WO2010029781A1 - 冷凍サイクル装置および空気調和装置 - Google Patents

冷凍サイクル装置および空気調和装置 Download PDF

Info

Publication number
WO2010029781A1
WO2010029781A1 PCT/JP2009/054844 JP2009054844W WO2010029781A1 WO 2010029781 A1 WO2010029781 A1 WO 2010029781A1 JP 2009054844 W JP2009054844 W JP 2009054844W WO 2010029781 A1 WO2010029781 A1 WO 2010029781A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
water
main radiator
intermediate cooler
Prior art date
Application number
PCT/JP2009/054844
Other languages
English (en)
French (fr)
Inventor
啓輔 高山
裕輔 島津
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP09812930.7A priority Critical patent/EP2322875B1/en
Priority to CN2009801354388A priority patent/CN102149988B/zh
Priority to US13/059,331 priority patent/US8991207B2/en
Publication of WO2010029781A1 publication Critical patent/WO2010029781A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/42Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger characterised by the use of the condensate, e.g. for enhanced cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • F24F2013/225Means for preventing condensation or evacuating condensate for evacuating condensate by evaporating the condensate in the cooling medium, e.g. in air flow from the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/041Details of condensers of evaporative condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant

Definitions

  • the present invention relates to a refrigeration cycle apparatus using a fluid in a supercritical state as a refrigerant.
  • the present invention relates to a configuration of a refrigeration cycle apparatus and an air conditioner using an expander.
  • a compressor, a flow path switching unit, a heat source side heat exchanger, a load side heat exchanger are connected to form a refrigerant circuit, and a part of the heat source side heat exchanger or a part of the load side heat exchanger
  • a refrigeration cycle apparatus equipped with a sprinkler for spraying water. Then, water can be sprayed (sprinkled) on a part of the heat source side heat exchanger or the load side heat exchanger through which the high-pressure refrigerant discharged from the compressor passes (see, for example, Patent Document 1).
  • the temperature of the refrigerant can be lowered by cooling the refrigerant by sprinkling water at the outlet of the heat source side heat exchanger in the cooling operation. And a performance can be improved by expanding the enthalpy difference in the evaporator used as a load side heat exchanger.
  • the refrigeration cycle apparatus using the expander there is one that includes a watering means for spraying water to improve the COP of the refrigeration cycle apparatus.
  • the heat source side heat exchanger is disposed outdoors, and outdoor air and refrigerant are I try to exchange heat.
  • the load-side heat exchanger is arranged indoors to exchange heat between indoor air and the refrigerant.
  • the watering means sprays the entire surface of the heat source side heat exchanger (see Patent Document 2).
  • the second compressor compresses the refrigerant with the power recovered by the expander, and the intermediate cooler and the second compression cool the refrigerant discharged from the first compressor.
  • a refrigeration cycle apparatus that constitutes a heat source side heat exchanger with a main radiator that cools the refrigerant discharged from the machine.
  • the pressure difference between the expander inlet and outlet becomes small, so the power that can be recovered by the expander decreases. . Therefore, in the configuration as in Patent Document 1, the power collected by the expander is reduced, and the compression work of the second compressor is reduced.
  • the present invention was made to solve the conventional problems as described above, and in a refrigeration cycle apparatus that performs two-stage compression using recovered power by an expander, while suppressing a decrease in recovered power by the expander, It aims at providing the refrigerating-cycle apparatus etc. which can improve the cooling capability by watering and can perform efficient driving
  • the refrigeration cycle device of the present invention is driven by the first compressor that compresses the refrigerant, the expander that decompresses and expands the refrigerant and recovers the power related to the expansion, and the power recovered by the expander.
  • a second compressor for further compressing the refrigerant related to the compression, an intermediate cooler for cooling the refrigerant compressed by the first compressor, and a main radiator for cooling the refrigerant compressed by the second compressor and sending it to the expander
  • a heat exchanger having an evaporator that heats the refrigerant related to decompression from the expander, and a watering device for sprinkling water on the outer surface of the intermediate cooler and the main radiator. Water is sprayed so that the intermediate cooler has more water than the main radiator.
  • the amount of water sprayed per heat transfer area to the heat source side heat exchanger is set so that the intermediate cooler is larger than the main radiator, and the refrigerant evaporates with air particularly in the intermediate cooler. Since heat can be radiated to the latent heat of water, the heat radiation effect can be enhanced. Therefore, While suppressing the fall of the power which an expander collects and suppressing the fall concerning the pressure concerning refrigerant compression of the 2nd compressor, on the other hand, the pressure concerning refrigerant compression of the 1st compressor can be lowered, the 1st It is possible to provide a refrigeration cycle apparatus capable of reducing the motor input of the compressor and saving energy.
  • FIG. 2 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 1.
  • FIG. It is a refrigerant circuit diagram which shows the flow of the refrigerant
  • FIG. 2 is a Ph diagram showing the state of refrigerant during heating operation of the apparatus according to the first embodiment.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow during a cooling operation of the apparatus according to the first embodiment.
  • FIG. 3 is a Ph diagram showing the state of the refrigerant during the cooling operation of the apparatus according to the first embodiment.
  • It is a Ph diagram showing a comparison of sprinkling forms in a refrigeration cycle apparatus. It is a figure which shows the relationship between the amount of water spraying Qw per heat-transfer area and intermediate pressure. It is a figure which shows the relationship between the amount of water spraying Qw per heat-transfer area and the recovery power of the expander 6.
  • FIG. 1 is a schematic diagram showing a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus is applied to an air conditioner capable of performing air conditioning.
  • the refrigeration cycle apparatus according to the present embodiment includes an outdoor unit 100 that is a heat source side unit and an indoor unit 200 that is a load side unit. And each means which comprises the outdoor unit 100 and the indoor unit 200 is pipe-connected by piping 61, 62 grade
  • refrigerant inside the refrigerant circuit, for example, natural refrigerant carbon dioxide that is in a supercritical state at a critical temperature (about 31 ° C.) or higher is sealed as a refrigerant.
  • the refrigerant is not limited to carbon dioxide, and may be any refrigerant that is in a supercritical state.
  • the level of the pressure in the refrigerant circuit is not determined by the relationship with the reference pressure, but is expressed as a relative pressure that can be generated by compression (pressurization) of a compressor or the like, or pressure reduction by refrigerant flow control or the like And The same applies to the temperature level.
  • the outdoor unit 100 of the present embodiment includes a first compressor 1 for compressing and pressurizing a gas (gas) refrigerant.
  • the four-way valve 2 switches the refrigerant flow path between the cooling operation and the heating operation based on an instruction from the control device 400.
  • the first port 2a of the four-way valve 2 is the discharge side of the first compressor 1
  • the fourth port 2d is one end of the intermediate cooler 3
  • the third port 2c is the suction side of the first compressor 1
  • the second port 2 b is connected to one end of a pipe 62 connected to the indoor unit 200.
  • Intermediate cooler 3 and main radiator (gas cooler) 4 are heat source side heat exchangers. Particularly during the cooling operation, the intermediate cooler 3 is upstream of the second compressor 5 (upstream with respect to the direction of refrigerant flow), and the main radiator 4 is downstream of the second compressor 5 (downstream of the direction of refrigerant flow).
  • the refrigerant is cooled by heat exchange with outdoor air, for example.
  • the intermediate cooler 3 and the main radiator 4 are connected in series to each other, so that the refrigerant is evaporated in a functionally integrated manner.
  • the intermediate cooler 3 is provided on the upper side and the main radiator 4 is provided on the lower side with respect to the vertical direction.
  • the intermediate cooler 3 which is the upper part of the heat source side heat exchanger (the refrigerant inflow side during the cooling operation)
  • the water is mainly sprinkled into the intermediate cooler 3, and the water is sprayed.
  • a part of the water falls to the main radiator 4 and is scattered. Therefore, in the present embodiment, water is sprinkled on the intermediate cooler 3 and the main radiator 4.
  • the expander 6 decompresses the refrigerant into a gas-liquid two-phase wet steam using gas and liquid. Then, in the process of reducing the pressure, the internal energy of the refrigerant is recovered as power.
  • the second compressor 5 is coaxially connected to the expander 6 and is driven by the power recovered by the expander 6.
  • the suction pipe 16 is a pipe for guiding the refrigerant cooled by the main radiator 4 to the expander 6.
  • the opening degree of the electronic expansion valve 17 can be changed, and the electronic expansion valve 17 serves as a means for decompressing the refrigerant passing through the suction pipe 16.
  • the discharge pipe 13 is a pipe for guiding the refrigerant flowing out from the expander 6.
  • the on-off valve 14 is a means for passing and blocking the refrigerant in the discharge pipe 13.
  • the discharge pipe 11 is a pipe through which the second compressor 5 discharges and guides the refrigerant to the main radiator 4.
  • the check valve 12 is provided in order to regulate the flow direction of the refrigerant in the discharge pipe 11.
  • the pipe 9 is a pipe for guiding the refrigerant to the intermediate cooler 3 during the heating operation.
  • the opening degree of the electronic expansion valve 10 can be changed, and the electronic expansion valve 10 serves as a means for decompressing the refrigerant passing through the pipe 9.
  • the pipe 7 guides the refrigerant evaporated by the main radiator 4 during the heating operation to the suction side of the first compressor 1.
  • the on-off valve 8 is a means for passing and blocking the refrigerant in the pipe 7.
  • the bypass pipe 18 is a pipe for bypassing the refrigerant without passing the refrigerant through the expander 6 during the heating operation.
  • the on-off valve 15 is a means for passing and blocking the refrigerant in the bypass pipe 18.
  • a blower for forcing the outside air to the outer surfaces of the intermediate cooler 3 and the main radiator 4 may be provided. At this time, the watering by the watering device 300 is not disturbed.
  • the indoor unit 200 includes indoor heat exchangers 41 and 42 that are load-side heat exchangers that exchange heat between the heat exchange target and the refrigerant. Moreover, it has the electronic expansion valves 43 and 44 used as the means to adjust the refrigerant
  • coolant One ends of the indoor heat exchangers 41 and 42 are integrated and connected to the outdoor unit 100 via a pipe 62. The other end is aggregated via the electronic expansion valves 43 and 44 and connected to the outdoor unit 100 via the pipe 61.
  • the indoor heat exchangers 41 and 42 are two units and the indoor unit 200 is configured. However, one or three or more units may be used. Further, a blower may be provided to forcibly blow room air to the outer surfaces of the indoor heat exchangers 41 and 42.
  • the outdoor unit 100 is provided with a watering device 300 that serves as a means for spraying water on the outer surface of the heat source side heat exchanger (intermediate cooler 3, main radiator 4) only during the cooling operation.
  • a watering device 300 that serves as a means for spraying water on the outer surface of the heat source side heat exchanger (intermediate cooler 3, main radiator 4) only during the cooling operation.
  • the watering nozzle 21, the watering pipe 22, the pump 23, the opening / closing valve 24, the drain pan 25, the water supply pipe 26 and the flow rate adjusting valve 27 constitute the watering apparatus 300.
  • the drain pan 25 is installed to collect water for water spraying and to receive and collect water that has not evaporated on the outer surfaces of the intermediate cooler 3 and the main radiator 4.
  • the water supply pipe 26 is a pipe for supplying water to the drain pan 25.
  • the on-off valve 24 is means for passing and blocking water in the water supply pipe 26.
  • the drain pan 25 and the water supply pipe 26 open at the bottom of the drain pan 25 and are connected to one end of the water supply pipe 26.
  • the drain pan 25 is provided with, for example, a water level detector (not shown), and the control device 400 determines the water level of the drain pan 25 based on the detection of the water level detector, for example.
  • the on-off valve 24 is opened and water is supplied to the drain pan 25.
  • the on-off valve 24 is closed and the water supply is stopped.
  • the water sprinkling pipe 22 supplies water to the watering nozzle 21 for spraying water on the upper part of the outer surface of the heat source side heat exchanger (intermediate cooler 3, main radiator 4).
  • the pump 23 pumps the water accumulated in the drain pan 25 to the watering nozzle 21 through the watering pipe 22.
  • the pump 23 and the drain pan 25 open at the bottom of the drain pan 25 and are connected to one end of a pipe on the suction side of the pump 23.
  • the flow control valve 27 adjusts the amount of water supplied to the watering nozzle 21.
  • the opening degree of the flow control valve 27 is changed by the control device 400 according to the temperature related to the detection of the temperature sensor 71 that detects the discharge temperature of the first compressor 1.
  • FIG. 2 is a diagram illustrating a refrigerant circulation path in the heating operation.
  • FIG. 3 is a Ph diagram showing the state of the refrigerant in the heating operation.
  • the control device 400 communicates between the first port 2a and the second port 2b and the fourth port 2d and the third port 2c of the four-way valve 2 of the outdoor unit 100. Are switched (solid line in FIG. 2). Further, the on-off valves 15 and 8 are opened, the electronic expansion valve 10 is fully opened, and the electronic expansion valve 17 in the suction pipe 16 is fully closed. Further, the check valve 12 and the on-off valve 14 are closed. Here, since watering is not performed during the heating operation, the pump 23 of the watering device 300 is stopped.
  • the high-temperature gas refrigerant (state B) discharged by the first compressor 1 passes through the first port 2a to the second port 2b of the four-way valve 2 and passes through the pipe 62 to be connected to the indoor unit. 200.
  • the high-temperature gas refrigerant that has flowed into the indoor heat exchangers 41 and 42 of the indoor unit 200 becomes room air that is a heated medium (heat exchange target) sent to the indoor heat exchangers 41 and 42 by the indoor blower 45. Dissipate heat.
  • the indoor air heated by the heat radiation heats the room which is the air-conditioning target space.
  • the refrigerant dissipated in the indoor heat exchangers 41 and 42 is cooled and liquefied to become a low-temperature refrigerant (state C). Further, the pressure is reduced by the electronic expansion valves 43 and 44 to become a low-pressure and low-temperature gas-liquid two-phase refrigerant (state D), and flows into the outdoor unit 100 through the pipe 61 to be connected.
  • the gas-liquid two-phase refrigerant that has flowed into the outdoor unit 100 passes through the on-off valve 15 and then flows into the intercooler 3 through the main radiator 4 and the electronic expansion valve 10.
  • the gas-liquid two-phase refrigerant that has flowed into the main radiator 4 exchanges heat with the outdoor air, absorbs heat from the outdoor air, evaporates, and vaporizes.
  • the low-pressure gas refrigerant that has flowed out of the main radiator 4 passes through the on-off valve 8 and flows into the fourth port 2d of the four-way valve 2.
  • the gas-liquid two-phase refrigerant that has flowed into the intercooler 3 also evaporates and vaporizes, and merges with the low-pressure gas refrigerant that has flowed out of the main radiator 4.
  • the gas refrigerant (state A) that has passed through the four-way valve 2 returns to the suction side of the first compressor 1.
  • FIG. 4 is a diagram showing the circulation path of the refrigerant in the cooling operation.
  • FIG. 5 is a Ph diagram showing the state of the refrigerant in the cooling operation. Next, a case where the cooling operation is performed will be described.
  • the control device 400 communicates between the first port 2a and the fourth port 2d and the third port 2c and the second port 2b of the four-way valve 2 of the outdoor unit 100. Are switched (solid line in FIG. 4). Further, the on-off valves 15 and 8 are closed, and the electronic expansion valve 10 is fully closed. Further, the check valve 12 and the on-off valve 14 are opened. During the cooling operation, the pump 23 of the watering device 300 is driven in order to perform watering in some cases.
  • the high-temperature medium-pressure gas refrigerant (state B) discharged by the first compressor 1 passes from the first port 2a to the fourth port 2d of the four-way valve 2. Then, the refrigerant (state C) whose temperature is slightly lowered by flowing into the intermediate cooler 3 and radiating heat to the medium to be heated is sucked into the second compressor 5.
  • the refrigerant discharged by the second compressor 5 driven by the power recovered by the expander 6 is increased to a pressure higher than the pressure discharged to the first compressor 1.
  • the high-temperature and high-pressure refrigerant (state D) boosted by the second compressor 5 passes through the check valve 12 and dissipates heat to the heated medium even in the main radiator 4, and is cooled and liquefied (state E).
  • water by the water sprinkler 300 is used as a heating medium that performs heat exchange with the refrigerant together with air.
  • the watering device 300 sprays water on the outer surface of the intercooler 3. For this reason, the water sprayed on the outer surface of the intermediate cooler 3 above the main radiator 4 is heated by the refrigerant, and the amount of heat is taken in as latent heat of evaporation to evaporate.
  • the refrigerant radiates heat to both the air to be heated and the sprayed water.
  • the liquid refrigerant cooled in the main radiator 4 passes through the electronic expansion valve 17 and flows into the expander 6.
  • the pressure is reduced by the expander 6 to become a wet vapor refrigerant (state F) in a gas-liquid two-phase state.
  • the expander 6 the internal energy of the refrigerant related to the decompression is recovered and converted into power for the second compressor 5.
  • the two-phase refrigerant decompressed by the expander 6 passes through the on-off valve 14 and the connecting pipe 61 and flows into the indoor unit 200.
  • the two-phase refrigerant that has flowed into the indoor unit 200 is distributed substantially uniformly to the indoor heat exchangers 41 and 42 by the electronic expansion valves 43 and 44.
  • the gas-liquid two-phase refrigerant that has flowed into the indoor heat exchangers 41 and 42 absorbs heat from indoor air that is a medium to be heated (target of heat exchange) sent to the indoor heat exchangers 41 and 42 by the indoor blower 45.
  • the room air cooled by the heat absorption cools the room that is the air-conditioning target space.
  • the low-temperature and low-pressure gas refrigerant (state A) that has flowed out of the indoor heat exchangers 41 and 42 and flows into the outdoor unit 100 passes through the pipe 62 to be connected.
  • the four-way valve 2 returns from the second port 2 b to the suction side of the first compressor 1 through the third port 2 c.
  • FIG. 6 shows a case where water is not sprayed from the watering device 300 (no watering) in the refrigeration cycle device, water is sprayed over the entire outer surface of the intermediate cooler 3 and the main radiator 4 (watering form 1), and heat source side heat. It is a figure showing the Ph diagram for comparing a certain state at the time of spraying water on the outer surface upper part of the exchanger (intercooler 3, main radiator 4) (sprinkling form 2).
  • the refrigerant when water is not sprayed on the intercooler 3 and the main radiator 4 (no watering), the refrigerant is changed from the point A to the point B (for example, 8.6 MPa) by the compression of the first compressor 1. It becomes the state of. And it will be in the state of C point by the heat dissipation in the intercooler 3.
  • the temperature of the refrigerant at the point C is determined by the temperature of the outdoor air to be heated and the ratio of the heat radiation capacity between the intermediate cooler 3 and the main radiator 4. If the outdoor air temperature is about 35 ° C.
  • the water from the water sprinkler 300 is used as latent heat of evaporation in the entire intermediate cooler 3 and main radiator 4.
  • the heat dissipation effect of the refrigerant is enhanced by absorbing heat.
  • the first compressor 1 compresses the refrigerant from the point A to the point B1 (for example, 7.7 MPa). And it will be in the state of C1 point by the heat dissipation in the intercooler 3.
  • FIG. since water is sprayed on the intermediate cooler 3, the pressure related to cooling of the refrigerant in the intermediate cooler 3 is reduced.
  • the pressure related to the cooling of the intermediate cooler 3 is defined as an intermediate pressure.
  • the compression of the second compressor 5 results in a point D1 (for example, 8.1 MPa).
  • a point D1 for example, 8.1 MPa
  • the state of the E1 point is brought about by the heat radiation in the main radiator 4.
  • the pressure to cool by the watering effect becomes low.
  • the pressure related to the cooling of the main radiator 4 is a high pressure.
  • the heat dissipating effect is enhanced particularly in the intercooler 3.
  • the first compressor 1 compresses the refrigerant from the point A to the point B2 (for example, 7.7 MPa). And it will be in the state of C2 point by the thermal radiation in the intercooler 3.
  • FIG. Again, the intermediate pressure is lowered because water is sprayed on the intercooler 3.
  • the second compressor 5 compresses to a point D2 (for example, 8.6 MPa).
  • the state of E2 is brought about by the heat radiation in the main radiator 4.
  • the high pressure is lowered by watering compared to the case without watering, but the watering is sprayed on the entire outer surface of the heat source side heat exchanger (intermediate cooler 3, main radiator 4). Compared to Form 1, the degree of decrease is small.
  • FIG. 7 is a diagram showing the relationship between the water spray amount Qw per heat transfer area of the intermediate cooler 3 and the main radiator 4 and the intermediate pressure.
  • Point B, point B1, and point B2 shown in FIG. 7 respectively correspond to point B, point B1, and point B2 in FIG.
  • the watering amount Qw at the point B1 is about 6.8 ml / min / m 2.
  • the intermediate pressure at this time is about 7.7 MPa.
  • the watering amount Qw at the point B2 is about 3.4 ml / min / m 2.
  • the intermediate pressure at this time is about 7.7 MPa.
  • FIG. 8 is a diagram showing the relationship between the water spray amount Qw per heat transfer area of the main radiator 4 and the recovery power by the expander 6.
  • ⁇ H shown in FIG. 8 represents the recovery power at the operating point of the expander 6 in the case of no watering, ⁇ H1 in the case of the watering form 1, and ⁇ H2 in the case of the watering form 2.
  • the recovery power decreases as the water spray amount Qw per heat transfer area of the main radiator 4 increases as compared to the recovery power ⁇ H in the case of no water spray. This is because the amount of heat dissipated in the main radiator 4 is increased, so that the high pressure is lowered and the pressure difference (for example, E point-F point) in the expander 6 is reduced.
  • the watering form 1 has a higher heat dissipation effect due to watering of the main radiator 4, so that the high pressure is reduced and ⁇ H2> ⁇ H1.
  • the amount of pressure increase by the second compressor 5 (for example, the point D-the point C) is proportional to the power collected by the expander 6 as a driving force.
  • the water spray amount Qw per heat transfer area of the main radiator 4 is approximately half that of the sprinkling form 1, Further, the heat dissipation effect of the main radiator 4 is reduced by reducing the water spray amount Qw per heat transfer area as compared with the intermediate cooler 3. Thereby, compared with the watering form 1, the fall of the recovery power of the expander 6 can be made small, and also the fall of the pressurization amount by the 2nd compressor 5 can be made small.
  • the intermediate pressure and the high pressure are determined by the balance between the condensation capacity of the intermediate cooler 3 and the main radiator 4 and the amount of pressure increase of the second compressor 5.
  • the amount of sprinkling in the main radiator 4 is smaller than in the sprinkling form 1, so the ability to cool the refrigerant in the main radiator 4 is low.
  • the pressure increase amount of the second compressor 5 is increased, the intermediate pressure in the intermediate cooler 3 is substantially equal between the watering mode 1 and the watering mode 2.
  • the intermediate cooler 3 obtains the heat dissipation effect by water spraying. I can't. Further, since the recovery power of the expander 6 decreases due to the decrease in high pressure, the intermediate pressure increases as indicated by point B3 in FIG.
  • water is sprayed to the intercooler 3 by the water sprinkler 300, so that the discharge pressure (intermediate pressure) of the first compressor 1 is compared to the case where water is not sprayed. ) Can be reduced, so that the input of the motor of the first compressor 1 can be reduced.
  • the refrigerant can be effectively cooled.
  • the cooling capacity of the refrigerant in the main radiator 4 is supplemented by cooling in the intermediate cooler 3.
  • the recovery power in the expander 6 can be increased, and the decrease in the amount of pressure increase by the second compressor 5 can be reduced. Therefore, COP can be improved as a whole refrigeration cycle apparatus.
  • water is sprayed on the outer surfaces of the intermediate cooler 3 and the main radiator 4 by the watering device 300, so that water is applied to the entire outer surfaces of the intermediate cooler 3 and the main radiator 4. Since the same effect as when spraying can be obtained, the amount of water required for watering can be reduced.
  • the refrigeration cycle apparatus of the present embodiment since the amount of water used by the water sprinkler 300 can be reduced, the power consumed by the pump 23 of the water sprinkler 300 can be reduced, and the power consumption of the refrigeration cycle apparatus can be reduced. Thus, for example, it can be expected to improve the COP during the cooling operation.
  • the opening degree of the flow control valve 27 of the water sprinkler 300 is adjusted by the discharge temperature sensor 71 of the first compressor 1. Therefore, the recovery power by the expander 6 can be maintained by adjusting the amount of water sprayed to the intermediate cooler 3 so as to have an intermediate pressure corresponding to the discharge temperature. Thereby, COP at the time of cooling operation can be improved.
  • the pump 23 is sprinkled with water pressure guided from the water supply without using the pump 23 of the water sprinkler 300. 23 can be omitted. At this time, the power consumption can be further reduced.
  • carbon dioxide which is a natural refrigerant, it is possible to reduce the burden on the environment without using chlorofluorocarbon or the like.
  • Embodiment 2 In addition to the first embodiment, the present invention may be as follows.
  • the intermediate cooler 3 has an upper stage and the main radiator 4 has a lower stage.
  • the intermediate pressure may be lowered by disposing the main radiator 4 in the upper stage and the intermediate cooler 3 in the lower stage so as to sprinkle the lower part of the outer surface of the intermediate cooler 3 and the main radiator 4.
  • the intermediate cooler 3 and the main radiator 4 may be arranged in parallel with the intermediate cooler 3 being the outer side where the water is sprayed and the main radiator 4 being the inner side. For example, when such an arrangement is performed, water is sprayed only on the intercooler 3.
  • the control device 400 adjusts the opening degree of the flow rate control valve 27 of the watering device 300 based on the discharge temperature sensor 71 of the first compressor 1.
  • the present invention is not limited to this.
  • a sensor that detects the pressure of the refrigerant discharged from the first compressor 1, the suction temperature of the refrigerant in the second compressor 5, the suction pressure in the second compressor 5, and the like detection means.
  • the intermediate pressure is about 7.7 MPa.
  • this pressure means a particularly suitable intermediate pressure, and the intermediate pressure is not limited to this value.
  • the pressure may be 8.5 MPa.
  • the refrigerant is allowed to flow into the expander 6 and the power is recovered only during the cooling operation.
  • the present invention is not limited to this. You may make it collect
  • the present invention is useful for a refrigeration cycle apparatus including a refrigerant circuit that performs a refrigeration cycle by compressing a refrigerant to a supercritical state.
  • a refrigeration cycle apparatus including a refrigerant circuit that performs a refrigeration cycle by compressing a refrigerant to a supercritical state.
  • the present invention can also be applied to a refrigeration apparatus that cools the inside of a refrigeration warehouse or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

膨張機による回収動力の減少を抑えつつ、散水による冷却能力を向上させて、効率のよい運転を行うことができる冷凍サイクル装置等を提供する。 冷媒を圧縮する第1圧縮機1と、冷媒を減圧および膨張し、膨張に係る動力を回収する膨張機6と、膨張機6が回収した動力で駆動し、第1圧縮機1の圧縮に係る冷媒をさらに圧縮して主放熱器4に送る第2圧縮機と、第1圧縮機が圧縮した冷媒を冷却する中間冷却器3および第2圧縮機が圧縮した冷媒を冷却して膨張機6に送る主放熱器4を有する熱交換器と、膨張機6からの減圧に係る冷媒を加熱する室内熱交換器41、42と、中間冷却器3および主放熱器4の外表面に散水するための散水装置300とを備え、散水装置300は、伝熱面積あたりの散水量が、中間冷却器3の方が主放熱器4よりも多くなるように散水する。

Description

冷凍サイクル装置および空気調和装置
 本発明は、超臨界状態となる流体を冷媒とする冷凍サイクル装置等に関するものである。特に膨張機を利用する冷凍サイクル装置、空気調和装置の構成に関するものである。
 従来、超臨界状態となる流体を冷媒とし、膨張機を利用する冷凍サイクル装置として、熱源側熱交換器もしくは負荷側熱交換器の一部の表面に水を散布し、COP(Coefficient of Performance :エネルギ消費効率)を向上させるものがある。
 例えば、圧縮機、流路切換え手段、熱源側熱交換器、負荷側熱交換器が接続されて冷媒回路を構成し、熱源側熱交換器の一部または負荷側熱交換器の一部の表面に散水する散水装置を備える冷凍サイクル装置がある。そして、圧縮機が吐出する高圧冷媒が通過する熱源側熱交換器または負荷側熱交換器の一部に水を散布(散水)できるようにしている(例えば特許文献1参照)。
 このため、空気調和装置として適用した場合、冷房運転において、熱源側熱交換器の出口部分において散水することにより冷媒を冷却することで、冷媒の温度を低下させることができる。そして、負荷側熱交換器となる蒸発器内のエンタルピー差を拡大することで性能を向上させることができる。
 また、膨張機を用いる冷凍サイクル装置の他の例として、水を散布する散水手段を備え、冷凍サイクル装置のCOPを向上させるものがある。
 例えば、圧縮機、熱源側熱交換器、膨張機および負荷側熱交換器を接続して冷媒回路を構成する冷凍サイクル装置では、熱源側熱交換器は室外に配置され、室外空気と冷媒とを熱交換させるようにしている。一方、負荷側熱交換器は室内に配置されて室内空気と冷媒とを熱交換させるようにしている。そして、熱源側熱交換器を放熱器として利用する冷房運転において、散水手段が熱源側熱交換器の表面全体に散水するものである(特許文献2参照)。
 冷房運転において、冷媒側の放熱を行う熱源側熱交換器に散水すると、水は冷媒から吸熱して蒸発する。したがって、冷媒からの放熱量を水の蒸発潜熱分だけ増加させることができ、負荷側熱交換器へ送られる冷媒のエンタルピを低減することができる。また、水の散布量を調整することで過剰な散水を抑制している。
特開2006-308166号公報(請求項11、図5等) 特開2006-162226号公報(請求項1等)
 例えば、第1圧縮機のほかに、膨張機が回収した動力で冷媒を圧縮する第2圧縮機を有し、また、第1圧縮機から吐出された冷媒を冷却する中間冷却器と第2圧縮機から吐出された冷媒を冷却する主放熱器とで熱源側熱交換器を構成する冷凍サイクル装置がある。このような冷凍サイクル装置において、熱源側熱交換器の出口側となる主放熱器のみに水を散布すると、膨張機入口と出口の圧力差が小さくなるため、膨張機で回収できる動力が減少する。したがって、特許文献1のような構成では、膨張機が回収する動力が低下して第2圧縮機の圧縮仕事が低下してしまう。また、特許文献2のように熱源側熱交換器の全面に水を散布するような場合、膨張機において回収する動力を維持するために散水量を調整すると、散水による熱源側熱交換器の冷却能力を向上させる効果が減少する。
 本発明は上記のような従来の課題を解決するためになされたもので、膨張機による回収動力を利用して二段圧縮を行う冷凍サイクル装置において、膨張機による回収動力の減少を抑えつつ、散水による冷却能力を向上させて、効率のよい運転を行うことができる冷凍サイクル装置等を提供することを目的とする。
 本発明の冷凍サイクル装置は、冷媒を圧縮する第1圧縮機と、冷媒を減圧および膨張し、膨張に係る動力を回収する膨張機と、膨張機が回収した動力で駆動し、第1圧縮機の圧縮に係る冷媒をさらに圧縮する第2圧縮機と、第1圧縮機が圧縮した冷媒を冷却する中間冷却器および第2圧縮機が圧縮した冷媒を冷却して膨張機に送る主放熱器を有する熱交換器と、膨張機からの減圧に係る冷媒を加熱する蒸発器と、中間冷却器および主放熱器の外表面に散水するための散水装置とを備え、散水装置は、伝熱面積あたりの散水量が、主放熱器よりも中間冷却器の方が多くなるように散水する。
 この発明は、熱源側熱交換器に対する伝熱面積あたりの散水量を、主放熱器よりも中間冷却器の方が多くなるようにすることで、特に中間冷却器において、冷媒は空気と蒸発する水の潜熱に放熱することができるため、放熱効果を高めることができる。したがって、
膨張機の回収する動力の低下を抑え、第2圧縮機の冷媒圧縮に係る圧力の低下を抑えつつ、一方で、第1圧縮機の冷媒圧縮に係る圧力を低下させることができるため、第1圧縮機の電動機入力を低減可能で、省エネルギ化を図ることができる冷凍サイクル装置を提供することができる。
実施形態1に係る冷凍サイクル装置の冷媒回路図である。 実施形態1の装置の暖房運転時における冷媒の流れを示す冷媒回路図である。 実施形態1の装置の暖房運転時における冷媒の状態を表すP-h線図である。 実施形態1の装置の冷房運転時における冷媒の流れを示す冷媒回路図である。 実施形態1の装置の冷房運転時における冷媒の状態を表すP-h線図である。 冷凍サイクル装置における散水形態の比較を表すP-h線図である。 伝熱面積あたりの散水量Qwと中間圧との関係を示す図である。 伝熱面積あたりの散水量Qwと膨張機6の回収動力との関係を示す図である。
符号の説明
 1 第1圧縮機、2 四方弁、3 中間冷却器、4 主放熱器、5 第2圧縮機、6 膨張機、7、9 配管、8,14,15,24 開閉弁、10,17,43,44 電子膨張弁、11,13 吐出配管、12 逆止弁、16 吸入配管、18 バイパス配管、21 散水ノズル、22 散水管、23 ポンプ、25 ドレンパン、26 給水管、27 流量調節弁、41,42 室内熱交換器、45 室内送風機、61,62 配管、71 温度センサ、100 室外ユニット、200 室内ユニット、300 散水装置、400 制御装置。
実施の形態1.
 以下、本発明の実施の形態1による冷凍サイクル装置について説明する。
 図1は本発明の実施の形態1に係る冷凍サイクル装置を示す模式図である。本実施の形態では、冷凍サイクル装置を、冷暖房を行うことができる空気調和装置に適用した場合について説明する。図1において、本実施の形態に係る冷凍サイクル装置は、熱源側ユニットである室外ユニット100、負荷側ユニットである室内ユニット200を有する。そして、室外ユニット100、室内ユニット200を構成する各手段を配管61、62等により配管接続し、冷媒回路を構成する。冷媒回路内部には、例えば臨界温度(約31℃)以上で超臨界状態となる自然冷媒の二酸化炭素を冷媒として封入している。ただし、冷媒は二酸化炭素に限定するものではなく、特に超臨界状態となる冷媒であればよい。ここで、冷媒回路における圧力の高低については、基準となる圧力との関係により定まるものではなく、圧縮機等の圧縮(加圧)、冷媒流量制御等による減圧によりできる相対的な圧力として表すものとする。また、温度の高低についても同様であるものとする。
 本実施の形態の室外ユニット100は、ガス(気体)の冷媒を圧縮して加圧するための第1圧縮機1を有する。また、四方弁2は、制御装置400からの指示に基づいて、冷房運転時と暖房運転時とにおける冷媒の流路を切り換える。四方弁2の第1口2aは第1圧縮機1の吐出側と、第4口2dは中間冷却器3の一端と、第3口2cは第1圧縮機1の吸入側と、第2口2bは室内ユニット200につながる配管62の一端とそれぞれ接続されている。
 中間冷却器3および主放熱器(ガスクーラ)4は熱源側熱交換器となる。特に冷房運転時には、中間冷却器3は第2圧縮機5の前段(冷媒の流れる方向に対して上流側)、主放熱器4は第2圧縮機5の後段(冷媒の流れる方向に対して下流側)に位置し、例えば室外空気との熱交換により冷媒を冷却する。一方、暖房運転時には、中間冷却器3と主放熱器4とは直列での配管接続となるため、機能的に一体となって冷媒を蒸発させる。ここで、本実施の形態では、室外ユニット100内において、鉛直方向に対して中間冷却器3を上側、主放熱器4を下側となるように設けているものとする。そのため、後述するように、熱源側熱交換器の上部(冷房運転時における冷媒流入側)となる中間冷却器3に散水することで、主として中間冷却器3に散水されることになり、散水された水の一部が主放熱器4に落下して散布されることになる。そのため、本実施の形態では、中間冷却器3、主放熱器4に散水される。
 また、膨張機6は、冷媒を減圧してガス、液による気液二相状態の湿り蒸気とするものである。そして、減圧する行程において、冷媒が有する内部エネルギを動力として回収する。第2圧縮機5は、膨張機6と同軸で接続し、膨張機6が回収した動力で駆動する。吸入配管16は主放熱器4で冷却された冷媒を膨張機6へ導くための配管である。電子膨張弁17は開度変更可能であり、吸入配管16を通過する冷媒を減圧する手段となる。
 吐出配管13は膨張機6から流出した冷媒を導くための配管である。開閉弁14は吐出配管13における冷媒の通過、遮断を行うための手段である。吐出配管11は第2圧縮機5が吐出し冷媒を主放熱器4に導くための配管である。逆止弁12は吐出配管11の冷媒の流れる方向を規定するために設ける。配管9は、暖房運転時に中間冷却器3に冷媒を導くための配管である。電子膨張弁10は開度変更可能であり、配管9を通過する冷媒を減圧する手段となる。
 配管7は暖房運転時に主放熱器4で蒸発された冷媒を第1圧縮機1の吸入側に導く。開閉弁8は配管7における冷媒の通過、遮断を行うための手段である。バイパス配管18は暖房運転時において膨張機6に冷媒を通過させず、バイパスさせるための配管である。開閉弁15はバイパス配管18における冷媒の通過、遮断を行うための手段である。また、特に図示をしていないが、外気を強制的に中間冷却器3、主放熱器4の外表面に送風するための送風機を設けるようにしてもよい。このとき、散水装置300による散水を妨げないようにする。
 一方、室内ユニット200は、熱交換対象と冷媒との熱交換を行う負荷側熱交換器である室内熱交換器41、42を有している。また、室内熱交換器41、42をそれぞれ通過させる冷媒量を調節し、また、冷媒を減圧する手段となる電子膨張弁43、44を有している。室内熱交換器41、42の一端は集約されて、配管62を介して室外ユニット100と接続される。また、他端は電子膨張弁43、44を介して集約されて配管61を介して室外ユニット100と接続される。ここで、本実施の形態では、室内熱交換器41、42を2台とし、室内ユニット200を構成しているが、1台あるいは3台以上としてもよい。また、室内空気を強制的に室内熱交換器41、42の外表面に送風するため送風機を設けるようにしてもよい。
 また、室外ユニット100には、冷房運転時にのみ熱源側熱交換器(中間冷却器3、主放熱器4)の外表面の上部に水を散布する手段となる散水装置300を設けている。本実施の形態では散水ノズル21、散水管22、ポンプ23、開閉弁24、ドレンパン25、給水管26および流量調整弁27で散水装置300を構成する。
 ドレンパン25は、散水するための水を溜め、また、中間冷却器3、主放熱器4の外表面で蒸発しなかった水を受けて回収するために設置する。
 給水管26は、ドレンパン25に水を供給するための配管である。また、開閉弁24は、給水管26における水の通過、遮断を行うための手段である。ドレンパン25と給水管26とは、ドレンパン25の底部を開口し、給水管26の一端と接続している。ここで、ドレンパン25には、例えば水位検知器(図示せず)を設けており、水位検知器の検知に基づいて、例えば制御装置400がドレンパン25の水位を判断する。水位があらかじめ定めた下限より低いと判断した場合には開閉弁24を開き、ドレンパン25に水を供給する。一方、水位があらかじめ定めた上限より高いと判断した場合には開閉弁24を閉じ、水の供給を停止する。
 散水管22は、熱源側熱交換器(中間冷却器3、主放熱器4)の外表面の上部に水を散布するための散水ノズル21に水を供給する。ポンプ23は、ドレンパン25に溜まった水を散水管22を介して散水ノズル21へ圧送する。ポンプ23とドレンパン25とは、ドレンパン25の底部を開口し、ポンプ23の吸入側の配管の一端と接続している。流量調節弁27は散水ノズル21に供給する水の量を調節する。流量調節弁27の開度は、第1圧縮機1の吐出温度を検知する温度センサ71の検知に係る温度に応じて制御装置400が変更する。
 上記のように構成した冷凍サイクル装置の運転動作を冷媒の循環に基づいて説明する。図2は暖房運転の場合の冷媒の循環経路を表す図である。また、図3は暖房運転の場合の冷媒の状態を表すP-h線図である。
 暖房運転を行う際には、制御装置400は、室外ユニット100が有する四方弁2について、第1口2aと第2口2bとが連通し、第4口2dと第3口2cとが連通するように切替させる(図2中実線)。また、開閉弁15および8を開放させ、電子膨張弁10を全開させ、吸入配管16中の電子膨張弁17を全閉させる。さらに、逆止弁12および開閉弁14は閉止させる。ここで、暖房運転時には、散水は行わないため、散水装置300のポンプ23は停止させておく。
 このような状態において、第1圧縮機1により吐出された高温のガス冷媒(状態B)は、四方弁2の第1口2aから第2口2bを通り、接続する配管62を通って室内ユニット200に流入する。そして、室内ユニット200の室内熱交換器41、42に流入した高温のガス冷媒は、室内送風機45によって室内熱交換器41、42へ送り込まれた被加熱媒体(熱交換対象)である室内空気に放熱する。放熱により加熱された室内空気は空調対象空間である室内を暖房する。
 一方、室内熱交換器41、42において放熱した冷媒は、冷却、液化して低温の冷媒(状態C)となる。さらに電子膨張弁43、44で減圧され、低圧低温の気液二相冷媒(状態D)となり、接続する配管61を通って室外ユニット100に流入する。
 室外ユニット100に流入した気液二相冷媒は、開閉弁15を通過した後、主放熱器4と電子膨張弁10を介して中間冷却器3とに流入する。主放熱器4に流入した気液二相冷媒は、室外の空気との間で熱交換を行い、室外の空気から吸熱し、蒸発して気化する。主放熱器4を流出した低圧のガス冷媒は、開閉弁8を通過して四方弁2の第4口2dに流入する。一方、中間冷却器3に流入した気液二相冷媒も、蒸発して気化し、主放熱器4から流出した低圧のガス冷媒と合流する。四方弁2を通過したガス冷媒(状態A)は第1圧縮機1の吸入側に戻る。
 図4は冷房運転の場合の冷媒の循環経路を表す図である。また、図5は冷房運転の場合の冷媒の状態を表すP-h線図である。次に冷房運転を行う場合について説明する。
 冷房運転を行う際には、制御装置400は、室外ユニット100が有する四方弁2について、第1口2aと第4口2dとが連通し、第3口2cと第2口2bとが連通するように切替させる(図4中実線)。また、開閉弁15および8を閉止させ、電子膨張弁10を全閉させる。さらに、逆止弁12および開閉弁14は開放させる。冷房運転時は、場合によって散水を行うため、散水装置300のポンプ23が駆動するようにしておく。
 このような状態において、第1圧縮機1により吐出された高温中圧のガス冷媒(状態B)は、四方弁2の第1口2aから第4口2dを通過する。そして、中間冷却器3に流入して被加熱媒体に放熱することで若干温度が下がった冷媒(状態C)は、第2圧縮機5に吸入される。膨張機6が回収した動力で駆動する第2圧縮機5により吐出された冷媒は、第1圧縮機1に吐出された圧力よりさらに高い圧力に昇圧される。第2圧縮機5で昇圧された高温高圧の冷媒(状態D)は、逆止弁12を通過し、主放熱器4でも被加熱媒体に放熱し、冷却、液化する(状態E)。
 ここで、冷房運転の場合、中間冷却器3、主放熱器4においては、空気と共に、散水装置300による水を冷媒との熱交換を行う被加熱媒体とする。散水装置300は中間冷却器3の外表面へ散水する。このため、主放熱器4よりも上側にある中間冷却器3の外表面に散布された水は、冷媒によって加熱され、その熱量を蒸発潜熱として取り入れて蒸発する。その結果、中間冷却器3において、冷媒は被加熱媒体である空気と、散布された水の双方に放熱することになる。中間冷却器3における冷媒の加熱により蒸発せずに液滴として落下する水は、主放熱器4上に落下し、主放熱器4における冷媒の加熱により一部が蒸発する。主放熱器4においても蒸発しなかった水はドレンパン25に落下する。
 一方、主放熱器4において冷却された液冷媒は、電子膨張弁17を通過して、膨張機6に流入する。膨張機6により減圧されて気液二相状態の湿り蒸気の冷媒(状態F)となる。このとき、膨張機6では、減圧に係る冷媒の内部エネルギーを回収して、第2圧縮機5の動力となるように変換する。
 膨張機6で減圧された二相冷媒は、開閉弁14、接続する配管61を通過して、室内ユニット200に流入する。室内ユニット200に流入した二相冷媒は、電子膨張弁43、44により各室内熱交換器41、42に略均一に分配される。室内熱交換器41、42に流入した気液二相冷媒は、室内送風機45によって室内熱交換器41、42へ送り込まれた被加熱媒体(熱交換対象)である室内空気から吸熱する。吸熱により冷却された室内空気は空調対象空間である室内を冷房する。
 室内熱交換器41、42を流出して合流した低温低圧のガス冷媒(状態A)は、接続する配管62を通過して室外ユニット100に流入する。室外ユニット100では、四方弁2の第2口2bから第3口2cを経て、第1圧縮機1の吸入側へ戻る。
 図6は冷凍サイクル装置において、散水装置300から水を散布しない場合(散水なし)、中間冷却器3、主放熱器4の外表面全体に水を散布した場合(散水形態1)、熱源側熱交換器(中間冷却器3、主放熱器4)の外表面上部に水を散布した場合(散水形態2)の、ある状態を比較するためのP-h線図を表す図である。
 上記の冷凍サイクル装置においては、散水装置300によって冷房運転時に熱源側熱交換器(中間冷却器3、主放熱器4)の外表面上部に水を散布する。そして、本実施の形態では、特に中間冷却器3において冷媒の冷却効果を高めるようにすることで、冷房運転時のCOPの改善を図ることができる。
 例えば、中間冷却器3および主放熱器4に水を散布しない場合(散水なし)においては、冷媒は、第1圧縮機1の圧縮により冷媒がA点の状態からB点(例えば8.6MPa)の状態となる。そして、中間冷却器3における放熱によりC点の状態となる。ここで、C点における冷媒の温度は、被加熱対象である室外空気の温度と中間冷却器3と主放熱器4との放熱能力比によって決まる。室外空気の温度を約35℃(夏期における室外空気の一般的温度)として、中間冷却器3と主放熱器4の放熱能力比を1:1とすると、C点における冷媒の温度は約40℃となる。その後、膨張機6が回収した動力で駆動する第2圧縮機5の圧縮によりD点(例えば9.5MPa)の状態となる。そして、主放熱器4における放熱によりE点の状態となる。
 一方、中間冷却器3、主放熱器4の外表面全体に水を散布した場合(散水形態1)では、中間冷却器3、主放熱器4の全体において、散水装置300による水が蒸発潜熱として吸熱することで冷媒の放熱効果を高めている。第1圧縮機1の圧縮により冷媒がA点の状態からB1点(例えば7.7MPa)の状態となる。そして、中間冷却器3における放熱によりC1点の状態となる。ここで、中間冷却器3に水を散布しているために、中間冷却器3において冷媒の冷却に係る圧力が低くなる。この中間冷却器3の冷却に係る圧力を中間圧とする。その後、第2圧縮機5の圧縮によりD1点(例えば8.1MPa)の状態となる。また、主放熱器4における放熱によりE1点の状態となる。ここで、主放熱器4においても、散水効果により冷却する圧力が低くなる。この主放熱器4の冷却に係る圧力を高圧とする。
 次に熱源側熱交換器(中間冷却器3、主放熱器4)の外表面上部に水を散布した場合(散水形態2)では、特に中間冷却器3において放熱効果を高めている。第1圧縮機1の圧縮により冷媒がA点の状態からB2点(例えば7.7MPa)の状態となる。そして、中間冷却器3における放熱によりC2点の状態となる。ここでも、中間冷却器3に水を散布しているために中間圧が低くなる。その後、第2圧縮機5の圧縮によりD2点(例えば8.6MPa)の状態となる。また、主放熱器4における放熱によりE2点の状態となる。このように、主放熱器4においては、散水なしの場合に比べると散水により高圧が低くなるが、熱源側熱交換器(中間冷却器3、主放熱器4)の外表面全体に散水する散水形態1に比べると低下の程度は小さくなる。
 図7は中間冷却器3、主放熱器4の伝熱面積あたりの散水量Qwと中間圧との関係を示す図である。図7に示すB点、B1点、B2点は、図6のB点、B1点、B2点にそれぞれ対応する。
 図7より、散水形態1において、B1点での散水量Qwは、約6.8ml/min/m2  であり、このときの中間圧は約7.7MPaである。これに対して、散水形態2において、B2点での散水量Qwは、約3.4ml/min/m2  であり、このときの中間圧は約7.7MPaである。これは、散水形態2のように、主放熱器4における伝熱面積あたりの散水量を、散水形態1に対して約半分にしても中間圧はほぼ等しくなることを示している。したがって、中間冷却器3への散水量を主放熱器4よりも多くしても、中間圧は変化しない。
 図8は主放熱器4の伝熱面積あたりの散水量Qwと膨張機6による回収動力との関係を示す図である。図8に示すΔHは散水なしの場合、ΔH1は散水形態1の場合、ΔH2は散水形態2の場合の膨張機6の動作点における回収動力を表している。
 図8に示すように、散水なしの場合における回収動力ΔHに比べ、主放熱器4の伝熱面積あたりの散水量Qwが増加するにつれて回収動力は低下する。これは、主放熱器4における放熱する熱量が増加することで高圧が低下し、膨張機6における圧力差(例えばE点―F点)が小さくなるためである。散水形態1と散水形態2との関係では、散水形態1の方が主放熱器4の散水による放熱効果が高くなるため、高圧が低下し、ΔH2>ΔH1となる。また、第2圧縮機5による昇圧量(例えばD点―C点)は、駆動力となる膨張機6の回収する動力に比例する。
 以上のことから、散水形態1と散水形態2における中間圧はほぼ変わらないので、散水形態2のように、主放熱器4の伝熱面積あたりの散水量Qwを散水形態1のおよそ半分にし、また、中間冷却器3よりも伝熱面積あたりの散水量Qwを少なくすることによって主放熱器4の放熱効果を小さくするようにする。これにより、散水形態1に比べ、膨張機6の回収動力の低下を小さくすることができ、さらに第2圧縮機5による昇圧量の低下を小さくすることができる。
 ここで、中間圧と高圧とは、中間冷却器3、主放熱器4における凝縮能力と、第2圧縮機5の昇圧量とのバランスによって定まる。散水形態2では、散水形態1よりも主放熱器4における散水量が減少するため、主放熱器4において冷媒を冷却する能力は低くなる。ただ、第2圧縮機5の昇圧量が大きくなるため、中間冷却器3における中間圧は、散水形態1と散水形態2とにおいてほぼ等しくなる。
 また、中間冷却器3、主放熱器4の外表面下部(冷媒出口部)のみに散水し、主放熱器4の放熱効果を高めようとする場合、中間冷却器3において散水による放熱効果を得られない。また、高圧の低下により膨張機6の回収動力が低下するため、図7のB3点に示すように中間圧が高くなる。
 以上のように、実施の形態1の冷凍サイクル装置によれば、散水装置300により中間冷却器3に散水するようにしたので、散水しない場合に比べて第1圧縮機1の吐出圧力(中間圧)を低下させることができるので、第1圧縮機1の電動機の入力を低減することができる。また、冷媒を有効に冷却することができる。一方、主放熱器4において伝熱面積あたりの散水量を中間冷却器3における散水量よりも少なくなるようにしたので、主放熱器4における冷媒の冷却能力を中間冷却器3における冷却により補いつつ、膨張機6における回収動力を高めることができ、第2圧縮機5による昇圧量の低下を小さくすることができる。そのため、冷凍サイクル装置全体としてCOPを向上させることができる。
 また、本実施形態によれば、散水装置300で中間冷却器3、主放熱器4の外表面上部に水を散布することで、中間冷却器3、主放熱器4の外表面全体に水を散布する場合と同等の効果を得ることができるため、散水に必要な水の使用量を低減させることができる。
 さらに、本実施形態の冷凍サイクル装置によれば、散水装置300による水の使用量を低減できるため、散水装置300のポンプ23で消費される動力を低減でき、冷凍サイクル装置の電力使用量を低減して、例えば冷房運転時のCOP等を向上させることが期待できる。
 そして、本実施形態の冷凍サイクル装置によれば、第1圧縮機1の吐出温度センサ71によって、散水装置300の流量調節弁27の開度を調節している。したがって、吐出温度に応じた中間圧となるように中間冷却器3への水の散布量を調節して、膨張機6による回収動力を維持することができる。これによって、冷房運転時におけるCOPを向上させることができる。
 また、本実施形態の冷凍サイクル装置によれば、散水装置300による水の使用量を低減できるため、散水装置300のポンプ23を使用せずに、水道から導かれる水圧により散水するようにしてポンプ23を省略することもできる。このときには、さらに電力使用量を低減することができる。また、冷媒に自然冷媒である二酸化炭素を用いることで、フロン等を使用せずにすみ、環境への負荷を低減させることができる。
実施の形態2.
 上記の実施の形態1のほかにも本発明は、以下のようにしてもよい。
 例えば、実施の形態1では、中間冷却器3を上段、主放熱器4を下段の構成とした。しかしながら、主放熱器4を上段、中間冷却器3を下段に配置して、中間冷却器3、主放熱器4の外表面下部に散水するようにして、中間圧を低下させるようにしてもよい。また、中間冷却器3を水を散布する外側、主放熱器4を内側として、中間冷却器3と主放熱器4を並列に配置するようにしてもよい。例えばこのような配置を行い場合には、中間冷却器3のみに散水がなされる。
 また、実施の形態1では、第1圧縮機1の吐出温度センサ71に基づいて、制御装置400が散水装置300の流量調節弁27の開度を調節するようにしている。しかしながら、これに限定するものではなく、例えば第1圧縮機1が吐出する冷媒の圧力、第2圧縮機5における冷媒の吸入温度、第2圧縮機5における吸入圧力等を検知するセンサ(検知手段)を設ける。そして、これらのセンサの検知に係る物理量の値に基づいて、散水装置300の散水量を調節するようにしてもよい。
 さらに、実施の形態1においては、中間圧をおよそ7.7MPaとしている。しかしながら、この圧力は特に好適な中間圧を意味するものであり、中間圧をこの値に限定するものではない。例えば8.5MPaとしてもよい。
 さらに、実施の形態1では、冷房運転時のみ、膨張機6に冷媒を流入させて動力を回収するようにしているが、これに限定するものではなく、暖房運転時においても膨張機6で動力を回収するようにしてもよい。
 以上説明したように、本発明は、冷媒を超臨界状態まで圧縮して冷凍サイクルを行う冷媒回路を備えた冷凍サイクル装置に関して有用である。上述の実施の形態では、冷凍サイクル装置を空気調和装置に適用した場合について説明したが、冷凍倉庫内等を冷却する冷凍装置に適用することもできる。

Claims (6)

  1.  冷媒を圧縮する第1圧縮機と、
     冷媒を減圧および膨張し、膨張に係る動力を回収する膨張機と、
     該膨張機が回収した動力で駆動し、前記第1圧縮機の圧縮に係る冷媒をさらに圧縮する第2圧縮機と、
     前記第1圧縮機が圧縮した冷媒を冷却する中間冷却器および該第2圧縮機が圧縮した冷媒を冷却して前記膨張機に送る主放熱器を有する熱交換器と、
     前記膨張機からの減圧に係る冷媒を加熱する蒸発器と、
     前記中間冷却器および前記主放熱器の外表面に散水するための散水装置とを備え、
     前記散水装置は、伝熱面積あたりの散水量が、前記中間冷却器の方が前記主放熱器よりも多くなるように散水することを特徴とする冷凍サイクル装置。
  2.  前記散水装置は、前記中間冷却器の外表面のみを散水するようにすることを特徴とする請求項1に記載の冷凍サイクル装置。
  3.  前記冷媒に二酸化炭素を含むことを特徴とする請求項1または2に記載の冷凍サイクル装置。
  4.  請求項1~3のいずれかに記載の冷凍サイクル装置を構成する各手段を、
     空調対象空間の冷房または暖房を行う室内ユニットと、
     前記冷媒を循環させて、該室内ユニットに前記冷房または暖房を行わせるための熱量に係る供給を行う室外ユニットとに分けて備えることを特徴とする空気調和装置。
  5.  冷房運転時のみ、第2圧縮機を駆動することで中間冷却器と主放熱器とに分かれて熱交換することを特徴とする請求項4に記載の空気調和装置。
  6.  冷房運転時のみ前記散水装置から散水することを特徴とする請求項4または5に記載の空気調和装置。
PCT/JP2009/054844 2008-09-12 2009-03-13 冷凍サイクル装置および空気調和装置 WO2010029781A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09812930.7A EP2322875B1 (en) 2008-09-12 2009-03-13 Refrigeration cycle device and air conditioner
CN2009801354388A CN102149988B (zh) 2008-09-12 2009-03-13 冷冻循环装置以及空调装置
US13/059,331 US8991207B2 (en) 2008-09-12 2009-03-13 Refrigerating cycle apparatus and air conditioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008235384A JP5025605B2 (ja) 2008-09-12 2008-09-12 冷凍サイクル装置および空気調和装置
JP2008-235384 2008-09-12

Publications (1)

Publication Number Publication Date
WO2010029781A1 true WO2010029781A1 (ja) 2010-03-18

Family

ID=42005044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054844 WO2010029781A1 (ja) 2008-09-12 2009-03-13 冷凍サイクル装置および空気調和装置

Country Status (5)

Country Link
US (1) US8991207B2 (ja)
EP (1) EP2322875B1 (ja)
JP (1) JP5025605B2 (ja)
CN (1) CN102149988B (ja)
WO (1) WO2010029781A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2474259A (en) * 2009-10-08 2011-04-13 Ebac Ltd Vapour compression refrigeration circuit
CN103925661A (zh) * 2013-01-15 2014-07-16 张安然 多功能空调

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307820B (zh) * 2013-06-03 2015-07-29 重庆美的通用制冷设备有限公司 风冷式室外空调系统
CN104215000A (zh) * 2014-09-25 2014-12-17 昆山特佳高美绿能科技有限公司 一种取代四通换向阀的水路切换系统
CN204183064U (zh) * 2014-09-30 2015-03-04 名硕电脑(苏州)有限公司 气体冷却装置及具有该气体冷却装置的回焊炉
EP3023712A1 (en) * 2014-11-19 2016-05-25 Danfoss A/S A method for controlling a vapour compression system with a receiver
KR101582305B1 (ko) * 2015-06-03 2016-01-05 엔에이치엔엔터테인먼트 주식회사 공조 시스템 및 이를 이용한 공조 방법
PL3628940T3 (pl) 2018-09-25 2022-08-22 Danfoss A/S Sposób sterowania systemem sprężania pary na podstawie szacowanego przepływu
PL3628942T3 (pl) 2018-09-25 2021-10-04 Danfoss A/S Sposób sterowania układem sprężania pary przy zmniejszonym ciśnieniu ssania
SG11202012506VA (en) 2018-11-12 2021-05-28 Carrier Corp Compact heat exchanger assembly for a refrigeration system
EP4397925A3 (en) 2019-06-06 2024-09-18 Carrier Corporation Refrigerant vapor compression system
CN112577211B (zh) * 2019-09-30 2021-12-14 约克(无锡)空调冷冻设备有限公司 用于两个压缩机的负荷平衡方法
KR102707734B1 (ko) * 2023-04-10 2024-09-20 한국이미지시스템(주) 공기조화기의 응축수 분사가 제어 가능한 빌딩에너지관리시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194379A (ja) * 1997-09-22 1999-04-09 Sanden Corp 冷凍空調装置
JP2003279179A (ja) * 2002-03-26 2003-10-02 Mitsubishi Electric Corp 冷凍空調装置
JP2006162226A (ja) 2004-12-10 2006-06-22 Daikin Ind Ltd 冷凍装置
JP2006308166A (ja) 2005-04-27 2006-11-09 Mitsubishi Electric Corp 冷凍サイクル装置
JP2008075949A (ja) * 2006-09-20 2008-04-03 Daikin Ind Ltd 空気調和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938035A (en) * 1987-10-20 1990-07-03 Khanh Dinh Regenerative fresh-air air conditioning system and method
US6018954A (en) * 1995-04-20 2000-02-01 Assaf; Gad Heat pump system and method for air-conditioning
US6047555A (en) * 1999-01-13 2000-04-11 Yiue Feng Enterprise Co., Ltd. Refrigerating/air conditioning heat exchanging system with combined air/water cooling functions and the method for controlling such a system
JP3438725B2 (ja) * 2001-06-08 2003-08-18 日産自動車株式会社 車両用冷却装置
US6465750B1 (en) * 2001-07-29 2002-10-15 Hewlett-Packard Company Cover for nonfunctional buttons
EP1313161A1 (en) * 2001-11-15 2003-05-21 Ballard Power Systems AG Fuel cell system and method for operating the same
US6698234B2 (en) * 2002-03-20 2004-03-02 Carrier Corporation Method for increasing efficiency of a vapor compression system by evaporator heating
US6658888B2 (en) * 2002-04-10 2003-12-09 Carrier Corporation Method for increasing efficiency of a vapor compression system by compressor cooling
DE602005003489T2 (de) * 2004-03-05 2008-11-13 Corac Group Plc, Uxbridge Mehrstufiger ölfreier Gasverdichter
US20080256975A1 (en) * 2006-08-21 2008-10-23 Carrier Corporation Vapor Compression System With Condensate Intercooling Between Compression Stages
EP2163838A4 (en) * 2007-05-25 2013-11-06 Mitsubishi Electric Corp COOLING CIRCUIT DEVICE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194379A (ja) * 1997-09-22 1999-04-09 Sanden Corp 冷凍空調装置
JP2003279179A (ja) * 2002-03-26 2003-10-02 Mitsubishi Electric Corp 冷凍空調装置
JP2006162226A (ja) 2004-12-10 2006-06-22 Daikin Ind Ltd 冷凍装置
JP2006308166A (ja) 2005-04-27 2006-11-09 Mitsubishi Electric Corp 冷凍サイクル装置
JP2008075949A (ja) * 2006-09-20 2008-04-03 Daikin Ind Ltd 空気調和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2474259A (en) * 2009-10-08 2011-04-13 Ebac Ltd Vapour compression refrigeration circuit
CN103925661A (zh) * 2013-01-15 2014-07-16 张安然 多功能空调

Also Published As

Publication number Publication date
JP2010065986A (ja) 2010-03-25
EP2322875A4 (en) 2017-10-18
JP5025605B2 (ja) 2012-09-12
US8991207B2 (en) 2015-03-31
CN102149988A (zh) 2011-08-10
EP2322875B1 (en) 2018-08-15
EP2322875A1 (en) 2011-05-18
CN102149988B (zh) 2013-06-19
US20110138835A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5025605B2 (ja) 冷凍サイクル装置および空気調和装置
KR101155496B1 (ko) 히트펌프식 급탕장치
JP3863480B2 (ja) 冷凍サイクル装置
JP3838008B2 (ja) 冷凍サイクル装置
US20160245575A1 (en) Co2 refrigeration system for ice-playing surfaces
WO2006013834A1 (ja) 冷凍装置
WO2012147367A1 (ja) 冷凍装置
WO2016058365A1 (zh) 空调机组及运行方法
US7353664B2 (en) Heat pump and compressor discharge pressure controlling apparatus for the same
JP4317793B2 (ja) 冷却システム
KR101015307B1 (ko) 공기열원 중압 사이클 냉난방 히트펌프 시스템
JP4989420B2 (ja) 空気調和機
JP2005226950A (ja) 冷凍空調装置
JP2007051841A (ja) 冷凍サイクル装置
WO2007102345A1 (ja) 冷凍装置
KR20100059176A (ko) 축열 시스템
JP2012202678A (ja) 冷凍サイクル装置
JP5615686B2 (ja) 超臨界サイクルヒートポンプ装置
KR101111293B1 (ko) 에어컨용 응축기 냉각장치
JP3863555B2 (ja) 冷凍サイクル装置
CN113883599A (zh) 空调器
KR102313304B1 (ko) 이산화탄소 공기조화기
KR100248719B1 (ko) 냉, 난방기 사이클
KR100554566B1 (ko) 극저온용 히트펌프 사이클
KR20050043089A (ko) 히트 펌프

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135438.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812930

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13059331

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009812930

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE