WO2010032824A1 - 磁気結合型アイソレータ - Google Patents

磁気結合型アイソレータ Download PDF

Info

Publication number
WO2010032824A1
WO2010032824A1 PCT/JP2009/066358 JP2009066358W WO2010032824A1 WO 2010032824 A1 WO2010032824 A1 WO 2010032824A1 JP 2009066358 W JP2009066358 W JP 2009066358W WO 2010032824 A1 WO2010032824 A1 WO 2010032824A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection element
magnetic detection
magnetic
wiring pattern
magnetic field
Prior art date
Application number
PCT/JP2009/066358
Other languages
English (en)
French (fr)
Inventor
義弘 西山
正路 斎藤
彰 高橋
洋介 井出
秀和 小林
雅博 飯塚
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2010032824A1 publication Critical patent/WO2010032824A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/38One-way transmission networks, i.e. unilines
    • H04B5/24

Definitions

  • the present invention relates to a magnetically coupled isolator including a magnetic field generation unit and a magnetic detection element.
  • the magnetically coupled isolator includes a magnetic field generation unit for converting an input signal into magnetism, and a magnetic detection element for detecting an external magnetic field generated from the magnetic field generation unit and converting it into an electric signal. Be done. Then, the electric signal is transmitted to the output side through the signal processing circuit to take out the output.
  • a Hall element As the magnetic detection element, a Hall element, an AMR element (anisotropic magnetic detection element), or a GMR element (giant magnetic detection element) is used.
  • JP-A-64-32712 Japanese Patent Application Laid-Open No. 60-69906 Japanese Patent Publication No. 2003-526083
  • FIG. 7 is a plan view of a conventional magnetic coupling type isolator. However, the insulating layer is not shown. Also, the coil 100 as a magnetic field generation unit shows only the inner edge and the outer edge, and shows four magnetic detection elements 101 to 104 arranged directly below the coil 100 in a transparent manner.
  • the coil 100 is formed by being spirally wound, and a space 100 a is provided on the inner edge side.
  • the coil 100 includes a first magnetic field generating unit 100b located on the Y1 side and a second magnetic field generating unit 100c located on the Y2 side.
  • a first magnetic field generation unit 100b located on the Y1 side
  • a second magnetic field generating unit 100c located on the Y2 side.
  • two magnetic detection elements 101 and 104 are disposed via an insulating layer (not shown).
  • two magnetic detection elements 102 and 103 are disposed via an insulating layer (not shown).
  • the direction of the external magnetic field acting on the magnetic detection elements 101 and 104 from the first magnetic field generation unit 100b is different from the direction of the external magnetic field acting on the magnetic detection elements 102 and 103 from the second magnetic field generation unit 100c. (Anti-parallel).
  • These four magnetic detection elements 101 to 104 constitute a bridge circuit.
  • the wiring patterns connected to the input terminal 105, the ground terminals 106 and 107, and the output terminals 108 and 109, and the wiring patterns for connecting the respective elements are routed as shown in FIG.
  • the wiring patterns 110 and 111 connecting the magnetic detection elements 101 and 102 (103 and 104) connected in series cross each other via an insulating layer (not shown) at the position of the space 100a of the coil 100. doing.
  • the insulating layer interposed between the wiring patterns 110 and 111 can not be formed so thick in order to magnetically couple the coil 100 to the magnetic detection elements 101 to 104, and the insulating property between the intersecting wiring patterns 110 and 111 can be formed. I was anxious. In addition, parasitic capacitance was also generated between the intersecting wiring patterns 110 and 111. Therefore, there is a problem that stable electrical characteristics can not be obtained.
  • the present invention is intended to solve the above-mentioned conventional problems, and in particular, it is an object of the present invention to provide a magnetically coupled isolator which can prevent short circuit between wiring patterns and can suppress the occurrence of parasitic capacitance. .
  • the magnetically coupled isolator according to the present invention is disposed at a position where it is electrically isolated from and magnetically coupled to the magnetic field generating unit for generating an external magnetic field according to an input signal, and the external magnetic field.
  • a magnetic detection element for detecting and converting it into an electrical signal;
  • a bridge circuit including a plurality of resistance elements including the magnetic detection element, and an input terminal, a ground terminal, and an output terminal connected to each other;
  • the wiring patterns forming the bridge circuit are routed such that there is no overlapping portion in plan view.
  • only one of the input terminal and the ground terminal is provided, and the other is provided.
  • Only one of the elements constituting each series circuit of the bridge circuit is connected by a wiring pattern in an enclosed area surrounding each element constituting the bridge circuit, and a wiring pattern branched from this wiring pattern is the aforementioned It is connected to only one of the terminals provided outside the enclosed area, It is preferable that a wiring pattern connected to the two terminals and the output terminal be provided outside the surrounding area.
  • the wiring patterns can be easily and appropriately routed without overlapping portions in plan view.
  • the magnetic field generation unit includes a first magnetic field generation unit and a second magnetic field generation unit in which the external magnetic fields are generated antiparallel to each other, and the first magnetic field generation unit and the second magnetic field generation unit
  • the magnetic field generating portions are both formed extending in the X1-X2 direction, and the first magnetic field generating portion and the second magnetic field generating portion face each other in the Y1-Y2 direction orthogonal to the X1-X2 direction.
  • the magnetic detection element includes a first magnetic detection element, a second magnetic detection element, a third magnetic detection element, and a fourth magnetic detection element that constitute a bridge circuit, and among them, the first magnetic detection element and the second magnetic detection element.
  • a magnetic detection element is connected in series, and the third magnetic detection element and the fourth magnetic detection element are connected in series,
  • the first magnetic detection element and the fourth magnetic detection element are disposed to face the first magnetic field generation unit, and the first magnetic detection element is formed on the X1 side, and the fourth magnetic detection element is formed on the X2 side.
  • the second magnetic detection element and the third magnetic detection element are disposed to face the second magnetic field generation unit, and the second magnetic detection element is formed on the X1 side, and the third magnetic detection element is formed on the X2 side.
  • a second wiring pattern is connected between the first magnetic detection element and the third magnetic detection element by a first wiring pattern, and the first wiring pattern is connected to only one input or ground terminal provided.
  • the first magnetic detection element and the second magnetic detection element are connected by a third wiring pattern, and a fourth wiring pattern connected to the first output terminal is directed outward from the third wiring pattern.
  • the sixth wiring pattern is connected between the third magnetic detection element and the fourth magnetic detection element by the fifth wiring pattern, and is connected outward from the fifth wiring pattern to the second output terminal.
  • a seventh wiring pattern connects between the second magnetic detection element and one of two ground or input terminals provided, It is preferable that an eighth wiring pattern is connected between the fourth magnetic detection element and the other ground or two input terminals provided.
  • the respective terminals are arranged in a line, and in the middle of these, only one input or ground terminal is provided.
  • the magnetic detection element is connected to a multilayer film in which an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic material layer, and a free magnetic layer are sequentially stacked, and the wiring pattern. And the electrode layer for making it flow.
  • the electrode layer is disposed above and below the multilayer film, and the wiring pattern is divided into a plurality of layers.
  • the electrode layers are disposed on both sides of the multilayer film, and the wiring patterns are formed in the same layer.
  • the magnetically coupled isolator of the present invention short circuit between wiring patterns can be prevented, and generation of parasitic capacitance can be suppressed.
  • FIG. 1 is a circuit diagram of the entire magnetic coupling type isolator (magnetic coupler) according to the present embodiment
  • FIG. 2 is a bridge circuit diagram including magnetic detection elements R1 to R4
  • FIG. 3 is a magnetic circuit according to the present embodiment.
  • FIG. 4 is a partial plan view of the coupled isolator
  • FIG. 4 is a partial cross sectional view cut in the thickness direction along the line AA shown in FIG. 3 and viewed from the arrow direction
  • FIG. 5 is a magnetic coupling isolator of this embodiment.
  • FIG. 6 is a partial cross-sectional view of a tunnel type magnetic sensing element constituting the In FIG. 3, the insulating layer is not shown, and only the inner edge and the outer edge of the coil 2 are shown, and the magnetic detection elements R1 to R4 located below the coil 2 are shown through.
  • the magnetic coupling type isolator 1 is configured to have a coil 2 as a magnetic field generation unit and magnetic detection elements R1 to R4.
  • the coil 2 and each of the magnetic detection elements R1 to R4 are electrically insulated via an insulating layer (not shown), but they are disposed at intervals enabling magnetic coupling.
  • the magnetic coupling type isolator 1 is defined including the signal processing circuit (IC) such as the differential amplifier 15 and the external output terminal 16 in FIG. 1, the signal processing circuit is not limited to the magnetic coupling type isolator 1.
  • a mode including the coil 2, the magnetic detection elements R 1 to R 4, and the terminals 10 to 14 shown in FIG. 3 without including (IC) can also be defined as the magnetic coupling type isolator 1. In such a case, it is necessary to electrically connect the magnetically coupled isolator 1 to a signal processing circuit (IC) on the electronic device side.
  • the coil 2 has a first magnetic field generating unit 3 and a second magnetic field generating unit 4 extending in a strip shape in the X1-X2 direction.
  • the first magnetic field generating unit 3 and the second magnetic field generating unit 4 are opposed to each other at an interval in the Y1-Y2 direction in the drawing.
  • the first magnetic field generation unit 3 and the second magnetic field generation unit 4 are connected via the connection units 17 and 18.
  • the connection parts 17 and 18 are curved, they do not limit the form.
  • a space 19 is formed surrounded by the first magnetic field generator 3, the second magnetic field generator 4, and the connection parts 17 and 18.
  • the coil 2 has a shape in which a coil piece 6 formed with a width dimension T1 is wound a plurality of times with a predetermined interval T2 therebetween. Therefore, as shown in FIG. 4, in the first magnetic field generation unit 3 and the second magnetic field generation unit 4, a plurality of coil pieces 6 are arranged in parallel in the Y1-Y2 direction.
  • the electrode pads 5 and 6 connected to the coil 2 are provided.
  • the electrode pads 5 and 6 have a circular shape, but the shape is not particularly limited.
  • the coil 2 is connected to the transmission circuit 7 through the electrode pads 5 and 6 as shown in FIG.
  • an external magnetic field is generated from the coil 2.
  • the coil piece 6 constituting the first magnetic field generating unit 3 and the coil piece 6 constituting the second magnetic field generating unit 4 the flowing directions of the current are antiparallel. Therefore, the external magnetic field H1 generated by the coil piece 6 constituting the first magnetic field generating unit 3 and the external magnetic field H2 generated by the coil piece 6 constituting the second magnetic field generating unit 4 are opposite to each other.
  • the magnetic detection elements R1 to R4 are respectively insulated immediately below the first magnetic field generation unit 3 (may be immediately above) and directly below the second magnetic field generation unit (may be immediately above). It is arranged opposite via a layer (not shown). Then, an external magnetic field H3 acting from the first magnetic field generation unit 3 on the first magnetic detection element R1 and the fourth magnetic detection element R4 arranged to face the first magnetic field generation unit 3, a second magnetic field generation unit 4 and The external magnetic field H4 acting from the second magnetic field generation unit 4 is antiparallel to the second magnetic detection element R2 and the third magnetic detection element R3 which are disposed opposite to each other.
  • the first magnetic detection element R1 and the second magnetic detection element R2 are connected in series, and the third magnetic detection element R3 and the fourth magnetic detection element R4 are connected in series.
  • the first magnetic detection element R ⁇ b> 1 and the third magnetic detection element R ⁇ b> 3 are connected to the input terminal (input pad) 10.
  • the number of input terminals 10 is one.
  • the second magnetic detection element R2 and the fourth magnetic detection element R4 are connected to different ground terminals (ground pads) 11 and 12, respectively. Therefore, there are two ground terminals 11 and 12 in this embodiment.
  • a first output terminal (first output pad, OUT1) 13 is connected between the first magnetic detection element R1 and the second magnetic detection element R2, and the third magnetic detection element R3 and A second output terminal (second output pad, OUT2) 14 is connected between the fourth magnetic detection elements R4.
  • the output sides of the first output terminal 13 and the second output terminal 14 are connected to the differential amplifier 15.
  • the output side of the differential amplifier 15 is connected to the external output terminal 16 as shown in FIG.
  • the first magnetic detection element R1 disposed opposite to the first magnetic field generation unit 3 of the coil 2 is disposed on the X1 side, and the fourth magnetic detection element R4 is disposed on the X2 side.
  • the second magnetic detection element R2 disposed opposite to the second magnetic field generating unit 4 of the coil 2 is disposed on the X1 side, and the third magnetic detection element R3 is disposed on the X2 side.
  • the first wiring pattern 20 connects the first magnetic detection element R1 and the third magnetic detection element R3. As shown in FIG. 3, the first wiring pattern 20 is located in the inside of an enclosed area S that linearly encloses between the elements R1 to R4 in a plan view. The first wiring pattern 20 is formed obliquely as viewed from the X1-X2 direction and the Y1-Y2 direction.
  • the second wiring pattern 21 branches from the first wiring pattern 20.
  • the second wiring pattern 21 extends from the inside position of the surrounding area S to the outside of the surrounding area S and is connected to the input terminal 10.
  • the first magnetic detection element R1 and the second magnetic detection element R2 are connected by the third wiring pattern 22.
  • the third wiring pattern 22 is formed extending in the Y1-Y2 direction.
  • the fourth wiring pattern 23 branches from the third wiring pattern 22 toward the outside of the surrounding area S. As shown in FIG. 3, the fourth wiring pattern 23 is connected to the first output terminal 13.
  • the third magnetic detection element R3 and the fourth magnetic detection element R4 are connected by the fifth wiring pattern 24.
  • the fifth wiring pattern 24 is formed extending in the Y1-Y2 direction.
  • the sixth wiring pattern 25 is branched from the fifth wiring pattern 24 toward the outside of the surrounding area S. As shown in FIG. 3, the sixth wiring pattern 25 is connected to the second output terminal 14.
  • the second magnetic detection element R 2 and the first ground terminal 11 are connected by a seventh wiring pattern 26.
  • the fourth magnetic detection element R 4 and the second ground terminal 12 are connected by the eighth wiring pattern 27.
  • the terminals 10 to 14 are arranged in a line at predetermined intervals in the X1-X2 direction. Therefore, wiring (electrical connection) with the signal processing circuit (IC) can be easily performed. And, at the middle position of these terminals 10-14, only one input terminal 10 is disposed.
  • a bridge circuit including a plurality of magnetic detection elements R1 to R4 and connected with the input terminal 10, the ground terminals 11 and 12 and the output terminals 13 and 14 is configured. Then, as shown in FIG. 3, the wiring patterns 20 to 27 constituting the bridge circuit are routed so as not to intersect in plan view.
  • the embodiment shown in FIG. 3 has the following features so that the wiring patterns do not overlap in a plan view.
  • the wiring patterns connected to the ground terminals 11 and 12 and the output terminals (output pads) 13 and 14 are provided on the outside of the surrounding area S.
  • the wiring patterns can be easily and appropriately routed without overlapping portions in plan view.
  • the ground terminal may be provided at the position of the input terminal 10 and the input terminal may be provided at the positions of the ground terminals 11 and 12. In this case, one ground terminal and two input terminals are provided.
  • the magnetic detection elements R1 to R4 are all formed in the same layer configuration. Each of the magnetic detection elements R1 to R4 is formed in the structure shown in FIG.
  • Reference numeral 30 shown in FIG. 5 is a lower electrode layer.
  • the multilayer film 31 is formed on the lower electrode layer 30.
  • the multilayer film 31 is laminated in the order of the antiferromagnetic layer 32, the pinned magnetic layer 33, the insulating barrier layer 34, the free magnetic layer 35, and the protective layer 36 from the bottom.
  • the free magnetic layer 35, the insulating barrier layer 34, the pinned magnetic layer 33, and the antiferromagnetic layer 32 may be stacked in this order from the bottom.
  • the antiferromagnetic layer 32 is, for example, an antiferromagnetic material containing Mn and an element ⁇ (where ⁇ is at least one element of Pt, Pd, Ir, Rh, Ru, and Os). It is formed by
  • a seed layer may be provided between the antiferromagnetic layer 32 and the lower electrode layer 30 to adjust the crystal orientation.
  • the pinned magnetic layer 33 is pinned in the illustrated Y direction by an exchange coupling magnetic field (Hex) generated at the interface with the antiferromagnetic layer 32.
  • Hex exchange coupling magnetic field
  • fixed magnetization refers to a state in which the magnetization does not fluctuate at least with respect to an external magnetic field acting on the magnetic detection elements R1 to R4 from the coil 2.
  • the pinned magnetic layer 33 has a single layer structure of CoFe or the like, but the pinned magnetic layer 33 has a laminated structure, in particular, a laminated ferri structure formed of a magnetic layer / nonmagnetic intermediate layer / magnetic layer. Is preferable because it can increase the magnetization fixing force.
  • the insulating barrier layer 34 is formed on the pinned magnetic layer 33.
  • the insulating barrier layer 34 is formed of, for example, titanium oxide (Ti—O) or magnesium oxide (Mg—O).
  • the free magnetic layer 35 is formed on the insulating barrier layer 34. Although the free magnetic layer 35 has a single-layer structure in FIG. 5, it can also be formed with a laminated structure of magnetic layers.
  • the free magnetic layer 35 is preferably formed of a single layer structure of NiFe or a laminated structure including NiFe.
  • a protective layer 36 formed of a nonmagnetic metal material such as Ta is formed on the free magnetic layer 35.
  • Both end faces 31a and 31a in the X1-X2 direction (X direction) of the multilayer film 31 described above are formed as inclined surfaces so that the width dimension in the X direction gradually narrows from the lower side to the upper side.
  • it may be a vertical surface instead of an inclined surface.
  • the insulating layer 37 is formed on the lower electrode layer 30 and the side end faces 31a and 31a. Furthermore, hard bias layers 38 are formed on the insulating layer 37.
  • the hard bias layer 38 is formed of Co—Pt or Co—Pt—Cr. Between the hard bias layer 38 and the insulating layer 37, an underlayer for adjusting the crystal orientation may be provided.
  • the insulating layer 39 is formed on the hard bias layer 38.
  • the insulating layers 37 and 39 are formed of an existing insulating material such as Al 2 O 3 or SiO 2 .
  • the upper electrode layer 40 is formed on the multilayer film 31 and the insulating layer 39.
  • the magnetic detection elements R1 to R4 in this embodiment are tunnel type magnetic detection elements. Therefore, between the multilayer film 31 and the hard bias layer 38, between the hard bias layer 38 and the upper electrode layer 40, and between the lower electrode layer 30 and the hard bias layer 38 so that the current flowing from the electrode layers 30, 40 to the multilayer film 31 does not split. Are insulated by the insulating layers 37 and 39.
  • the wiring pattern 24 is integrally formed with the lower electrode layer 30.
  • the wiring pattern 24 may be formed separately from the lower electrode layer 30, but even in such a case, the wiring pattern 24 and the lower electrode layer 30 are electrically connected.
  • the wiring pattern 27 is integrally formed with the upper electrode layer 40.
  • the wiring pattern 27 may be formed separately from the upper electrode layer 40, but even in such a case, the wiring pattern 27 and the upper electrode layer 40 are electrically connected.
  • the electrode layers 30 and 40 are formed on the upper and lower sides of the multilayer film 31, the wiring patterns connected to the electrode layers 30 and 40 are formed in a plurality of layers. become.
  • the wiring patterns 20, 21, 26, 27 are formed in the upper stage, and the wiring patterns 22, 23, 24, 25 are formed in the lower stage. Note that the opposite may be applied.
  • the magnetic detection elements R1 to R4 shown in FIG. 3 show the planar shape of the multilayer film 31.
  • the multilayer film 31 is formed in a rectangular shape that is long in the X1-X2 direction and short in the Y1-Y2 direction, but the shape of the multilayer film 31 is not particularly limited.
  • the hard bias layers 38 are formed on both sides of the multilayer film 31 in the X direction (X1-X2 direction), and from the hard bias layers 38 to the free magnetic layer 35 in the X direction.
  • the bias magnetic field bias is supplied. Therefore, the free magnetic layer 35 in the non-magnetic field state (state in which the external magnetic field does not act on the free magnetic layer 35) is appropriately made into a single magnetic domain in the X direction.
  • the free magnetic layer 35 is not fixed in magnetization by the bias magnetic field bias, but is adjusted so as to be changeable in magnetization by the external magnetic field.
  • the magnetizations of the fixed magnetic layers 33 of the magnetic detection elements R1-R4 are fixed in the Y1 direction
  • the first The magnetizations of the free magnetic layer 35 of the magnetic detection element R1 and the fourth magnetic detection element R4 are inclined in the Y1 direction. Therefore, the electrical resistance value of the first magnetic detection element R1 and the fourth magnetic detection element R4 decreases.
  • the magnetizations of the second magnetic detection element R2 and the third magnetic detection element R3 are inclined in the Y2 direction. Therefore, the electrical resistance value of the second magnetic detection element R2 and the third magnetic detection element R3 is increased.
  • the midpoint potential between the first magnetic detection element R1 and the second magnetic detection element R2 and the midpoint potential between the third magnetic detection element R3 and the fourth magnetic detection element R4 fluctuate to obtain a differential output. I can do it.
  • the electric signal can be transmitted from the coil 2 through the magnetic detection elements R1 to R4.
  • the magnetic detection elements R1 to R4 are tunnel type magnetic detection elements, but are not limited to tunnel type magnetic detection elements.
  • a giant magnetic detection element GMR element
  • AMR element anisotropic magnetoresistive element
  • a Hall element can be presented.
  • the portion of the insulating barrier layer 34 in FIG. 5 is formed of a nonmagnetic conductive material such as Cu.
  • Electrode layers can also be provided on both sides of the multilayer film. In such a magnetic detection element, current flows in a direction parallel to the film surface of each layer of the multilayer film.
  • Such a magnetic detection element is called a CIP (current in the plane) -GMR element (or simply a GMR element).
  • a magnetic detection element in the case where the electrode layers 30 and 40 are provided above and below the multilayer film 31 as in a tunnel magnetic detection element, current flows in the direction perpendicular to the film surface of each layer of the multilayer film 31.
  • a magnetic detection element is called a CPP (current perpendicular to the plane) type.
  • the CPP type includes the CPP-GMR element in addition to the tunnel type magnetic detection element.
  • the magnetic detection elements R5 to R8 are the CIP-GMR elements described above.
  • FIG. 6 illustrates the planar shape of the multilayer film of each of the magnetic detection elements R5 to R8.
  • the multilayer film of each of the magnetic detection elements R5 to R8 is formed in a meander shape.
  • the wiring patterns connected to the electrode layers and the branched wiring patterns are all formed in the same layer.
  • the plan view shape of the wiring patterns 20 to 27 is the same as FIG.
  • the hard bias layer 38 is provided in the embodiment shown in FIG. 5, whether or not the hard bias layer 38 is provided is optional. If the hard bias layer 38 is not provided, the bias magnetic field bias is not supplied to the free magnetic layer 35 unlike in FIG. Therefore, in order to increase the magnetic anisotropy of the free magnetic layer 35, the aspect ratio of the planar shape of the multilayer film 31 may be increased to make the magnetization easy axis in the X direction in the figure due to the shape anisotropy. It is preferable because the magnetic sensitivity can be improved.
  • the magnetization direction of the fixed magnetic layer 33 is parallel or antiparallel to the directions of the external magnetic fields H3 and H4, and the direction of the bias magnetic field supplied from the hard bias layer 38 to the free magnetic layer 35 is the direction of the external magnetic fields H3 and H4. It is preferable to be orthogonal to the direction. This can increase the output.
  • the output can be increased by setting all the resistance elements constituting the bridge circuit to the magnetic detection elements R1 to R4. it can.
  • all the magnetic detection elements R1 to R4 are formed in the same layer configuration.
  • “layer configuration” includes not only the stacking order and the material but also the magnetization direction of the pinned magnetic layer 33.
  • the first magnetic detection element R1 and the fourth magnetic detection element R4 are disposed at a position facing the first magnetic field generation unit 3 of the coil 2 and a position facing the second magnetic field generation unit 4
  • the second magnetic detection element R2 and the third magnetic detection element R3 are disposed in Then, as shown in FIG. 3, a bridge circuit is formed by the magnetic detection elements R1 to R4.
  • the overall circuit configuration diagram of the magnetic coupling type isolator (magnetic coupler) of the present embodiment A bridge circuit diagram configured of magnetic detection elements R1 to R4, A partial plan view of the magnetically coupled isolator according to the present embodiment; A partial cross-sectional view cut in the thickness direction along the line AA shown in FIG.
  • a partial cross-sectional view of a tunneling magnetic sensing element constituting the magnetically coupled isolator of the present embodiment A partial plan view of a magnetically coupled isolator according to another embodiment;

Abstract

【課題】 特に、配線パターン同士の短絡を防止でき、また寄生容量の発生を抑制することができる磁気結合型アイソレータを提供することを目的としている。 【解決手段】 入力信号により外部磁界を発生させるためのコイル2と、コイル2と電気的に絶縁されるとともに磁気的結合が可能な位置に配置され、前記外部磁界を検出して電気信号に変換するための磁気検出素子R1~R4と、を有する。前記磁気検出素子R1~R4はブリッジ回路を構成しており、配線パターン同士が、平面視にて交差しないように引き回されている。

Description

磁気結合型アイソレータ
 本発明は、磁界発生部と磁気検出素子とを備えて構成される磁気結合型アイソレータに関する。
 下記特許文献には磁気結合型アイソレータに関する発明が開示されている。磁気結合型アイソレータは、入力信号を、磁気に変換するための磁界発生部と、前記磁界発生部から生じた外部磁界を検出して電気信号に変換するための磁気検出素子とを有して構成される。そして、その電気信号を信号処理回路を介して出力側に伝送して出力を取り出す。
 磁気検出素子としては、ホール素子、AMR素子(異方性磁気検出素子)、あるいは、GMR素子(巨大磁気検出素子)が使用される。
特開昭64-32712号公報 特開昭60-69906号公報 特表2003-526083号公報
 図7は従来における磁気結合型アイソレータの平面図である。ただし、絶縁層は図示していない。また磁界発生部としてのコイル100は、その内縁と外縁のみを図示し、コイル100の真下に配置される4つの磁気検出素子101~104を透視して示している。
 コイル100は螺旋状に巻回して形成され、内縁側に空間100aが設けられている。コイル100にはY1側に位置する第1磁界発生部100bと、Y2側に位置する第2磁界発生部100cがある。第1磁界発生部100bの下側には、図示しない絶縁層を介して2つの磁気検出素子101,104が配置されている。また、第2磁界発生部100cの下側には、図示しない絶縁層を介して2つの磁気検出素子102,103が配置されている。
 前記第1磁界発生部100bから磁気検出素子101,104に作用する外部磁界の方向と、前記第2磁界発生部100cから磁気検出素子102,103に作用する外部磁界の方向は、夫々異なっている(反平行である)。
 これら4つの磁気検出素子101~104はブリッジ回路を構成している。入力端子105、グランド端子106,107及び出力端子108,109に接続される配線パターンや各素子間を接続する配線パターンが図7に示すように引き回されている。
 配線パターンのうち、直列接続される磁気検出素子101,102(103,104)同士を接続する配線パターン110,111は、コイル100の空間100aの位置で、絶縁層(図示しない)を介して交差している。
 しかしながら、配線パターン110,111間に介在する絶縁層は、コイル100と磁気検出素子101~104間を磁気的に結合するためにさほど厚く形成できず、交差する配線パターン110,111間の絶縁性に不安があった。また、交差する配線パターン110,111間に寄生容量も発生した。したがって、安定した電気特性が得られない問題があった。
 そこで本発明は上記従来課題を解決するためのものであり、特に、配線パターン同士の短絡を防止でき、また寄生容量の発生を抑制することができる磁気結合型アイソレータを提供することを目的としている。
 本発明における磁気結合型アイソレータは、入力信号により外部磁界を発生させるための磁界発生部と、前記磁界発生部と電気的に絶縁されるとともに磁気的結合が可能な位置に配置され、前記外部磁界を検出して電気信号に変換するための磁気検出素子と、を有し、
 前記磁気検出素子を含む複数の抵抗素子を備え、入力端子、グランド端子、及び出力端子が接続されて成るブリッジ回路が構成されており、
 前記ブリッジ回路を形成する配線パターン同士は、平面視にて重なる部分がないように引き回されていることを特徴とするものである。
 本発明によれば、配線パターン同士の短絡を防止でき、また寄生容量の発生を抑制することができる。
 本発明では、入力端子とグランド端子のうち一方が1つだけ設けられ、他方が2つ設けられており、
 前記ブリッジ回路の各直列回路を構成する一方の前記素子間のみが、前記ブリッジ回路を構成する各素子を囲んだ囲み領域内にて配線パターンにより接続され、この配線パターンから分岐した配線パターンが前記囲み領域の外方にて、1つだけ設けられた前記端子に接続されており、
 2つ設けられた前記端子及び出力端子に接続される配線パターンは、前記囲み領域の外方に設けられることが好ましい。これにより、簡単かつ適切に、配線パターン同士を、平面視にて重なる部分がないように引き回すことが出来る。
 具体的には、前記磁界発生部は、前記外部磁界が互いに反平行に発生する第1磁界発生部と第2磁界発生部とを有して構成され、前記第1磁界発生部及び前記第2磁界発生部は共にX1-X2方向に向けて延出形成されているとともに、前記第1磁界発生部及び前記第2磁界発生部は、X1-X2方向と直交するY1-Y2方向にて対向しており、
 前記磁気検出素子は、ブリッジ回路を構成する第1磁気検出素子、第2磁気検出素子、第3磁気検出素子及び第4磁気検出素子を備え、このうち、前記第1磁気検出素子と前記第2磁気検出素子とが直列接続され、前記第3磁気検出素子と前記第4磁気検出素子とが直列接続されており、
 前記第1磁気検出素子と前記第4磁気検出素子とが前記第1磁界発生部と対向配置されるとともに、前記第1磁気検出素子はX1側に、前記第4磁気検出素子はX2側に形成され、
 前記第2磁気検出素子と前記第3磁気検出素子とが前記第2磁界発生部と対向配置されるとともに、前記第2磁気検出素子はX1側に、前記第3磁気検出素子はX2側に形成され、
 前記第1磁気検出素子と前記第3磁気検出素子間が第1配線パターンで接続されており、この第1配線パターンから、1つだけ設けられた入力あるいはグランド端子に接続される第2配線パターンが分岐しており、
 前記第1磁気検出素子と前記第2磁気検出素子間が第3配線パターンで接続されており、この第3配線パターンから外方に向けて、第1出力端子に接続される第4配線パターンが分岐しており、
 前記第3磁気検出素子と前記第4磁気検出素子間が前記第5配線パターンで接続されており、この第5配線パターンから外方に向けて、第2出力端子に接続される第6配線パターンが分岐しており、
 前記第2磁気検出素子と2つ設けられたグランドあるいは入力端子の一方の端子間が第7配線パターンで接続されており、
 前記第4磁気検出素子と2つ設けられたグランドあるいは入力端子の他方の端子間が第8配線パターンで接続されていることが好ましい。
 また本発明では、各端子は一列に配列されており、このうち真ん中に、1つだけ設けられた入力あるいはグランド端子が配置されていることが好ましい。
 また本発明では、前記磁気検出素子は、反強磁性層、固定磁性層、非磁性材料層、及びフリー磁性層が順に積層された多層膜と、前記配線パターンと接続され、前記多層膜に電流を流すための電極層とを有して構成されることが好ましい。
 また本発明では、前記電極層は前記多層膜の上下に配置されており、前記配線パターンは複数の階層に分けて形成されている。あるいは、前記電極層は前記多層膜の両側に配置されており、前記配線パターンは同じ階層に形成されている。
 本発明の磁気結合型アイソレータによれば、配線パターン同士の短絡を防止でき、また寄生容量の発生を抑制することができる。
 図1は、本実施形態の磁気結合型アイソレータ(磁気カプラ)の全体の回路構成図、図2は、磁気検出素子R1~R4にて構成されるブリッジ回路図、図3は本実施形態における磁気結合型アイソレータの部分平面図、図4は、図3に示すA-A線に沿って厚さ方向に切断し矢印方向から見た部分断面図、図5は、本実施形態の磁気結合型アイソレータを構成するトンネル型磁気検出素子の部分断面図、である。なお図3では、絶縁層を図示せず、またコイル2の内縁及び外縁のみを示し、コイル2下に位置する磁気検出素子R1~R4を透視して示した。
 図1に示すように磁気結合型アイソレータ1は、磁界発生部としてのコイル2と、磁気検出素子R1~R4とを有して構成される。コイル2と各磁気検出素子R1~R4は図示しない絶縁層を介して電気的に絶縁されているが、磁気的結合が可能な間隔を空けて配置される。
 ここで図1では、差動増幅器15や外部出力端子16等の信号処理回路(IC)までも含めて、磁気結合型アイソレータ1を定義しているが、磁気結合型アイソレータ1に前記信号処理回路(IC)を含めず、コイル2、磁気検出素子R1~R4及び、図3に示す各端子10~14を備える形態を、磁気結合型アイソレータ1と定義することもできる。かかる場合は、磁気結合型アイソレータ1を、電子機器側の信号処理回路(IC)と電気的に繋ぐことが必要になる。
 コイル2は図3のように、X1-X2方向に帯状に延びる第1磁界発生部3と第2磁界発生部4を有する。第1磁界発生部3と第2磁界発生部4は図示Y1-Y2方向に間隔を空けて対向している。第1磁界発生部3と第2磁界発生部4は連結部17,18を介して連結されている。連結部17,18は、湾曲状となっているが形態を限定するものではない。第1磁界発生部3、第2磁界発生部4、及び連結部17,18に囲まれて空間部19が形成されている。
 図4に示すようにコイル2は、幅寸法T1で形成されたコイル片6が所定の間隔T2を空けて、複数回、巻回形成された形状である。よって、図4に示すように、第1磁界発生部3及び第2磁界発生部4は、複数本のコイル片6がY1-Y2方向に並設された構成となっている。
 コイル2に接続される2つの電極パッド5,6が設けられている。電極パッド5,6は円形状であるが特に形状を限定するものではない。さらにコイル2は電極パッド5,6を介して図1に示すように送信回路7に接続されている。送信回路7から入力信号に基づく電流が流れると、コイル2から外部磁界が発生する。図4に示すように第1磁界発生部3を構成するコイル片6、及び第2磁界発生部4を構成するコイル片6では電流の流れる向きが反平行である。よって、第1磁界発生部3を構成するコイル片6により発生する外部磁界H1と、第2磁界発生部4を構成するコイル片6により発生する外部磁界H2は逆向きである。図3、図4に示すように第1磁界発生部3の真下(真上でもよい)、及び第2磁界発生部の真下(真上でもよい)には、夫々磁気検出素子R1~R4が絶縁層(図示せず)を介して対向配置されている。そして、第1磁界発生部3と対向配置された第1磁気検出素子R1及び第4磁気検出素子R4に、前記第1磁界発生部3より作用する外部磁界H3と、第2磁界発生部4と対向配置された第2磁気検出素子R2及び第3磁気検出素子R3に、前記第2磁界発生部4より作用する外部磁界H4は反平行である。
 図2に示すように第1磁気検出素子R1と第2磁気検出素子R2は直列接続され、第3磁気検出素子R3と第4磁気検出素子R4は直列接続されている。
 図2に示すように第1磁気検出素子R1と第3磁気検出素子R3は入力端子(入力パッド)10に接続されている。この実施形態では入力端子10は1つである。
 また第2磁気検出素子R2と第4磁気検出素子R4は夫々、別々のグランド端子(グランドパッド)11,12に接続されている。よって、この実施形態ではグランド端子11,12は2つある。
 図2に示すように、第1磁気検出素子R1と第2磁気検出素子R2の間には第1出力端子(第1出力パッド,OUT1)13が接続されており、第3磁気検出素子R3と第4磁気検出素子R4の間には第2出力端子(第2出力パッド,OUT2)14が接続されている。
 図1,図2に示すように、第1出力端子13及び第2出力端子14の出力側が差動増幅器15に接続されている。
 そして図1に示すように差動増幅器15の出力側は、外部出力端子16に接続されている。
 図3に示すように、コイル2の第1磁界発生部3と対向配置される第1磁気検出素子R1はX1側に、第4磁気検出素子R4はX2側に配置される。
 また図3に示すように、コイル2の第2磁界発生部4と対向配置される第2磁気検出素子R2はX1側に、第3磁気検出素子R3はX2側に配置される。
 図3に示すように、第1磁気検出素子R1と第3磁気検出素子R3間が第1配線パターン20にて接続される。図3に示すように、第1配線パターン20は、平面視にて、各素子R1~R4間を直線的に囲んだ囲み領域Sの内部に位置している。第1配線パターン20はX1-X2方向及びY1-Y2方向から見て斜めに傾いて形成されている。
 図3に示すように、第1配線パターン20から第2配線パターン21が分岐している。第2配線パターン21は囲み領域Sの内部位置から、前記囲み領域Sの外方へ延出し、入力端子10に接続されている。
 また図3に示すように第1磁気検出素子R1と第2磁気検出素子R2間が第3配線パターン22により接続される。第3配線パターン22はY1-Y2方向に延出して形成されている。さらに、第3配線パターン22から囲み領域Sの外方に向けて第4配線パターン23が分岐している。図3に示すように第4配線パターン23は第1出力端子13に接続される。
 また図3に示すように、第3磁気検出素子R3と第4磁気検出素子R4間が第5配線パターン24により接続される。第5配線パターン24はY1-Y2方向に延出して形成されている。さらに、第5配線パターン24から囲み領域Sの外方に向けて第6配線パターン25が分岐している。図3に示すように第6配線パターン25は第2出力端子14に接続される。
 さらに図3に示すように、第2磁気検出素子R2と第1グランド端子11間が第7配線パターン26で接続される。また図3に示すように、第4磁気検出素子R4と第2グランド端子12間が第8配線パターン27により接続される。
 図3に示すように各端子10~14はX1-X2方向に所定の間隔を空けて一列に配列されている。よって信号処理回路(IC)側との配線(電気的接続)を簡単に行える。そして、これら端子10~14の真ん中の位置に、1つだけ設けられた入力端子10が配置されている。
 本実施形態では、複数の磁気検出素子R1~R4を備え、入力端子10、グランド端子11,12及び出力端子13,14が接続されて成るブリッジ回路が構成されている。そして、図3に示すように、ブリッジ回路を構成する配線パターン20~27同士が、平面視にて交差しないように引き回されている。
 これによって、配線パターン同士の短絡を防止でき、また寄生容量の発生を抑制することができる。
 図3に示す実施形態は、配線パターン同士が平面視にて重なる部分がないように、次のような特徴を有している。
 図3に示す実施形態では、入力端子(入力パッド)10が1つだけ設けられ、グランド端子(グランドパッド)11、12他方が2つ設けられている。
 そして、ブリッジ回路の各直列回路を構成する一方の磁気検出素子R1,R3間のみが、ブリッジ回路を構成する各素子を囲んだ囲み領域S内にて配線パターン20により接続され、この配線パターン20から分岐した配線パターン21が前記囲み領域Sの外方にて、入力端子10に接続されている。
 さらにグランド端子11,12及び出力端子(出力パッド)13,14に接続される各配線パターンは、前記囲み領域Sの外方に設けられる。
 これにより、簡単かつ適切に、配線パターン同士を、平面視にて重なる部分がないように引き回すことが出来る。
 なお図3の実施形態に代えて、入力端子10の位置にグランド端子を、グランド端子11,12の位置に入力端子を設ける形態でもよい。かかる場合、グランド端子が1つ、入力端子が2つとなる。
 各磁気検出素子R1~R4は全て同じ層構成で形成されている。各磁気検出素子R1~R4は図5に示す構造で形成される。
 図5に示す符号30は下部電極層である。下部電極層30上に多層膜31が形成される。多層膜31は下から反強磁性層32、固定磁性層33、絶縁障壁層34、フリー磁性層35、保護層36の順に積層される。なお下からフリー磁性層35、絶縁障壁層34、固定磁性層33及び反強磁性層32の順に積層されてもよい。
 反強磁性層32は、例えば、元素α(ただしαは、Pt,Pd,Ir,Rh,Ru,Osのうち1種または2種以上の元素である)とMnとを含有する反強磁性材料で形成される。
 反強磁性層32と、下部電極層30の間に、結晶配向を整えるためのシード層が設けられていてもよい。
 固定磁性層33は、反強磁性層32との界面で生じる交換結合磁界(Hex)により図示Y方向に磁化固定されている。ここで磁化固定とは、少なくとも、コイル2から磁気検出素子R1~R4に作用する外部磁界に対して磁化変動しない状態を指す。
 図5では、固定磁性層33は、CoFe等の単層構造であるが、積層構造、特に磁性層/非磁性中間層/磁性層で形成された積層フェリ構造であることが、固定磁性層33の磁化固定力を大きくでき好適である。
 固定磁性層33上には絶縁障壁層34が形成されている。絶縁障壁層34は、例えば、酸化チタン(Ti-O)や、酸化マグネシウム(Mg-O)で形成される。
 絶縁障壁層34上には、フリー磁性層35が形成されている。図5ではフリー磁性層35は単層構造であるが、磁性層の積層構造で形成することも出来る。フリー磁性層35は、NiFeの単層構造か、NiFeを含む積層構造で形成されることが好適である。
 前記フリー磁性層35上にはTa等の非磁性金属材料で形成された保護層36が形成されている。
 上記した多層膜31のX1-X2方向(X方向)の両側端面31a,31aは、下側から上側に向けて徐々にX方向への幅寸法が狭くなるように傾斜面で形成される。ただし傾斜面でなく垂直面であってもよい。
 図5に示すように、下部電極層30上から各側端面31a,31a上にかけて絶縁層37が形成される。さらに絶縁層37上にはハードバイアス層38,38が形成される。ハードバイアス層38は、Co-Pt、あるいは、Co-Pt-Crで形成される。ハードバイアス層38と絶縁層37との間には結晶配向性を整える下地層が設けられていてもよい。
 図5に示すように、ハードバイアス層38上には絶縁層39が形成される。絶縁層37,39はAl23やSiO2等の既存の絶縁材料で形成される。
 図5に示すように、多層膜31上から絶縁層39上にかけて上部電極層40が形成される。
 この実施形態における磁気検出素子R1~R4は、トンネル型磁気検出素子である。よって電極層30,40から多層膜31に流れる電流が分流しないように、多層膜31とハードバイアス層38間、ハードバイアス層38と上部電極層40間、下部電極層30とハードバイアス層38間が絶縁層37,39にて絶縁されている。
 図4に示すように、配線パターン24は下部電極層30と一体的に形成されている。配線パターン24は下部電極層30と別に形成されてもよいが、かかる場合でも配線パターン24と下部電極層30とは電気的に接続される。
 また図4に示すように、配線パターン27が上部電極層40と一体的に形成されている。配線パターン27は上部電極層40と別に形成されてもよいが、かかる場合でも配線パターン27と上部電極層40とは電気的に接続される。
 このようにトンネル型磁気検出素子では、多層膜31の上下に電極層30,40が形成されるため、電極層30,40に接続される配線パターンは、複数の階層に分けて形成されることになる。
 図3の実施形態では、配線パターン20,21,26,27が上段に形成され、配線パターン22,23,24,25が下段に形成される。なお、その逆であってもよい。
 図3に示す各磁気検出素子R1~R4は、多層膜31の平面形状を示している。図3に示すように、多層膜31はX1-X2方向に長く、Y1-Y2方向に短い矩形状で形成されるが、多層膜31の形状は特に限定されるものではない。
 本実施形態では、図5に示すように、多層膜31のX方向(X1-X2方向)の両側にハードバイアス層38が形成されており、ハードバイアス層38からフリー磁性層35にX方向へのバイアス磁界biasが供給されている。よって無磁場状態(外部磁界がフリー磁性層35に作用していない状態)でのフリー磁性層35はX方向に適切に単磁区化されている。なお、フリー磁性層35はバイアス磁界biasによっても磁化固定されず外部磁界により磁化変動可能に調整されている。
 例えば各磁気検出素子R1-R4の固定磁性層33の磁化がY1方向に固定されているとして、図4に示す夫々の外部磁界H3,H4が各磁気検出素子R1~R4に侵入すると、第1磁気検出素子R1及び第4磁気検出素子R4のフリー磁性層35の磁化はY1方向に向けて傾く。よって第1磁気検出素子R1及び第4磁気検出素子R4の電気抵抗値は小さくなる。一方、第2磁気検出素子R2及び第3磁気検出素子R3の磁化はY2方向に向けて傾く。よって第2磁気検出素子R2及び第3磁気検出素子R3の電気抵抗値は大きくなる。これにより、第1磁気検出素子R1と第2磁気検出素子R2間の中点電位、及び第3磁気検出素子R3と第4磁気検出素子R4間の中点電位が変動し、差動出力を得ることが出来る。
 このように磁気結合型アイソレータ1では、コイル2から磁気検出素子R1~R4を経て、電気信号の伝達を行うことが出来る。
 上記した実施形態では磁気検出素子R1~R4はトンネル型磁気検出素子であるが、トンネル型磁気検出素子に限定されるものでない。例えば巨大磁気検出素子(GMR素子)や、異方性磁気抵抗効果素子(AMR素子)、ホール素子を提示できる。GMR素子では図5の絶縁障壁層34の部分がCu等の非磁性導電材料で形成される。また電極層を多層膜の両側に設けることが出来る。このような磁気検出素子は、電流が多層膜の各層の膜面に対して平行な方向に流れる。このような磁気検出素子は、CIP(current in the plane)-GMR素子(あるいは単なるGMR素子)と呼ばれる。
 一方、トンネル型磁気検出素子のように多層膜31の上下に電極層30,40を設けた形態では、電流が多層膜31の各層の膜面に対し垂直方向に流れる。このような磁気検出素子は、CPP(current perpendicular to the plane)型と呼ばれる。CPP型には、トンネル型磁気検出素子のほかにCPP-GMR素子もある。
 図6に示す他の実施形態では、磁気検出素子R5~R8が、上記したCIP-GMR素子である。図6には、各磁気検出素子R5~R8の多層膜の平面形状が図示されている。図6に示すように、各磁気検出素子R5~R8の多層膜はミアンダ形状で形成される。CIP-GMR素子では、上記したように電極層が多層膜の両側に設けられることから、電極層に接続される配線パターン、及び分岐した配線パターンは全て同じ階層に形成される。なお配線パターン20~27の平面視形状は図3と同じである。
 また図5に示す実施形態では、ハードバイアス層38が設けられているが、ハードバイアス層38を設けるか否かは任意である。ハードバイアス層38を設けない場合、図5と違って、フリー磁性層35にバイアス磁界biasが供給されない。したがって、フリー磁性層35の磁気異方性を大きくするには、多層膜31の平面形状のアスペクト比を大きくして形状異方性により図示X方向に磁化容易軸を持たせるようにすることが磁気感度を向上でき好適である。
 また、固定磁性層33の磁化方向は外部磁界H3,H4の方向と平行あるいは反平行であり、ハードバイアス層38からフリー磁性層35に供給されるバイアス磁界の方向は前記外部磁界H3,H4の方向と直交していることが好ましい。これにより出力を大きくできる。
 また、例えば、第1磁気検出素子R1と第4磁気検出素子R4を固定抵抗素子にすることも出来るが、ブリッジ回路を構成する抵抗素子を全て磁気検出素子R1~R4とすることで出力を大きくできる。
 本実施形態では、全ての磁気検出素子R1~R4が、同じ層構成で形成される。ここで「層構成」とは積層順や材質のみならず、固定磁性層33の磁化方向も含まれる。そして、図3に示すように、コイル2の第1磁界発生部3と対向する位置に第1磁気検出素子R1及び第4磁気検出素子R4を配置し、第2磁界発生部4と対向する位置に第2磁気検出素子R2及び第3磁気検出素子R3を配置している。そして図3のように配線して、磁気検出素子R1~R4によりブリッジ回路を構成している。本実施形態では、全ての磁気検出素子R1~R4が、同じ層構成で形成されるから、全ての磁気検出素子R1~R4の抵抗値や温度特性を一致させやすく、また各磁気検出素子R1~R4の形成も容易且つ適切に行える。
本実施形態の磁気結合型アイソレータ(磁気カプラ)の全体の回路構成図、 磁気検出素子R1~R4にて構成されるブリッジ回路図、 本実施形態における磁気結合型アイソレータの部分平面図、 図3に示すA-A線に沿って厚さ方向に切断し矢印方向から見た部分断面図、 本実施形態の磁気結合型アイソレータを構成するトンネル型磁気検出素子の部分断面図、 他の実施形態における磁気結合型アイソレータの部分平面図、 従来における磁気結合型アイソレータの部分平面図、
1 磁気結合型アイソレータ
2 コイル
3 第1磁界発生部
4 第2磁界発生部
6 コイル片
7 送信回路
10 入力端子
11、12 グランド端子
13、14 出力端子
15 差動増幅器
16 外部出力端子
20~27 配線パターン
30 下部電極層
31 多層膜
32 反強磁性層
33 固定磁性層
34 絶縁障壁層
35 フリー磁性層
37、39 絶縁層
38 ハードバイアス層
40 上部電極層
H1~H4 外部磁界
R1~R8 磁気検出素子

Claims (7)

  1.  入力信号により外部磁界を発生させるための磁界発生部と、前記磁界発生部と電気的に絶縁されるとともに磁気的結合が可能な位置に配置され、前記外部磁界を検出して電気信号に変換するための磁気検出素子と、を有し、
     前記磁気検出素子を含む複数の抵抗素子を備え、入力端子、グランド端子、及び出力端子が接続されて成るブリッジ回路が構成されており、
     前記ブリッジ回路を形成する配線パターン同士は、平面視にて重なる部分がないように引き回されていることを特徴とする磁気結合型アイソレータ。
  2.  入力端子とグランド端子のうち一方が1つだけ設けられ、他方が2つ設けられており、前記ブリッジ回路の各直列回路を構成する一方の前記素子間のみが、前記ブリッジ回路を構成する各抵抗素子を囲んだ囲み領域内にて配線パターンにより接続され、この配線パターンから分岐した配線パターンが前記囲み領域の外方にて、1つだけ設けられた前記端子に接続されており、
     2つ設けられた前記端子及び出力端子に接続される配線パターンは、前記囲み領域の外方に設けられる請求項1記載の磁気結合型アイソレータ。
  3.  前記磁界発生部は、前記外部磁界が互いに反平行に発生する第1磁界発生部と第2磁界発生部とを有して構成され、前記第1磁界発生部及び前記第2磁界発生部は共にX1-X2方向に向けて延出形成されているとともに、前記第1磁界発生部及び前記第2磁界発生部は、X1-X2方向と直交するY1-Y2方向にて対向しており、
     前記磁気検出素子は、ブリッジ回路を構成する第1磁気検出素子、第2磁気検出素子、第3磁気検出素子及び第4磁気検出素子を備え、このうち、前記第1磁気検出素子と前記第2磁気検出素子とが直列接続され、前記第3磁気検出素子と前記第4磁気検出素子とが直列接続されており、
     前記第1磁気検出素子と前記第4磁気検出素子とが前記第1磁界発生部と対向配置されるとともに、前記第1磁気検出素子はX1側に、前記第4磁気検出素子はX2側に形成され、
     前記第2磁気検出素子と前記第3磁気検出素子とが前記第2磁界発生部と対向配置されるとともに、前記第2磁気検出素子はX1側に、前記第3磁気検出素子はX2側に形成され、
     前記第1磁気検出素子と前記第3磁気検出素子間が第1配線パターンで接続されており、この第1配線パターンから、1つだけ設けられた入力あるいはグランド端子に接続される第2配線パターンが分岐しており、
     前記第1磁気検出素子と前記第2磁気検出素子間が第3配線パターンで接続されており、この第3配線パターンから外方に向けて、第1出力端子に接続される第4配線パターンが分岐しており、
     前記第3磁気検出素子と前記第4磁気検出素子間が前記第5配線パターンで接続されており、この第5配線パターンから外方に向けて、第2出力端子に接続される第6配線パターンが分岐しており、
     前記第2磁気検出素子と2つ設けられたグランドあるいは入力端子の一方の端子間が第7配線パターンで接続されており、
     前記第4磁気検出素子と2つ設けられたグランドあるいは入力端子の他方の端子間が第8配線パターンで接続されている請求項1又は2に記載の磁気結合型アイソレータ。
  4.  各端子は一列に配列されており、このうち真ん中に、1つだけ設けられた入力あるいはグランド端子が配置されている請求項2又は3に記載の磁気結合型アイソレータ。
  5.  前記磁気検出素子は、反強磁性層、固定磁性層、非磁性材料層、及びフリー磁性層が順に積層された多層膜と、前記配線パターンと接続され、前記多層膜に電流を流すための電極層とを有して構成される請求項1ないし4のいずれかに記載の磁気結合型アイソレータ。
  6.  前記電極層は前記多層膜の上下に配置されており、前記配線パターンは複数の階層に分けて形成されている請求項1ないし5のいずれかに記載の磁気結合型アイソレータ。
  7.  前記電極層は前記多層膜の両側に配置されており、前記配線パターンは同じ階層に形成されている請求項1ないし5のいずれかに記載の磁気結合型アイソレータ。
PCT/JP2009/066358 2008-09-22 2009-09-18 磁気結合型アイソレータ WO2010032824A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008243018 2008-09-22
JP2008-243018 2008-09-22

Publications (1)

Publication Number Publication Date
WO2010032824A1 true WO2010032824A1 (ja) 2010-03-25

Family

ID=42039645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066358 WO2010032824A1 (ja) 2008-09-22 2009-09-18 磁気結合型アイソレータ

Country Status (1)

Country Link
WO (1) WO2010032824A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001521160A (ja) * 1997-10-23 2001-11-06 アナログ デバイセス インコーポレーテッド ファラデー遮蔽mrまたはgmr受信要素を用いる磁気結合信号アイソレータ
JP2003519780A (ja) * 1999-12-31 2003-06-24 ハネウェル・インコーポレーテッド 磁気抵抗信号絶縁装置
JP2005515667A (ja) * 2002-01-15 2005-05-26 ハネウェル・インターナショナル・インコーポレーテッド 信号アイソレータのための集積磁界ストラップ
US20060061350A1 (en) * 2004-09-17 2006-03-23 Nve Corporation Inverted magnetic isolator
JP2007189039A (ja) * 2006-01-13 2007-07-26 Alps Electric Co Ltd トンネル型磁気検出素子及びその製造方法
WO2008050790A1 (fr) * 2006-10-24 2008-05-02 Alps Electric Co., Ltd. Elément de détection magnétique à tunnel et procédé de fabrication associé
WO2008111336A1 (ja) * 2007-03-12 2008-09-18 Omron Corporation 磁気カプラ素子および磁気結合型アイソレータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001521160A (ja) * 1997-10-23 2001-11-06 アナログ デバイセス インコーポレーテッド ファラデー遮蔽mrまたはgmr受信要素を用いる磁気結合信号アイソレータ
JP2003519780A (ja) * 1999-12-31 2003-06-24 ハネウェル・インコーポレーテッド 磁気抵抗信号絶縁装置
JP2005515667A (ja) * 2002-01-15 2005-05-26 ハネウェル・インターナショナル・インコーポレーテッド 信号アイソレータのための集積磁界ストラップ
US20060061350A1 (en) * 2004-09-17 2006-03-23 Nve Corporation Inverted magnetic isolator
JP2007189039A (ja) * 2006-01-13 2007-07-26 Alps Electric Co Ltd トンネル型磁気検出素子及びその製造方法
WO2008050790A1 (fr) * 2006-10-24 2008-05-02 Alps Electric Co., Ltd. Elément de détection magnétique à tunnel et procédé de fabrication associé
WO2008111336A1 (ja) * 2007-03-12 2008-09-18 Omron Corporation 磁気カプラ素子および磁気結合型アイソレータ

Similar Documents

Publication Publication Date Title
JP6525335B2 (ja) シングルチップ・ブリッジ型磁場センサ
JP5066579B2 (ja) 磁気センサ及び磁気センサモジュール
JP4930627B2 (ja) 磁気センサ
WO2011068146A1 (ja) 磁気センサ
WO2011089978A1 (ja) 磁気センサ
JP5843079B2 (ja) 磁気センサおよび磁気センサシステム
JP2005236134A (ja) 磁気検出素子およびその形成方法ならびに磁気センサ、電流計
JP2017072375A (ja) 磁気センサ
JP5171933B2 (ja) 磁気センサ
JP5413866B2 (ja) 磁気検出素子を備えた電流センサ
JP2010258372A (ja) 磁気結合型アイソレータ
JP5265689B2 (ja) 磁気結合型アイソレータ
JP6525314B2 (ja) 磁界検出装置
JP2008209224A (ja) 磁気センサ
JP5540326B2 (ja) 電流センサ
WO2010032823A1 (ja) 磁気結合型アイソレータ
JP2010258981A (ja) 磁気結合型アイソレータ
WO2010032824A1 (ja) 磁気結合型アイソレータ
WO2015125699A1 (ja) 磁気センサ
JP2018096895A (ja) 磁場検出装置
JP2010258980A (ja) 磁気結合型アイソレータ
JP2010258979A (ja) 磁気結合型アイソレータ
JP5184380B2 (ja) 磁気検出装置
JP2012105060A (ja) 磁気アイソレータ
JP2019056685A (ja) 磁気センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP