CN101403120A - 抗压耐磨的不锈钢处理工艺 - Google Patents

抗压耐磨的不锈钢处理工艺 Download PDF

Info

Publication number
CN101403120A
CN101403120A CNA2008101986879A CN200810198687A CN101403120A CN 101403120 A CN101403120 A CN 101403120A CN A2008101986879 A CNA2008101986879 A CN A2008101986879A CN 200810198687 A CN200810198687 A CN 200810198687A CN 101403120 A CN101403120 A CN 101403120A
Authority
CN
China
Prior art keywords
stainless steel
abrasion
pressure
vacuum
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008101986879A
Other languages
English (en)
Inventor
宋存科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNA2008101986879A priority Critical patent/CN101403120A/zh
Priority to PCT/CN2009/070161 priority patent/WO2010034187A1/zh
Publication of CN101403120A publication Critical patent/CN101403120A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/46Salt baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明涉及不锈钢处理技术领域,特别涉及抗压耐磨的不锈钢处理工艺,先对不锈钢基材进行硬化处理,然后进行真空离子镀膜处理,成为抗压耐磨不锈钢,不锈钢基材进行硬化处理为在350~500℃下,将不锈钢基材浸泡在处理液中,浸泡4~12h,或者将不锈钢基材置于真空度为5×10-2~8×10-2Pa的真空装置中,并通入氮气反应10~40h;真空离子镀膜为将经硬化处理的不锈钢基材清洗干净,再置于离子真空镀膜机中,在真空度为5×10-2~8×10-2Pa镀上离子膜层,镀膜的同时通入氮气或者乙炔气体,不锈钢基材硬化处理后硬度达HV1500~HV3000,不锈钢的硬度高,抗压耐磨能力强,使用后不易变形。

Description

抗压耐磨的不锈钢处理工艺
技术领域:
本发明涉及不锈钢处理技术领域,特别涉及抗压耐磨的不锈钢处理工艺。
背景技术:
现有的不锈钢制品,用于餐具、医疗器械、按钮、拉手、门把、手表、首饰等许多制品,应用广泛。目前的不锈钢硬度较低,主要是由于在不锈钢处理工艺中,大多只对不锈钢的表面进行热处理或者只对不锈钢表面进行镀膜处理,如中国专利专利号为:200610046946.7,专利名称为:一种沉淀硬化不锈钢激光表面硬化工艺,采用激光对不锈钢表面进行硬化处理,处理后硬度达到HV350~HV650,其硬度较低,抗压耐磨能力差,使用后容易变形;而只对不锈钢表面进行镀膜处理的不锈钢,虽然其表面有致密的镀膜层,但是其基材的硬度不够,抗压耐磨能力差,也容易产生变形,甚至表面的镀膜层发生脱落现象。
发明内容:
本发明的目的在于克服现有技术的不足,而提供抗压耐磨的不锈钢处理工艺,本工艺处理的不锈钢硬度高,抗压耐磨性能好。
为实现上述目的,本发明采用的技术方案是:
抗压耐磨的不锈钢处理工艺,先对不锈钢基材进行硬化处理,然后进行真空离子镀膜处理,成为抗压耐磨不锈钢。
所述的不锈钢基材进行硬化处理具体为:在350~500℃下,将不锈钢基材浸泡在处理液中,浸泡4~12h。
所述的处理液为,按重量百分数计,尿素85~95%、硝酸5~15%。
所述的不锈钢基材进行硬化处理具体为:将不锈钢基材置于真空度为5×10-2~8×10-2Pa的真空装置中,并通入氮气反应10~40h。
所述的真空离子镀膜处理具体为:将经过处理的不锈钢基材清洗干净,再置于离子真空镀膜机中,在真空度为5×10-2~8×10-2Pa镀上离子膜层,镀膜时间为1~5h,镀膜的同时通入氮气或者乙炔气体。
所镀的离子膜层包括TiN、CTiN、TiC、TiAlN、ZrN。
所镀的离子膜层厚度为0.5~10微米。
本发明的有益效果为:本发明先对不锈钢基材进行硬化处理,然后进行真空离子镀膜处理,成为抗压耐磨不锈钢,不锈钢基材进行硬化处理为在350~500℃下,将不锈钢基材浸泡在处理液中,浸泡4~12h,或者,将不锈钢基材置于真空度为5×10-2~8×10-2Pa的真空装置中,并通入氮气反应10~40h;真空离子镀膜为将经硬化处理的不锈钢基材清洗干净,再置于离子真空镀膜机中,在真空度为5×10-2~8×10-2Pa镀上离子膜层,镀膜的同时通入氮气或者乙炔气体,不锈钢基材硬化处理后硬度达HV1500~HV3000,不锈钢的硬度高,抗压耐磨能力强,使用后不易变形。
具体实施方式:
下面的实施例可以使本专业技术人员更全面的理解本发明,但不以任何方式限制本发明。
实施例1
抗压耐磨的不锈钢处理工艺,先对不锈钢基材进行硬化处理,在400℃下,将不锈钢基材浸泡在处理液中,按重量百分数计,所述的处理液为,尿素占95%、硝酸占5%的混合溶液,将不锈钢基材浸泡在处理液中处理5h,使得不锈钢基材的晶型发生改变,硬度达HV1000,大大增强了不锈钢的抗压耐磨能力,使用后不易变形;然后进行真空离子镀膜处理,将经过硬化处理的不锈钢基材清洗干净,再置于离子真空镀膜机中,在真空度7×10-2Pa镀上TiN离子膜层,镀膜时间为1h,镀膜的同时通入氮气,使得经过硬化处理的不锈钢基材镀上一层2微米厚的TiN致密离子膜层,这种TiN致密离子膜层使得不锈钢基材表面硬度达HV1800,大大增强了不锈钢表面的抗压耐磨能力,使得不锈钢的硬度、抗压耐磨性能更优越。
实施例2
抗压耐磨的不锈钢处理工艺,先对不锈钢基材进行硬化处理,在500℃下,将不锈钢基材浸泡在处理液中,按重量百分数计,所述的处理液为,尿素占90%、硝酸占10%的混合溶液,将不锈钢基材浸泡在处理液中处理10h,使得不锈钢基材的晶型发生改变,硬度达HV1200,大大增强了不锈钢的抗压耐磨能力,使用后不易变形;然后进行真空离子镀膜处理,将经过硬化处理的不锈钢基材清洗干净,再置于离子真空镀膜机中,在真空度7.5×10-2Pa镀上CTiN离子膜层,镀膜时间为2h,镀膜的同时通入氮气,使得经过硬化处理的不锈钢基材镀上一层4微米厚的CTiN致密离子膜层,这种CTiN致密离子膜层使得不锈钢基材表面硬度达HV2500,大大增强了不锈钢表面的抗压耐磨能力,使得不锈钢的硬度、抗压耐磨性能更优越。
实施例3
抗压耐磨的不锈钢处理工艺,先对不锈钢基材进行硬化处理,在450℃下,将不锈钢基材浸泡在处理液中,按重量百分数计,所述的处理液为,尿素占85%、硝酸占15%的混合溶液,将不锈钢基材浸泡在处理液中处理12h,使得不锈钢基材的晶型发生改变,硬度达HV1100,大大增强了不锈钢的抗压耐磨能力,使用后不易变形;然后进行真空离子镀膜处理,将经过硬化处理的不锈钢基材清洗干净,再置于离子真空镀膜机中,在真空度8×10-2Pa镀上TiAlN离子膜层,镀膜时间为4h,镀膜的同时通入乙炔气体,使得经过硬化处理的不锈钢基材镀上一层8微米厚的TiAlN致密离子膜层,这种TiAlN致密离子膜层使得不锈钢基材表面硬度达HV2800,大大增强了不锈钢表面的抗压耐磨能力,使得不锈钢的硬度、抗压耐磨性能更优越。
实施例4
抗压耐磨的不锈钢处理工艺,先对不锈钢基材进行硬化处理,在350℃下,将不锈钢基材浸泡在处理液中,按重量百分数计,所述的处理液为,尿素占95%、硝酸占5%的混合溶液,将不锈钢基材浸泡在处理液中处理12h,使得不锈钢基材的晶型发生改变,硬度达HV1000,大大增强了不锈钢的抗压耐磨能力,使用后不易变形;然后进行真空离子镀膜处理,将经过硬化处理的不锈钢基材清洗干净,再置于离子真空镀膜机中,在真空度8×10-2Pa镀上ZrN离子膜层,镀膜时间为5h,镀膜的同时通入乙炔气体,使得经过硬化处理的不锈钢基材镀上一层10微米厚的ZrN致密离子膜层,这种ZrN致密离子膜层使得不锈钢基材表面硬度达HV3000,大大增强了不锈钢表面的抗压耐磨能力,使得不锈钢的硬度、抗压耐磨性能更优越。
实施例5
抗压耐磨的不锈钢处理工艺,先对不锈钢基材进行硬化处理,在350℃下,将不锈钢基材浸泡在处理液中,按重量百分数计,所述的处理液为,尿素占95%、硝酸占5%的混合溶液,将不锈钢基材置于真空度为5×10-2~8×10-2Pa的真空装置中,并通入氮气反应15h,使得不锈钢基材的晶型发生改变,硬度达HV1100,大大增强了不锈钢的抗压耐磨能力,使用后不易变形;然后进行真空离子镀膜处理,将经过硬化处理的不锈钢基材清洗干净,再置于离子真空镀膜机中,在真空度7.8×10-2Pa镀上ZrN离子膜层,镀膜时间为5h,镀膜的同时通入乙炔气体,使得经过硬化处理的不锈钢基材镀上一层9微米厚的ZrN致密离子膜层,这种ZrN致密离子膜层使得不锈钢基材表面硬度达HV3000,大大增强了不锈钢表面的抗压耐磨能力,使得不锈钢的硬度、抗压耐磨性能更优越。
此外本发明的离子真空镀膜还可以根据需要镀上各种不同的膜层,镀膜的厚度也可以根据需要,镀上不同的厚度,使得本发明处理过的不锈钢材料实用范围更大;离子真空镀膜过程中所通入的气体也可以根据膜层的不同,而选择所需的气体。
当然,以上所述之实施例,只是本发明的较佳实施方式而已,并非来限制本发明实施范围,故凡依本发明申请专利范围所述的工艺、处理方法及原理所做的等效变化或修饰,均包括于本发明申请专利范围内。

Claims (7)

1、抗压耐磨的不锈钢处理工艺,其特征在于:先对不锈钢基材进行硬化处理,然后进行真空离子镀膜处理,成为抗压耐磨不锈钢。
2、根据权利要求1所述的抗压耐磨的不锈钢处理工艺,其特征在于:所述的不锈钢基材进行硬化处理具体为:在350~500℃下,将不锈钢基材浸泡在处理液中,浸泡4~12h。
3、根据权利要求2所述的抗压耐磨的不锈钢处理工艺,其特征在于:所述的处理液为,按重量百分数计,尿素85~95%、硝酸5~15%。
4、根据权利要求1所述的抗压耐磨的不锈钢处理工艺,其特征在于:所述的不锈钢基材进行硬化处理具体为:将不锈钢基材置于真空度为5×10-2~8×10-2Pa的真空装置中,并通入氮气反应10~40h。
5、根据权利要求1所述的抗压耐磨的不锈钢处理工艺,其特征在于:所述的真空离子镀膜处理具体为:将经过处理的不锈钢基材清洗干净,再置于离子真空镀膜机中,在真空度为5×10-2~8×10-2Pa镀上离子膜层,镀膜时间为1~5h,镀膜的同时通入氮气或者乙炔气体。
6、根据权利要求5所述的抗压耐磨的不锈钢处理工艺,其特征在于:所镀的离子膜层包括TiN、CTiN、TiC、TiAlN、ZrN。
7、根据权利要求5或6所述的抗压耐磨的不锈钢处理工艺,其特征在于:所镀的离子膜层厚度为0.5~10微米。
CNA2008101986879A 2008-09-23 2008-09-23 抗压耐磨的不锈钢处理工艺 Pending CN101403120A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNA2008101986879A CN101403120A (zh) 2008-09-23 2008-09-23 抗压耐磨的不锈钢处理工艺
PCT/CN2009/070161 WO2010034187A1 (zh) 2008-09-23 2009-01-15 抗压耐磨的不锈钢处理工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008101986879A CN101403120A (zh) 2008-09-23 2008-09-23 抗压耐磨的不锈钢处理工艺

Publications (1)

Publication Number Publication Date
CN101403120A true CN101403120A (zh) 2009-04-08

Family

ID=40537276

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008101986879A Pending CN101403120A (zh) 2008-09-23 2008-09-23 抗压耐磨的不锈钢处理工艺

Country Status (2)

Country Link
CN (1) CN101403120A (zh)
WO (1) WO2010034187A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866242A (zh) * 2014-03-20 2014-06-18 常州康鼎医疗器械有限公司 医疗器械物理气相沉积(pvd)表面涂层技术
CN107419276A (zh) * 2017-05-09 2017-12-01 上海建冶科技工程股份有限公司 一种奥氏体不锈钢耐蚀处理工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976872A (ja) * 1982-10-27 1984-05-02 Katsuhiro Okubo 金属製医科歯科治療器具の製法
JPS60162618A (ja) * 1984-02-06 1985-08-24 Plus Eng Co Ltd 耐食性の良好な押出ピン
JPS60178017A (ja) * 1984-02-25 1985-09-12 Plus Eng Co Ltd 耐焼付性の優れた押出ピン
US6330750B1 (en) * 1996-01-11 2001-12-18 Molecular Metallurgy, Inc. Scapel blade having high sharpness and toughness
CN100385038C (zh) * 2005-11-28 2008-04-30 吴大维 具有高附着力的纳米超硬复合膜刀具及其沉积方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866242A (zh) * 2014-03-20 2014-06-18 常州康鼎医疗器械有限公司 医疗器械物理气相沉积(pvd)表面涂层技术
CN107419276A (zh) * 2017-05-09 2017-12-01 上海建冶科技工程股份有限公司 一种奥氏体不锈钢耐蚀处理工艺
CN107419276B (zh) * 2017-05-09 2019-01-18 上海建冶科技工程股份有限公司 一种奥氏体不锈钢耐蚀处理工艺

Also Published As

Publication number Publication date
WO2010034187A1 (zh) 2010-04-01

Similar Documents

Publication Publication Date Title
Ghaziof et al. Characterization of as-deposited and annealed Cr–C alloy coatings produced from a trivalent chromium bath
Allahkaram et al. Characterization and corrosion behavior of electroless Ni–P/nano-SiC coating inside the CO2 containing media in the presence of acetic acid
Lu et al. Electropolymerization of PANI coating in nitric acid for corrosion protection of 430 SS
Yin et al. Effect of nickel immersion pretreatment on the corrosion performance of electroless deposited Ni–P alloys on aluminum
CN103108988A (zh) 容器用钢板及其制造方法
CN103097581A (zh) 容器用钢板的制造方法
Leon et al. Annealing temperature effect on the corrosion parameters of autocatalytically produced Ni–P and Ni–P–Al2O3 coatings in artificial seawater
Khani et al. Hard chromium composite electroplating on high-strength stainless steel from a Cr (III)-ionic liquid solution
Yang et al. Rare earth conversion coating on Mg–8.5 Li alloys
CN102817019A (zh) 镁合金表面化学镀镍磷金属层镀液及其制备与使用方法
CN110592623B (zh) 用于提高钕铁硼磁体镀层均匀分布性的电镀镍溶液配方及其方法
CN109534460B (zh) 一种钛电极及其制备方法与应用
CN101403120A (zh) 抗压耐磨的不锈钢处理工艺
US20130084395A1 (en) Treatment of Plastic Surfaces After Etching in Nitric Acid Containing Media
CN101235531B (zh) 再活化用于电解的电极的方法
CN104451616A (zh) 一种用于4Cr13不锈钢的化学镀镍方法
Zhang et al. Electroless Ni–P plating on Mg–10Li–1Zn alloy
CN102766875B (zh) Pvd拉丝产品的表面处理工艺
CN102953106B (zh) 一种用于金属表面的保护层及其制备
Shao et al. Preparation and performance of electroless nickel on AZ91D magnesium alloy
CN106011814A (zh) 钢材表面磷化处理工艺
CN106282977A (zh) 节能型超声辅助316l不锈钢化学镀镍磷合金的方法
Hao et al. Electroless Ni–P coating on W–Cu composite via three different activation processes
CN105543919B (zh) 镁合金表面通过物理气相沉积形成电镀用导电涂层的方法
CN104294243B (zh) 一种铝管镀镍方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090408