WO2010032565A1 - 作業車両の切換弁操作機構 - Google Patents

作業車両の切換弁操作機構 Download PDF

Info

Publication number
WO2010032565A1
WO2010032565A1 PCT/JP2009/063866 JP2009063866W WO2010032565A1 WO 2010032565 A1 WO2010032565 A1 WO 2010032565A1 JP 2009063866 W JP2009063866 W JP 2009063866W WO 2010032565 A1 WO2010032565 A1 WO 2010032565A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching valve
hydraulic
port
valve
oil passage
Prior art date
Application number
PCT/JP2009/063866
Other languages
English (en)
French (fr)
Inventor
訓彦 坂本
永博 緒方
正晃 山下
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CA2736278A priority Critical patent/CA2736278A1/en
Priority to US13/119,034 priority patent/US8523139B2/en
Publication of WO2010032565A1 publication Critical patent/WO2010032565A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/963Arrangements on backhoes for alternate use of different tools
    • E02F3/964Arrangements on backhoes for alternate use of different tools of several tools mounted on one machine
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2275Hoses and supports therefor and protection therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31576Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/321Directional control characterised by the type of actuation mechanically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/321Directional control characterised by the type of actuation mechanically
    • F15B2211/324Directional control characterised by the type of actuation mechanically manually, e.g. by using a lever or pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50563Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure
    • F15B2211/50581Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure using counterbalance valves
    • F15B2211/5059Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure using counterbalance valves using double counterbalance valves

Definitions

  • the present invention relates to a switching valve operating mechanism for a work vehicle that operates a mechanical switching valve for controlling a hydraulic actuator.
  • the switching valve operating mechanism in a switching valve operating mechanism of a work vehicle that operates a mechanical switching valve for controlling a hydraulic actuator, the switching valve operating mechanism is connected to a spool of the mechanical switching valve via an operation link.
  • the spool is moved to switch the mechanical switching valve.
  • the hydraulic piston and the electromagnetic valve are integrally configured.
  • the hydraulic piston is composed of two hydraulic pistons for moving the spool to the front side and the rear side in the spool moving direction, both of which are front and rear end sides in the piston moving direction. Only a single-acting type is provided in which a hydraulic oil chamber is provided.
  • the switching valve operating mechanism in a switching valve operating mechanism of a work vehicle that operates a mechanical switching valve for controlling a hydraulic actuator, the switching valve operating mechanism is connected to a spool of the mechanical switching valve via an operating link.
  • a controllable motor and a control device that transmits an operation signal to the motor are provided, and the spool is moved via the operation link and the mechanical switching valve is switched by a swing output from the motor. It is.
  • the switching valve operating mechanism in a switching valve operating mechanism of a work vehicle that operates a mechanical switching valve for controlling a hydraulic actuator, the switching valve operating mechanism is connected to a spool of the mechanical switching valve via an operation link.
  • a solenoid valve that hydraulically controls the reciprocating motion of the hydraulic piston, and a control device that transmits an operation signal to the solenoid valve. Since the mechanical switching valve is switched, the mechanical switching valve can be switched using a solenoid valve such as a small, low-cost electromagnetic switching valve. Compared to the case of using only an electromagnetic switching valve, the oil path / switching control configuration can be simplified and the cost of parts can be reduced.
  • a hand switch or the like is linked to the operation of the solenoid valve.
  • mechanical switching valve can a switched easily and quickly with a small operating force, can greatly improve the switching operability.
  • the hydraulic piston, solenoid valve, etc. can be easily retrofitted to the current mechanical switching valve, it is possible to quickly respond to the switching operability improvement request from the user without changing the basic configuration of the switching valve. Therefore, a work vehicle having excellent versatility can be provided.
  • the hydraulic piston and the electromagnetic valve are integrally formed, the hydraulic piston and the electromagnetic valve can be easily attached and detached in the switching valve operating mechanism in a single unit structure.
  • the hydraulic piston is composed of two hydraulic pistons for moving the spool to the front side and the rear side in the spool moving direction, both of which are front and rear end sides in the piston moving direction.
  • the switching valve operating mechanism of a work vehicle that operates a mechanical switching valve for controlling a hydraulic actuator, the switching valve operating mechanism is connected to a spool of the mechanical switching valve via an operating link.
  • a controllable motor and a control device that transmits an operation signal to the motor are provided, and the spool is moved via the operation link by the swing output from the motor, and the mechanical switching valve is switched, so that it is compact.
  • the mechanical switching valve can be switched using a low-cost motor. Compared to the case of using only a large, high-cost electromagnetic switching valve, the oil path / switching control configuration is simplified and the parts cost is reduced.
  • the mechanical switching valve can be switched easily and quickly with a small operating force, as with conventional electromagnetic switching valves, by connecting a hand switch or the like to the operation of the motor. Rukoto can be greatly improved switching operability.
  • the motor and the like can be easily retrofitted to the current mechanical switching valve, it is possible to respond quickly to a user's request for improvement in switching operability without changing the basic configuration of the switching valve.
  • An excellent work vehicle can be provided.
  • the hydraulic piping and the like can be further reduced, and the assembling property and the maintenance property can be improved.
  • FIG. 1 is a side view showing the overall configuration of a work vehicle according to the present invention
  • FIG. 2 is a hydraulic circuit diagram of the entire work vehicle
  • FIG. 3 is a hydraulic circuit diagram of a loader control valve section
  • FIG. 4 is a switching valve operating mechanism of the present invention.
  • FIG. 5 is a partial front sectional view of the switching valve operating mechanism
  • FIG. 6 is a hydraulic circuit diagram of the switching valve operating mechanism
  • FIG. 7 is an operation including another type of switching valve operating mechanism.
  • the work vehicle 1 is a backhoe loader, and a loader 3 and a digging device 4 that are loading devices are disposed before and after a central traveling machine body 2.
  • An aircraft frame 5 is extended from the front end portion to the rear end portion of the traveling aircraft body 2, and a front axle case and a rear axle case (not shown) are respectively connected to the front portion and the rear portion of the aircraft frame 5.
  • Left and right front wheels 8 and 8 and rear wheels 9 and 9 are mounted, and the work vehicle 1 is configured to be able to travel with the loader 3 and the excavator 4 mounted.
  • a steering handle 11 and a driver's seat 12 are disposed in the control unit 14 covered with the canopy 42 in the traveling body 2, and various hydraulic operations for operating the loader 3 and the like on the side of the driver's seat 12.
  • a display device such as a tool or a meter (not shown) is centrally arranged as the operation unit 10.
  • the operation unit 10 is provided with an accelerator lever 13, a control valve unit 15 including a plurality of mechanical switching valves according to the present invention, and the like. 1 running operation and loader work operation by the loader 3 are enabled.
  • the loader 3 is connected to the side portion of the traveling machine body 2 and extends forward, and includes a bracket 40, a lift arm 41, a bucket 16 attached to the tip, and the like, and is used as a front loader. is there.
  • An engine 6 is mounted on the front of the body frame 5 of the traveling body 2, the engine 6 is covered with a bonnet 7 on the body frame 5, and the loader 3 is disposed outside the hood 7. It is arranged.
  • the excavator 4 is detachably attached to the rear part of the traveling machine body 2 and includes a boom bracket 22, a boom 24, an arm 26, a bucket 28 attached to the tip, and the like, and is used as a backhoe.
  • An operation column 37 containing a control valve unit 43 for the excavator 4 is installed behind the driver's seat 12, and excavation work is performed by operating an operation lever or the like on the operation column 37. The operation can be performed.
  • stabilizers 20 and 20 are disposed on the left and right sides of the rear portion of the machine body frame 5, and the excavator 4 is provided during excavation work by expanding and contracting rods of the stabilizer cylinders 21 and 21 provided in the stabilizers 20 and 20.
  • the work vehicle 1 is stretched from the front and rear together with the bucket 16 of the loader 3 to ensure good vehicle body stability.
  • a hydraulic oil tank 33 that functions as a hydraulic oil reservoir tank is disposed on the side of the control unit 14, and a working device such as a loader 3 or an excavating device 4 is disposed behind the engine 6.
  • a hydraulic pump device 130 for supplying hydraulic oil is provided.
  • the hydraulic pump device 130 is connected to an output shaft 6a that protrudes rearward from the engine 6.
  • the hydraulic pump device 130 is driven by engine power, and hydraulic oil is supplied from the hydraulic pump device 130 to each work. Supplied toward the device or the like.
  • hydraulic oil is supplied to the left and right lift cylinders 17 and 17 and the dump cylinders 18 and 18, and in the excavator 4, the boom cylinder 25, the arm cylinder 27, the bucket cylinder 29, and the rod 34.
  • the hydraulic oil is supplied to the swing cylinders 23 and 23 that rotate the excavator 4 left and right by expanding and contracting the left and right and the left and right stabilizer cylinders 21 and 21.
  • hydraulic oil is also supplied to the power steering cylinder 141 for steering the front wheels 8.
  • the output shaft 6a of the engine 6 is connected to the hydraulic continuously variable transmission 101 in the transmission case 31 via the transmission shaft 30 and the like, and the output shaft of the hydraulic continuously variable transmission 101 is connected to the output shaft 6a.
  • the motor shaft 32 is connected to the rear wheels 9, 9 via a differential mechanism, a clutch mechanism, an axle, etc. (not shown), and after the engine power is continuously variable, the rear wheels 9, 9 so that the work vehicle 1 is driven to travel.
  • the hydraulic circuit 100 includes a hydraulic continuously variable transmission 101, a hydraulic oil tank 33, a hydraulic pump device 130, a power steering control valve section 140, and a loader control valve section 200 which is a mechanical switching valve group for controlling the loader 3.
  • the backhoe control valve section 150 is a mechanical switching valve group for controlling the excavator 4.
  • a variable circuit type hydraulic pump 59 and a hydraulic motor 60 are fluidly connected by a pair of main oil passages 61a and 61b to form a closed circuit.
  • the rotation of the engine power input to the hydraulic pump 59 via the transmission shaft 30 and the like is adjusted by adjusting the swash plate angle of the movable swash plates 59a and 60a of the hydraulic pump 59 and the hydraulic motor 60.
  • the number and the rotation direction are freely changed, and the power is output from the motor shaft 32 as speed change power.
  • the hydraulic oil tank 33 is a container for storing hydraulic oil used in the hydraulic circuit 100, and may be configured to be used as the transmission case 31 provided in the work vehicle 1 as necessary.
  • the hydraulic pump device 130 includes two variable displacement hydraulic pumps P1 and P2 and a fixed displacement hydraulic pump P3 such as a gear pump, and the hydraulic pumps P1 and P2 are integrally formed. Therefore, the installation space of the hydraulic pump device 130 is reduced compared with the case where the hydraulic pump is individually provided, so that the compactness is achieved.
  • the suction sides of the hydraulic pumps P1, P2, and P3 are all connected to a port 131, and the port 131 is connected to the hydraulic oil tank 33 via a pipe 121. That is, the hydraulic oil is supplied to the hydraulic pumps P1, P2, and P3 through the common pipe 121, and the piping cost is reduced by simplifying the hydraulic oil intake path, and the suction resistance when the hydraulic oil is sucked is reduced. Can be achieved.
  • discharge sides of the hydraulic pumps P1, P2, and P3 are provided with discharge ports 132, 133, and 134, respectively, and the discharge ports 132 and 133 are respectively connected to the loader control valve section 200 via pipes 137 and 136, respectively.
  • the discharge port 134 is connected to the power steering control valve section 140 via a pipe 135.
  • the hydraulic oil in the hydraulic oil tank 33 is drawn through the pipe 121 and the port 131, and the loader control valve section 200 and the power steering control valve section are discharged from the discharge ports 132, 133, and 134. It is made to supply toward 140.
  • the power steering control valve section 140 is provided with a steering control valve (not shown), and the steering control valve controls the sliding of the power steering cylinder 141 in accordance with the operation of the steering handle 11.
  • the steering force can be assisted.
  • the pipe 135 is connected to a port 142 provided in the power steering control valve section 140, and hydraulic oil discharged from the hydraulic pump P3 is supplied from the pipe 135 to the steering control valve via the port 142. It is the composition which becomes.
  • the port 102 provided in the power steering control valve section 140 is connected to the charge circuit 64 of the hydraulic continuously variable transmission 101 via a pipe 103 provided with a filter 104 in the middle.
  • the charge circuit 64 includes check valves 62 and 62, a check relief valve 63, and the like, and hydraulic oil regulated to the charge relief pressure by the check relief valve 63 is supplied to the closed circuit via the check valves 62 and 62. To be replenished.
  • the loader control valve section 200 includes various switching valves 210, 220, 230, and the like that control hydraulic fluid to the lift cylinders 17, 17 and dump cylinders 18, 18 of the loader 3 as will be described in detail later. 240 is provided, and drive control of the loader 3 is performed by the switching valves 210, 220, 230, and 240.
  • the loader control valve section 200 includes a pump port 251, a tank port 252, a carryover port 253, dump cylinder ports 254 and 255, lift cylinder ports 256 and 257, ports 258 and 259, and a PTO port 260. -261 is provided.
  • the pump port 251 is connected to a pipe 136 communicating with the discharge port 133 of the hydraulic pump P2
  • the port 258 is connected to a pipe 137 communicating with the discharge port 132 of the hydraulic pump P1
  • the tank port 252 is The hydraulic oil is connected to a pipe 262 communicating with the hydraulic oil tank 33, and the hydraulic oil discharged from the hydraulic pumps P1 and P2 is supplied to the switching valves 210, 220, 230, and 240 of the loader control valve section 200, The lift cylinders 17 and 17, the dump cylinders 18 and 18, and the hydraulic actuators of the external hydraulic equipment are driven.
  • the backhoe control valve section 150 is provided with various switching valves 51 to 58 for controlling the operations of the stabilizer cylinders 21 and 21, the swing cylinders 23 and 23, the boom cylinder 25, the arm cylinder 27, and the bucket cylinder 29, Ports 151 and 152 are provided.
  • the port 151 is connected to a pipe 263 that communicates with the carryover port 253 of the loader control valve section 200
  • the port 152 is connected to a pipe 264 that communicates with the port 259 of the loader control valve section 200.
  • One stabilizer cylinder 21, swing cylinders 23 and 23, and arm cylinder 27 are driven by hydraulic oil supplied from the port 151 via the pipe 263, and supplied from the port 152 via the pipe 264.
  • the other stabilizer cylinder 21, bucket cylinder 29, and boom cylinder 25 are driven by oil.
  • the loader control valve section 200 is provided with a dump cylinder switching valve 210, a lift cylinder switching valve 220, a mode switching valve 230, and a PTO switching valve 240.
  • the dump cylinder switching valve 210 is a directional control valve at a 6-port 3 position (positions A, B, and C), and is interposed between the pump port 251 and the dump cylinders 18 and 18. .
  • the pump port 251 and the dump cylinder switching valve 210 are connected by an oil passage 270, and the oil passage 270 and the oil passage 272 connected to the tank port 252 are connected by an oil passage 271.
  • a relief valve 271 a is provided in the middle of the oil passage 271.
  • oil passage 272 and the dump cylinder port 254 are connected by an oil passage 274, and an intermediate portion of the oil passage 274 is connected to the dump cylinder switching valve 210 via the oil passage 273.
  • a relief valve with an anti-void 274a is provided on the oil passage 274 in the vicinity of the connecting portion with the oil passage 272.
  • the oil passage 272 and the dump cylinder port 255 are connected by an oil passage 276, and an intermediate portion of the oil passage 276 is connected to the dump cylinder switching valve 210 via the oil passage 275, and
  • An anti-void relief valve 276 a is also provided on the oil passage 276 in the vicinity of the connecting portion with the oil passage 272.
  • the dump cylinder port 254 communicates with the bottom chamber of the dump cylinders 18 and 18 via a pipe 265, and the dump cylinder port 255 communicates with the rod chamber of the dump cylinders 18 and 18 via a pipe 266. It is communicated to.
  • the hydraulic oil discharged from the discharge port 133 of the hydraulic pump P2 is supplied to the dump cylinder switching valve 210 via the pipe 136, the pump port 251, and the oil passage 270.
  • the dump cylinder switching valve 210 is switched to the position C, the hydraulic oil is pumped to the bottom chambers of the dump cylinders 18 and 18 through the oil passage 273, the oil passage 274, the dump cylinder port 254, and the pipe 265.
  • the rods of the dump cylinders 18 and 18 can be extended.
  • the dump cylinder switching valve 210 When the dump cylinder switching valve 210 is switched to position B, the hydraulic oil is pumped to the rod chambers of the dump cylinders 18 and 18 through the oil passage 275, the oil passage 276, the dump cylinder port 255, and the pipe 266. Thereby, the rod of dump cylinder 18 * 18 can be shortened.
  • the rods of the dump cylinders 18 and 18 expand and contract, and the bucket 16 rotates up and down with respect to the lift arms 41 and 41.
  • the lift cylinder switching valve 220 is a directional control valve having 6 ports and 4 positions (positions D, E, F, and G), and is interposed between the dump cylinder switching valve 210 and the lift cylinders 17 and 17. It is installed.
  • the lift cylinder switching valve 220 is connected to the dump cylinder switching valve 210 via an oil passage 277.
  • oil passage 272 and the lift cylinder port 256 are connected by an oil passage 279, and a middle portion of the oil passage 279 is connected to the lift cylinder switching valve 220 via the oil passage 278.
  • a check valve 279a is provided on the oil passage 279 in the vicinity of the connecting portion with the oil passage 272.
  • An oil passage 280 is connected between the lift cylinder switching valve 220 and the lift cylinder port 257.
  • the lift cylinder port 256 communicates with the rod chamber of the lift cylinders 17 and 17 via a pipe 267, and the lift cylinder port 257 communicates with the bottom chamber of the lift cylinders 17 and 17 via a pipe 268. It is communicated.
  • the hydraulic oil that has passed through the dump cylinder switching valve 210 is supplied to the lift cylinder switching valve 220 via the oil passage 277. Further, when the lift cylinder switching valve 220 is switched to the position E, the hydraulic oil is pumped to the bottom chambers of the lift cylinders 17 and 17 through the oil passage 280, the lift cylinder port 257, and the pipe 268. Thus, the rods of the lift cylinders 17 and 17 can be extended.
  • the lift cylinder switching valve 220 When the lift cylinder switching valve 220 is switched to the position F, the hydraulic oil is pumped to the rod chambers of the lift cylinders 17 and 17 via the oil passage 278, the oil passage 279, the lift cylinder port 256, and the pipe 267. Thereby, the rod of the lift cylinders 17 and 17 can be shortened. In this way, by performing a position switching operation on the lift cylinder switching valve 220, the rods of the lift cylinders 17 and 17 expand and contract, and the lift arm 41 moves up and down.
  • the mode switching valve 230 is a five-port, three-position (position J, K, H) direction switching valve, and is interposed between the lift cylinder switching valve 220 and the carryover port 253.
  • the mode switching valve 230 is provided with primary ports 230a, 230b and secondary ports 230c, 230d, 230e.
  • the ports 230a, 230b When switched to the “working position H”, the ports 230a, 230b
  • the port 230c is communicated, the port 230d and the port 230e are communicated, and the port 230b is closed.
  • ports 230a, 230b, 230c, 230d, and 230e are all in communication, and when switched to “merging position K”, port 230a and ports 230c and 230d are communicated.
  • 230b communicates with the port 230e.
  • the port 230 a is connected to the lift cylinder switching valve 220 via an oil passage 281.
  • the port 230 b of the mode switching valve 230 is connected to the oil passage 272 via an oil passage 282
  • the port 230 d is connected to the port 258 via an oil passage 283
  • the port 230 e is connected to the oil passage 284.
  • the oil passage 285 connects the oil passage 272 and the port 259, and an anti-void relief valve 285a is provided on the oil passage 285 in the vicinity of the connecting portion with the oil passage 272.
  • the PTO switching valve 240 is a directional control valve of 6 ports and 4 positions (positions L, M, N, and P), and is interposed between the mode switching valve 230 and the carryover port 253.
  • the PTO switching valve 240 is provided with primary ports 240a, 240b, and 240c, and secondary ports 240d, 240e, and 240f.
  • 240a communicates with port 240d, and ports 240b, 240c, 240e, and 240f are closed.
  • position M the port 240b and the port 240f are communicated, the port 240c and the port 240e are communicated, and the ports 240a and 240d are closed.
  • the port 240b and the port 240e When switched to “position N”, the port 240b and the port 240e are communicated, the port 240c and the port 240f are communicated, and the ports 240a and 240d are closed.
  • the port 240b and the port 240e When switching to “continuous position P”, the port 240b and the port 240e are communicated, the port 240c and the port 240f are communicated, and the ports 240a and 240d are closed.
  • the port 240 a is connected to the port 230 c of the mode switching valve 230 via an oil passage 286.
  • the port 240 b of the PTO switching valve 240 is connected to the middle portion of the oil passage 286 via the oil passage 287, and a check valve 287 a is provided in the middle portion of the oil passage 287.
  • the port 240c is connected to the oil passage 272 via an oil passage 288, the port 240d is connected to the carry-over port 253 via an oil passage 289, and the port 240e is connected to the oil passage 290 via an oil passage 290. It is connected to the middle part of 291.
  • the oil passage 291 connects the oil passage 272 and the PTO port 260, and a plug 291 a is provided on the oil passage 291 in the vicinity of the connecting portion with the oil passage 272.
  • the port 240 f is connected to the middle part of the oil passage 293 through the oil passage 292.
  • the oil passage 293 connects the oil passage 272 and the PTO port 261, and a plug 293 a is provided on the oil passage 293 in the vicinity of the connecting portion with the oil passage 272.
  • the switching configuration of the hydraulic oil flow path using the mode switching valve 230 and the PTO switching valve 240 having such a configuration will be described.
  • the mode switching valve 230 is set to the working position H and the PTO switching valve 240 is set to the position L.
  • the hydraulic oil discharged from the discharge port 133 of the hydraulic pump P2 is a pipe 136, a pump port 251, an oil passage 270, a dump cylinder switching valve 210, an oil passage 277, a lift cylinder switching valve 220, an oil passage 281,
  • the oil is supplied to the backhoe control valve section 150 through the mode switching valve 230, the oil passage 286, the PTO switching valve 240, the oil passage 289, the carry over port 253, and the pipe 263.
  • the hydraulic oil discharged from the discharge port 132 of the hydraulic pump P1 passes through the pipe 137, the port 258, the oil path 283, the mode switching valve 230, the oil path 284, the oil path 285, the port 259, and the pipe 264, and backhoe.
  • the hydraulic oil pumped from the discharge ports 132 and 133 of the hydraulic pumps P1 and P2 can be supplied to the backhoe control valve section 150, and the excavator 4 is driven by the supplied hydraulic oil. I have to.
  • the mode switching valve 230 is at the working position H, and the PTO switching valve 240 is at the position M.
  • the position N is set.
  • the hydraulic oil discharged from the discharge port 133 of the hydraulic pump P2 is a pipe 136, a pump port 251, an oil passage 270, a dump cylinder switching valve 210, an oil passage 277, a lift cylinder switching valve 220, an oil passage 281,
  • the oil is supplied to the PTO switching valve 240 through the mode switching valve 230 and the oil passages 286 and 287.
  • the hydraulic fluid is pumped from the port 240f, the oil passage 292, and the oil passage 293 to the PTO port 261 at the position M, and at the position N, the port 240e, the oil passage 290, and the oil passage 291 to the PTO port 260. To be pumped.
  • hydraulic oil is taken out from the PTO port 260 or the PTO port 261 and the external hydraulic equipment is driven.
  • the mode switching valve 230 When carrying the earth and sand using the loader 3 or when traveling, the mode switching valve 230 is set to the return position J.
  • the hydraulic oil discharged from the discharge port 133 of the hydraulic pump P2 is supplied to the dump cylinder switching valve 210 via the pipe 136, the pump port 251, and the oil passage 270, and further to the lift cylinder via the oil passage 277.
  • the loader 3 is driven.
  • the hydraulic oil after passing through the dump cylinder switching valve 210 and the lift cylinder switching valve 220 is supplied to the mode switching valve 230 via the oil passage 281.
  • the hydraulic oil discharged from the discharge port 132 of the hydraulic pump P1 is also supplied to the mode switching valve 230 via the pipe 137, the port 258, and the oil passage 283.
  • the hydraulic oil supplied from the discharge ports 132 and 133 of the hydraulic pumps P1 and P2 is returned to the hydraulic oil tank 33 through the oil passage 282, the oil passage 272, the tank port 252 and the pipe 262. It is.
  • the mode switching valve 230 is set.
  • the PTO switching valve 240 is set to the continuous position P.
  • the hydraulic oil discharged from the discharge port 133 of the hydraulic pump P2 is the pipe 136, the pump port 251, the oil passage 270, the dump cylinder switching valve 210, the oil passage 277, the lift cylinder switching valve 220, and the oil passage 281. Then, it is supplied to the mode switching valve 230.
  • the hydraulic oil discharged from the discharge port 132 of the hydraulic pump P1 is also supplied to the mode switching valve 230 via the pipe 137, the port 258, and the oil passage 283.
  • the hydraulic oil supplied from the discharge ports 132 and 133 of the hydraulic pumps P1 and P2 is merged in the mode switching valve 230, and the merged hydraulic oil is switched to the oil passage 286, the oil passage 287, and the PTO switching.
  • the pressure is sent to an external hydraulic device and driven.
  • control valve unit 15 constituting the loader control valve section 200 will be described with reference to FIGS.
  • the control valve unit 15 is disposed in the operation unit 10 and is fixed to a vertical wall surface of the operation frame 105 constituting the frame of the operation unit 10 by a fastening member 106 such as a bolt.
  • the tank port 252 and the pump port 251 are provided above and below, and the switching valves 210, 220, 230, and 240 are arranged in order from the left so that each spool slides up and down.
  • the carry-over port 253 is disposed on the right side of the rightmost PTO switching valve 240 among them.
  • dump cylinder ports 255 and 254, lift cylinder ports 257 and 256, ports 259 and 258, and external hydraulic equipment are respectively provided at the lower and upper portions of the side surfaces of the switching valves 210, 220, 230, and 240.
  • PTO ports 261 and 260 connected to the hydraulic actuator are formed.
  • each spool of the dump cylinder switching valve 210 and the lift cylinder switching valve 220 is linked to the loader operation lever 44 via links 107 and 108, respectively, and the loader operation lever 44 is tilted.
  • the dump cylinder switching valve 210 and the lift cylinder switching valve 220 are controlled to switch to the respective positions, and the rods of the dump cylinders 18 and 18 and the lift cylinders 17 and 17 are expanded and contracted as described above to drive the loader 3. I can do it.
  • One end of the spool of the mode switching valve 230 is also linked to the mode switching lever 45 via the link 109. By tilting the mode switching lever 45, the mode switching valve 230 is moved to the working position H / return position J. -It can be switched to one of the merging positions K.
  • one end of the spool of the PTO switching valve 240 is linked to the switching valve operating mechanism 110 according to the present invention, and the spool 145 of the PTO switching valve 240 is operated by operating means such as a hand switch 124 described later. Is easily and quickly slid, and can be switched to any one of the positions L, M, N, and P.
  • the switching valve operating mechanism 110 includes an electromagnetic valve 113 having a spool 112 that is moved by an electromagnetic solenoid 111, a pair of operating actuators 174 and 177 connected to the electromagnetic valve 113 via oil passages 114 and 115, and an operating link.
  • the operation link 161 includes a swinging portion 180 swingably driven by the operation actuators 174 and 177, and the swinging portion 180 at one end of the spool 145 of the PTO switching valve 240. It comprises a connecting portion 148 that interlocks.
  • the solenoid valve 113 is configured in a four-port three-position system, and the spool 112 connected to the electromagnetic solenoids 111 and 111 is a spool chamber 120 a of a valve block 120 disposed close to the control valve unit 15. It is formed so as to be inserted from the side.
  • the electromagnetic solenoids 111 and 111 are connected to a controller 123 for controlling a traveling operation and various works via wirings 122 and 122, and the controller 123 is connected to the inside of the operation unit 10 via a wiring 128. It is connected to the hand switch 124 provided in FIG.
  • the hand switch 124 can be provided on the grip of the loader operation lever 44 or on the upper surface of the operation frame 105, and may be any position where it can be easily operated, and the attachment position is not particularly limited. .
  • the pump port 169 opened on the lower surface of the valve block 120 is more hydraulic than the filter 104 on the pipe 103 between the power steering control valve section 140 and the hydraulic continuously variable transmission 101 via the pipe 269. A portion of the hydraulic oil discharged from the discharge port 134 of the hydraulic pump P3 is supplied to the switching valve operating mechanism 110 via the pipe 269. ing.
  • the pipe 269 is also connected to the charge circuit 64 of the hydraulic continuously variable transmission 101 similarly to the pipe 103, and the hydraulic oil regulated to the charge relief pressure by the check relief valve 63 is
  • the electromagnetic valve 113 is supplied via a pipe 269.
  • a tank port 170 provided in parallel with the pump port 169 on the lower surface of the valve block 120 is connected to the hydraulic oil tank 33 via a pipe 171, and the hydraulic oil from the electromagnetic valve 113 is supplied to the hydraulic oil.
  • the tank 33 can be discharged.
  • the operation actuator 174 includes an operation cylinder 175 including a cylinder chamber 120b whose upper end is opened upward at the top of the valve block 120, and a plug 143 fitted from above into the cylinder chamber 120b. And a hydraulic oil chamber 120d is provided in the cylinder chamber 120b on the lower end side of the operating piston 176, and the hydraulic oil chamber 120d is connected to the oil passage. 114 is connected to one actuator port 125 of the electromagnetic valve 113 via 114.
  • the operating actuator 177 is also slidable in the operating cylinder 178, which includes a cylinder chamber 120c provided in parallel with the cylinder chamber 120b, a plug 144 fitted from above into the cylinder chamber 120c, and the operating cylinder 178. And an operating oil chamber 120e is provided in the cylinder chamber 120c on the lower end side of the operating piston 179, and the operating oil chamber 120e is provided via the oil passage 115.
  • the other actuator port 126 of the electromagnetic valve 113 is connected.
  • Each of the operation pistons 176 and 179 is formed integrally with the electromagnetic valve 113 via the valve block 120.
  • the hydraulic oil from the electromagnetic valve 113 is supplied to and discharged from the hydraulic oil chambers 120d and 120e of the operation actuators 174 and 177 in the valve block 120, and the operation pistons 176 and 179 are respectively operated by the hydraulic cylinders. 175 and 178 can slide up and down.
  • the swinging portion 180 is projected horizontally from the vertical wall surface of the operation frame 105 toward the space between the operation actuator 174 and the operation actuator 177 above the valve block 120.
  • receiving plates 182 b and 182 c are projected in a radial direction at positions 180 degrees apart from each other on the outer periphery of the boss 182 a, and the lower surfaces of the receiving plates 182 b and 182 c are respectively connected to the operation piston.
  • a push plate 182d is projected in the radial direction at a portion of the outer periphery of the boss 182a that is closer to the control valve unit 15 than the receiving plate 182b.
  • An upper end of a connecting stay 148b constituting the connecting portion 148 is rotatably connected to the push plate 182d via a connecting shaft 148a, while a lower end of the connecting stay 148b is connected to the PTO switching valve 240. Is connected to the upper outer end of the spool 145.
  • the switch lever 127 of the hand switch 124 when the switch lever 127 of the hand switch 124 is tilted, the switch signals corresponding to the positions 117, 118, and 119 are transmitted to the controller 123, and the controller 123 is based on the received switch signal.
  • a switching signal is transmitted to the electromagnetic solenoids 111 and 111, the electromagnetic solenoids 111 and 111 are excited, and the spool 112 is set to one of the positions X1, X2, and X3.
  • the controller 123 can be omitted, and an operation signal can be transmitted to the electromagnetic solenoids 111 and 111 directly by operating the hand switch 124.
  • the controller 123 can be configured with a safety device, a hydraulic pressure detection unit, an oil temperature detection unit, and a mode switch. By connecting to the position detecting means of the lever 45 or the like, it is possible to control not to transmit a switching signal to the electromagnetic solenoids 111 and 111 when an abnormality occurs or during excavation work by a backhoe.
  • the spool 112 is set to the position X1, and the hydraulic oil from the discharge port 134 of the hydraulic pump P3 is supplied to the pipe 135, the power steering control valve section 140, the pipe 103, and the filter 104.
  • the hydraulic oil is supplied to the hydraulic oil chamber 120d through the pipe 269, the electromagnetic valve 113, and the oil passage 114, and the hydraulic oil in the hydraulic oil chamber 120e is operated through the oil passage 115, the electromagnetic valve 113, and the pipe 171.
  • the oil tank 33 is discharged.
  • the operating piston 176 is raised, while the operating piston 179 is lowered, and the rocking body 182 rotates in the direction 146.
  • the spool 145 is pulled up via the push plate 182d and the connecting portion 148, the PTO switching valve 240 is set to the position N, and the hydraulic oil is supplied to the external hydraulic equipment through the PTO port 260. Is supplied, and hydraulic oil is discharged through the PTO port 261.
  • the spool 112 When the switch lever 127 is set to the position 118, the spool 112 is set to the position X2, the hydraulic oil is not supplied to any of the hydraulic oil chambers 120d and 120e, and the operation pistons 176 and 179 do not push the swinging body 182. As shown in FIG. 4, the receiving plates 182b and 182c are in a neutral state where they are held horizontally. As a result, the spool 145 is set to the position N and is in a neutral state, and hydraulic oil is not supplied to or discharged from any of the PTO ports 260 and 261.
  • the spool 112 When the switch lever 127 is tilted to the position 119, the spool 112 is set to the position X3, and the hydraulic oil in the hydraulic oil chamber 120d is discharged to the hydraulic oil tank 33 through the oil passage 114, the electromagnetic valve 113, and the pipe 171.
  • the hydraulic oil from the discharge port 134 of the hydraulic pump P3 passes through the pipe 135, the power steering control valve section 140, the pipe 103, the filter 104, the pipe 269, the electromagnetic valve 113, and the oil passage 115, and then the hydraulic oil chamber 120e.
  • the operation piston 176 is lowered, while the operation piston 179 is raised, and the rocking body 182 rotates in a direction 147 opposite to the direction 146.
  • the spool 145 is pushed down via the push plate 182d and the connecting portion 148, the PTO switching valve 240 is set to the position M, and the hydraulic oil is supplied to the external hydraulic equipment through the PTO port 261. Is supplied through the PTO port 260 and the hydraulic oil is discharged.
  • hydraulic oil can be supplied from the PTO ports 260 and 261 to the hydraulic actuators of external hydraulic equipment such as breakers and grapples.
  • the switching valve operating mechanism 110 includes: The operation pistons 176 and 179, which are hydraulic pistons connected to the spool 145 of the PTO switching valve 240 via the operation link 161, the electromagnetic valve 113 that hydraulically controls the reciprocation of the operation pistons 176 and 179, and the electromagnetic valve 113 is provided as a control device for transmitting an operation signal to 113, and the spool 145 is moved via the operation pistons 176 and 179 and the operation link 161 by the operation control of the electromagnetic valve 113, and the PTO switching valve 240 is switched.
  • Solenoid valve 1 such as an electromagnetic switching valve with a simple structure that is small and low-cost because it is operated 3 can be used to switch the mechanical PTO switching valve 240.
  • the oil passage / switching control configuration is simplified and the parts cost is reduced.
  • the mechanical switching valve can be easily and quickly operated with a small operating force as in the case of the conventional electromagnetic switching valve. Switching can be performed, and switching operability can be greatly improved.
  • the operation pistons 176 and 179 that are the hydraulic pistons, the electromagnetic valve 113, and the like can be easily retrofitted to the PTO switching valve 240 that is the current mechanical switching valve, so that the basic configuration of the switching valve is not changed.
  • the work vehicle 1 which can respond rapidly to the improvement request
  • the operation pistons 176 and 179 which are the hydraulic pistons, and the electromagnetic valve 113 are integrally configured, the operation pistons 176 and 179 and the electromagnetic valve 113 are formed into a single unit structure in the switching valve operation mechanism 110. It can be easily attached and detached, and the assembly and maintenance can be improved, and the parts required for the oil passages and fittings related to the operation pistons 176 and 179 and the electromagnetic valve 113 can be shared, and the parts cost can be reduced. Further reduction can be achieved. In addition, the installation space for the operating pistons 176 and 179 and the electromagnetic valve 113 can be reduced, and the switching valve operating mechanism 110 as a whole can be made compact.
  • the operation piston which is the hydraulic piston, includes two operation pistons 176 and 179 for moving the spool 145 forward and backward in the spool movement direction, respectively. Since the hydraulic oil chambers 120d and 120e are provided only on the front and rear end sides in the piston movement direction, the single-action type is provided. It is only necessary to control the hydraulic pressure in the hydraulic oil chamber, and there is no need for a complicated position control mechanism to maintain the neutral position, simplifying the hydraulic control configuration, improving piston response, and component costs Can be further reduced. However, as a matter of course, the operation actuators 174 and 177 are configured by an operation actuator having a single double-acting operation piston and connected to the electromagnetic valve 113, and the operation piston is connected to the connecting portion 148. Is also possible.
  • the switching valve operating mechanism 110A moves the spool 145 of the PTO switching valve 240 not by the electromagnetic solenoid 111 but by the rotational force of the electric motor 190, and reduces the number of members such as hydraulic piping. It is.
  • the main body 190a of the motor 190 is fixed to the vertical wall surface of the operation frame 105 constituting the frame of the operation unit 10 by bolts (not shown) and the motor shaft 190b. Projecting horizontally.
  • a motor 190 is also connected to the controller 123 via a wiring (not shown), and the controller 123 is connected to a hand switch 124 provided in the operation unit 10 via a wiring 128.
  • the motor shaft 190 b is connected to the outer upper end of the spool 145 of the PTO switching valve 240 via the operation link 149.
  • the operation link 149 is also composed of a swinging part 191 and the connecting part 148.
  • the swinging part 191 includes a boss 191a fitted around the motor shaft 190b and a radius from the outer periphery of the boss 191a. And a pushing plate 191b projecting in the direction.
  • the upper end of the connecting stay 148b constituting the connecting portion 148 is rotatably connected to the push plate 191b by the connecting shaft 148a, while the lower end of the connecting stay 148b is connected to the PTO switching valve 240. Is connected to the upper outer end of the spool 145.
  • the switching valve operating mechanism 110A of the work vehicle 1 that operates the PTO switching valve 240 that is a mechanical switching valve for controlling the hydraulic actuator includes the spool 145 of the PTO switching valve 240. Is provided with a motor 190 that can be electrically controlled via an operation link 149 and a controller 123 that transmits an operation signal to the motor 190, and a swing output from the motor 190 causes an operation link 149 to be transmitted. Since the spool 145 is moved and the switching valve 240 for PTO is switched, the mechanical PTO switching valve 240 can be switched using a small and low-cost motor.
  • the oil path / switching control configuration can be simplified and the parts cost can be reduced.
  • the mechanical switching valve can be easily and quickly switched with a small operating force as in the case of the conventional electromagnetic switching valve. It can be improved.
  • the motor 190 and the like can be easily retrofitted to the PTO switching valve 240, which is a current mechanical switching valve, it is possible to quickly respond to a user's request for improvement in switching operability without changing the basic configuration of the switching valve.
  • the work vehicle 1 which can respond and is excellent in versatility can be provided.
  • the hydraulic piping and the like can be further reduced, and the assembling property and the maintenance property can be improved.
  • the present invention is not limited to the backhoe loader described in the above embodiment, but is used for all switching for operating a mechanical switching valve for controlling a hydraulic actuator of an external hydraulic device in a work vehicle such as a tractor, a rice transplanter, or a transporter. It can be applied to a valve operating mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

【課題】油圧アクチュエータ制御用の機械式切換弁は、前記電磁式切換弁に比べると油路・切換制御構成の簡素化や部品コストの低減が図れるものの、操作力の小さい手元スイッチ等を使って簡単かつ迅速な切換操作を行うことが難しく、切換操作性に劣る、という問題があった。 【解決手段】切換弁操作機構110には、PTO用切換弁240のスプール145に操作リンク161を介して接続される油圧ピストンである操作ピストン176・179、該操作ピストン176・179の往復動を油圧制御する電磁弁113、及び該電磁弁113に動作信号を送信する制御装置であるコントローラ123を設け、前記電磁弁113の動作制御により、操作ピストン176・179と操作リンク161を介してスプール145を移動し、PTO用切換弁240を切換操作する。

Description

作業車両の切換弁操作機構
 本発明は、油圧アクチュエータ制御用の機械式切換弁を操作する、作業車両の切換弁操作機構に関する。
 従来より、バックホーローダ等の作業車両には、ブレーカやグラップル等の外部油圧機器の油圧アクチュエータに作動油を供給するためのPTO用油圧ポートが備えられ、該PTO用油圧ポートへの圧油の給排には、電磁ソレノイドにより切換弁内部のスプールを直接移動して圧油の経路を変更する電磁切換弁や、先に電磁ソレノイドを使った電磁パイロット弁を動かし該電磁パイロット弁からの油圧でメインスプールを間接的に移動して圧油の径路を変更する電磁油圧切換弁のように、電磁ソレノイドを用いる電磁式切換弁を利用する技術が公知となっている(例えば、特許文献1参照)。
 一方、このような電磁式切換弁には、その切換に複雑な油路や制御構成が必要なことに加え、外部油圧機器を直接動作させるべく大型のものが使用されるため、多用すると部品コストが高くなることから、切換弁におけるスプールの移動を、ペダルやレバー等によって伝達されてきた手動力を利用して機械的に行う機械式切換弁を利用する技術も公知となっている(例えば、特許文献2参照)。
特開2007-92763号公報 特開2003-176549号公報
 しかし、このような機械式切換弁は、前記電磁式切換弁に比べると、油路・切換制御構成の簡素化や部品コストの低減は図れるものの、電磁式切換弁を用いた場合のように操作力の小さい手元スイッチ等を使って簡単かつ迅速な切換操作を行うことは難しく、切換操作性に劣る、という問題があった。
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 すなわち、本発明においては、油圧アクチュエータ制御用の機械式切換弁を操作する作業車両の切換弁操作機構において、該切換弁操作機構には、前記機械式切換弁のスプールに操作リンクを介して接続される油圧ピストン、該油圧ピストンの往復動を油圧制御する電磁弁、及び該電磁弁に動作信号を送信する制御装置を設け、前記電磁弁の動作制御により、前記油圧ピストンと前記操作リンクを介して前記スプールを移動し、前記機械式切換弁を切換操作するものである。
 本発明においては、前記油圧ピストンと前記電磁弁を一体的に構成するものである。
 本発明においては、前記油圧ピストンは、前記スプールをスプール移動方向の前方側と後方側にそれぞれ移動させるための二個の油圧ピストンより成り、該油圧ピストンのいずれも、ピストン移動方向の前後一端側のみに作動油室を設けた単動式に構成するものである。
 本発明においては、油圧アクチュエータ制御用の機械式切換弁を操作する作業車両の切換弁操作機構において、該切換弁操作機構には、前記機械式切換弁のスプールに操作リンクを介して接続され電気制御可能なモータと、該モータに動作信号を送信する制御装置を設け、前記モータからの揺動出力により、前記操作リンクを介して前記スプールを移動し、前記機械式切換弁を切換操作するものである。
 本発明は、以上のように構成したので、以下に示す効果を奏する。
 すなわち、本発明においては、油圧アクチュエータ制御用の機械式切換弁を操作する作業車両の切換弁操作機構において、該切換弁操作機構には、前記機械式切換弁のスプールに操作リンクを介して接続される油圧ピストン、該油圧ピストンの往復動を油圧制御する電磁弁、及び該電磁弁に動作信号を送信する制御装置を設け、前記電磁弁の動作制御により、油圧ピストンと操作リンクを介してスプールを移動し、機械式切換弁を切換操作するので、小型で低コストの簡単な構造の電磁切換弁等の電磁弁を利用して機械式切換弁を切換操作することができ、大型で高コストの電磁式切換弁だけを用いる場合に比べると、油路・切換制御構成の簡素化や部品コストの低減が図れ、加えて、前記電磁弁の動作に、手元スイッチ等を連動接続させることにより、従来の電磁式切換弁と同様に、機械式切換弁を小さな操作力で簡単かつ迅速に切り換えることができ、切換操作性を大きく向上できる。しかも、前記油圧ピストン、電磁弁等は、現行の機械式切換弁に容易に後付けできるため、切換弁の基本構成を変更することなく、ユーザーからの切換操作性の改善要求に迅速に対応することができ、汎用性に優れた作業車両が提供できる。
 本発明においては、前記油圧ピストンと電磁弁を一体的に構成するので、前記油圧ピストンと電磁弁を、単一のユニット構造にして前記切換弁操作機構内で容易に着脱することができ、組立性やメンテナンス性が向上できると共に、油圧ピストンと電磁弁に係わる油路や取付具等に必要な部品を共通化することができ、部品コストの更なる低減を図ることができる。加えて、油圧ピストンと電磁弁の設置空間を縮小することができ、切換弁操作機構全体のコンパクト化も図ることができる。
 本発明においては、前記油圧ピストンは、前記スプールをスプール移動方向の前方側と後方側にそれぞれ移動させるための二個の油圧ピストンより成り、該油圧ピストンのいずれも、ピストン移動方向の前後一端側のみに作動油室を設けた単動式に構成するので、ピストン移動方向の前後両端側に作動油室を設けた復動式と異なり、一端側の作動油室内の油圧を制御するだけで済むと共に、中立位置保持のための複雑な位置制御機構等が不要となり、油圧制御構成を簡素化することができ、ピストンの応答性の向上や、部品コストの更なる低減を図ることができる。
 本発明においては、油圧アクチュエータ制御用の機械式切換弁を操作する作業車両の切換弁操作機構において、該切換弁操作機構には、前記機械式切換弁のスプールに操作リンクを介して接続され電気制御可能なモータと、該モータに動作信号を送信する制御装置を設け、前記モータからの揺動出力により、操作リンクを介してスプールを移動し、機械式切換弁を切換操作するので、小型で低コストのモータを利用して機械式切換弁を切換操作することができ、大型で高コストの電磁式切換弁だけを用いた場合に比べると、油路・切換制御構成の簡素化や部品コストの低減が図れ、加えて、前記モータの動作に手元スイッチ等を連動接続させることにより、従来の電磁式切換弁と同様に、機械式切換弁を小さな操作力で簡単かつ迅速に切り換えることができ、切換操作性を大きく向上できる。しかも、前記モータ等は現行の機械式切換弁に容易に後付けできるため、切換弁の基本構成を変更することなく、ユーザーからの切換操作性の改善要求に迅速に対応することができ、汎用性に優れた作業車両が提供できる。加えて、機械式切換弁の操作に小型の電磁弁を利用する場合等に比べ、油圧配管等を更に減少させ、組立性やメンテナンス性の向上を図ることができる。
本発明に係わる作業車両の全体構成を示す側面図である。 作業車両全体の油圧回路図である。 ローダ制御弁セクションの油圧回路図である。 本発明の切換弁操作機構を備える操作部の正面一部断面図である。 切換弁操作機構の正面一部断面図である。 切換弁操作機構の油圧回路図である。 別形態の切換弁操作機構を備える操作部の正面一部断面図である。
 1 作業車両
 110・110A 切換弁操作機構
 113 電磁弁
 120d・120e 作動油室
 123 コントローラ(制御装置)
 145 スプール
 149・161 操作リンク
 176・179 操作ピストン(油圧ピストン)
 190 モータ
 240 PTO用切換弁(機械式切換弁)
 次に、発明の実施の形態を説明する。
 図1は本発明に係わる作業車両の全体構成を示す側面図、図2は作業車両全体の油圧回路図、図3はローダ制御弁セクションの油圧回路図、図4は本発明の切換弁操作機構を備える操作部の正面一部断面図、図5は切換弁操作機構の正面一部断面図、図6は切換弁操作機構の油圧回路図、図7は別形態の切換弁操作機構を備える操作部の正面一部断面図である。
 まず、本発明に係わる作業車両1の全体構成について、図1、図2、図4により説明する。
 該作業車両1は、バックホーローダであって、中央の走行機体2の前後には、積み込み装置であるローダ3と掘削装置4が配設されている。そして、該走行機体2の前端部から後端部にかけては、機体フレーム5が延設され、該機体フレーム5の前部と後部には、それぞれ図示せぬフロントアクスルケースとリアアクスルケースを介して左右の前輪8・8と後輪9・9が装着されており、作業車両1は、前記ローダ3と掘削装置4を装着したままの状態で走行可能に構成されている。
 前記走行機体2においてキャノピー42により覆われた操縦部14には、ステアリングハンドル11や運転席12が配設され、該運転席12の側方に、前記ローダ3等を操作するための各種油圧操作具や図示せぬメータ等の表示装置が操作部10として集中配置されている。そして、該操作部10には、アクセルレバー13や、本発明に係わる複数の機械式の切換弁から成る制御弁ユニット15等が配置されており、このようにして、操縦部14により、作業車両1の走行操作およびローダ3によるローダ作業操作を可能としている。
 前記ローダ3は、走行機体2の側部に接続して前方に延出され、ブラケット40、リフトアーム41、及び先端に装着されたバケット16等により構成されており、フロントローダとして用いられるものである。そして、前記走行機体2の機体フレーム5の前部には、エンジン6が搭載され、該エンジン6は、前記機体フレーム5上のボンネット7により覆われ、該ボンネット7の外側に、前記ローダ3が配設されている。
 前記掘削装置4は、走行機体2の後部に着脱自在に装着され、ブームブラケット22、ブーム24、アーム26及び先端に装着されたバケット28等によって構成されており、バックホーとして用いられるものである。そして、前記運転席12の後方には、掘削装置4用の制御弁ユニット43を内蔵した操作コラム37が立設されており、該操作コラム37上の操作レバー等を操作することにより、掘削作業操作が行えるようにしている。
 更に、前記機体フレーム5後部の左右両側にはスタビライザ20・20が配設されており、該スタビライザ20・20に備えたスタビライザシリンダ21・21のロッドを伸縮させることにより、掘削作業時に掘削装置4を昇降回動したり、ローダ3のバケット16と一緒になって作業車両1を前後から突っ張るようにして良好な車体安定性を確保したりするようにしている。
 また、前記操縦部14の側方には、作動油のリザーバタンクとして機能する作動油タンク33が配設されると共に、前記エンジン6の後方には、ローダ3や掘削装置4等の作業装置に作動油を供給するための油圧ポンプ装置130が配設されている。そして、該油圧ポンプ装置130には、前記エンジン6から後方に突出された出力軸6aが接続されており、エンジン動力によって油圧ポンプ装置130が駆動され、作動油が該油圧ポンプ装置130から各作業装置等に向かって供給される。
 詳しくは、前記ローダ3においては、左右のリフトシリンダ17・17と、ダンプシリンダ18・18に作動油が供給され、掘削装置4においては、ブームシリンダ25、アームシリンダ27、バケットシリンダ29、ロッド34を伸縮させて掘削装置4を左右回動させるスイングシリンダ23・23、及び前記左右のスタビライザシリンダ21・21に作動油が供給される。更に、前輪8・8の操向を行うためのパワーステアリングシリンダ141にも作動油が供給される。
 なお、前記エンジン6の出力軸6aには、伝達軸30等を介して、ミッションケース31内の油圧式無段変速装置101が接続されると共に、該油圧式無段変速装置101の出力軸となるモータ軸32は、図示せぬ差動機構、クラッチ機構、車軸等を介して前記後輪9・9に接続されており、エンジン動力が無段変速された後、変速動力として後輪9・9に伝達され、作業車両1が走行駆動されるようにしている。
 次に、作業車両1の油圧回路100について、図2、図3により説明する。
 該油圧回路100は、前記油圧式無段変速装置101、作動油タンク33、油圧ポンプ装置130、パワーステアリング制御弁セクション140、ローダ3の制御用の機械式切換弁群であるローダ制御弁セクション200、掘削装置4の制御用の機械式切換弁群であるバックホー制御弁セクション150等により構成されている。
 このうちの油圧式無段変速装置101においては、いずれも可変容積型である油圧ポンプ59と油圧モータ60が一対のメイン油路61a・61bによって流体的に接続されることにより閉回路が構成され、該閉回路において、前記油圧ポンプ59と油圧モータ60の各可動斜板59a・60aの斜板角度を調整することにより、伝達軸30等を介して油圧ポンプ59に入力されたエンジン動力の回転数と回転方向が自在に変更され、変速動力として前記モータ軸32から出力されるようにしている。
 前記作動油タンク33は、油圧回路100で用いられる作動油を貯溜する容器であり、必要に応じて、作業車両1が具備する前記ミッションケース31と兼用する構成とすることもできる。
 また、前記油圧ポンプ装置130は、可変容積型の二個の油圧ポンプP1・P2と、ギアポンプ等の固定容積型の油圧ポンプP3から成り、このうちの油圧ポンプP1・P2は、一体型に構成されており、個別に油圧ポンプを設ける場合に比べて、油圧ポンプ装置130の設置空間を縮小してコンパクト化を図るようにしている。
 そして、前記油圧ポンプP1・P2・P3の吸引側は、いずれもポート131に接続され、該ポート131は、配管121を介して前記作動油タンク33に接続されている。つまり、共通の配管121を通って前記油圧ポンプP1・P2・P3に作動油が供給されており、作動油の取込み径路の簡便化による配管コストの低減と、作動油吸引時の吸引抵抗の軽減を図ることができる。
 更に、前記油圧ポンプP1・P2・P3の吐出側は、それぞれ吐出口132・133・134を備え、このうちの吐出口132・133は、それぞれ配管137・136を介して前記ローダ制御弁セクション200に接続され、吐出口134は、配管135を介して前記パワーステアリング制御弁セクション140に接続されている。
 これにより、油圧ポンプ装置130では、作動油タンク33内の作動油が、配管121とポート131を介して吸入され、吐出口132・133・134から、ローダ制御弁セクション200とパワーステアリング制御弁セクション140に向かって供給されるようにしている。
 また、前記パワーステアリング制御弁セクション140には、図示せぬステアリング制御弁が設けられており、該ステアリング制御弁により、前記ステアリングハンドル11の操作に応じてパワーステアリングシリンダ141の摺動が制御され、操舵力を補助できるようにしている。なお、パワーステアリング制御弁セクション140に設けたポート142に、前記配管135が接続されており、前記油圧ポンプP3から吐出された作動油が、配管135からポート142を介してステアリング制御弁に供給される構成となっている。
 更に、該パワーステアリング制御弁セクション140に設けたポート102は、途中部にフィルタ104を設けた配管103を介して、前記油圧式無段変速装置101のチャージ回路64に接続されている。該チャージ回路64は、チェック弁62・62、チェックリリーフ弁63等から成り、該チェックリリーフ弁63によってチャージリリーフ圧に調圧された作動油が、前記チェック弁62・62を介して前記閉回路に補給されるようにしている。
 また、前記ローダ制御弁セクション200は、後で詳述するように、ローダ3の前記リフトシリンダ17・17とダンプシリンダ18・18等への作動油を制御する各種切換弁210・220・230・240が設けられており、該切換弁210・220・230・240によって、前記ローダ3の駆動制御を行うようにしている。
 更に、該ローダ制御弁セクション200には、ポンプポート251、タンクポート252、キャリーオーバポート253、ダンプシリンダ用ポート254・255、リフトシリンダ用ポート256・257、ポート258・259、及びPTO用ポート260・261が設けられている。
 そして、このうちのポンプポート251は、油圧ポンプP2の吐出口133に連通する配管136に接続され、ポート258は、油圧ポンプP1の吐出口132に連通する配管137に接続され、タンクポート252は、作動油タンク33に連通する配管262に接続されており、前記油圧ポンプP1・P2から吐出された作動油が、ローダ制御弁セクション200の各切換弁210・220・230・240に供給され、リフトシリンダ17・17、ダンプシリンダ18・18、及び外部油圧機器の油圧アクチュエータ等が駆動される構成となっている。
 また、前記バックホー制御弁セクション150は、スタビライザシリンダ21・21、スイングシリンダ23・23、ブームシリンダ25、アームシリンダ27、及びバケットシリンダ29の動作を制御する各種切換弁51乃至58が設けられると共に、ポート151・152が設けられている。
 そして、このうちのポート151は、前記ローダ制御弁セクション200のキャリーオーバポート253に連通する配管263に接続され、ポート152は、前記ローダ制御弁セクション200のポート259に連通する配管264に接続されており、配管263を介してポート151から供給される作動油によって、一方のスタビライザシリンダ21、スイングシリンダ23・23、及びアームシリンダ27が駆動され、配管264を介してポート152から供給される作動油によって、他方のスタビライザシリンダ21、バケットシリンダ29、及びブームシリンダ25が駆動される構成となっている。
 次に、前記ローダ制御弁セクション200の詳細構成について、図2、図3により説明する。
 該ローダ制御弁セクション200には、ダンプシリンダ用切換弁210、リフトシリンダ用切換弁220、モード切換弁230、PTO用切換弁240が設けられている。
 このうちのダンプシリンダ用切換弁210は、6ポート3位置(位置A・B・C)の方向制御弁であって、前記ポンプポート251とダンプシリンダ18・18との間に介設されている。そして、該ポンプポート251とダンプシリンダ用切換弁210との間は、油路270によって接続され、該油路270と、前記タンクポート252に接続する油路272との間は、油路271によって接続され、該油路271の途中部には、リリーフ弁271aが設けられている。
 更に、前記油路272とダンプシリンダ用ポート254との間は、油路274によって接続され、該油路274の途中部が、油路273を介してダンプシリンダ用切換弁210に接続されると共に、該油路274上で前記油路272との接続部近傍には、アンチボイド付リリーフ弁274aが設けられている。前記油路272とダンプシリンダ用ポート255との間は、油路276によって接続され、該油路276の途中部が、油路275を介してダンプシリンダ用切換弁210に接続されると共に、該油路276上で前記油路272との接続部近傍にも、アンチボイド付リリーフ弁276aが設けられている。
 そして、前記ダンプシリンダ用ポート254は、配管265を介してダンプシリンダ18・18のボトム室に連通されると共に、前記ダンプシリンダ用ポート255は、配管266を介してダンプシリンダ18・18のロッド室に連通されている。
 このような構成において、前記油圧ポンプP2の吐出口133より吐出された作動油は、配管136、ポンプポート251、油路270を経て、ダンプシリンダ用切換弁210に供給される。そして、ダンプシリンダ用切換弁210を位置Cに切り換えると、作動油は、油路273、油路274、ダンプシリンダ用ポート254、及び配管265を経て、ダンプシリンダ18・18のボトム室へと圧送され、これにより、ダンプシリンダ18・18のロッドを伸長させることができる。
 ダンプシリンダ用切換弁210を位置Bに切り換えると、作動油は、油路275、油路276、ダンプシリンダ用ポート255、及び配管266を経て、ダンプシリンダ18・18のロッド室へと圧送され、これにより、ダンプシリンダ18・18のロッドを短縮させることができる。このようにして、ダンプシリンダ用切換弁210に位置切換操作を行うことにより、ダンプシリンダ18・18のロッドが伸縮し、バケット16がリフトアーム41・41に対して上下に回動する。
 また、リフトシリンダ用切換弁220は、6ポート4位置(位置D・E・F・G)の方向制御弁であって、前記ダンプシリンダ用切換弁210とリフトシリンダ17・17との間に介設されている。そして、このリフトシリンダ用切換弁220は、油路277を介して、前記ダンプシリンダ用切換弁210に接続されている。
 更に、前記油路272とリフトシリンダ用ポート256との間は、油路279によって接続され、該油路279の途中部が、油路278を介してリフトシリンダ用切換弁220に接続されると共に、該油路279上で前記油路272との接続部近傍には、チェック弁279aが設けられている。リフトシリンダ用切換弁220とリフトシリンダ用ポート257との間は、油路280によって接続されている。
 そして、リフトシリンダ用ポート256は、配管267を介してリフトシリンダ17・17のロッド室に連通されると共に、前記リフトシリンダ用ポート257は、配管268を介してリフトシリンダ17・17のボトム室に連通されている。
 以上のような構成において、前記ダンプシリンダ用切換弁210を位置Aに切り換えると、該ダンプシリンダ用切換弁210を通過した作動油は、油路277を経て、リフトシリンダ用切換弁220に供給され、更に、リフトシリンダ用切換弁220を位置Eに切り換えると、作動油は、油路280、リフトシリンダ用ポート257、及び配管268を経て、リフトシリンダ17・17のボトム室へと圧送され、これにより、リフトシリンダ17・17のロッドを伸長させることができる。
 リフトシリンダ用切換弁220を位置Fに切り換えると、作動油は、油路278、油路279、リフトシリンダ用ポート256、及び配管267を経て、リフトシリンダ17・17のロッド室へと圧送され、これにより、リフトシリンダ17・17のロッドを短縮させることができる。このようにして、リフトシリンダ用切換弁220に位置切換操作を行うことにより、リフトシリンダ17・17のロッドが伸縮し、リフトアーム41が上下に昇降する。
 また、モード切換弁230は、5ポート3位置(位置J・K・H)の方向切換弁であって、前記リフトシリンダ用切換弁220とキャリーオーバポート253との間に介設されている。そして、このモード切換弁230には、一次側のポート230a・230bと、二次側のポート230c・230d・230eが設けられており、「作業位置H」に切り換えると、このうちのポート230aとポート230cが連通され、ポート230dとポート230eが連通され、ポート230bが閉塞される。「戻し位置J」に切り換えると、ポート230a、ポート230b、ポート230c、ポート230d、及びポート230eが全て連通され、「合流位置K」に切り換えると、ポート230aとポート230c・230dが連通され、ポート230bとポート230eが連通される。そして、このうちのポート230aは、油路281を介して、前記リフトシリンダ用切換弁220に接続されている。
 更に、モード切換弁230のポート230bは、油路282を介して前記油路272に接続され、ポート230dは、油路283を介して前記ポート258に接続され、ポート230eは、油路284を介して、油路285の途中部に接続されている。そして、該油路285は、前記油路272とポート259とを接続すると共に、該油路285上で油路272との接続部近傍には、アンチボイド付リリーフ弁285aが設けられている。
 PTO用切換弁240については、6ポート4位置(位置L・M・N・P)の方向制御弁であって、前記モード切換弁230とキャリーオーバポート253との間に介設されている。そして、このPTO用切換弁240には、一次側のポート240a・240b・240cと、二次側のポート240d・240e・240fが設けられており、「位置L」に切り換えると、このうちのポート240aとポート240dが連通され、ポート240b・240c・240e・240fが閉塞される。「位置M」に切り換えると、ポート240bとポート240fが連通され、ポート240cとポート240eが連通され、ポート240a・240dが閉塞される。「位置N」に切り換えると、ポート240bとポート240eが連通され、ポート240cとポート240fが連通され、ポート240a・240dが閉塞される。そして、「連続位置P」に切り換えると、ポート240bとポート240eが連通され、ポート240cとポート240fが連通され、ポート240a・240dが閉塞される。そして、このうちのポート240aは、油路286を介して、前記モード切換弁230のポート230cに接続されている。
 更に、PTO用切換弁240のポート240bは、油路287を介して前記油路286の途中部に接続されると共に、油路287の途中部には、チェック弁287aが設けられている。ポート240cは、油路288を介して前記油路272に接続され、ポート240dは、油路289を介して前記キャリーオーバポート253に接続され、ポート240eは、油路290を介して、油路291の途中部に接続されている。そして、該油路291は、前記油路272とPTO用ポート260とを接続すると共に、該油路291上で油路272との接続部近傍には、プラグ291aが設けられている。ポート240fは、油路292を介して油路293の途中部に接続されている。そして、該油路293は、前記油路272とPTO用ポート261とを接続すると共に、該油路293上で油路272との接続部近傍には、プラグ293aが設けられている。
 ここで、このような構成から成るモード切換弁230とPTO用切換弁240を使った、作動油流路の切換構成について説明する。
 前記掘削装置4を用いて掘削作業等を行う場合には、モード切換弁230は作業位置Hに、PTO用切換弁240は位置Lに設定する。
 すると、油圧ポンプP2の吐出口133より吐出された作動油は、配管136、ポンプポート251、油路270、ダンプシリンダ用切換弁210、油路277、リフトシリンダ用切換弁220、油路281、モード切換弁230、油路286、PTO用切換弁240、油路289、キャリーオーバポート253、及び配管263を経て、前記バックホー制御弁セクション150へと供給される。一方、油圧ポンプP1の吐出口132より吐出された作動油は、配管137、ポート258、油路283、モード切換弁230、油路284、油路285、ポート259、及び配管264を経て、バックホー制御弁セクション150へと供給される。これにより、油圧ポンプP1・P2の各吐出口132・133より圧送される作動油を、バックホー制御弁セクション150に供給することができ、該供給された作動油によって前記掘削装置4を駆動するようにしている。
 前記PTO用ポート260・261に図示せぬ外部油圧機器を接続し、該外部油圧機器を用いて作業を行う場合には、モード切換弁230は作業位置Hに、PTO用切換弁240は位置Mまたは位置Nに設定する。
 すると、油圧ポンプP2の吐出口133より吐出された作動油は、配管136、ポンプポート251、油路270、ダンプシリンダ用切換弁210、油路277、リフトシリンダ用切換弁220、油路281、モード切換弁230、及び油路286・287を経て、PTO用切換弁240へと供給される。そして、作動油は、位置Mでは、ポート240f、油路292、及び油路293からPTO用ポート261に圧送され、位置Nでは、ポート240e、油路290、及び油路291からPTO用ポート260に圧送される。これにより、作動油をPTO用ポート260またはPTO用ポート261から取り出して、前記外部油圧機器を駆動するようにしている。
 前記ローダ3を用いて土砂の運搬作業等を行う場合、または走行を行う場合は、モード切換弁230を戻し位置Jに設定する。
 すると、油圧ポンプP2の吐出口133より吐出された作動油は、配管136、ポンプポート251、及び油路270を経てダンプシリンダ用切換弁210へと供給され、更に、油路277を経てリフトシリンダ用切換弁220へと供給され、これにより、ローダ3を駆動するようにしている。
 そして、これらダンプシリンダ用切換弁210とリフトシリンダ用切換弁220を通過した後の作動油は、油路281を経てモード切換弁230へと供給される。一方、油圧ポンプP1の吐出口132より吐出された作動油も、配管137、ポート258、及び油路283を経て、モード切換弁230へと供給される。このように、油圧ポンプP1・P2の各吐出口132・133より供給されてきた作動油は、油路282、油路272、タンクポート252、及び配管262を経て、作動油タンク33へと戻される。
 なお、前記PTO用ポート260・261に接続された外部油圧機器が、油圧ポンプP2の吐出口133から吐出される作動油の流量よりも大きな流量を必要とする場合には、モード切換弁230を合流位置Kに、PTO用切換弁240を連続位置Pに設定する。
 すると、油圧ポンプP2の吐出口133より吐出された作動油は、配管136、ポンプポート251、油路270、ダンプシリンダ用切換弁210、油路277、リフトシリンダ用切換弁220、及び油路281を経て、モード切換弁230へと供給される。一方、油圧ポンプP1の吐出口132より吐出された作動油も、配管137、ポート258、及び油路283を経て、モード切換弁230へと供給される。これにより、油圧ポンプP1・P2の各吐出口132・133より供給された作動油を、モード切換弁230内で合流し、該合流した作動油を、油路286、油路287、PTO用切換弁240、油路290、油路291、及びPTO用ポート260を経て外部油圧機器に圧送し駆動するようにしている。
 次に、このようなローダ制御弁セクション200を構成する前記制御弁ユニット15について、図2乃至図4により説明する。
 該制御弁ユニット15は、前述の如く、操作部10に配設され、該操作部10の枠体を構成する操作フレーム105の垂直壁面に、ボルト等の締結部材106によって固定されている。
 該制御弁ユニット15の左部には、上下に前記タンクポート252とポンプポート251が設けられると共に、前記切換弁210・220・230・240が、各スプールが上下摺動するように左から順に接続され、このうちの最右端のPTO用切換弁240の右部に、前記キャリーオーバポート253が配設されている。
 更に、該切換弁210・220・230・240の各側面の下部と上部には、それぞれ、前記ダンプシリンダ用ポート255・254、リフトシリンダ用ポート257・256、ポート259・258、及び外部油圧機器の油圧アクチュエータに接続するPTO用ポート261・260が形成されている。
 そして、前記ダンプシリンダ用切換弁210・リフトシリンダ用切換弁220の各スプールの一端は、それぞれリンク107・108を介してローダ操作レバー44に連動連結されており、該ローダ操作レバー44の傾倒操作により、ダンプシリンダ用切換弁210・リフトシリンダ用切換弁220を各位置に切換制御し、前述のようにして、ダンプシリンダ18・18とリフトシリンダ17・17のロッドを伸縮させ、ローダ3を駆動できるようにしている。
 前記モード切換弁230のスプールの一端も、リンク109を介してモード切換レバー45に連動連結されており、該モード切換レバー45の傾倒操作により、モード切換弁230を前記作業位置H・戻し位置J・合流位置Kのいずれかに切換制御できるようにしている。同様に、前記PTO用切換弁240のスプールの一端も、本発明に係わる切換弁操作機構110に連動連結されており、後述する手元スイッチ124等の操作手段により、PTO用切換弁240のスプール145を簡単かつ迅速に摺動させ、前記位置L・M・N・Pのいずれかに切換制御できるようにしている。そして、このような、モード切換弁230とPTO用切換弁240の各設定位置を組み合わせることにより、前述の如く、作動油流路を切り換えて各種作業を行えるようにしている。
 次に、前記切換弁操作機構110について、図2乃至図6により説明する。
 該切換弁操作機構110は、電磁ソレノイド111によって移動するスプール112を有する電磁弁113、該電磁弁113に油路114・115を介してそれぞれ接続される一対の操作アクチュエータ174・177、及び操作リンク161等によって構成されると共に、該操作リンク161は、前記操作アクチュエータ174・177によって揺動駆動される揺動部180と、該揺動部180を前記PTO用切換弁240のスプール145の一端に連動連結する連結部148とから成る。
 このうちの電磁弁113は、4ポート3位置式に構成されると共に、電磁ソレノイド111・111に連結されたスプール112が、前記制御弁ユニット15に近設配置された弁ブロック120のスプール室120a内に、側方より挿嵌するようにして形成されている。そして、このうちの電磁ソレノイド111・111は、配線122・122を介して、走行操作や各種作業等を制御するコントローラ123に接続され、該コントローラ123は、配線128を介して前記操作部10内に設けた手元スイッチ124に接続されている。該手元スイッチ124はローダ操作レバー44のグリップに設けたり、操作フレーム105の上面に設けたりすることが可能であり、操作し易い位置であればよく、その取り付け位置は特に限定されるものではない。
 更に、前記弁ブロック120下面に開口されたポンプポート169は、配管269を介して、前記パワーステアリング制御弁セクション140と油圧式無段変速装置101との間の配管103上でフィルタ104よりも油圧式無段変速装置101に近い部分に接続されており、油圧ポンプP3の吐出口134から吐出された作動油の一部が、配管269を介して、切換弁操作機構110に供給されるようにしている。
 この際、該配管269も、前記配管103と同様に、油圧式無段変速装置101のチャージ回路64に接続されており、前記チェックリリーフ弁63によってチャージリリーフ圧に調圧された作動油が、配管269を介して電磁弁113に供給されるようにしている。一方、前記弁ブロック120下面で、前記ポンプポート169に並設されたタンクポート170は、配管171を介して前記作動油タンク33に接続されており、電磁弁113からの作動油を、作動油タンク33に排出できるようにしている。
 また、前記操作アクチュエータ174は、前記弁ブロック120上部で一端を上方に開放したシリンダ室120bと該シリンダ室120b内に上から嵌装した栓143とより成る操作シリンダ175と、該操作シリンダ175内に摺動可能に上から内挿した操作ピストン176とより構成され、該操作ピストン176の下端側の前記シリンダ室120b内に作動油室120dが設けられ、該作動油室120dは、前記油路114を介して電磁弁113の一方のアクチュエータポート125に接続されている。
 同様に、前記操作アクチュエータ177も、前記シリンダ室120bに並設するシリンダ室120cと該シリンダ室120c内に上から嵌装した栓144より成る操作シリンダ178と、該操作シリンダ178内に摺動可能に上から内挿した操作ピストン179とより構成され、該操作ピストン179の下端側の前記シリンダ室120c内に作動油室120eが設けられ、該作動油室120eは、前記油路115を介して電磁弁113の他方のアクチュエータポート126に接続されている。そして、いずれの操作ピストン176・179も弁ブロック120を介して前記電磁弁113と一体的に構成されている。
 これにより、弁ブロック120内において、電磁弁113からの作動油が、操作アクチュエータ174・177の各作動油室120d・120eに給排され、その油圧によって、操作ピストン176・179が、それぞれ操作シリンダ175・178内を上下摺動できるようにしている。
 また、前記操作リンク161において、揺動部180は、前記操作フレーム105の垂直壁面から、弁ブロック120の上方で操作アクチュエータ174と操作アクチュエータ177との間の空間に向かって水平に突設された支軸181と、該支軸181の周りにボス182aによって回動可能に嵌設された揺動体182とより構成される。
 そして、該揺動体182においては、前記ボス182aの外周で互いに180度離れた位置に、受板182b・182cが半径方向に突設され、該受板182b・182cの下面は、それぞれ前記操作ピストン176・179の頂部に当接される一方、ボス182aの外周で前記受板182bよりも制御弁ユニット15に近い部分には、押動板182dが半径方向に突設されている。
 該押動板182dには、前記連結部148を構成する連結ステー148bの上端が、連結軸148aを介して回動可能に連結される一方、連結ステー148bの下端は、前記PTO用切換弁240のスプール145の外部上端に連結されている。
 これにより、前記操作アクチュエータ174・177の各操作ピストン176・179が上下摺動すると、揺動部180の受板182b・182cが押動されて揺動体182が支軸181の周りを回動し、それに伴い、PTO用切換弁240のスプール145が、押動板182dと連結部148を介して、上下に移動される。
 以上のような構成において、手元スイッチ124のスイッチレバー127を傾倒操作すると、位置117・118・119に対応したスイッチ信号がコントローラ123に送信され、該コントローラ123が、この受信したスイッチ信号に基づいて前記電磁ソレノイド111・111に切換信号を送信すると、該電磁ソレノイド111・111が励磁されて、スプール112が位置X1・X2・X3のいずれかに設定される。
 なお、前記コントローラ123を省いて直接手元スイッチ124の操作により電磁ソレノイド111・111に操作信号を送信する構成とすることができ、コントローラ123に安全装置や油圧検知手段や油温検知手段やモード切換レバー45の位置検知手段等と接続することにより、異常が発生した時やバックホーによる掘削作業時に、電磁ソレノイド111・111に切換信号を送信しないように制御することができる。
 例えば、スイッチレバー127を位置117に傾倒すると、スプール112が位置X1に設定されて、油圧ポンプP3の吐出口134からの作動油が、配管135、パワーステアリング制御弁セクション140、配管103、フィルタ104、配管269、電磁弁113、及び油路114を経て、作動油室120dに供給されると共に、作動油室120e内の作動油は、油路115、電磁弁113、及び配管171を経て、作動油タンク33に排出される。これにより、図5に示すように、操作ピストン176が上昇する一方、操作ピストン179は下降し、揺動体182が方向146に回転する。すると、これに伴い、スプール145が、押動板182dと連結部148を介して引き上げられて、PTO用切換弁240が位置Nに設定され、PTO用ポート260を通って外部油圧機器に作動油が供給される一方、PTO用ポート261を通って作動油が排出される。
 スイッチレバー127を位置118にすると、スプール112が位置X2に設定され、作動油が作動油室120d・120eのいずれにも供給されず、操作ピストン176・179が揺動体182を押動することなく、図4に示すように、受板182b・182cが水平に保持された中立状態となる。すると、これに伴い、スプール145が位置Nに設定されて中立状態となり、PTO用ポート260・261のいずれに対しても作動油は給排されなくなる。
 スイッチレバー127を位置119に傾倒すると、スプール112が位置X3に設定され、作動油室120d内の作動油が、油路114、電磁弁113、及び配管171を経て、作動油タンク33に排出されると共に、油圧ポンプP3の吐出口134からの作動油が、配管135、パワーステアリング制御弁セクション140、配管103、フィルタ104、配管269、電磁弁113、及び油路115を経て、作動油室120eに供給される。これにより、操作ピストン176が下降する一方、操作ピストン179は上昇し、揺動体182が前記方向146と逆方向の方向147に回転する。すると、これに伴い、スプール145が、押動板182dと連結部148を介して押し下げられて、PTO用切換弁240が位置Mに設定され、PTO用ポート261を通って外部油圧機器に作動油が供給される一方、PTO用ポート260を通って作動油が排出される。以上のようにして、PTO用ポート260・261からブレーカやグラップル等の外部油圧機器の油圧アクチュエータに、作動油を供給できるようにしている。
 すなわち、アタッチメントとして取り付けた作業機を駆動する油圧アクチュエータ制御用の機械式切換弁であるPTO用切換弁240を操作する作業車両1の切換弁操作機構110において、該切換弁操作機構110には、前記PTO用切換弁240のスプール145に操作リンク161を介して接続される油圧ピストンである操作ピストン176・179、該操作ピストン176・179の往復動を油圧制御する電磁弁113、及び該電磁弁113に動作信号を送信する制御装置であるコントローラ123を設け、前記電磁弁113の動作制御により、操作ピストン176・179と操作リンク161を介してスプール145を移動し、PTO用切換弁240を切換操作するので、小型で低コストの簡単な構造の電磁切換弁等の電磁弁113を利用して機械式のPTO用切換弁240を切換操作することができ、大型で高コストの電磁式切換弁だけを用いる場合に比べると、油路・切換制御構成の簡素化や部品コストの低減が図れ、加えて、前記電磁弁113の動作に、手元スイッチ124等を連動接続させることにより、従来の電磁式切換弁と同様に、機械式切換弁を小さな操作力で簡単かつ迅速に切り換えることができ、切換操作性を大きく向上できる。しかも、前記油圧ピストンである操作ピストン176・179、電磁弁113等は、現行の機械式切換弁であるPTO用切換弁240に容易に後付けできるため、切換弁の基本構成を変更することなく、ユーザーからの切換操作性の改善要求に迅速に対応することができ、汎用性に優れた作業車両1が提供できる。
 更に、前記油圧ピストンである操作ピストン176・179と電磁弁113を一体的に構成するので、操作ピストン176・179と電磁弁113を、単一のユニット構造にして前記切換弁操作機構110内で容易に着脱することができ、組立性やメンテナンス性が向上できると共に、操作ピストン176・179と電磁弁113に係わる油路や取付具等に必要な部品を共通化することができ、部品コストの更なる低減を図ることができる。加えて、操作ピストン176・179と電磁弁113の設置空間を縮小することができ、切換弁操作機構110全体のコンパクト化も図ることができる。
 そして、前記油圧ピストンである操作ピストンは、前記スプール145をスプール移動方向の前方側と後方側にそれぞれ移動させるための二個の操作ピストン176・179より成り、該操作ピストン176・179のいずれも、ピストン移動方向の前後一端側のみに作動油室120d・120eを設けた単動式に構成するので、ピストン移動方向の前後両端側に作動油室を設けた復動式と異なり、一端側の作動油室内の油圧を制御するだけで済むと共に、中立位置保持のための複雑な位置制御機構等が不要となり、油圧制御構成を簡素化することができ、ピストンの応答性の向上や、部品コストの更なる低減を図ることができる。但し、もちろん、前記操作アクチュエータ174・177を、単一の複動式の操作ピストンを有する操作アクチュエータにより構成して電磁弁113と接続し、その操作ピストンを連結部148と連結する構成とすることも可能である。
 次に、前記切換弁操作機構110の別形態の切換弁操作機構110Aについて、図7により説明する。
 該切換弁操作機構110Aは、PTO用切換弁240のスプール145の移動を電磁ソレノイド111ではなく、電動式のモータ190の回転力によって行うものであり、油圧配管等の部材の削減を図ったものである。
 該切換弁操作機構110Aにおいては、モータ190の本体190aが、前記操作部10の枠体を構成する操作フレーム105の垂直壁面に、図示せぬボルト等によって固定され、該本体190aからモータ軸190bが水平に突設されている。そして、このようなモータ190も、図示せぬ配線を介して前記コントローラ123に接続され、該コントローラ123は、配線128を介して前記操作部10に設けた手元スイッチ124に接続されている。更に、前記モータ軸190bは、操作リンク149を介して、前記PTO用切換弁240のスプール145の外部上端に連結されている。
 該操作リンク149も、揺動部191と前記連結部148から構成され、このうちの揺動部191は、前記モータ軸190bの周りに嵌設されたボス191aと、該ボス191aの外周から半径方向に突設された押動板191bとから成る。そして、該押動板191bには、前記連結部148を構成する連結ステー148bの上端が、連結軸148aによって回動可能に連結される一方、連結ステー148bの下端は、前記PTO用切換弁240のスプール145の外部上端に連結されている。
 これにより、前記手元スイッチ124のスイッチレバー127を傾倒操作すると、モータ190が駆動されて、揺動部191の押動板191bがモータ軸190bの周りを回動し、それに伴い、押動板191bと連結部148を介して、前記切換弁操作機構110と同様に、PTO用切換弁240のスプール145が移動される。
 すなわち、油圧アクチュエータ制御用の機械式切換弁であるPTO用切換弁240を操作する作業車両1の切換弁操作機構110Aにおいて、該切換弁操作機構110Aには、前記PTO用切換弁240のスプール145に操作リンク149を介して接続され電気制御可能なモータ190と、該モータ190に動作信号を送信する制御装置であるコントローラ123を設け、前記モータ190からの揺動出力により、操作リンク149を介してスプール145を移動し、PTO用切換弁240を切換操作するので、小型で低コストのモータを利用して機械式のPTO用切換弁240を切換操作することができ、大型で高コストの電磁式切換弁だけを用いた場合に比べると、油路・切換制御構成の簡素化や部品コストの低減が図れ、加えて、前記モータ190の動作に手元スイッチ124等を連動接続させることにより、従来の電磁式切換弁と同様に、機械式切換弁を小さな操作力で簡単かつ迅速に切り換えることができ、切換操作性を大きく向上できる。しかも、前記モータ190等は現行の機械式切換弁であるPTO用切換弁240に容易に後付けできるため、切換弁の基本構成を変更することなく、ユーザーからの切換操作性の改善要求に迅速に対応することができ、汎用性に優れた作業車両1が提供できる。加えて、機械式切換弁の操作に小型の電磁弁113を利用する場合等に比べ、油圧配管等を更に減少させ、組立性やメンテナンス性の向上を図ることができる。
 本発明は、前記実施例で説明したバックホーローダはもとより、トラクター、田植機、運搬車等の作業車両全般において、外部油圧機器の油圧アクチュエータ制御用の機械式切換弁を操作するための全ての切換弁操作機構に適用することができる。

Claims (4)

  1.  油圧アクチュエータ制御用の機械式切換弁を操作する作業車両の切換弁操作機構において、
     該切換弁操作機構には、
      前記機械式切換弁のスプールに操作リンクを介して接続される油圧ピストン、
      該油圧ピストンの往復動を油圧制御する電磁弁、
      及び該電磁弁に動作信号を送信する制御装置を設け、
     前記電磁弁の動作制御により、
       前記油圧ピストンと前記操作リンクを介して前記スプールを移動し、
       前記機械式切換弁を切換操作する
    ことを特徴とする作業車両の切換弁操作機構。
  2.  前記油圧ピストンと前記電磁弁を一体的に構成することを特徴とする請求項1に記載の作業車両の切換弁操作機構。
  3.  前記油圧ピストンは、前記スプールをスプール移動方向の前方側と後方側にそれぞれ移動させるための二個の油圧ピストンより成り、該油圧ピストンのいずれも、ピストン移動方向の前後一端側のみに作動油室を設けた単動式に構成することを特徴とする請求項1または請求項2に記載の作業車両の切換弁操作機構。
  4.  油圧アクチュエータ制御用の機械式切換弁を操作する作業車両の切換弁操作機構において、
     該切換弁操作機構には、
      前記機械式切換弁のスプールに操作リンクを介して接続され電気制御可能なモータと、
      該モータに動作信号を送信する制御装置を設け、
     前記モータからの揺動出力により、
       前記操作リンクを介して前記スプールを移動し、
       前記機械式切換弁を切換操作する
    ことを特徴とする作業車両の切換弁操作機構。
PCT/JP2009/063866 2008-09-19 2009-08-05 作業車両の切換弁操作機構 WO2010032565A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2736278A CA2736278A1 (en) 2008-09-19 2009-08-05 Selector valve operating mechanism for working vehicle
US13/119,034 US8523139B2 (en) 2008-09-19 2009-08-05 Selector valve operating mechanism for working vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-241144 2008-09-19
JP2008241144A JP5358148B2 (ja) 2008-09-19 2008-09-19 作業車両の切換弁操作機構

Publications (1)

Publication Number Publication Date
WO2010032565A1 true WO2010032565A1 (ja) 2010-03-25

Family

ID=42039407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063866 WO2010032565A1 (ja) 2008-09-19 2009-08-05 作業車両の切換弁操作機構

Country Status (4)

Country Link
US (1) US8523139B2 (ja)
JP (1) JP5358148B2 (ja)
CA (1) CA2736278A1 (ja)
WO (1) WO2010032565A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2520005A (en) * 2013-11-05 2015-05-13 Caterpillar Inc Articulation joint linkage
US9567729B2 (en) * 2014-09-30 2017-02-14 Kubota Corporation Working machine
JP6612070B2 (ja) * 2015-07-08 2019-11-27 三菱マヒンドラ農機株式会社 作業車輌
US10280906B2 (en) * 2016-06-07 2019-05-07 Kubota Corporation Hydraulic system for work machine
CN111322218B (zh) * 2018-12-14 2021-11-05 科颉工业股份有限公司 引擎式油压泵

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257405A (ja) * 2003-02-24 2004-09-16 Sanwa Seiki Co Ltd 油圧方向切換装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2947285A (en) * 1957-03-20 1960-08-02 Bell Aerospace Corp Manual and automatic hydraulic servomechanism
US3739813A (en) * 1970-08-13 1973-06-19 Marotta Scientific Controls Power and speed control for double-acting cylinder-and-piston motor
US4044652A (en) * 1975-05-12 1977-08-30 The Garrett Corporation Electrohydraulic proportional actuator apparatus
JPH01226697A (ja) * 1988-03-03 1989-09-11 Kobe Steel Ltd 建設機械における操作レバーの操作反力制御装置
EP0366119B1 (en) * 1988-10-26 1994-01-19 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Operating force controlling device for operating lever
JP3464213B2 (ja) * 2002-11-01 2003-11-05 ヤンマー株式会社 バックホー
JP4494318B2 (ja) * 2005-09-26 2010-06-30 株式会社クボタ 作業機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257405A (ja) * 2003-02-24 2004-09-16 Sanwa Seiki Co Ltd 油圧方向切換装置

Also Published As

Publication number Publication date
US20110175005A1 (en) 2011-07-21
CA2736278A1 (en) 2010-03-25
US8523139B2 (en) 2013-09-03
JP5358148B2 (ja) 2013-12-04
JP2010071007A (ja) 2010-04-02

Similar Documents

Publication Publication Date Title
US7520130B2 (en) Hydraulic pressure control device of construction machine
EP1860243B1 (en) Apparatus for increasing operation speed of boom on excavator
US10889963B2 (en) Working machine
JP6298716B2 (ja) 作業機械
US20200240440A1 (en) Hydraulic system for work machine and work machine
US11644098B2 (en) Hydraulic system of work machine and work machine
JP5358148B2 (ja) 作業車両の切換弁操作機構
JP6434504B2 (ja) ショベル及びその制御方法
JP2006249882A (ja) 作業車両の油圧回路構造
EP3225752B1 (en) Hydraulic system for work machine
JP7210651B2 (ja) 作業機の油圧システム
JP6663539B2 (ja) 油圧駆動装置
JP5832193B2 (ja) 作業機のアンロード装置
US20170167114A1 (en) Hydraulic clam actuator valve block
US10731323B2 (en) Hydraulic system for working machine
JP7005443B2 (ja) 作業機の油圧システム
JP2019065996A (ja) 作業機の油圧システム
JP3547099B2 (ja) 油圧ショベルの油圧回路
JP6786648B2 (ja) 作業機の油圧システム
US20190003154A1 (en) Hydraulic system for working machine
JP2005127416A (ja) 油圧制御装置及びそれを用いたホィールローダ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814410

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2736278

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13119034

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814410

Country of ref document: EP

Kind code of ref document: A1