝 酸 5〜15%。
4、 根据权利要求 1所述的抗压耐磨的不锈钢处理工艺, 其特征 在于: 所述的不锈钢基材进行硬化处理具体为: 将不锈钢基材置于真 空度为 5 X 10— 2〜8 X 10— 2 Pa的真空装置中, 并通入氮气反应 10〜40 小时。
5、 根据权利要求 1所述的抗压耐磨的不锈钢处理工艺, 其特征 在于: 所述的真空离子镀膜处理具体为: 将经过处理的不锈钢基材清 洗干净, 再置于离子真空镀膜机中, 在真空度为 5 X 10— 2〜8 X 10— 2 Pa 镀上离子膜层, 镀膜时间为 1〜5小时, 镀膜的同时通入氮气或者乙 炔气体。
6、 根据权利要求 5所述的抗压耐磨的不锈钢处理工艺, 其特征 在于: 所镀的离子膜层包括 TiN、 CTiN、 TiC、 TiAlN、 ZrN。
7、 根据权利要求 5或 6所述的抗压耐磨的不锈钢处理工艺, 其
PCT/CN2009/070161 2008-09-23 2009-01-15 抗压耐磨的不锈钢处理工艺 WO2010034187A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810198687.9 2008-09-23
CNA2008101986879A CN101403120A (zh) 2008-09-23 2008-09-23 抗压耐磨的不锈钢处理工艺

Publications (1)

Publication Number Publication Date
WO2010034187A1 true WO2010034187A1 (zh) 2010-04-01

Family

ID=40537276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070161 WO2010034187A1 (zh) 2008-09-23 2009-01-15 抗压耐磨的不锈钢处理工艺

Country Status (2)

Country Link
CN (1) CN101403120A (zh)
WO (1) WO2010034187A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866242A (zh) * 2014-03-20 2014-06-18 常州康鼎医疗器械有限公司 医疗器械物理气相沉积(pvd)表面涂层技术
CN107419276B (zh) * 2017-05-09 2019-01-18 上海建冶科技工程股份有限公司 一种奥氏体不锈钢耐蚀处理工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976872A (ja) * 1982-10-27 1984-05-02 Katsuhiro Okubo 金属製医科歯科治療器具の製法
JPS60162618A (ja) * 1984-02-06 1985-08-24 Plus Eng Co Ltd 耐食性の良好な押出ピン
JPS60178017A (ja) * 1984-02-25 1985-09-12 Plus Eng Co Ltd 耐焼付性の優れた押出ピン
CN1427751A (zh) * 2000-03-15 2003-07-02 分子冶金公司 具有高锐度和韧度的手术刀片
CN1776015A (zh) * 2005-11-28 2006-05-24 吴大维 具有高附着力的纳米超硬复合膜刀具及其沉积方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976872A (ja) * 1982-10-27 1984-05-02 Katsuhiro Okubo 金属製医科歯科治療器具の製法
JPS60162618A (ja) * 1984-02-06 1985-08-24 Plus Eng Co Ltd 耐食性の良好な押出ピン
JPS60178017A (ja) * 1984-02-25 1985-09-12 Plus Eng Co Ltd 耐焼付性の優れた押出ピン
CN1427751A (zh) * 2000-03-15 2003-07-02 分子冶金公司 具有高锐度和韧度的手术刀片
CN1776015A (zh) * 2005-11-28 2006-05-24 吴大维 具有高附着力的纳米超硬复合膜刀具及其沉积方法

Also Published As

Publication number Publication date
CN101403120A (zh) 2009-04-08

Similar Documents

Publication Publication Date Title
JP5845563B2 (ja) 容器用鋼板の製造方法
US4938850A (en) Method for plating on titanium
CN103597118B (zh) 利用硬质膜被覆而成的硬质膜被覆构件及其制造方法
CN108220959B (zh) 一种塑料无铬粗化处理方法及其节水电镀方法
US5308707A (en) Treatment process for depositing a layer of carbon in vapour phase on the surface of a metal article and article thus obtained
WO2012036200A1 (ja) 容器用鋼板の製造方法
JP2011157610A (ja) Dlc膜被覆部材およびその製造方法
CN107815710A (zh) 一种提高镀铬层结合力的工艺方法
TW201239120A (en) Housing and method for making same
JP6853536B2 (ja) 水素バリア機能を有するステンレス鋼及びその製造方法
WO2010034187A1 (zh) 抗压耐磨的不锈钢处理工艺
JP2020523486A (ja) 表面に電気めっき層を有する難溶融金属またはステンレス鋼、および難溶融金属またはステンレス鋼の表面の電気めっきプロセス
EP3502312A1 (en) Nanocrystalline material based on stainless steel surface, and preparation method therefor
WO2005069877A3 (en) Process for applying a multi-layer coating to ferrous substrates
CN107937900B (zh) 一种镁合金原位生长耐蚀表面处理方法
JP2006347827A (ja) アモルファスSiO2膜被覆部材および、その形成方法
CN111005045A (zh) 一种钛及钛合金表面镀层的制备方法
JP6490102B2 (ja) 時計ネジおよびその製造方法
CN113025958B (zh) 一种用于铝合金表面的复合膜层及其制备方法
JP2007077475A (ja) 金属ガラス部品の表面処理方法と該方法で表面処理された金属ガラス部品
CN112626588A (zh) 一种耐磨抗腐蚀型阴极电泳涂装工艺
Patel et al. Plasma processing of aluminum alloys to promote adhesion: a critical review
CN117626206B (zh) 一种基于干法镀的复合真空镀膜工艺方法
Lammel et al. In-situ AFM study of the electrodeposition of copper on plasma modified carbon fibre-reinforced polymer surfaces
JP2011219810A (ja) 炭素薄膜付アルミニウム材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09815557

Country of ref document: EP

Kind code of ref document: A1