WO2010032823A1 - 磁気結合型アイソレータ - Google Patents

磁気結合型アイソレータ Download PDF

Info

Publication number
WO2010032823A1
WO2010032823A1 PCT/JP2009/066357 JP2009066357W WO2010032823A1 WO 2010032823 A1 WO2010032823 A1 WO 2010032823A1 JP 2009066357 W JP2009066357 W JP 2009066357W WO 2010032823 A1 WO2010032823 A1 WO 2010032823A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
layer
magnetoresistive
magnetic
multilayer film
Prior art date
Application number
PCT/JP2009/066357
Other languages
English (en)
French (fr)
Inventor
秀和 小林
正路 斎藤
彰 高橋
洋介 井出
義弘 西山
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2010032823A1 publication Critical patent/WO2010032823A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/38One-way transmission networks, i.e. unilines

Definitions

  • the present invention particularly relates to a magnetically coupled isolator excellent in high-speed response.
  • the magnetically coupled isolator has a magnetic field generating unit for converting an input signal into magnetism, and a magnetoresistive effect element for detecting an external magnetic field generated from the magnetic field generating unit and converting it into an electric signal. Composed. Then, the electric signal is transmitted to the output side via the signal processing circuit to take out the output.
  • magnetoresistive effect element a Hall element, an AMR element (anisotropic magnetoresistive effect element), or a GMR element (giant magnetoresistive effect element) is used.
  • AMR element anisotropic magnetoresistive effect element
  • GMR element giant magnetoresistive effect element
  • the present invention is intended to solve the above-described conventional problems, and in particular, an object thereof is to provide a magnetically coupled isolator excellent in high-speed response.
  • the magnetically coupled isolator according to the present invention is arranged at a position where a magnetic field generating unit for generating an external magnetic field by an input signal is electrically insulated from the magnetic field generating unit and capable of being magnetically coupled.
  • a magnetoresistive effect element for detecting and converting into an electric signal includes an antiferromagnetic layer, a pinned magnetic layer whose magnetization direction is fixed, a nonmagnetic material layer, and a free magnetic layer capable of changing magnetization, which are stacked in order, and above and below the multilayer film.
  • An electrode layer disposed, and A hard bias layer for supplying a bias magnetic field to the free magnetic layer is disposed on both sides of the multilayer film.
  • the above configuration can reduce the hysteresis in the RH curve of the magnetoresistive element.
  • hysteresis can be eliminated. Therefore, it is possible to effectively follow the change in magnetization of the magnetoresistive effect element with respect to the change in the external magnetic field from the magnetic field generation unit due to the high frequency input signal. Therefore, according to the magnetic coupling type isolator of the present invention, the high-speed response is superior to the conventional one.
  • the magnetoresistive effect element is preferably a tunnel type magnetoresistive effect element in which the nonmagnetic material layer is formed of an insulating barrier layer. Even when the aspect ratio of the planar shape of the multilayer film is reduced, a high electric resistance value can be provided, and the resistance change rate can be greatly increased. Therefore, the output can be increased, the space for forming the magnetoresistive effect element can be reduced, and the miniaturization of the magnetically coupled isolator can be promoted.
  • the magnetization direction of the pinned magnetic layer coincides with the direction of the external magnetic field, and the direction of the bias magnetic field is orthogonal to the direction of the external magnetic field.
  • the magnetic field generation unit includes a first magnetic field generation unit and a second magnetic field generation unit that generate external magnetic fields in directions opposite to each other.
  • the magnetoresistive effect element disposed opposite to the first magnetic field generation unit and the magnetoresistive effect element disposed opposite to the second magnetic field generation unit constitute a bridge circuit with a simple configuration. And it is preferable because the output can be increased.
  • FIG. 1 is an overall circuit configuration diagram of a magnetically coupled isolator (magnetic coupler) according to the present embodiment
  • FIG. 2 is a bridge circuit diagram including magnetoresistive effect elements R1 to R4
  • FIG. 4 is a partial plan view of the magnetically coupled isolator
  • FIG. 4 is a partial cross-sectional view taken along the line AA shown in FIG. 3 and viewed from the direction of the arrow
  • FIG. It is a fragmentary sectional view of the tunnel type magnetoresistive effect element which comprises an isolator.
  • the insulating layer is not shown, only the inner edge and the outer edge of the coil 2 are shown, and the magnetoresistive elements R1 to R4 located under the coil 2 are shown through.
  • the magnetically coupled isolator 1 includes a coil 2 as a magnetic field generator and magnetoresistive elements R1 to R4.
  • the coil 2 and each of the magnetoresistive effect elements R1 to R4 are electrically insulated via an insulating layer (not shown), but are arranged with an interval capable of magnetic coupling.
  • the magnetic coupling type isolator 1 including the signal processing circuit (IC) such as the differential amplifier 15 and the external output terminal 16 is defined, but the signal processing circuit is included in the magnetic coupling type isolator 1.
  • a configuration including the coil 2, the magnetoresistive elements R1 to R4, and the terminals 10 to 14 shown in FIG. 3 without including (IC) can also be defined as the magnetically coupled isolator 1. In such a case, it is necessary to electrically connect the magnetically coupled isolator 1 to a signal processing circuit (IC) on the electronic device side.
  • the coil 2 has a first magnetic field generating unit 3 and a second magnetic field generating unit 4 extending in a strip shape in the X1-X2 direction as shown in FIG.
  • the first magnetic field generator 3 and the second magnetic field generator 4 are opposed to each other with an interval in the Y1-Y2 direction shown in the drawing.
  • the first magnetic field generating unit 3 and the second magnetic field generating unit 4 are connected via connecting parts 17 and 18. Although the connection parts 17 and 18 are curving, it does not limit a form.
  • a space 19 is formed by being surrounded by the first magnetic field generator 3, the second magnetic field generator 4, and the connecting portions 17 and 18.
  • the coil 2 has a shape in which a coil piece 6 formed with a width dimension T1 is wound a plurality of times at a predetermined interval T2. Therefore, as shown in FIG. 4, the first magnetic field generation unit 3 and the second magnetic field generation unit 4 have a configuration in which a plurality of coil pieces 6 are arranged in parallel in the Y1-Y2 direction.
  • the electrode pads 5 and 6 connected to the coil 2 are provided.
  • the electrode pads 5 and 6 are circular, but the shape is not particularly limited.
  • the coil 2 is connected to the transmission circuit 7 through the electrode pads 5 and 6 as shown in FIG.
  • a current based on an input signal flows from the transmission circuit 7, an external magnetic field is generated from the coil 2.
  • the direction of current flow is antiparallel. Therefore, the external magnetic field H1 generated by the coil piece 6 constituting the first magnetic field generation unit 3 and the external magnetic field H2 generated by the coil piece 6 constituting the second magnetic field generation unit 4 are opposite to each other.
  • magnetoresistive elements R1 to R4 are respectively located directly below the first magnetic field generator 3 (may be directly above) and directly below the second magnetic field generator (may be directly above). Oppositely arranged via an insulating layer (not shown).
  • the external magnetic field H4 acting from the second magnetic field generating unit 4 on the second magnetoresistive element R2 and the third magnetoresistive element R3, which are arranged opposite to each other, is antiparallel.
  • the first magnetoresistive effect element R1 and the second magnetoresistive effect element R2 are connected in series, and the third magnetoresistive effect element R3 and the fourth magnetoresistive effect element R4 are connected in series.
  • the first magnetoresistive element R1 and the third magnetoresistive element R3 are connected to an input terminal (input pad) 10. In this embodiment, there is one input terminal 10.
  • the second magnetoresistive element R2 and the fourth magnetoresistive element R4 are connected to separate ground terminals (ground pads) 11 and 12, respectively. Therefore, in this embodiment, there are two ground terminals 11 and 12.
  • a first output terminal (first output pad, OUT1) 13 is connected between the first magnetoresistive effect element R1 and the second magnetoresistive effect element R2, and the third magnetoresistive effect is obtained.
  • a second output terminal (second output pad, OUT2) 14 is connected between the element R3 and the fourth magnetoresistive element R4.
  • the output sides of the first output terminal 13 and the second output terminal 14 are connected to a differential amplifier 15.
  • the output side of the differential amplifier 15 is connected to the external output terminal 16.
  • the first magnetoresistive element R1 disposed opposite to the first magnetic field generator 3 of the coil 2 is disposed on the X1 side, and the fourth magnetoresistive element R4 is disposed on the X2 side.
  • the second magnetoresistive element R2 disposed opposite to the second magnetic field generating unit 4 of the coil 2 is disposed on the X1 side, and the third magnetoresistive element R3 is disposed on the X2 side.
  • the first wiring pattern 20 connects the first magnetoresistance effect element R1 and the third magnetoresistance effect element R3. As shown in FIG. 3, the first wiring pattern 20 is located inside the enclosed area S that linearly surrounds the elements R1 to R4 in a plan view. The first wiring pattern 20 is formed obliquely when viewed from the X1-X2 direction and the Y1-Y2 direction.
  • the second wiring pattern 21 is branched from the first wiring pattern 20.
  • the second wiring pattern 21 extends from the internal position of the enclosed area S to the outside of the enclosed area S and is connected to the input terminal 10.
  • the first magnetoresistive effect element R 1 and the second magnetoresistive effect element R 2 are connected by the third wiring pattern 22.
  • the third wiring pattern 22 is formed extending in the Y1-Y2 direction.
  • the fourth wiring pattern 23 branches from the third wiring pattern 22 toward the outside of the enclosed region S. As shown in FIG. 3, the fourth wiring pattern 23 is connected to the first output terminal 13.
  • the third magnetoresistive effect element R 3 and the fourth magnetoresistive effect element R 4 are connected by the fifth wiring pattern 24.
  • the fifth wiring pattern 24 is formed to extend in the Y1-Y2 direction.
  • a sixth wiring pattern 25 branches from the fifth wiring pattern 24 toward the outside of the enclosed region S. As shown in FIG. 3, the sixth wiring pattern 25 is connected to the second output terminal 14.
  • the second magnetoresistive effect element R ⁇ b> 2 and the first ground terminal 11 are connected by a seventh wiring pattern 26.
  • the fourth magnetoresistive element R ⁇ b> 4 and the second ground terminal 12 are connected by the eighth wiring pattern 27.
  • the terminals 10 to 14 are arranged in a line at predetermined intervals in the X1-X2 direction. Therefore, wiring (electrical connection) with the signal processing circuit (IC) side can be easily performed. Then, only one input terminal 10 is arranged in the middle of these terminals 10-14.
  • the wiring patterns can be routed so as not to overlap each other in plan view.
  • the form of the wiring pattern is not limited to FIG. There may be a portion overlapping the wiring patterns in a plan view.
  • a ground terminal may be provided at the position of the input terminal 10, and an input terminal may be provided at the positions of the ground terminals 11 and 12. In such a case, there are one ground terminal and two input terminals.
  • the magnetoresistive elements R1 to R4 are all formed with the same layer configuration. Each of the magnetic detection elements R1 to R4 is formed with the structure shown in FIG.
  • Reference numeral 30 shown in FIG. 5 denotes a lower electrode layer.
  • a multilayer film 31 is formed on the lower electrode layer 30.
  • the multilayer film 31 is laminated in order of an antiferromagnetic layer 32, a fixed magnetic layer 33, an insulating barrier layer 34, a free magnetic layer 35, and a protective layer 36 from the bottom.
  • the free magnetic layer 35, the insulating barrier layer 34, the pinned magnetic layer 33, and the antiferromagnetic layer 32 may be stacked in this order from the bottom.
  • the antiferromagnetic layer 32 is, for example, an antiferromagnetic material containing the element ⁇ (where ⁇ is one or more of Pt, Pd, Ir, Rh, Ru, and Os) and Mn. Formed with.
  • a seed layer for adjusting crystal orientation may be provided between the antiferromagnetic layer 32 and the lower electrode layer 30.
  • the pinned magnetic layer 33 is pinned in the Y direction in the figure by an exchange coupling magnetic field (Hex) generated at the interface with the antiferromagnetic layer 32.
  • Hex exchange coupling magnetic field
  • magnetization fixed refers to a state in which the magnetization does not fluctuate at least with respect to an external magnetic field acting on the magnetoresistive effect elements R1 to R4 from the coil 2.
  • the pinned magnetic layer 33 has a single layer structure such as CoFe.
  • the pinned magnetic layer 33 has a laminated structure, particularly a laminated ferrimagnetic structure formed of a magnetic layer / nonmagnetic intermediate layer / magnetic layer. This is preferable because the magnetization fixing force can be increased.
  • the insulating barrier layer 34 is formed on the pinned magnetic layer 33.
  • the insulating barrier layer 34 is made of, for example, titanium oxide (Ti—O) or magnesium oxide (Mg—O).
  • a free magnetic layer 35 is formed on the insulating barrier layer 34.
  • the free magnetic layer 35 has a single layer structure, but can also be formed by a laminated structure of magnetic layers.
  • the free magnetic layer 35 is preferably formed of a single layer structure of NiFe or a laminated structure containing NiFe.
  • a protective layer 36 made of a nonmagnetic metal material such as Ta is formed on the free magnetic layer 5.
  • the both end surfaces 31a, 31a in the X1-X2 direction (X direction) of the multilayer film 31 are formed as inclined surfaces so that the width dimension in the X direction gradually decreases from the lower side to the upper side.
  • it may be a vertical surface instead of an inclined surface.
  • an insulating layer 37 is formed from the lower electrode layer 30 to the side end faces 31a and 31a. Further, hard bias layers 38 and 38 are formed on the insulating layer 37.
  • the hard bias layer 38 is made of Co—Pt or Co—Pt—Cr.
  • An underlayer for adjusting crystal orientation may be provided between the hard bias layer 38 and the insulating layer 37.
  • an insulating layer 39 is formed on the hard bias layer 38.
  • the insulating layers 37 and 39 are formed of an existing insulating material such as Al 2 O 3 or SiO 2 .
  • the upper electrode layer 40 is formed from the multilayer film 31 to the insulating layer 39.
  • the magnetoresistive elements R1 to R4 in this embodiment are tunnel type magnetoresistive elements. Therefore, between the multilayer film 31 and the hard bias layer 38, between the hard bias layer 38 and the upper electrode layer 40, and between the lower electrode layer 30 and the hard bias layer 38 so that current flowing from the electrode layers 30 and 40 to the multilayer film 31 is not shunted. Are insulated by insulating layers 37 and 39.
  • the wiring pattern 24 is formed integrally with the lower electrode layer 30.
  • the wiring pattern 24 may be formed separately from the lower electrode layer 30, but even in such a case, the wiring pattern 24 and the lower electrode layer 30 are electrically connected.
  • the wiring pattern 27 is formed integrally with the upper electrode layer 40. Although the wiring pattern 27 may be formed separately from the upper electrode layer 40, the wiring pattern 27 and the upper electrode layer 40 are electrically connected even in such a case.
  • the electrode layers 30 and 40 are formed above and below the multilayer film 31, so that the wiring pattern connected to the electrode layers 30 and 40 is formed in a plurality of layers. It will be.
  • the wiring patterns 20, 21, 26, 27 are formed in the upper stage, and the wiring patterns 22, 23, 24, 25 are formed in the lower stage. The reverse may be possible.
  • the multilayer film 31 is formed in a rectangular shape that is long in the X1-X2 direction and short in the Y1-Y2 direction, but the shape of the multilayer film 31 is not particularly limited.
  • hard bias layers 38 are formed on both sides of the multilayer film 31 in the X direction (X1-X2 direction), and from the hard bias layer 38 to the free magnetic layer 35 in the X direction.
  • the bias magnetic field bias is supplied. Therefore, the free magnetic layer 35 in a no magnetic field state (a state in which an external magnetic field does not act on the free magnetic layer 35) is appropriately single-domained in the X direction.
  • the free magnetic layer 35 is adjusted not to be magnetized by the bias magnetic field bias but to be variable in magnetization by an external magnetic field.
  • each magnetoresistive effect element R1-R4 is fixed in the Y1 direction
  • the magnetization of the free magnetic layer 35 of the first magnetoresistive element R1 and the fourth magnetoresistive element R4 is inclined toward the Y1 direction. Therefore, the electrical resistance values of the first magnetoresistive element R1 and the fourth magnetoresistive element R4 are reduced.
  • the magnetizations of the second magnetoresistive element R2 and the third magnetoresistive element R3 are inclined toward the Y2 direction.
  • the electrical resistance values of the second magnetoresistive effect element R2 and the third magnetoresistive effect element R3 are increased.
  • the midpoint potential between the first magnetoresistive effect element R1 and the second magnetoresistive effect element R2 and the midpoint potential between the third magnetoresistive effect element R3 and the fourth magnetoresistive effect element R4 fluctuate. Dynamic output can be obtained.
  • a bias magnetic field in the X direction is supplied from the hard bias layer 38 to the free magnetic layer 35, and the free magnetic layer 35 is made into a single magnetic domain.
  • the hysteresis in the RH curve of the magnetoresistive effect elements R1 to R4 can be reduced.
  • hysteresis can be eliminated (see FIG. 6). Therefore, the change in magnetization of the magnetoresistive elements R1 to R4 can smoothly follow the change in the magnetic field of the coil 2 due to the high frequency input signal. As described above, excellent high-speed response can be obtained.
  • the magnetoresistive elements R1 to R4 are tunnel type magnetoresistive elements, but are not limited to tunnel type magnetoresistive elements.
  • a giant magnetoresistive element (GMR element) can be presented.
  • the insulating barrier layer 34 in FIG. 5 is formed of a nonmagnetic conductive material such as Cu. Electrode layers can be provided on both sides of the multilayer film. In such a magnetoresistive effect element, current flows in a direction parallel to the film surface of each layer of the multilayer film.
  • a magnetoresistive element is called a CIP (current-in-the-plane) -GMR element (or simply a GMR element).
  • a magnetoresistive element is called a CPP (current-perpendicular-to-the-plane) type.
  • the CPP type includes a CPP-GMR element in addition to a tunnel type magnetoresistive element.
  • the magnetoresistive elements R1 to R4 are preferably tunnel type magnetoresistive elements.
  • a multilayer film is formed in a meander shape in order to increase the element resistance.
  • the space for forming each of the magnetoresistive elements R1 to R4 becomes large, and the miniaturization of the magnetically coupled isolator cannot be promoted.
  • the tunnel magnetoresistive element can increase the electrical resistance value and can also increase the rate of resistance change. Therefore, the size reduction of the magnetically coupled isolator can be promoted, and the output can be further increased.
  • the shape magnetic anisotropy is reduced.
  • the hard bias layer 38 is provided on both sides of the multilayer film 31, so that the free magnetic layer 35 can be effectively made into a single magnetic domain, the hysteresis is reduced, and the high-speed response of the magnetically coupled isolator is improved.
  • the magnetization direction of the pinned magnetic layer 33 is parallel or antiparallel to the direction of the external magnetic fields H3 and H4, and the direction of the bias magnetic field supplied from the hard bias layer 38 to the free magnetic layer 35 is that of the external magnetic fields H3 and H4.
  • the direction is preferably orthogonal. As a result, the output can be increased.
  • the first magnetoresistive effect element R1 and the fourth magnetoresistive effect element R4 can be fixed resistance elements, but all the resistance elements constituting the bridge circuit are magnetoresistive effect elements R1 to R4.
  • the output can be increased.
  • all the magnetoresistive elements R1 to R4 are formed with the same layer configuration.
  • the “layer configuration” includes not only the stacking order and material, but also the magnetization direction of the pinned magnetic layer 33.
  • the first magnetoresistive element R ⁇ b> 1 and the fourth magnetoresistive element R ⁇ b> 4 are arranged at a position facing the first magnetic field generating unit 3 of the coil 2, and opposed to the second magnetic field generating unit 4.
  • the second magnetoresistive effect element R2 and the third magnetoresistive effect element R3 are arranged at the positions to be operated.
  • the bridge circuit is configured by the magnetoresistive elements R1 to R4.
  • all the magnetoresistive elements R1 to R4 are formed in the same layer configuration, so that the resistance values and temperature characteristics of all the magnetoresistive elements R1 to R4 can be easily matched, and each magnetoresistive effect
  • the elements R1 to R4 can be formed easily and appropriately.
  • a bridge circuit can be configured easily and appropriately.
  • FIG. 2 is an overall circuit configuration diagram of a magnetically coupled isolator (magnetic coupler) of the present embodiment Bridge circuit diagram composed of magnetoresistive elements R1 to R4,
  • the partial top view of the magnetic coupling type isolator in this embodiment FIG. 4 is a partial sectional view taken along the line AA shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】 特に、高速応答性に優れた磁気結合型アイソレータを提供することを目的としている。 【解決手段】 入力信号により外部磁界を発生させるためのコイルと、前記コイルと電気的に絶縁されるとともに磁気的結合が可能な位置に配置され、前記外部磁界を検出して電気信号に変換するための磁気抵抗効果素子R1~R4と、を有する。前記磁気抵抗効果素子は、反強磁性層32、磁化方向が固定された固定磁性層33、絶縁障壁層34、及び磁化変動可能なフリー磁性層35が順に積層された多層膜31と、前記多層膜31に電流を流すための電極層30,40とを有して構成される。前記多層膜31の両側には、前記フリー磁性層35にバイアス磁界biasを供給するためのハードバイアス層38,38が配置されている。

Description

磁気結合型アイソレータ
 本発明は、特に、高速応答性に優れた磁気結合型アイソレータに関する。
 下記特許文献には磁気結合型アイソレータに関する発明が開示されている。磁気結合型アイソレータは、入力信号を、磁気に変換するための磁界発生部と、前記磁界発生部から生じた外部磁界を検出して電気信号に変換するための磁気抵抗効果素子とを有して構成される。そして、その電気信号を信号処理回路を介して出力側に伝送して出力を取り出す。
 磁気抵抗効果素子としては、ホール素子、AMR素子(異方性磁気抵抗効果素子)、あるいは、GMR素子(巨大磁気抵抗効果素子)が使用される。
特開昭64-32712号公報 特開昭60-69906号公報 特表2003-526083号公報
 しかしながら、磁気抵抗効果素子のR-Hカーブにおいて、ヒステリシスが存在すると、磁界発生部からの外部磁界に伴う磁気抵抗効果素子の磁化変化が、磁壁移動を伴ったものになる。そして、高周波の入力信号であるほど磁界発生部からの外部磁界の変化に磁気抵抗効果素子の磁化変化が追従できない問題があった。
 そこで本発明は上記従来課題を解決するためのものであり、特に、高速応答性に優れた磁気結合型アイソレータを提供することを目的としている。
 本発明における磁気結合型アイソレータは、入力信号により外部磁界を発生させるための磁界発生部と、前記磁界発生部と電気的に絶縁されるとともに磁気的結合が可能な位置に配置され、前記外部磁界を検出して電気信号に変換するための磁気抵抗効果素子と、を有し、
 前記磁気抵抗効果素子は、反強磁性層、磁化方向が固定された固定磁性層、非磁性材料層、及び磁化変動可能なフリー磁性層が順に積層された多層膜と、前記多層膜の上下に配置された電極層とを有して構成され、
 前記多層膜の両側には、前記フリー磁性層にバイアス磁界を供給するためのハードバイアス層が配置されていることを特徴とするものである。
 上記の構成により、磁気抵抗効果素子のR-Hカーブにおけるヒステリシスを低減できる。好ましくはヒステリシスを無くすことができる。よって、高周波の入力信号による磁界発生部からの外部磁界変化に対して、磁気抵抗効果素子の磁化変化を効果的に追従させることができる。したがって本発明の磁気結合型アイソレータによれば、従来に比べて高速応答性に優れる。
 本発明では、前記磁気抵抗効果素子は、前記非磁性材料層が絶縁障壁層で形成されたトンネル型磁気抵抗効果素子であることが好ましい。前記多層膜の平面形状のアスペクト比を小さくしても、高い電気抵抗値を備え、また抵抗変化率を非常に大きくできる。したがって出力を大きくできると共に磁気抵抗効果素子の形成スペースを小さくでき、ひいては、磁気結合型アイソレータの小型化を促進できる。
 また本発明では、前記固定磁性層の磁化方向は前記外部磁界の方向と一致し、前記バイアス磁界の方向は前記外部磁界の方向と直交していることが好ましい。
 また本発明では、前記磁界発生部は、外部磁界が互いに反対方向に発生する第1磁界発生部と第2磁界発生部とを有して構成され、
 前記第1磁界発生部と対向配置される前記磁気抵抗効果素子と、前記第2磁界発生部と対向配置される前記磁気抵抗効果素子とを備え、各磁気抵抗効果素子は、前記固定磁性層の磁化方向が全て同じ方向に固定された同じ層構成であり、
 前記第1磁界発生部と対向配置される前記磁気抵抗効果素子と、前記第2磁界発生部と対向配置される前記磁気抵抗効果素子とがブリッジ回路を構成していることが、簡単な構成で、且つ出力を大きくできて好ましい。
 本発明の磁気結合型アイソレータによれば、従来に比べて、優れた高速応答性を得ることが出来る。
 図1は、本実施形態の磁気結合型アイソレータ(磁気カプラ)の全体の回路構成図、図2は、磁気抵抗効果素子R1~R4にて構成されるブリッジ回路図、図3は本実施形態における磁気結合型アイソレータの部分平面図、図4は、図3に示すA-A線に沿って厚さ方向に切断し矢印方向から見た部分断面図、図5は、本実施形態の磁気結合型アイソレータを構成するトンネル型磁気抵抗効果素子の部分断面図、である。なお図3では、絶縁層を図示せず、またコイル2の内縁及び外縁のみを示し、コイル2下に位置する磁気抵抗効果素子R1~R4を透視して示した。
 図1に示すように磁気結合型アイソレータ1は、磁界発生部としてのコイル2と、磁気抵抗効果素子R1~R4とを有して構成される。コイル2と各磁気抵抗効果素子R1~R4は図示しない絶縁層を介して電気的に絶縁されているが、磁気的結合が可能な間隔を空けて配置される。
 ここで図1では、差動増幅器15や外部出力端子16等の信号処理回路(IC)までも含めて、磁気結合型アイソレータ1を定義しているが、磁気結合型アイソレータ1に前記信号処理回路(IC)を含めず、コイル2、磁気抵抗効果素子R1~R4及び、図3に示す各端子10~14を備える形態を、磁気結合型アイソレータ1と定義することもできる。かかる場合は、磁気結合型アイソレータ1を、電子機器側の信号処理回路(IC)と電気的に繋ぐことが必要になる。
 コイル2は図3のように、X1-X2方向に帯状に延びる第1磁界発生部3と第2磁界発生部4を有する。第1磁界発生部3と第2磁界発生部4は図示Y1-Y2方向に間隔を空けて対向している。第1磁界発生部3と第2磁界発生部4は連結部17,18を介して連結されている。連結部17,18は、湾曲状となっているが形態を限定するものではない。第1磁界発生部3、第2磁界発生部4、及び連結部17,18に囲まれて空間部19が形成されている。
 図4に示すようにコイル2は、幅寸法T1で形成されたコイル片6が所定の間隔T2を空けて、複数回、巻回形成された形状である。よって、図4に示すように、第1磁界発生部3及び第2磁界発生部4は、複数本のコイル片6がY1-Y2方向に並設された構成となっている。
 コイル2に接続される2つの電極パッド5,6が設けられている。電極パッド5,6は円形状であるが特に形状を限定するものではない。さらにコイル2は電極パッド5,6を介して図1に示すように送信回路7に接続されている。送信回路7から入力信号に基づく電流が流れると、コイル2から外部磁界が発生する。図4に示すように第1磁界発生部3を構成するコイル片6、及び第2磁界発生部4を構成するコイル片6では電流の流れる向きが反平行である。よって、第1磁界発生部3を構成するコイル片6により発生する外部磁界H1と、第2磁界発生部4を構成するコイル片6により発生する外部磁界H2は逆向きである。図3、図4に示すように第1磁界発生部3の真下(真上でもよい)、及び第2磁界発生部の真下(真上でもよい)には、夫々磁気抵抗効果素子R1~R4が絶縁層(図示せず)を介して対向配置されている。そして、第1磁界発生部3と対向配置された第1磁気抵抗効果素子R1及び第4磁気抵抗効果素子R4に、前記第1磁界発生部3より作用する外部磁界H3と、第2磁界発生部4と対向配置された第2磁気抵抗効果素子R2及び第3磁気抵抗効果素子R3に、前記第2磁界発生部4より作用する外部磁界H4は反平行である。
 図2に示すように第1磁気抵抗効果素子R1と第2磁気抵抗効果素子R2は直列接続され、第3磁気抵抗効果素子R3と第4磁気抵抗効果素子R4は直列接続されている。
 図2に示すように第1磁気抵抗効果素子R1と第3磁気抵抗効果素子R3は入力端子(入力パッド)10に接続されている。この実施形態では入力端子10は1つである。
 また第2磁気抵抗効果素子R2と第4磁気抵抗効果素子R4は夫々、別々のグランド端子(グランドパッド)11,12に接続されている。よって、この実施形態ではグランド端子11,12は2つある。
 図2に示すように、第1磁気抵抗効果素子R1と第2磁気抵抗効果素子R2の間には第1出力端子(第1出力パッド,OUT1)13が接続されており、第3磁気抵抗効果素子R3と第4磁気抵抗効果素子R4の間には第2出力端子(第2出力パッド,OUT2)14が接続されている。
 図1,図2に示すように、第1出力端子13及び第2出力端子14の出力側が差動増幅器15に接続されている。
 そして図1に示すように差動増幅器15の出力側は、外部出力端子16に接続されている。
 図3に示すように、コイル2の第1磁界発生部3と対向配置される第1磁気抵抗効果素子R1はX1側に、第4磁気抵抗効果素子R4はX2側に配置される。
 また図3に示すように、コイル2の第2磁界発生部4と対向配置される第2磁気抵抗効果素子R2はX1側に、第3磁気抵抗効果素子R3はX2側に配置される。
 図3に示すように、第1磁気抵抗効果素子R1と第3磁気抵抗効果素子R3間が第1配線パターン20にて接続される。図3に示すように、第1配線パターン20は、平面視にて、各素子R1~R4間を直線的に囲んだ囲み領域Sの内部に位置している。第1配線パターン20はX1-X2方向及びY1-Y2方向から見て斜めに傾いて形成されている。
 図3に示すように、第1配線パターン20から第2配線パターン21が分岐している。第2配線パターン21は囲み領域Sの内部位置から、前記囲み領域Sの外方へ延出し、入力端子10に接続されている。
 また図3に示すように第1磁気抵抗効果素子R1と第2磁気抵抗効果素子R2間が第3配線パターン22により接続される。第3配線パターン22はY1-Y2方向に延出して形成されている。さらに、第3配線パターン22から囲み領域Sの外方に向けて第4配線パターン23が分岐している。図3に示すように第4配線パターン23は第1出力端子13に接続される。
 また図3に示すように、第3磁気抵抗効果素子R3と第4磁気抵抗効果素子R4間が第5配線パターン24により接続される。第5配線パターン24はY1-Y2方向に延出して形成されている。さらに、第5配線パターン24から囲み領域Sの外方に向けて第6配線パターン25が分岐している。図3に示すように第6配線パターン25は第2出力端子14に接続される。
 さらに図3に示すように、第2磁気抵抗効果素子R2と第1グランド端子11間が第7配線パターン26で接続される。また図3に示すように、第4磁気抵抗効果素子R4と第2グランド端子12間が第8配線パターン27により接続される。
 図3に示すように各端子10~14はX1-X2方向に所定の間隔を空けて一列に配列されている。よって信号処理回路(IC)側との配線(電気的接続)を簡単に行える。そして、これら端子10~14の真ん中の位置に、1つだけ設けられた入力端子10が配置されている。
 図3に示すように、平面視にて配線パターン同士が重ならないように引き回すことができる。
 ただし配線パターンの形態は図3に限定されるものではない。平面視にて配線パターン同士に重なる部分があってもよい。
 また、図3の実施形態に代えて、入力端子10の位置にグランド端子を、グランド端子11,12の位置に入力端子を設ける形態でもよい。かかる場合、グランド端子が1つ、入力端子が2つとなる。
 各磁気抵抗効果素子R1~R4は全て同じ層構成で形成されている。各磁気検出素子R1~R4は図5に示す構造で形成される。
 図5に示す符号30は下部電極層である。下部電極層30上に多層膜31が形成される。多層膜31は下から反強磁性層32、固定磁性層33、絶縁障壁層34、フリー磁性層35、保護層36の順に積層される。なお下からフリー磁性層35、絶縁障壁層34、固定磁性層33及び反強磁性層32の順に積層されてもよい。
 反強磁性層32は、例えば、元素α(ただしαは、Pt,Pd,Ir,Rh,Ru,Osのうち1種または2種以上の元素である)とMnとを含有する反強磁性材料で形成される。
 反強磁性層32と、下部電極層30の間に、結晶配向を整えるためのシード層が設けられていてもよい。
 固定磁性層33は、反強磁性層32との界面で生じる交換結合磁界(Hex)により図示Y方向に磁化固定されている。ここで磁化固定とは、少なくとも、コイル2から磁気抵抗効果素子R1~R4に作用する外部磁界に対して磁化変動しない状態を指す。
 図5では、固定磁性層33は、CoFe等の単層構造であるが、積層構造、特に磁性層/非磁性中間層/磁性層で形成された積層フェリ構造であることが、固定磁性層33の磁化固定力を大きくでき好適である。
 固定磁性層33上には絶縁障壁層34が形成されている。絶縁障壁層34は、例えば、酸化チタン(Ti-O)や、酸化マグネシウム(Mg-O)で形成される。
 絶縁障壁層34上には、フリー磁性層35が形成されている。図5ではフリー磁性層35は単層構造であるが、磁性層の積層構造で形成することも出来る。フリー磁性層35は、NiFeの単層構造か、NiFeを含む積層構造で形成されることが好適である。
 前記フリー磁性層5上にはTa等の非磁性金属材料で形成された保護層36が形成されている。
 上記した多層膜31のX1-X2方向(X方向)の両側端面31a,31aは、下側から上側に向けて徐々にX方向への幅寸法が狭くなるように傾斜面で形成される。ただし傾斜面でなく垂直面であってもよい。
 図5に示すように、下部電極層30上から各側端面31a,31a上にかけて絶縁層37が形成される。さらに絶縁層37上にはハードバイアス層38,38が形成される。ハードバイアス層38は、Co-Pt、あるいは、Co-Pt-Crで形成される。ハードバイアス層38と絶縁層37との間には結晶配向性を整える下地層が設けられていてもよい。
 図5に示すように、ハードバイアス層38上には絶縁層39が形成される。絶縁層37,39はAl23やSiO2等の既存の絶縁材料で形成される。
 図5に示すように、多層膜31上から絶縁層39上にかけて上部電極層40が形成される。
 この実施形態における磁気抵抗効果素子R1~R4は、トンネル型磁気抵抗効果素子である。よって電極層30,40から多層膜31に流れる電流が分流しないように、多層膜31とハードバイアス層38間、ハードバイアス層38と上部電極層40間、下部電極層30とハードバイアス層38間が絶縁層37,39にて絶縁されている。
 図4に示すように、配線パターン24は下部電極層30と一体的に形成されている。配線パターン24は下部電極層30と別に形成されてもよいが、かかる場合でも配線パターン24と下部電極層30とは電気的に接続される。
 また図4に示すように、配線パターン27が上部電極層40と一体的に形成されている。配線パターン27は上部電極層40と別に形成されてもよいが、かかる場合でも配線パターン27と上部電極層40とは電気的に接続される。
 このようにトンネル型磁気抵抗効果素子では、多層膜31の上下に電極層30,40が形成されるため、電極層30,40に接続される配線パターンは、複数の階層に分けて形成されることになる。
 図3の実施形態では、配線パターン20,21,26,27が上段に形成され、配線パターン22,23,24,25が下段に形成される。なお、その逆であってもよい。
 図3に示す各磁気抵抗効果素子R1~R4は、多層膜31の平面形状を示している。図3に示すように、多層膜31はX1-X2方向に長く、Y1-Y2方向に短い矩形状で形成されるが、多層膜31の形状は特に限定されるものではない。
 本実施形態では、図5に示すように、多層膜31のX方向(X1-X2方向)の両側にハードバイアス層38が形成されており、ハードバイアス層38からフリー磁性層35にX方向へのバイアス磁界biasが供給されている。よって無磁場状態(外部磁界がフリー磁性層35に作用していない状態)でのフリー磁性層35はX方向に適切に単磁区化されている。なお、フリー磁性層35はバイアス磁界biasによっても磁化固定されず外部磁界により磁化変動可能に調整されている。
 例えば各磁気抵抗効果素子R1-R4の固定磁性層33の磁化がY1方向に固定されているとして、図4に示す夫々の外部磁界H3,H4が各磁気抵抗効果素子R1~R4に侵入すると、第1磁気抵抗効果素子R1及び第4磁気抵抗効果素子R4のフリー磁性層35の磁化はY1方向に向けて傾く。よって第1磁気抵抗効果素子R1及び第4磁気抵抗効果素子R4の電気抵抗値は小さくなる。一方、第2磁気抵抗効果素子R2及び第3磁気抵抗効果素子R3の磁化はY2方向に向けて傾く。よって第2磁気抵抗効果素子R2及び第3磁気抵抗効果素子R3の電気抵抗値は大きくなる。これにより、第1磁気抵抗効果素子R1と第2磁気抵抗効果素子R2間の中点電位、及び第3磁気抵抗効果素子R3と第4磁気抵抗効果素子R4間の中点電位が変動し、差動出力を得ることが出来る。
 このように磁気結合型アイソレータ1では、コイル2から磁気抵抗効果素子R1~R4を経て、電気信号の伝達を行うことが出来る。
 本実施形態では上記したように、ハードバイアス層38からフリー磁性層35にX方向へのバイアス磁界が供給され、フリー磁性層35は単磁区化されている。これにより磁気抵抗効果素子R1~R4のR-Hカーブにおけるヒステリシスを低減できる。好ましくはヒステリシスを無くすことが出来る(図6参照)。したがって高周波の入力信号によるコイル2の磁界変化に磁気抵抗効果素子R1~R4の磁化変化がスムーズに追従できる。以上により優れた高速応答性を得ることが出来る。
 上記した実施形態では磁気抵抗効果素子R1~R4はトンネル型磁気抵抗効果素子であるが、トンネル型磁気抵抗効果素子に限定されるものでない。例えば巨大磁気抵抗効果素子(GMR素子)を提示できる。GMR素子では図5の絶縁障壁層34の部分がCu等の非磁性導電材料で形成される。また電極層を多層膜の両側に設けることが出来る。このような磁気抵抗効果素子は、電流が多層膜の各層の膜面に対して平行な方向に流れる。このような磁気抵抗効果素子は、CIP(current in the plane)-GMR素子(あるいは単なるGMR素子)と呼ばれる。
 一方、トンネル型磁気抵抗効果素子のように多層膜31の上下に電極層30,40を設けた形態では、電流が多層膜31の各層の膜面に対し垂直方向に流れる。このような磁気抵抗効果素子は、CPP(current perpendicular to the plane)型と呼ばれる。CPP型には、トンネル型磁気抵抗効果素子のほかにCPP-GMR素子もある。
 ただし本実施形態のように、磁気抵抗効果素子R1~R4はトンネル型磁気抵抗効果素子であることが好適である。上記したCIP-GMR素子では、素子抵抗を大きくすべく例えば多層膜をミアンダ形状で形成する。しかしながらミアンダ形状とすることで各磁気抵抗効果素子R1~R4の形成スペースが大きくなり、磁気結合型アイソレータの小型化を促進できない。一方、アスペクト比を小さくしても、トンネル型磁気抵抗効果素子であれば電気抵抗値を高くでき、しかも抵抗変化率を非常に大きくできる。したがって、磁気結合型アイソレータの小型化を促進でき、さらに出力を大きくすることが可能である。アスペクト比を小さくすると形状磁気異方性が小さくなるが、形状磁気異方性が小さくなっても、本実施形態では、ハードバイアス層38を多層膜31の両側に設けたことで、フリー磁性層35全体を効果的に単磁区化でき、ヒステリシスを低減して、磁気結合型アイソレータの高速応答性を向上させている。
 また、固定磁性層33の磁化方向は外部磁界H3,H4の方向と平行あるいは反平行であり、ハードバイアス層38からフリー磁性層35に供給されるバイアス磁界の方向は前記外部磁界H3,H4の方向と直交していることが好ましい。これにより出力を大きくできる。
 また、例えば、第1磁気抵抗効果素子R1と第4磁気抵抗効果素子R4を固定抵抗素子にすることも出来るが、ブリッジ回路を構成する抵抗素子を全て磁気抵抗効果素子R1~R4とすることで出力を大きくできる。
 本実施形態では、全ての磁気抵抗効果素子R1~R4が、同じ層構成で形成される。ここで「層構成」とは積層順や材質のみならず、固定磁性層33の磁化方向も含まれる。そして、図3に示すように、コイル2の第1磁界発生部3と対向する位置に第1磁気抵抗効果素子R1及び第4磁気抵抗効果素子R4を配置し、第2磁界発生部4と対向する位置に第2磁気抵抗効果素子R2及び第3磁気抵抗効果素子R3を配置している。そして図3のように配線して、磁気抵抗効果素子R1~R4によりブリッジ回路を構成している。本実施形態では、全ての磁気抵抗効果素子R1~R4が、同じ層構成で形成されるから、全ての磁気抵抗効果素子R1~R4の抵抗値や温度特性を一致させやすく、また各磁気抵抗効果素子R1~R4の形成も容易且つ適切に行える。そして図3に示すように、磁気抵抗効果素子R1~R4とコイル2とを配置することで、簡単かつ適切にブリッジ回路を構成できる。
本実施形態の磁気結合型アイソレータ(磁気カプラ)の全体の回路構成図、 磁気抵抗効果素子R1~R4にて構成されるブリッジ回路図、 本実施形態における磁気結合型アイソレータの部分平面図、 図3に示すA-A線に沿って厚さ方向に切断し矢印方向から見た部分断面図、 本実施形態の磁気結合型アイソレータを構成するトンネル型磁気抵抗効果素子の部分断面図、 本実施形態における磁気抵抗効果素子のR-Hカーブ、
1 磁気結合型アイソレータ
2 コイル
3 第1磁界発生部
4 第2磁界発生部
6 コイル片
7 送信回路
10 入力端子
11、12 グランド端子
13、14 出力端子
15 差動増幅器
16 外部出力端子
20~27 配線パターン
30 下部電極層
31 多層膜
32 反強磁性層
33 固定磁性層
34 絶縁障壁層
35 フリー磁性層
37、39 絶縁層
38 ハードバイアス層
40 上部電極層
H1~H4 外部磁界
R1~R4 磁気抵抗効果素子

Claims (4)

  1.  入力信号により外部磁界を発生させるための磁界発生部と、前記磁界発生部と電気的に絶縁されるとともに磁気的結合が可能な位置に配置され、前記外部磁界を検出して電気信号に変換するための磁気抵抗効果素子と、を有し、
     前記磁気抵抗効果素子は、反強磁性層、磁化方向が固定された固定磁性層、非磁性材料層、及び磁化変動可能なフリー磁性層が順に積層された多層膜と、前記多層膜に電流を流すための電極層とを有して構成され、
     前記多層膜の両側には、前記フリー磁性層にバイアス磁界を供給するためのハードバイアス層が配置されていることを特徴とする磁気結合型アイソレータ。
  2.  前記磁気抵抗効果素子は、前記非磁性材料層が絶縁障壁層で形成され、前記電極層が前記多層膜の上下に配置されたトンネル型磁気抵抗効果素子である請求項1記載の磁気結合型アイソレータ。
  3.  前記固定磁性層の磁化方向は前記外部磁界の方向と平行あるいは反平行であり、前記バイアス磁界の方向は前記外部磁界の方向と直交している請求項1又は2に記載の磁気結合型アイソレータ。
  4.  前記磁界発生部は、外部磁界が互いに反対方向に発生する第1磁界発生部と第2磁界発生部とを有して構成され、
     前記第1磁界発生部と対向配置される前記磁気抵抗効果素子と、前記第2磁界発生部と対向配置される前記磁気抵抗効果素子とを備え、各磁気抵抗効果素子は、全て同じ層構成であり、
     前記第1磁界発生部と対向配置される前記磁気抵抗効果素子と、前記第2磁界発生部と対向配置される前記磁気抵抗効果素子とがブリッジ回路を構成している請求項1ないし3のいずれかに記載の磁気結合型アイソレータ。
PCT/JP2009/066357 2008-09-22 2009-09-18 磁気結合型アイソレータ WO2010032823A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-243015 2008-09-22
JP2008243015 2008-09-22

Publications (1)

Publication Number Publication Date
WO2010032823A1 true WO2010032823A1 (ja) 2010-03-25

Family

ID=42039644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066357 WO2010032823A1 (ja) 2008-09-22 2009-09-18 磁気結合型アイソレータ

Country Status (1)

Country Link
WO (1) WO2010032823A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016630A (ja) * 2011-07-04 2013-01-24 Yamanashi Nippon Denki Kk 磁気抵抗効果素子及びこれを用いた磁気センサ
CN103262276A (zh) * 2010-12-16 2013-08-21 阿尔卑斯电气株式会社 磁传感器以及磁传感器的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001521160A (ja) * 1997-10-23 2001-11-06 アナログ デバイセス インコーポレーテッド ファラデー遮蔽mrまたはgmr受信要素を用いる磁気結合信号アイソレータ
JP2005515667A (ja) * 2002-01-15 2005-05-26 ハネウェル・インターナショナル・インコーポレーテッド 信号アイソレータのための集積磁界ストラップ
JP2007189039A (ja) * 2006-01-13 2007-07-26 Alps Electric Co Ltd トンネル型磁気検出素子及びその製造方法
WO2008050790A1 (fr) * 2006-10-24 2008-05-02 Alps Electric Co., Ltd. Elément de détection magnétique à tunnel et procédé de fabrication associé

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001521160A (ja) * 1997-10-23 2001-11-06 アナログ デバイセス インコーポレーテッド ファラデー遮蔽mrまたはgmr受信要素を用いる磁気結合信号アイソレータ
JP2005515667A (ja) * 2002-01-15 2005-05-26 ハネウェル・インターナショナル・インコーポレーテッド 信号アイソレータのための集積磁界ストラップ
JP2007189039A (ja) * 2006-01-13 2007-07-26 Alps Electric Co Ltd トンネル型磁気検出素子及びその製造方法
WO2008050790A1 (fr) * 2006-10-24 2008-05-02 Alps Electric Co., Ltd. Elément de détection magnétique à tunnel et procédé de fabrication associé

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262276A (zh) * 2010-12-16 2013-08-21 阿尔卑斯电气株式会社 磁传感器以及磁传感器的制造方法
JP2013016630A (ja) * 2011-07-04 2013-01-24 Yamanashi Nippon Denki Kk 磁気抵抗効果素子及びこれを用いた磁気センサ

Similar Documents

Publication Publication Date Title
JP4433820B2 (ja) 磁気検出素子およびその形成方法ならびに磁気センサ、電流計
JP6457243B2 (ja) 電流センサ、及びスマートメータ
JP5597206B2 (ja) 磁気センサ
JP5066579B2 (ja) 磁気センサ及び磁気センサモジュール
JP5899012B2 (ja) 磁気センサ
JP5843079B2 (ja) 磁気センサおよび磁気センサシステム
JP5171933B2 (ja) 磁気センサ
WO2011074488A1 (ja) 磁気センサ
JP2010258372A (ja) 磁気結合型アイソレータ
JP5265689B2 (ja) 磁気結合型アイソレータ
JP5898986B2 (ja) 磁気センサ及びその製造方法
JP5413866B2 (ja) 磁気検出素子を備えた電流センサ
WO2010032823A1 (ja) 磁気結合型アイソレータ
JP2015197388A (ja) フラックスゲート型磁気センサ
JP6525314B2 (ja) 磁界検出装置
JP5540326B2 (ja) 電流センサ
JP2010258981A (ja) 磁気結合型アイソレータ
JP5341865B2 (ja) 磁気センサ
JP6725300B2 (ja) 磁気センサおよびその製造方法
JP4524758B2 (ja) 磁気エンコーダ
JP5184380B2 (ja) 磁気検出装置
JP2010258980A (ja) 磁気結合型アイソレータ
JP2010258979A (ja) 磁気結合型アイソレータ
WO2010032824A1 (ja) 磁気結合型アイソレータ
JPWO2019065690A1 (ja) 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP