WO2010029719A1 - Chargeable powder for forming conductive pattern and multilayer ceramic electronic component using same - Google Patents

Chargeable powder for forming conductive pattern and multilayer ceramic electronic component using same Download PDF

Info

Publication number
WO2010029719A1
WO2010029719A1 PCT/JP2009/004409 JP2009004409W WO2010029719A1 WO 2010029719 A1 WO2010029719 A1 WO 2010029719A1 JP 2009004409 W JP2009004409 W JP 2009004409W WO 2010029719 A1 WO2010029719 A1 WO 2010029719A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
conductive
forming
powder
conductor
Prior art date
Application number
PCT/JP2009/004409
Other languages
French (fr)
Japanese (ja)
Inventor
山崎力
内田晋介
桜田清恭
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2010528615A priority Critical patent/JP5056950B2/en
Publication of WO2010029719A1 publication Critical patent/WO2010029719A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/09Colouring agents for toner particles
    • G03G9/0902Inorganic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1266Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by electrographic or magnetographic printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0224Conductive particles having an insulating coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0517Electrographic patterning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Definitions

  • the present invention relates to a conductive powder for forming a conductive pattern and a multilayer ceramic electronic component, and more particularly to a conductive powder for forming a conductive pattern used when printing a conductive pattern on a substrate by electrophotography and a laminate using the same.
  • the present invention relates to ceramic electronic components.
  • a conductive powder for forming a conductive pattern is printed by electrophotography, There is a method of baking a charged powder and a ceramic layer simultaneously.
  • the conductive particles for example, copper particles
  • the ceramic layer have different sintering temperatures, resulting in different shrinkage start temperatures (usually conductive particles have a lower sintering temperature).
  • shrinkage start temperatures usually conductive particles have a lower sintering temperature. Due to this difference in sintering temperature, normally, the sintering shrinkage of the conductor pattern having a low sintering temperature starts before the sintering shrinkage of the ceramic layer.
  • Patent Document 1 silica, which is an adhesion reinforcing agent, is contained inside the chargeable powder. According to this method, it is possible to improve the bonding strength of the conductor pattern to the ceramic layer and suppress the peeling of the conductor pattern.
  • problems such as cracking of the substrate and partial peeling of the conductor pattern due to the influence of the deviation of the sintering start temperature between the conductor pattern and the ceramic layer remain.
  • Patent Document 2 In order to improve the chargeability of the chargeable powder, a method of coating conductive particles with an easily chargeable insulating resin has been proposed (see Patent Document 2). According to this method, it is possible to improve the chargeability and improve the fixability at the time of printing the chargeable powder, but the insulating resin does not affect the sintering start temperature at all, In reality, problems such as cracking of the substrate and partial peeling of the conductor pattern due to the influence of the difference in the sintering start temperature between the conductor pattern and the ceramic layer cannot be solved. Japanese Patent Laid-Open No. 11-251718 JP 2006-111361 A
  • the present invention solves the above-mentioned problem, and laminates ceramic green sheets on which conductive patterns to be electrodes and circuits are formed by printing a conductive pattern forming chargeable powder, and then fires the laminated ceramic.
  • a conductive pattern forming charged powder that can suppress the occurrence of peeling of the conductor and cracking of the ceramic layer due to the difference in sintering temperature between the conductor pattern and the ceramic layer. It is an object of the present invention to provide a multilayer ceramic electronic component that is manufactured with good yield.
  • the first conductive pattern forming charged powder of the present invention A conductive powder for forming a conductor pattern used when a conductor pattern is printed on a substrate by electrophotography, Conductive metal particles; A ceramic coating layer disposed to cover the conductive metal particles; A thermoplastic resin in which a plurality of the conductive metal particles covered with the ceramic coating layer are dispersed; And a silica fine particle layer disposed so as to cover the thermoplastic resin.
  • the conductive metal particles are preferably copper particles.
  • the printed material on which the conductive pattern forming chargeable powder is printed is a ceramic green sheet.
  • the second conductive pattern forming powder of the present invention A conductive powder for forming a conductor pattern used when a conductor pattern is printed on a substrate by electrophotography, Conductive metal particles; A ceramic coating layer disposed to cover the conductive metal particles; A thermoplastic resin layer disposed to cover the ceramic coating layer; And a silica fine particle layer disposed so as to cover the thermoplastic resin.
  • the conductive metal particles are preferably copper particles.
  • the printed material on which the second conductive pattern forming charged powder is printed is also a ceramic green sheet.
  • the multilayer ceramic electronic component of the present invention is A multilayer ceramic electronic component comprising a ceramic laminate formed by laminating and firing a ceramic green sheet printed with a conductive powder for forming a conductor pattern according to any one of claims 1 to 7, A conductor obtained by sintering the conductive powder for forming a conductor pattern according to any one of claims 1 to 7 is provided on a surface and / or inside of the ceramic laminate.
  • the conductor on the surface of the ceramic laminate is characterized in that the conductive pattern forming chargeable powder according to any one of claims 1 to 4 is sintered.
  • the conductor inside the ceramic laminate is characterized in that the conductive pattern forming chargeable powder according to any one of claims 5 to 7 is sintered.
  • a plurality of conductive metal particles covered with a ceramic coating layer are dispersed in a thermoplastic resin, and the thermoplastic resin is covered with a silica fine particle layer. Therefore, it becomes possible to delay the start of sintering by raising the sintering temperature of the conductive metal particles, reducing the difference between the sintering temperature of the conductor pattern and the ceramic layer, and the behavior of the sintering shrinkage of both It is possible to suppress or prevent the substrate from being cracked or the conductor pattern from being peeled off due to the difference.
  • the allowable sintering temperature difference between the conductor pattern and the ceramic layer is preferably within a range of ⁇ 150 ° C.
  • the ceramic coating is applied to the conductive metal particles
  • the difference in sintering temperature with the layer can be within a range of ⁇ 150 ° C. It should be noted that the ceramic material cannot be fully exerted the function of raising the sintering temperature of the conductive metal particles by simply coexisting the ceramic material without performing ceramic coating on the conductive metal particles. It is not preferable because the temperature is distributed.
  • thermoplastic resin functions to fix the conductive pattern forming chargeable powder on the substrate.
  • thermoplastic resin by covering the thermoplastic resin with the silica fine particle layer, it is possible to ensure the fluidity of the conductive pattern forming chargeable powder.
  • silica fine particle layer By covering the thermoplastic resin with the silica fine particle layer, it is possible to ensure the fluidity of the conductive pattern forming chargeable powder.
  • hydrophobized silica fine particles can improve the electric resistance.
  • the first conductive pattern forming powder of the present invention it is possible to efficiently form a conductor constituting an electrode or a circuit to be disposed on the surface or inside of the multilayer ceramic electronic component. become.
  • thermoplastic resin dispersing the ceramic particles in the thermoplastic resin, it is possible to improve the bonding strength due to the anchor effect of the ceramic particles.
  • the conductive pattern forming charged powder it is desirable to use copper powder excellent in electrical characteristics such as conductivity and economy as the conductive metal particles.
  • copper particles are used as the conductive metal particles, it is possible to raise the sintering temperature of the copper particles and bring the sintering start temperature closer to the sintering start temperature of the ceramic layer. Then, by manufacturing laminated ceramic electronic components using conductive powder for forming conductive patterns with copper particles as conductive metal particles, substrate cracking and peeling of conductive patterns due to differences in sintering shrinkage between copper particles and ceramic layers It is possible to suppress and prevent the above and to manufacture a multilayer ceramic electronic component having high characteristics and high reliability with a high yield.
  • this conductive pattern forming chargeable powder on a ceramic green sheet (printed material)
  • a ceramic green sheet printed material
  • the conductive metal particles, the ceramic coating layer disposed so as to cover the conductive metal particles, and the ceramic coating layer are disposed.
  • the thermoplastic resin layer is provided and the silica fine particle layer disposed so as to cover the thermoplastic resin is used.
  • thermoplastic resin content can be reduced as compared with the first conductive pattern forming powder. And since it becomes possible to reduce the quantity of the thermoplastic resin contained in the conductive powder for conductor pattern formation, the amount of gas generated by decomposition
  • this second conductive pattern forming charged powder it is desirable to use copper particles as the conductive metal particles.
  • the multilayer ceramic electronic component of the present invention has the conductive pattern forming chargeable powder (the conductive pattern forming chargeable powder of any one of claims 1 to 7) on the surface and / or inside of the ceramic laminate.
  • the sintering temperature of the conductive metal particles can be raised to approach the sintering temperature of the ceramic layer, It becomes possible to provide a highly reliable monolithic ceramic electronic component that is free from cracking of the substrate and peeling of the conductor pattern due to a difference in sintering shrinkage between the two.
  • the conductive powder for forming a conductor pattern (first conductive pattern forming powder) according to claims 1 to 4
  • the ratio of the thermoplastic resin and the ratio of the ceramic particles dispersed in the thermoplastic resin are increased. It becomes possible. Therefore, in the case of manufacturing a multilayer ceramic electronic component, when forming the external conductor on the surface of the ceramic laminate, the conductive pattern forming charged powder according to any one of claims 1 to 4 is used in the firing step. It becomes possible to form a conductor having excellent fixing property to the ceramic layer and having high bonding strength to the ceramic layer after firing.
  • the amount of gas generated by decomposition or combustion of the thermoplastic resin increases, but in the case of an external conductor formed on the surface of the ceramic laminate. Even if the amount of gas generated due to decomposition or combustion of the thermoplastic resin increases, the gas easily escapes from the conductor surface, so there is no separation between the conductor and the ceramic layer, high bonding strength, and high reliability An outer conductor can be formed.
  • the conductor inside the ceramic laminate is formed using the conductive pattern forming charged powder (second conductive pattern forming charged powder) according to any one of claims 5 to 7, Since the ratio of the thermoplastic resin in the conductive powder for forming the conductor pattern 2 is smaller than that in the first conductive pattern forming powder, the amount of gas generated by the decomposition and combustion of the thermoplastic resin in the heat treatment step Will be less.
  • the second conductive pattern forming charged powder when used in forming the conductor inside the ceramic laminate, it is caused by decomposition or combustion of the thermoplastic resin in the firing step. Since the amount of gas generated is small, it is possible to suppress and prevent the separation between the conductor and the ceramic layer, and to manufacture the multilayer ceramic electronic component including the internal conductor with a high yield.
  • the fixability of the conductor pattern in the firing process tends to be reduced accordingly.
  • the inner conductor is not particularly problematic because it is held between the ceramic layers. Also, after firing, there is no need to obtain a large bonding strength required for the outer conductor, so that the conductive pattern forming chargeable powder according to any one of claims 5 to 7 is sufficiently good. An inner conductor can be formed.
  • Example 1 will be described by taking the first conductive pattern forming powder of the present invention as an example.
  • conductive metal particles having an average particle size of 3.5 ⁇ m which are conductive metal particles
  • ceramic particles having a particle size of 0.01 to 0.1 ⁇ m for the ceramic coating layer (in this example, 1 part by weight of alumina particles) is mechanically coated to obtain conductive metal particles (hereinafter also referred to as “alumina-coated copper particles”) covered with a ceramic coating layer.
  • alumina-coated copper particles conductive metal particles covered with a ceramic coating layer.
  • copper particles having an average particle size of 0.8 to 4.0 ⁇ m In addition to copper particles, silver particles, palladium particles, nickel particles, and the like can be used as the conductive metal particles.
  • alumina Al 2 O 3
  • silica SiO 2
  • titania TiO 2
  • zirconia ZrO 2
  • thermoplastic resin 24 parts by weight of a polyester resin (in this Example 1, a granular polyester resin having a particle diameter of 1 to 2 mm) is kneaded using a kneader to disperse the alumina-coated copper particles and alumina particles in the polyester resin.
  • the ceramic particles dispersed in the thermoplastic resin for exhibiting the anchor effect are the same as the constituent components of the ceramic raw material which is the main component of the ceramic green sheet on which the conductive pattern forming charged powder is to be printed.
  • alumina particles are used as ceramic particles in consideration of using a ceramic green sheet mainly composed of a BaO—Al 2 O 3 —SiO 2 based ceramic material in Example 3 described later. Used.
  • thermoplastic resin in addition to the above polyester resin, a styrene acrylic copolymer, a polypropylene resin, or the like can be used.
  • the polyester resin in which the alumina-coated copper particles and the alumina particles obtained in (2) are dispersed is roughly pulverized using a pulverizer, and further pulverized using a mill.
  • the pulverized raw material obtained in (3) is finely pulverized using a fine pulverizer to obtain a finely pulverized raw material.
  • the finely pulverized raw material is cut into fine powder and coarse powder using a classifier to obtain composite particles having a particle size of 5 to 20 ⁇ m.
  • thermoplastic resin 4 in which the conductive metal particles 1 covered with the ceramic coating layer (alumina coating layer) 2 and the ceramic particles (alumina particles) 3 are dispersed becomes silica fine particles.
  • the first conductive pattern forming powder 10 (10a) of the present invention having a structure covered with the layer 5 is obtained.
  • the ratio of each component in the said chargeable powder for conductor pattern formation is as follows.
  • a preferred range is shown in parentheses.
  • d) 5% by weight of ceramic particles dispersed in a thermoplastic resin preferable range: 2 to 10% by weight
  • Silica fine particles (outer) 0.5% by weight (preferable range: 0.1 to 1.0% by weight)
  • the second conductive pattern forming charged powder of the present invention will be described as an example.
  • conductive metal particles having an average particle diameter of 5 ⁇ m which are conductive metal particles
  • ceramic particles having a particle diameter of 0.01 to 0.1 ⁇ m for the ceramic coating layer (in this example, alumina particles ) 1 part by weight is mechanically coated to obtain conductive metal particles (hereinafter also referred to as “alumina-coated copper particles”) covered with a ceramic coating layer.
  • alumina-coated copper particles conductive metal particles covered with a ceramic coating layer.
  • silver particles, palladium particles, nickel particles, and the like can be used as the conductive metal particles.
  • alumina Al 2 O 3
  • silica SiO 2
  • titania TiO 2
  • zirconia zirconia
  • thermoplastic resin in this Example 2, a granular polyester resin having a particle diameter of 0.01 to 0.1 mm, a polyester resin that is a thermoplastic resin (in this Example 2, a granular polyester resin having a particle diameter of 0.01 to 0.1 mm), It processes using a stirring processing apparatus and coats a polyester resin to an alumina coat copper particle.
  • thermoplastic resin in addition to the above polyester resin, a styrene acrylic copolymer, a polypropylene resin, or the like can be used.
  • the conductive metal particles 1 covered with the ceramic coating layer 2 are covered with the polyester resin 4 which is a thermoplastic resin, and the polyester resin 4 is further covered with the silica fine particle layer 5.
  • the second conductive pattern forming powder 10 (10b) of the present invention having a structure is obtained.
  • the ratio of each component in the said chargeable powder for conductor pattern formation is as follows. A preferred range is shown in parentheses.
  • a ceramic multilayer substrate was produced by the method described below.
  • the conductive powder for forming a conductor pattern of Example 1 is placed on a ceramic green sheet mainly composed of a BaO—Al 2 O 3 —SiO 2 type ceramic material as a predetermined external conductor pattern (mounting land).
  • the external ground electrode layer is fixed.
  • the conductive powder for forming a conductor pattern of Example 2 is fixed on a ceramic green sheet so as to be a predetermined internal conductor pattern (wiring layer, internal ground electrode layer, capacitor electrode layer).
  • FIG. 3 is a diagram schematically showing an example of an electrophotographic system used for forming a conductor pattern by fixing the conductive powder for forming a conductor pattern of the present invention on a ceramic green sheet.
  • the formation of the conductor pattern on the ceramic green sheet (a) a charging process in which the surface of the photoreceptor 11 is charged by a corona charger 12; (b) an exposure step of irradiating the surface of the photoreceptor 11 rotating in the direction of arrow A with a laser beam 13 to form a desired latent image pattern (not shown); (c) a developing step for electrostatically adsorbing the conductive pattern forming charged powder 10 to the latent image pattern on the surface of the photoreceptor 11 by the supply means 14; (d) a transfer step in which the photosensitive member 11 is rotated to transfer the conductive pattern forming charged powder 10 developed on the latent image pattern onto the ceramic green sheet 15 that is the printed material; (e) The conductive pattern forming chargeable powder 10 transferred onto the ceramic green sheet 15 by the irradiation of the flash lamp 16 is fixed to perform a fixing step of forming a predetermined conductor pattern.
  • This electrophotographic system is merely an example, and various known electrophotographic systems can be applied as a specific method for fixing the conductive pattern forming chargeable powder. It is also possible to form the conductor pattern using a developer containing the conductive powder for forming a conductor pattern of Examples 1 and 2 and a ferrite carrier.
  • FIG. 4 is a diagram showing the configuration of the multilayer substrate body.
  • internal conductors (wiring layers, internal ground electrode layers, capacitive electrode layers, etc.) 23 are disposed between ceramic layers 22 constituting the ceramic laminate 21, and the predetermined internal conductors 23 are via-hole conductors. 24, and an external conductor (mounting land, external ground electrode layer, etc.) 25 that is electrically connected to a predetermined internal conductor 23 via a via-hole conductor 24 is disposed on the surface of the ceramic laminate 21.
  • a ceramic multilayer substrate can be obtained by mounting predetermined mounting parts on the multilayer substrate body.
  • Bonding strength of external conductor to ceramic layer The bonding strength of the external conductor formed using the conductive pattern forming chargeable powder of Example 1 above to the ceramic layer is measured by the following method to evaluate the characteristics. did. ⁇ Measuring method of bonding strength> After gold plating is performed on the outer conductor of the multilayer substrate body after firing, a solder absorption line is soldered and a tensile test is performed to measure the strength at the time when the failure mode occurs. This measurement is performed 15 times, and the average value of the obtained strength is defined as the bonding strength.
  • Table 1 and Table 2 show the results of examining the occurrence of peeling between the ceramic layer and the ceramic layer.
  • thermoplastic resin content is low, the amount of gas generated by decomposition and combustion of the thermoplastic resin in the firing process is small, the conductive metal particles are covered with the ceramic coating layer, the sintering temperature rises, and the ceramic This is because the difference in sintering temperature with the layer is reduced.
  • the outer conductor is formed using the conductive pattern forming chargeable powder of Example 1
  • the inner conductor is formed using the conductor pattern forming chargeable powder of Example 2
  • An internal conductor is formed using the conductive powder for forming a conductive pattern of the type of Example 1 by appropriately adjusting the ratio of components constituting the conductive powder for forming a conductive pattern, firing conditions, and the like. It is also possible to form an outer conductor using a conductive powder for forming a conductive pattern of this type.
  • Example 3 the case where the ceramic multilayer substrate is manufactured using the conductive pattern forming charged powder of the present invention has been described.
  • the conductive pattern forming charged powder of the present invention is not limited to an inner conductor or an outer conductor. It can be widely used in the production of various multilayer ceramic electronic components equipped with.
  • the conductive powder for forming a conductor pattern of the present invention is a ground electrode having a relatively large area, which tends to cause peeling of the conductor pattern and cracking of the substrate due to shrinkage of the conductor pattern in the baking process. By applying to the formation, it becomes possible to efficiently prevent the peeling of the conductor pattern and the crack of the substrate, which is particularly significant.
  • the present invention is not limited to the above-described embodiment in other points as well, and the types and blending ratios of the components constituting the conductive pattern-forming charged powder, the types and properties of the printed material, and the conductive pattern of the present invention.
  • Various types of applications and modifications can be made within the scope of the invention with respect to the types of multilayer ceramic electronic parts manufactured using the chargeable powder for forming.
  • the conductive powder for forming a conductor pattern of the present invention by using the conductive powder for forming a conductor pattern of the present invention, a ceramic green sheet on which a conductor pattern to be an electrode or a circuit is formed is laminated and fired to produce a multilayer ceramic electronic component.
  • the conductive powder for forming a conductor pattern of the present invention can be widely applied when manufacturing various multilayer ceramic electronic components having an outer conductor and / or an inner conductor.

Abstract

Disclosed is a chargeable powder for forming a conductive pattern, which is capable of suppressing/preventing separation of a conductive pattern or cracks in a ceramic layer caused by sintering temperature difference between the conductive pattern and the ceramic layer during a step wherein a ceramic laminate, in which ceramic layers each provided with a conductive pattern are laminated, is fired.  Also disclosed is a multilayer ceramic electronic component produced by using the chargeable powder for forming a conductive pattern. A conductive metal particle (1) is coated with a ceramic coating layer (2), a plurality of the conductive metal particles are dispersed in a thermoplastic resin (4), and the thermoplastic resin is covered with a silica fine particle layer (5). In addition, a plurality of ceramic particles (3) are dispersed in the thermoplastic resin. Also disclosed is a chargeable powder for forming a conductive pattern, which has a structure comprising a conductive metal particle, a ceramic coating layer so formed as to cover the conductive metal particle, a thermoplastic resin layer so formed as to cover the ceramic coating layer, and a silica fine particle layer so formed as to cover the thermoplastic resin.

Description

導体パターン形成用荷電性粉末およびそれを用いた積層セラミック電子部品Chargeable powder for conductor pattern formation and multilayer ceramic electronic component using the same
 本発明は、導体パターン形成用荷電性粉末及び積層セラミック電子部品に関し、特に電子写真法によって被印刷物上に導体パターンを印刷する際に使用される導体パターン形成用荷電性粉末およびそれを用いた積層セラミック電子部品に関する。 The present invention relates to a conductive powder for forming a conductive pattern and a multilayer ceramic electronic component, and more particularly to a conductive powder for forming a conductive pattern used when printing a conductive pattern on a substrate by electrophotography and a laminate using the same. The present invention relates to ceramic electronic components.
 セラミック多層基板などにおいて、そのセラミック層間に配設される内部導体や、外表面に配設される外部導体の形成方法として、導体パターン形成用の荷電性粉末を電子写真法で印刷し、その後、荷電製粉末とセラミック層を同時に焼き付ける方法がある。 In a ceramic multilayer substrate or the like, as a method for forming an inner conductor disposed between the ceramic layers and an outer conductor disposed on the outer surface, a conductive powder for forming a conductive pattern is printed by electrophotography, There is a method of baking a charged powder and a ceramic layer simultaneously.
 ところで、荷電性粉末に用いられる導電性粒子(たとえば銅粒子)とセラミック層とでは焼結温度が異なり、それに起因して収縮開始温度も異なる(通常は導電性粒子の方が焼結温度が低い)。そして、この焼結温度の差により、通常は、焼結温度が低い導体パターンの焼結収縮がセラミック層の焼結収縮より先に開始することになる。 By the way, the conductive particles (for example, copper particles) used for the chargeable powder and the ceramic layer have different sintering temperatures, resulting in different shrinkage start temperatures (usually conductive particles have a lower sintering temperature). ). Due to this difference in sintering temperature, normally, the sintering shrinkage of the conductor pattern having a low sintering temperature starts before the sintering shrinkage of the ceramic layer.
 そして、例えば、グランド電極のように比較的面積の大きい導体パターンを形成する場合には焼結温度の差の影響が特に大きく、導体パターンが剥がれたり、逆にこの収縮が原因で基板が割れてしまったりするという問題点がある。 For example, when a conductor pattern having a relatively large area such as a ground electrode is formed, the influence of the difference in sintering temperature is particularly large, and the conductor pattern is peeled off or the substrate is cracked due to this shrinkage. There is a problem that it will be lost.
 このような状況下で、導体パターンとセラミック層の接合強度を向上させるために、荷電性粉末の内部に接着強化剤であるシリカを含有させる方法が提案されている(特許文献1)。
 この方法によれば、導体パターンのセラミック層への接合強度を向上させて導体パターンに剥がれが生じることを抑制することが可能になる。しかし、導体パターンとセラミック層の焼結開始温度のずれの影響による基板の割れや、導体パターンの部分的な剥がれなどの問題は残されたままである。
Under such circumstances, in order to improve the bonding strength between the conductor pattern and the ceramic layer, a method has been proposed in which silica, which is an adhesion reinforcing agent, is contained inside the chargeable powder (Patent Document 1).
According to this method, it is possible to improve the bonding strength of the conductor pattern to the ceramic layer and suppress the peeling of the conductor pattern. However, problems such as cracking of the substrate and partial peeling of the conductor pattern due to the influence of the deviation of the sintering start temperature between the conductor pattern and the ceramic layer remain.
 また、荷電性粉末の帯電性を向上させるために、導電性粒子を帯電容易な絶縁性樹脂で被覆する方法が提案されている(特許文献2参照)。
 この方法によれば、帯電性を向上させて、荷電性粉末の印刷時の定着性を向上させることは可能になるが、絶縁性樹脂は焼結開始温度にはなんら影響を及ぼすものではなく、導体パターンとセラミック層の焼結開始温度のずれの影響による基板の割れや、導体パターンの部分的な剥がれなどの問題は解決できていないのが実情である。
特開平11-251718号公報 特開2006-113611号公報
In order to improve the chargeability of the chargeable powder, a method of coating conductive particles with an easily chargeable insulating resin has been proposed (see Patent Document 2).
According to this method, it is possible to improve the chargeability and improve the fixability at the time of printing the chargeable powder, but the insulating resin does not affect the sintering start temperature at all, In reality, problems such as cracking of the substrate and partial peeling of the conductor pattern due to the influence of the difference in the sintering start temperature between the conductor pattern and the ceramic layer cannot be solved.
Japanese Patent Laid-Open No. 11-251718 JP 2006-111361 A
 本発明は、上記課題を解決するものであり、導体パターン形成用荷電性粉末を印刷することにより電極や回路となる導体パターンが形成されたセラミックグリーンシートを積層し、焼成する工程を経て積層セラミック電子部品を製造する場合に、導体パターンとセラミック層の焼結温度のずれに起因する導体の剥がれやセラミック層の割れなどの発生を抑制することが可能な導体パターン形成用荷電性粉末、それを用いて歩留まりよく製造される積層セラミック電子部品を提供することを目的とする。 The present invention solves the above-mentioned problem, and laminates ceramic green sheets on which conductive patterns to be electrodes and circuits are formed by printing a conductive pattern forming chargeable powder, and then fires the laminated ceramic. When manufacturing electronic parts, a conductive pattern forming charged powder that can suppress the occurrence of peeling of the conductor and cracking of the ceramic layer due to the difference in sintering temperature between the conductor pattern and the ceramic layer, It is an object of the present invention to provide a multilayer ceramic electronic component that is manufactured with good yield.
 上記課題を解決するために、本発明の第1の導体パターン形成用荷電性粉末は、
 電子写真法によって被印刷物上に導体パターンを印刷する際に使用される導体パターン形成用荷電性粉末であって、
 導電性金属粒子と、
 前記導電性金属粒子を覆うように配設されたセラミックコーティング層と、
 前記セラミックコーティング層に覆われた前記導電性金属粒子を複数個分散させた熱可塑性樹脂と、
 前記熱可塑性樹脂を覆うように配設されたシリカ微粒子層と
 を備えていることを特徴としている。
 本発明の第1の導体パターン形成用荷電性粉末においては、前記熱可塑性樹脂中に複数個のセラミック粒子が分散されていることが望ましい。
 また、この本発明の第1の導体パターン形成用荷電性粉末においては、前記導電性金属粒子が銅粒子であることが好ましい。
 また、この導体パターン形成用荷電性粉末が印刷される被印刷物は、セラミックグリーンシートであることが好ましい。
In order to solve the above problems, the first conductive pattern forming charged powder of the present invention,
A conductive powder for forming a conductor pattern used when a conductor pattern is printed on a substrate by electrophotography,
Conductive metal particles;
A ceramic coating layer disposed to cover the conductive metal particles;
A thermoplastic resin in which a plurality of the conductive metal particles covered with the ceramic coating layer are dispersed;
And a silica fine particle layer disposed so as to cover the thermoplastic resin.
In the first charged powder for forming a conductor pattern of the present invention, it is desirable that a plurality of ceramic particles are dispersed in the thermoplastic resin.
In the first conductive pattern forming charged powder of the present invention, the conductive metal particles are preferably copper particles.
Moreover, it is preferable that the printed material on which the conductive pattern forming chargeable powder is printed is a ceramic green sheet.
 また、本発明の第2の導体パターン形成用荷電性粉末は、
 電子写真法によって被印刷物上に導体パターンを印刷する際に使用される導体パターン形成用荷電性粉末であって、
 導電性金属粒子と、
 前記導電性金属粒子を覆うように配設されたセラミックコーティング層と、
 前記セラミックコーティング層を覆うように配設された熱可塑性樹脂層と、
 前記熱可塑性樹脂を覆うように配設されたシリカ微粒子層と
  を有することを特徴としている。
 また、この本発明の第2の導体パターン形成用荷電性粉末においても、前記導電性金属粒子が銅粒子であることが望ましい。
 また、この第2の導体パターン形成用荷電性粉末が印刷される被印刷物も、セラミックグリーンシートであることが好ましい。
In addition, the second conductive pattern forming powder of the present invention,
A conductive powder for forming a conductor pattern used when a conductor pattern is printed on a substrate by electrophotography,
Conductive metal particles;
A ceramic coating layer disposed to cover the conductive metal particles;
A thermoplastic resin layer disposed to cover the ceramic coating layer;
And a silica fine particle layer disposed so as to cover the thermoplastic resin.
In the second conductive pattern forming powder of the present invention, the conductive metal particles are preferably copper particles.
Moreover, it is preferable that the printed material on which the second conductive pattern forming charged powder is printed is also a ceramic green sheet.
 また、本発明の積層セラミック電子部品は、
 請求項1~7のいずれかの導体パターン形成用荷電性粉末を印刷したセラミックグリーンシートを積層し、焼成する工程を経て形成されたセラミック積層体を備える積層セラミック電子部品であって、
 前記セラミック積層体の表面および/または内部に、請求項1~7のいずれかの導体パターン形成用荷電性粉末を焼結させた導体を備えていること
 を特徴としている。
The multilayer ceramic electronic component of the present invention is
A multilayer ceramic electronic component comprising a ceramic laminate formed by laminating and firing a ceramic green sheet printed with a conductive powder for forming a conductor pattern according to any one of claims 1 to 7,
A conductor obtained by sintering the conductive powder for forming a conductor pattern according to any one of claims 1 to 7 is provided on a surface and / or inside of the ceramic laminate.
 また、前記セラミック積層体の表面の導体が、請求項1~4のいずれかの導体パターン形成用荷電性粉末を焼結させたものであることを特徴としている。 Further, the conductor on the surface of the ceramic laminate is characterized in that the conductive pattern forming chargeable powder according to any one of claims 1 to 4 is sintered.
 また、前記セラミック積層体の内部の導体が、請求項5~7のいずれかの導体パターン形成用荷電性粉末を焼結させたものであることを特徴としている。 The conductor inside the ceramic laminate is characterized in that the conductive pattern forming chargeable powder according to any one of claims 5 to 7 is sintered.
 本発明の第1の導体パターン形成用荷電性粉末は、セラミックコーティング層により覆われた導電性金属粒子を複数個、熱可塑性樹脂中に分散させるとともに、この熱可塑性樹脂をシリカ微粒子層により覆うようにしているので、導電性金属粒子の焼結温度を上昇させて焼結開始を遅らせることが可能になり、導体パターンとセラミック層の焼結温度の差を減らして、両者の焼結収縮の挙動の差による基板の割れや導体パターンの剥がれを抑制、防止することが可能になる。
 すなわち、導電性金属粒子にセラミックコーティングすることにより、導電性金属粒子の焼結温度を上昇させて、焼結収縮開始温度をセラミック層の焼結収縮開始温度に近づけることが可能になり、基板の割れや導体パターンの剥がれを抑制、防止することが可能になる。
In the first charged powder for forming a conductor pattern of the present invention, a plurality of conductive metal particles covered with a ceramic coating layer are dispersed in a thermoplastic resin, and the thermoplastic resin is covered with a silica fine particle layer. Therefore, it becomes possible to delay the start of sintering by raising the sintering temperature of the conductive metal particles, reducing the difference between the sintering temperature of the conductor pattern and the ceramic layer, and the behavior of the sintering shrinkage of both It is possible to suppress or prevent the substrate from being cracked or the conductor pattern from being peeled off due to the difference.
That is, by conducting ceramic coating on the conductive metal particles, it becomes possible to increase the sintering temperature of the conductive metal particles and bring the sintering shrinkage start temperature closer to the sintering shrinkage start temperature of the ceramic layer. It becomes possible to suppress and prevent cracks and peeling of the conductor pattern.
 導体パターンとセラミック層との許容焼結温度差は通常、±150℃の範囲内であることが望ましいが、導電性金属粒子にセラミックコーティングを施すようにした本発明によれば、導体パターンとセラミック層との焼結温度の差を±150℃の範囲内とすることが可能になる。
 なお、導電性金属粒子にセラミックコーティングを行わずに、セラミック材料を共存させるだけでは、セラミック材料に、導電性金属粒子の焼結温度を上昇させる機能を十分に発揮させることができず、焼結温度に分布ができたりして好ましくない。
In general, the allowable sintering temperature difference between the conductor pattern and the ceramic layer is preferably within a range of ± 150 ° C. However, according to the present invention in which the ceramic coating is applied to the conductive metal particles, the conductor pattern and the ceramic layer The difference in sintering temperature with the layer can be within a range of ± 150 ° C.
It should be noted that the ceramic material cannot be fully exerted the function of raising the sintering temperature of the conductive metal particles by simply coexisting the ceramic material without performing ceramic coating on the conductive metal particles. It is not preferable because the temperature is distributed.
 また、熱可塑性樹脂は、導体パターン形成用荷電性粉末を被印刷物上に定着させる機能を果たす。 Also, the thermoplastic resin functions to fix the conductive pattern forming chargeable powder on the substrate.
 さらに、熱可塑性樹脂をシリカ微粒子層で覆うことにより、導体パターン形成用荷電性粉末の流動性を確保することが可能になる。
 また、疎水化したシリカ微粒子を用いることにより、耐電性を向上させることができる。
Furthermore, by covering the thermoplastic resin with the silica fine particle layer, it is possible to ensure the fluidity of the conductive pattern forming chargeable powder.
In addition, the use of hydrophobized silica fine particles can improve the electric resistance.
 したがって、この本発明の第1の導体パターン形成用荷電性粉末を用いることにより、積層セラミック電子部品の表面あるいは内部に配設すべき電極や回路などを構成する導体を効率よく形成することが可能になる。 Therefore, by using the first conductive pattern forming powder of the present invention, it is possible to efficiently form a conductor constituting an electrode or a circuit to be disposed on the surface or inside of the multilayer ceramic electronic component. become.
 また、前記熱可塑性樹脂中にセラミック粒子を分散させておくことにより、該セラミック粒子のアンカー効果により接合強度を向上させることが可能になる。 Further, by dispersing the ceramic particles in the thermoplastic resin, it is possible to improve the bonding strength due to the anchor effect of the ceramic particles.
 また、この導体パターン形成用荷電性粉末においては、導電性金属粒子として、導電性などの電気的特性や経済性に優れた銅粉を用いることが望ましい。
導電性金属粒子として銅粒子を用いた場合、銅粒子の焼結温度を上昇させて、焼結開始温度をセラミック層の焼結開始温度に近づけることが可能になる。そして、銅粒子を導電性金属粒子とする導体パターン形成用荷電性粉末を用いて積層セラミック電子部品を製造することにより、銅粒子とセラミック層の焼結収縮差による基板の割れや導体パターンの剥がれを抑制、防止して、高特性で信頼性の高い積層セラミック電子部品を歩留まりよく製造することが可能になる。
In the conductive pattern forming charged powder, it is desirable to use copper powder excellent in electrical characteristics such as conductivity and economy as the conductive metal particles.
When copper particles are used as the conductive metal particles, it is possible to raise the sintering temperature of the copper particles and bring the sintering start temperature closer to the sintering start temperature of the ceramic layer. Then, by manufacturing laminated ceramic electronic components using conductive powder for forming conductive patterns with copper particles as conductive metal particles, substrate cracking and peeling of conductive patterns due to differences in sintering shrinkage between copper particles and ceramic layers It is possible to suppress and prevent the above and to manufacture a multilayer ceramic electronic component having high characteristics and high reliability with a high yield.
 また、この導体パターン形成用荷電性粉末を、セラミックグリーンシート(被印刷物)に印刷することにより、積層セラミック電子部品の製造に好適な、導体パターンが配設されたセラミックグリーンシートを得ることが可能になる。 Also, by printing this conductive pattern forming chargeable powder on a ceramic green sheet (printed material), it is possible to obtain a ceramic green sheet on which a conductor pattern is disposed, which is suitable for the production of multilayer ceramic electronic components. become.
 また、本発明の第2の導体パターン形成用荷電性粉末のように、導電性金属粒子と、導電性金属粒子を覆うように配設されたセラミックコーティング層と、セラミックコーティング層を覆うように配設された熱可塑性樹脂層と、熱可塑性樹脂を覆うように配設されたシリカ微粒子層とを備えた構成とした場合にも、上記第1の導体パターン形成用荷電性粉末の場合と同様に、導電性金属粒子の焼結温度を上昇させて、セラミック層の焼結温度に近づけることが可能になり、両者の焼結温度差による基板の割れや導体パターンの剥がれを抑制、防止することが可能になる。 Also, like the second conductive pattern forming powder of the present invention, the conductive metal particles, the ceramic coating layer disposed so as to cover the conductive metal particles, and the ceramic coating layer are disposed. Similarly to the case of the charged powder for forming a first conductor pattern, when the thermoplastic resin layer is provided and the silica fine particle layer disposed so as to cover the thermoplastic resin is used. By increasing the sintering temperature of the conductive metal particles, it becomes possible to approach the sintering temperature of the ceramic layer, and it is possible to suppress and prevent cracking of the substrate and peeling of the conductor pattern due to the sintering temperature difference between the two. It becomes possible.
 なお、この第2の導体パターン形成用荷電性粉末の場合、上記第1の導体パターン形成用荷電性粉末に比べて、熱可塑性樹脂の含有量を少なくすることが可能になる。そして、導体パターン形成用荷電性粉末に含まれる熱可塑性樹脂の量を少なくすることが可能になる結果、焼成工程で熱可塑性樹脂の分解や燃焼により発生するガス量を少なくすることができる。 In the case of this second conductive pattern forming powder, the thermoplastic resin content can be reduced as compared with the first conductive pattern forming powder. And since it becomes possible to reduce the quantity of the thermoplastic resin contained in the conductive powder for conductor pattern formation, the amount of gas generated by decomposition | disassembly and combustion of a thermoplastic resin at a baking process can be reduced.
 また、この第2の導体パターン形成用荷電性粉末においても、導電性金属粒子として銅粒子を用いることが望ましい。 Also in this second conductive pattern forming charged powder, it is desirable to use copper particles as the conductive metal particles.
 また、この第2の導体パターン形成用荷電性粉末を、セラミックグリーンシート(被印刷物)に印刷することにより、積層セラミック電子部品の製造に好適な、導体パターンが配設されたセラミックグリーンシートを得ることが可能になる。 In addition, by printing the second conductive pattern forming powder on a ceramic green sheet (printed material), a ceramic green sheet on which a conductor pattern is disposed, which is suitable for manufacturing a multilayer ceramic electronic component, is obtained. It becomes possible.
 また、本発明の積層セラミック電子部品は、セラミック積層体の表面および/または内部に、本発明導体パターン形成用荷電性粉末(請求項1~7のいずれかの導体パターン形成用荷電性粉末)を焼結させた導体を備えており、本発明の導体パターン形成用荷電性粉末を用いた場合、導電性金属粒子の焼結温度を上昇させてセラミック層の焼結温度に近づけることができるため、両者の焼結収縮差による基板の割れや導体パターンの剥がれのない、信頼性の高い積層セラミック電子部品を提供することが可能になる。 In addition, the multilayer ceramic electronic component of the present invention has the conductive pattern forming chargeable powder (the conductive pattern forming chargeable powder of any one of claims 1 to 7) on the surface and / or inside of the ceramic laminate. When equipped with a sintered conductor, and using the conductive powder for forming a conductor pattern of the present invention, the sintering temperature of the conductive metal particles can be raised to approach the sintering temperature of the ceramic layer, It becomes possible to provide a highly reliable monolithic ceramic electronic component that is free from cracking of the substrate and peeling of the conductor pattern due to a difference in sintering shrinkage between the two.
 また、請求項1~4の導体パターン形成用荷電性粉末(第1の導体パターン形成用荷電性粉末)の場合、熱可塑性樹脂の割合や熱可塑性樹脂に分散させたセラミック粒子の割合を多くすることが可能になる。したがって、積層セラミック電子部品を製造する場合に、セラミック積層体の表面に外部導体を形成するにあたって、請求項1~4のいずれかの導体パターン形成用荷電性粉末を用いた場合、焼成工程においてはセラミック層への定着性に優れ、かつ、焼成後にはセラミック層への接合強度の大きい導体を形成することが可能になる。 In the case of the conductive powder for forming a conductor pattern (first conductive pattern forming powder) according to claims 1 to 4, the ratio of the thermoplastic resin and the ratio of the ceramic particles dispersed in the thermoplastic resin are increased. It becomes possible. Therefore, in the case of manufacturing a multilayer ceramic electronic component, when forming the external conductor on the surface of the ceramic laminate, the conductive pattern forming charged powder according to any one of claims 1 to 4 is used in the firing step. It becomes possible to form a conductor having excellent fixing property to the ceramic layer and having high bonding strength to the ceramic layer after firing.
 なお、請求項1~4の導体パターン形成用荷電性粉末を用いた場合、熱可塑性樹脂の分解や燃焼により発生するガス量は多くなるが、セラミック積層体の表面に形成される外部導体の場合、熱可塑性樹脂の分解や燃焼により発生するガス量が多くなってもガスは導体表面から容易に抜け出すため、導体とセラミック層の間の剥離は発生せず、接合強度の大きい、信頼性の高い外部導体を形成することができる。 In the case of using the conductive powder for forming a conductor pattern according to claims 1 to 4, the amount of gas generated by decomposition or combustion of the thermoplastic resin increases, but in the case of an external conductor formed on the surface of the ceramic laminate. Even if the amount of gas generated due to decomposition or combustion of the thermoplastic resin increases, the gas easily escapes from the conductor surface, so there is no separation between the conductor and the ceramic layer, high bonding strength, and high reliability An outer conductor can be formed.
 また、セラミック積層体の内部の導体を、請求項5~7のいずれかの導体パターン形成用荷電性粉末(第2の導体パターン形成用荷電性粉末)を用いて形成するようにした場合、第2の導体パターン形成用荷電性粉末の熱可塑性樹脂の割合が、第1の導体パターン形成用荷電性粉末と比べて少なくなるため、熱処理工程において、熱可塑性樹脂の分解や燃焼により発生するガス量はそれだけ少なくなる。 In addition, when the conductor inside the ceramic laminate is formed using the conductive pattern forming charged powder (second conductive pattern forming charged powder) according to any one of claims 5 to 7, Since the ratio of the thermoplastic resin in the conductive powder for forming the conductor pattern 2 is smaller than that in the first conductive pattern forming powder, the amount of gas generated by the decomposition and combustion of the thermoplastic resin in the heat treatment step Will be less.
 したがって、積層セラミック電子部品を製造する場合に、セラミック積層体の内部の導体を形成するにあたって、第2の導体パターン形成用荷電性粉末を用いた場合、焼成工程で熱可塑性樹脂の分解や燃焼によるガスの発生量が少ないため、導体とセラミック層との間に剥離が生じることを抑制、防止して、内部導体を備えた積層セラミック電子部品を歩留まりよく製造することが可能になる。 Therefore, in the case of producing a multilayer ceramic electronic component, when the second conductive pattern forming charged powder is used in forming the conductor inside the ceramic laminate, it is caused by decomposition or combustion of the thermoplastic resin in the firing step. Since the amount of gas generated is small, it is possible to suppress and prevent the separation between the conductor and the ceramic layer, and to manufacture the multilayer ceramic electronic component including the internal conductor with a high yield.
 また、請求項5~7のいずれかの導体パターン形成用荷電性粉末の場合、含まれる熱可塑性樹脂の割合が少なくなるため、焼成工程における導体パターンの定着性はその分だけ低下する傾向があるが、内部導体は、セラミック層間に保持されているため特に問題になることはない。また、焼成後においても同様に、外部導体に要求されるような大きな接合強度が求められることはないので、請求項5~7のいずれかの導体パターン形成用荷電性粉末を用いて十分に良好な内部導体を形成することができる。 In the case of the conductive powder for forming a conductor pattern according to any one of claims 5 to 7, since the ratio of the thermoplastic resin contained is reduced, the fixability of the conductor pattern in the firing process tends to be reduced accordingly. However, the inner conductor is not particularly problematic because it is held between the ceramic layers. Also, after firing, there is no need to obtain a large bonding strength required for the outer conductor, so that the conductive pattern forming chargeable powder according to any one of claims 5 to 7 is sufficiently good. An inner conductor can be formed.
本発明の一実施例(実施例1)にかかる導体パターン形成用荷電性粉末の構成を示す断面図である。It is sectional drawing which shows the structure of the conductive powder for conductor pattern formation concerning one Example (Example 1) of this invention. 本発明の他の実施例(実施例2)にかかる導体パターン形成用荷電性粉末の構成を示す断面図である。It is sectional drawing which shows the structure of the charged powder for conductor pattern formation concerning the other Example (Example 2) of this invention. 被印刷物上に本発明の導体パターン形成用荷電性粉末を定着させて導体パターンを形成するのに用いられる電子写真システムの一例を模式的に示す図である。It is a figure which shows typically an example of the electrophotographic system used for fixing the charged powder for conductor pattern formation of this invention on to-be-printed material, and forming a conductor pattern. 本発明の導体パターン形成用荷電性粉末を用いて形成した多層基板本体の構成を示す断面図である。It is sectional drawing which shows the structure of the multilayer substrate main body formed using the electrically conductive powder for conductor pattern formation of this invention.
 以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。 Hereinafter, the features of the present invention will be described in more detail with reference to examples of the present invention.
 この実施例1では、本発明の第1の導体パターン形成用荷電性粉末を例にとって説明する。 Example 1 will be described by taking the first conductive pattern forming powder of the present invention as an example.
 (1)導電性金属粒子である、平均粒径が3.5μmの銅粒子70重量部に、セラミックコーティング層用の、粒径が0.01~0.1μmのセラミック粒子(この実施例では、アルミナ粒子)1重量部を機械被覆し、セラミックコーティング層により覆われた導電性金属粒子(以下「アルミナコート銅粒子」ともいう)を得る。
 なお、銅粒子としては平均粒径が0.8~4.0μmのものを用いることが望ましい。また、導電性金属粒子としては、銅粒子以外にも、銀粒子、パラジウム粒子、ニッケル粒子などを用いることが可能である。
 また、導電性金属粒子をコーティングするために用いられるセラミックとしては、上記のアルミナ(Al23)以外にも、シリカ(SiO2),チタニア(TiO2)、ジルコニア(ZrO2)などを用いることが可能である。
(1) To 70 parts by weight of copper particles having an average particle size of 3.5 μm, which are conductive metal particles, ceramic particles having a particle size of 0.01 to 0.1 μm for the ceramic coating layer (in this example, 1 part by weight of alumina particles) is mechanically coated to obtain conductive metal particles (hereinafter also referred to as “alumina-coated copper particles”) covered with a ceramic coating layer.
It is desirable to use copper particles having an average particle size of 0.8 to 4.0 μm. In addition to copper particles, silver particles, palladium particles, nickel particles, and the like can be used as the conductive metal particles.
In addition to the alumina (Al 2 O 3 ), silica (SiO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), and the like are used as the ceramic used for coating the conductive metal particles. It is possible.
 (2)次に、アルミナコート銅粒子71重量部と、アンカー効果を発揮させるためのセラミック粒子である、粒径が0.1~1.0μmのアルミナ粒子5重量部と、熱可塑性樹脂であるポリエステル樹脂(この実施例1では粒径が1~2mmの粒状のポリエステル樹脂)24重量部とを、混練機を用いて混練し、ポリエステル樹脂中にアルミナコート銅粒子とアルミナ粒子を分散させる。なお、熱可塑性樹脂に分散させる、アンカー効果を発揮させるためのセラミック粒子としては、導体パターン形成用荷電性粉末が印刷されることになるセラミックグリーンシートの主成分であるセラミック原料の構成成分と同じ材料(共材)からなるセラミック粒子を用いることが望ましい。なお、この実施例1では、後述する実施例3で、BaO-Al23-SiO2系のセラミック材料を主成分とするセラミックグリーンシートを用いることを考慮して、セラミック粒子としてアルミナ粒子を用いている。
 また、熱可塑性樹脂としては、上記のポリエステル樹脂以外にも、スチレンアクリル共重合体、ポリプロピレン樹脂などを用いることが可能である。
(2) Next, 71 parts by weight of alumina-coated copper particles, 5 parts by weight of alumina particles having a particle diameter of 0.1 to 1.0 μm, which are ceramic particles for exhibiting the anchor effect, and a thermoplastic resin 24 parts by weight of a polyester resin (in this Example 1, a granular polyester resin having a particle diameter of 1 to 2 mm) is kneaded using a kneader to disperse the alumina-coated copper particles and alumina particles in the polyester resin. The ceramic particles dispersed in the thermoplastic resin for exhibiting the anchor effect are the same as the constituent components of the ceramic raw material which is the main component of the ceramic green sheet on which the conductive pattern forming charged powder is to be printed. It is desirable to use ceramic particles made of a material (co-material). In Example 1, alumina particles are used as ceramic particles in consideration of using a ceramic green sheet mainly composed of a BaO—Al 2 O 3 —SiO 2 based ceramic material in Example 3 described later. Used.
As the thermoplastic resin, in addition to the above polyester resin, a styrene acrylic copolymer, a polypropylene resin, or the like can be used.
 (3)それから、上記(2)で得た、アルミナコート銅粒子と、アルミナ粒子とが分散されたポリエステル樹脂を、粉砕機を用いて粗粉砕した後、ミルを用いてさらに粉砕する。 (3) Then, the polyester resin in which the alumina-coated copper particles and the alumina particles obtained in (2) are dispersed is roughly pulverized using a pulverizer, and further pulverized using a mill.
 (4)次に、(3)で得た粉砕原料を、微粉砕機を用いて微粉砕することにより微粉砕原料を得る。 (4) Next, the pulverized raw material obtained in (3) is finely pulverized using a fine pulverizer to obtain a finely pulverized raw material.
 (5)それから、上記微粉砕原料を分級機を用いて微粉および粗粉をカットし、粒径が5~20μmの複合粒子を得る。 (5) Then, the finely pulverized raw material is cut into fine powder and coarse powder using a classifier to obtain composite particles having a particle size of 5 to 20 μm.
 (6)次に、(5)で得た複合粒子300gと、流動性と帯電性を向上させるために疎水化したシリカ微粒子1.5gを混合し,混合機を用いて5000rpmで10分間処理し、複合粒子の表面にシリカ微粒子を均一に付着させる。 (6) Next, 300 g of the composite particles obtained in (5) and 1.5 g of silica fine particles hydrophobized to improve fluidity and chargeability are mixed and treated at 5000 rpm for 10 minutes using a mixer. Then, silica fine particles are uniformly attached to the surface of the composite particles.
 これにより、図1に示すように、セラミックコーティング層(アルミナコーティング層)2により覆われた導電性金属粒子1と、セラミック粒子(アルミナ粒子)3とを分散させた熱可塑性樹脂4が、シリカ微粒子層5により被覆された構造を有する本発明の第1の導体パターン形成用荷電性粉末10(10a)が得られる。 As a result, as shown in FIG. 1, the thermoplastic resin 4 in which the conductive metal particles 1 covered with the ceramic coating layer (alumina coating layer) 2 and the ceramic particles (alumina particles) 3 are dispersed becomes silica fine particles. The first conductive pattern forming powder 10 (10a) of the present invention having a structure covered with the layer 5 is obtained.
 なお、上記導体パターン形成用荷電性粉末における、各成分の割合は、以下の通りである。なお、かっこ内に好ましい範囲を示す。
 (a)導電性金属粒子
  70重量%(好ましい範囲:65~85重量%)
 (b)熱可塑性樹脂 
  24重量%(好ましい範囲:12~25重量%)
 (c)導電性金属粒子コーティング用のセラミック粒子
  1重量%(好ましい範囲:1~3重量%)
 (d)熱可塑性樹脂に分散させるセラミック粒子
  5重量%(好ましい範囲:2~10重量%)
 (e)シリカ微粒子(外掛け)
  0.5重量%(好ましい範囲:0.1 ~1.0重量%)
In addition, the ratio of each component in the said chargeable powder for conductor pattern formation is as follows. A preferred range is shown in parentheses.
(a) 70% by weight of conductive metal particles (preferable range: 65 to 85% by weight)
(b) Thermoplastic resin
24% by weight (preferable range: 12 to 25% by weight)
(c) Ceramic particles for coating conductive metal particles 1% by weight (preferable range: 1 to 3% by weight)
(d) 5% by weight of ceramic particles dispersed in a thermoplastic resin (preferable range: 2 to 10% by weight)
(e) Silica fine particles (outer)
0.5% by weight (preferable range: 0.1 to 1.0% by weight)
 この実施例2では本発明の第2の導体パターン形成用荷電性粉末を例にとって説明する。 In the second embodiment, the second conductive pattern forming charged powder of the present invention will be described as an example.
 (1)導電性金属粒子である、平均粒径が5μmの銅粒子94重量部に、セラミックコーティング層用の、粒径が0.01~0.1μmのセラミック粒子(この実施例では、アルミナ粒子)1重量部を機械被覆し、セラミックコーティング層により覆われた導電性金属粒子(以下「アルミナコート銅粒子」ともいう)を得る。
 なお、本発明の第2の導体パターン形成用荷電性粉末においては、銅粒子としては平均粒径が3.0~6.0μmのものを用いることが望ましい。なお、導電性金属粒子としては、銅粒子以外にも、銀粒子、パラジウム粒子、ニッケル粒子などを用いることが可能である。
 また、導電性金属粒子をコーティングするためのセラミックとしては、上記のアルミナ(Al23)以外にも、シリカ(SiO2),チタニア(TiO2)、ジルコニア(ZrO2)などを用いることが可能である。
(1) To 94 parts by weight of copper particles having an average particle diameter of 5 μm, which are conductive metal particles, ceramic particles having a particle diameter of 0.01 to 0.1 μm for the ceramic coating layer (in this example, alumina particles ) 1 part by weight is mechanically coated to obtain conductive metal particles (hereinafter also referred to as “alumina-coated copper particles”) covered with a ceramic coating layer.
In the second conductive pattern forming powder of the present invention, it is desirable to use copper particles having an average particle size of 3.0 to 6.0 μm. In addition to the copper particles, silver particles, palladium particles, nickel particles, and the like can be used as the conductive metal particles.
In addition to the above-mentioned alumina (Al 2 O 3 ), silica (SiO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), etc. may be used as the ceramic for coating the conductive metal particles. Is possible.
 (2)次に、アルミナコート銅粒子95重量部と、熱可塑性樹脂であるポリエステル樹脂(この実施例2では粒径が0.01~0.1mmの粒状のポリエステル樹脂)5重量部とを、撹拌処理装置を用いて処理し、アルミナコート銅粒子にポリエステル樹脂をコートする。
 なお、熱可塑性樹脂としては、上記のポリエステル樹脂以外にも、スチレンアクリル共重合体、ポリプロピレン樹脂などを用いることが可能である。
(2) Next, 95 parts by weight of alumina-coated copper particles and 5 parts by weight of a polyester resin that is a thermoplastic resin (in this Example 2, a granular polyester resin having a particle diameter of 0.01 to 0.1 mm), It processes using a stirring processing apparatus and coats a polyester resin to an alumina coat copper particle.
As the thermoplastic resin, in addition to the above polyester resin, a styrene acrylic copolymer, a polypropylene resin, or the like can be used.
 (3)それから、アルミナコート銅粒子にポリエステル樹脂をコートした粒子を、分級機を用いて微粉および粗粉をカットし、3~10μmの複合粒子を得る。 (3) Then, fine particles and coarse powders are cut using a classifier with the alumina-coated copper particles coated with polyester resin to obtain composite particles of 3 to 10 μm.
 (4)次に、(3)で得た複合粒子300gと、流動性と帯電性を向上させるために疎水化したシリカ微粒子1.5gを混合し,ミキサーを用いて5000rpmで10分間処理し、複合粒子の表面にシリカ微粒子を均一に付着させる。 (4) Next, 300 g of the composite particles obtained in (3) and 1.5 g of silica fine particles hydrophobized to improve fluidity and chargeability are mixed and treated at 5000 rpm for 10 minutes using a mixer. Silica fine particles are uniformly attached to the surface of the composite particles.
 これにより、図2に示すように、セラミックコーティング層2により被覆された導電性金属粒子1が、熱可塑性樹脂であるポリエステル樹脂4により被覆され、さらにポリエステル樹脂4がシリカ微粒子層5により被覆された構造を有する本発明の第2の導体パターン形成用荷電性粉末10(10b)が得られる。 Thus, as shown in FIG. 2, the conductive metal particles 1 covered with the ceramic coating layer 2 are covered with the polyester resin 4 which is a thermoplastic resin, and the polyester resin 4 is further covered with the silica fine particle layer 5. The second conductive pattern forming powder 10 (10b) of the present invention having a structure is obtained.
 なお、上記導体パターン形成用荷電性粉末における、各成分の割合は、以下の通りである。なお、かっこ内に好ましい範囲を示す。
 (a)導電性金属粒子
  94重量%(好ましい範囲:90~94重量%)
 (b)熱可塑性樹脂 
  5重量%(好ましい範囲:5~9重量%)
 (c)導電性金属粒子コーティング用のセラミック粒子
  1重量%(好ましい範囲:1~3重量%)
 (e)シリカ微粒子(外掛け)
  0.5重量%(好ましい範囲:0.1~1.0重量%)
In addition, the ratio of each component in the said chargeable powder for conductor pattern formation is as follows. A preferred range is shown in parentheses.
(a) 94% by weight of conductive metal particles (preferable range: 90 to 94% by weight)
(b) Thermoplastic resin
5% by weight (preferable range: 5 to 9% by weight)
(c) Ceramic particles for coating conductive metal particles 1% by weight (preferable range: 1 to 3% by weight)
(e) Silica fine particles (outer)
0.5% by weight (preferable range: 0.1 to 1.0% by weight)
 上記実施例1および2の導体パターン形成用荷電性粉末を用いて、以下に説明する方法でセラミック多層基板を製造した。 Using the conductive powder for forming a conductor pattern of Examples 1 and 2 above, a ceramic multilayer substrate was produced by the method described below.
 (1)上記実施例1の導体パターン形成用荷電性粉末を、BaO-Al23-SiO2系のセラミック原料を主成分とするセラミックグリーンシート上に、所定の外部導体パターン(実装用ランド、外部グランド電極層)となるように定着させる。
 また、上記実施例2の導体パターン形成用荷電性粉末を、セラミックグリーンシート上に、所定の内部導体パターン(配線層、内部グランド電極層、容量電極層)となるように定着させる。
 なお、図3は、セラミックグリーンシート上に本発明の導体パターン形成用荷電性粉末を定着させて導体パターンを形成するのに用いる電子写真システムの一例を模式的に示す図である。
(1) The conductive powder for forming a conductor pattern of Example 1 is placed on a ceramic green sheet mainly composed of a BaO—Al 2 O 3 —SiO 2 type ceramic material as a predetermined external conductor pattern (mounting land). The external ground electrode layer is fixed.
Also, the conductive powder for forming a conductor pattern of Example 2 is fixed on a ceramic green sheet so as to be a predetermined internal conductor pattern (wiring layer, internal ground electrode layer, capacitor electrode layer).
FIG. 3 is a diagram schematically showing an example of an electrophotographic system used for forming a conductor pattern by fixing the conductive powder for forming a conductor pattern of the present invention on a ceramic green sheet.
 この電子写真システムでは、セラミックグリーンシートへの導体パターンの形成は、
 (a)感光体11の表面にコロナ帯電器12により帯電させる帯電工程、
 (b)矢印Aの方向に回転する感光体11の表面にレーザ光13を照射して所望の潜像パターン(図示せず)を形成する露光工程、
 (c)供給手段14により導体パターン形成用荷電性粉末10を感光体11の表面の潜像パターンに静電吸着させる現像工程、
 (d)感光体11を回転させて、潜像パターン上に現像された導体パターン形成用荷電性粉末10を被印刷物であるセラミックグリーンシート15上へ転写する転写工程、
 (e)フラッシュランプ16の照射によりセラミックグリーンシート15上に転写された導体パターン形成用荷電性粉末10を定着させることにより、所定の導体パターンを形成する定着工程
 を経て行われる。
In this electrophotographic system, the formation of the conductor pattern on the ceramic green sheet
(a) a charging process in which the surface of the photoreceptor 11 is charged by a corona charger 12;
(b) an exposure step of irradiating the surface of the photoreceptor 11 rotating in the direction of arrow A with a laser beam 13 to form a desired latent image pattern (not shown);
(c) a developing step for electrostatically adsorbing the conductive pattern forming charged powder 10 to the latent image pattern on the surface of the photoreceptor 11 by the supply means 14;
(d) a transfer step in which the photosensitive member 11 is rotated to transfer the conductive pattern forming charged powder 10 developed on the latent image pattern onto the ceramic green sheet 15 that is the printed material;
(e) The conductive pattern forming chargeable powder 10 transferred onto the ceramic green sheet 15 by the irradiation of the flash lamp 16 is fixed to perform a fixing step of forming a predetermined conductor pattern.
 なお、この電子写真システムは、あくまで一例であって、導体パターン形成用荷電性粉末を定着させる具体的な方法としては、公知の種々の電子写真システムを適用することが可能である。
 また、上記実施例1,2の導体パターン形成用荷電性粉末とフェライトキャリアを配合した現像材を用いて導体パターンを形成するように構成することも可能である。
This electrophotographic system is merely an example, and various known electrophotographic systems can be applied as a specific method for fixing the conductive pattern forming chargeable powder.
It is also possible to form the conductor pattern using a developer containing the conductive powder for forming a conductor pattern of Examples 1 and 2 and a ferrite carrier.
 (2)セラミックグリーンシートの所定の位置にレーザでビアホール用の貫通孔を形成した後、貫通孔内にビアホール導体を充填する((1),(2)は順不同)。 (2) After a through hole for a via hole is formed with a laser at a predetermined position of the ceramic green sheet, a via hole conductor is filled in the through hole ((1) and (2) are in no particular order).
 (3)導体パターンの形成およびビアホール導体の充填を行ったセラミックグリーンシートを複数枚積み重ねてプレスし、未焼成のセラミック積層体を作製する。 (3) Stacking and pressing a plurality of ceramic green sheets that have been formed with a conductor pattern and filled with via-hole conductors to produce an unfired ceramic laminate.
 (4)この未焼成のセラミック積層体を950℃で焼成して、セラミック層と導体パターンを同時焼成し多層基板本体を得る。
 図4は多層基板本体の構成を示す図である。この多層基板本体26は、セラミック積層体21を構成するセラミック層22の間に内部導体(配線層、内部グランド電極層、容量電極層など)23が配設され、所定の内部導体23がビアホール導体24により層間接続されているとともに、セラミック積層体21の表面には、ビアホール導体24を介して所定の内部導体23と導通する外部導体(実装用ランド、外部グランド電極層など)25が配設された構造を有している。
(4) The unfired ceramic laminate is fired at 950 ° C., and the ceramic layer and the conductor pattern are simultaneously fired to obtain a multilayer substrate body.
FIG. 4 is a diagram showing the configuration of the multilayer substrate body. In the multilayer substrate body 26, internal conductors (wiring layers, internal ground electrode layers, capacitive electrode layers, etc.) 23 are disposed between ceramic layers 22 constituting the ceramic laminate 21, and the predetermined internal conductors 23 are via-hole conductors. 24, and an external conductor (mounting land, external ground electrode layer, etc.) 25 that is electrically connected to a predetermined internal conductor 23 via a via-hole conductor 24 is disposed on the surface of the ceramic laminate 21. Have a structure.
 (5)それから、特に図示しないが、この多層基板本体に所定の実装部品を搭載することによりセラミック多層基板が得られる。 (5) Then, although not particularly shown, a ceramic multilayer substrate can be obtained by mounting predetermined mounting parts on the multilayer substrate body.
 [特性の評価]
 (1)外部導体のセラミック層への接合強度
 上記実施例1の導体パターン形成用荷電性粉末を用いて形成した外部導体のセラミック層への接合強度を、以下の方法で測定して特性を評価した。
<接合強度の測定方法>
 焼成後の多層基板本体の外部導体上に金めっきを施した後、はんだ吸取線をはんだ付けして引っ張り試験を行い、破壊モードが発生した時点の強度を測定する。この測定を15回行い、得られた強度の平均値を接合強度とする。
[Characteristic evaluation]
(1) Bonding strength of external conductor to ceramic layer The bonding strength of the external conductor formed using the conductive pattern forming chargeable powder of Example 1 above to the ceramic layer is measured by the following method to evaluate the characteristics. did.
<Measuring method of bonding strength>
After gold plating is performed on the outer conductor of the multilayer substrate body after firing, a solder absorption line is soldered and a tensile test is performed to measure the strength at the time when the failure mode occurs. This measurement is performed 15 times, and the average value of the obtained strength is defined as the bonding strength.
 (2)内部導体とセラミック層の間の剥がれの有無
 上記実施例2の導体パターン形成用荷電性粉末を用いて形成した内部導体とセラミック層との間の剥がれの有無を、以下の方法で測定して特性を評価した。
<内部導体とセラミック層の間の剥がれの有無の測定方法>
 多層基板本体を樹脂固めした後、積層方向に沿う方向の断面を研磨機で研磨し、金属顕微鏡を用いて剥離の有無を確認する。
 外部導体のセラミック層への接合強度と、内部導体とセラミック層の間の剥がれの発生率を表1および表2に示す。
(2) Presence or absence of peeling between internal conductor and ceramic layer The following method was used to measure the presence or absence of peeling between the internal conductor formed using the conductive pattern forming charged powder of Example 2 and the ceramic layer. Then, the characteristics were evaluated.
<Measurement method of presence or absence of peeling between internal conductor and ceramic layer>
After solidifying the multilayer substrate body, the cross section in the direction along the lamination direction is polished with a polishing machine, and the presence or absence of peeling is confirmed using a metal microscope.
Tables 1 and 2 show the bonding strength of the outer conductor to the ceramic layer and the occurrence rate of peeling between the inner conductor and the ceramic layer.
 また、比較のため、
 (a)セラミックコーティング層により被覆されていない導電性金属粒子を用いたことを除いては、上記実施例1の導体パターン形成用荷電性粉末と同じ条件の比較例1の導体パターン形成用荷電性粉末と、
 (b)セラミックコーティング層により被覆されていない導電性金属粒子を用いたことを除いては、上記実施例2の導体パターン形成用荷電性粉末と同じ条件の比較例2の導体パターン形成用荷電性粉末と
 を用意し、実施例3の場合と同様の方法で、比較例1の導体パターン形成用荷電性粉末を用いて形成された外部導体と、比較例2の導体パターン形成用荷電性粉末を用いて形成された内部導体とを備えた多層基板本体を製造した。
For comparison,
(a) The conductive pattern forming chargeability of Comparative Example 1 under the same conditions as the conductive pattern forming chargeable powder of Example 1 except that conductive metal particles not coated with a ceramic coating layer were used. Powder,
(b) Conductive pattern forming charge of Comparative Example 2 under the same conditions as the conductive pattern forming chargeable powder of Example 2 except that conductive metal particles not coated with a ceramic coating layer were used. The external conductor formed using the conductive pattern forming chargeable powder of Comparative Example 1 and the conductive pattern formation chargeable powder of Comparative Example 2 were prepared in the same manner as in Example 3. A multilayer substrate body with an inner conductor formed using the same was manufactured.
 そして、この比較例1の導体パターン形成用荷電性粉末を用いて形成した外部導体のセラミック層への接合強度を調べるとともに、比較例2の導体パターン形成用荷電性粉末を用いて形成した内部導体とセラミック層の間の剥がれの発生の有無を調べた、その結果を表1および表2に併せて示す。 And while examining the joint strength to the ceramic layer of the external conductor formed using the conductive powder for conductive pattern formation of this comparative example 1, and the internal conductor formed using the conductive powder for conductive pattern formation of the comparative example 2 Table 1 and Table 2 show the results of examining the occurrence of peeling between the ceramic layer and the ceramic layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1の導体パターン形成用荷電性粉末を用いて外部導体を形成することにより、比較例1の導体パターン形成用荷電性粉末を用いた場合に比べて、セラミック層への接合強度が大きく、信頼性の高い外部導体を備えたセラミック多層基板が得られることが確認された。
 実施例1の導体パターン形成用荷電性粉末を用いた場合にセラミック層への接合強度が大きい外部導体を得ることができるのは、実施例1の導体パターン形成用荷電性粉末においては、導電性金属粒子がセラミックコーティング層により被覆されており、焼結温度が上昇してセラミック層との焼結温度差が小さくなること、アンカー効果を発揮するセラミック粒子を含有していることによるものである。 
As shown in Table 1, by forming the external conductor using the conductive pattern forming charged powder of Example 1, the ceramic layer compared to the case of using the conductive pattern forming charged powder of Comparative Example 1 It was confirmed that a ceramic multilayer substrate having a highly reliable outer conductor having a high bonding strength to the substrate can be obtained.
When the conductive powder for forming a conductor pattern of Example 1 is used, an external conductor having a high bonding strength to the ceramic layer can be obtained because the conductive powder for forming a conductor pattern of Example 1 is electrically conductive. This is because the metal particles are covered with the ceramic coating layer, the sintering temperature rises and the difference in the sintering temperature with the ceramic layer is reduced, and the ceramic particles containing the anchor effect are contained.
 また、表2に示すように、実施例2の導体パターン形成用荷電性粉末を用いて内部導体を形成することにより、内部導体とセラミック層の間の剥がれの発生を抑制して、信頼性の高いセラミック多層基板を歩留まりよく製造できることが確認された。一方、比較例2の導体パターン形成用荷電性粉末を用いた場合、剥がれの発生率が90%と極めて高いことが確認された。
 実施例2の導体パターン形成用荷電性粉末を用いた場合に剥がれの発生を抑制することができるのは、実施例2の導体パターン形成用荷電性粉末においては、
熱可塑性樹脂の含有率が少なく、焼成工程で熱可塑性樹脂の分解や燃焼によるガスの発生量が少ないこと、導電性金属粒子がセラミックコーティング層により被覆されており、焼結温度が上昇してセラミック層との焼結温度差が小さくなることによるものである。
In addition, as shown in Table 2, by forming the inner conductor using the conductive pattern forming chargeable powder of Example 2, the occurrence of peeling between the inner conductor and the ceramic layer is suppressed, and the reliability is improved. It was confirmed that high ceramic multilayer substrates can be manufactured with high yield. On the other hand, when the conductive powder for forming a conductor pattern of Comparative Example 2 was used, it was confirmed that the occurrence rate of peeling was as extremely high as 90%.
In the case of using the conductive powder for forming a conductor pattern of Example 2, it is possible to suppress the occurrence of peeling in the charged powder for forming a conductor pattern of Example 2,
The thermoplastic resin content is low, the amount of gas generated by decomposition and combustion of the thermoplastic resin in the firing process is small, the conductive metal particles are covered with the ceramic coating layer, the sintering temperature rises, and the ceramic This is because the difference in sintering temperature with the layer is reduced.
 なお、ここでは、実施例1の導体パターン形成用荷電性粉末を用いて外部導体を形成し、実施例2の導体パターン形成用荷電性粉末を用いて内部導体を形成するようにしているが、導体パターン形成用荷電性粉末を構成する成分の割合や焼成条件などを適切に調整することにより、実施例1のタイプの導体パターン形成用荷電性粉末を用いて内部導体を形成し、実施例2のタイプの導体パターン形成用荷電性粉末を用いて外部導体を形成することも可能である。 Here, the outer conductor is formed using the conductive pattern forming chargeable powder of Example 1, and the inner conductor is formed using the conductor pattern forming chargeable powder of Example 2, An internal conductor is formed using the conductive powder for forming a conductive pattern of the type of Example 1 by appropriately adjusting the ratio of components constituting the conductive powder for forming a conductive pattern, firing conditions, and the like. It is also possible to form an outer conductor using a conductive powder for forming a conductive pattern of this type.
 また、上記実施例3では、本発明の導体パターン形成用荷電性粉末を用いてセラミック多層基板を製造する場合について説明したが、本発明の導体パターン形成用荷電性粉末は、内部導体や外部導体を備えた種々の積層セラミック電子部品を製造する場合に広く用いることが可能である。 Further, in Example 3 described above, the case where the ceramic multilayer substrate is manufactured using the conductive pattern forming charged powder of the present invention has been described. However, the conductive pattern forming charged powder of the present invention is not limited to an inner conductor or an outer conductor. It can be widely used in the production of various multilayer ceramic electronic components equipped with.
 また、本発明の導体パターン形成用荷電性粉末は、従来の方法では導体パターンの剥がれ、焼成工程における導体パターンの収縮を原因とする基板の割れなどが生じやすい、比較的面積の大きいグランド電極を形成する場合に適用することにより、導体パターンの剥がれや基板の割れなどを効率よく防止することが可能になり、特に有意義である。 Also, the conductive powder for forming a conductor pattern of the present invention is a ground electrode having a relatively large area, which tends to cause peeling of the conductor pattern and cracking of the substrate due to shrinkage of the conductor pattern in the baking process. By applying to the formation, it becomes possible to efficiently prevent the peeling of the conductor pattern and the crack of the substrate, which is particularly significant.
 本発明はさらにその他の点においても上記実施例に限定されるものではなく、導体パターン形成用荷電性粉末を構成する各成分の種類や配合割合、被印刷物の種類や性状、本発明の導体パターン形成用荷電性粉末を用いて製造される積層セラミック電子部品の種類などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above-described embodiment in other points as well, and the types and blending ratios of the components constituting the conductive pattern-forming charged powder, the types and properties of the printed material, and the conductive pattern of the present invention. Various types of applications and modifications can be made within the scope of the invention with respect to the types of multilayer ceramic electronic parts manufactured using the chargeable powder for forming.
 上述のように、本発明の導体パターン形成用荷電性粉末を用いることにより、電極や回路となる導体パターンが形成されたセラミックグリーンシートを積層し、焼成する工程を経て積層セラミック電子部品を製造する場合に、導体パターンとセラミック層の焼結温度の差に起因する導体パターンの剥がれやセラミック層の割れなどの発生を抑制、防止して、効率よく、積層セラミック電子部品を製造することが可能になる。
 したがって、本発明の導体パターン形成用荷電性粉末は、外部導体および/または内部導体を備えた種々の積層セラミック電子部品を製造する場合に広く適用することが可能である。
As described above, by using the conductive powder for forming a conductor pattern of the present invention, a ceramic green sheet on which a conductor pattern to be an electrode or a circuit is formed is laminated and fired to produce a multilayer ceramic electronic component. In this case, it is possible to suppress and prevent the occurrence of peeling of the conductor pattern and cracking of the ceramic layer due to the difference in the sintering temperature between the conductor pattern and the ceramic layer, and to efficiently manufacture the multilayer ceramic electronic component Become.
Therefore, the conductive powder for forming a conductor pattern of the present invention can be widely applied when manufacturing various multilayer ceramic electronic components having an outer conductor and / or an inner conductor.
 1    導電性金属粒子(銅粒子)
 2    セラミックコーティング層
 3    セラミック粒子(アルミナ粒子)
 4    熱可塑性樹脂(ポリエステル樹脂)
 5    シリカ微粒子層
 10(10a,10b) 導体パターン形成用荷電性粉末
 11   感光体
 12   コロナ帯電器
 13   レーザ光
 14   供給手段
 15   セラミックグリーンシート
 16   フラッシュランプ
 21   セラミック積層体
 22   セラミック層
 23   内部導体(配線層、内部グランド電極層、容量電極層など)
 24   ビアホール導体
 25   外部導体(実装用ランド、外部グランド電極層など)
 26   多層基板本体
1 Conductive metal particles (copper particles)
2 Ceramic coating layer 3 Ceramic particles (alumina particles)
4 Thermoplastic resin (polyester resin)
5 Silica Fine Particle Layer 10 (10a, 10b) Conductive pattern forming chargeable powder 11 Photoconductor 12 Corona charger 13 Laser light 14 Supply means 15 Ceramic green sheet 16 Flash lamp 21 Ceramic laminate 22 Ceramic layer 23 Internal conductor (wiring layer) , Internal ground electrode layer, capacitive electrode layer, etc.)
24 via hole conductor 25 external conductor (land for mounting, external ground electrode layer, etc.)
26 Multilayer board body

Claims (10)

  1.  電子写真法によって被印刷物上に導体パターンを印刷する際に使用される導体パターン形成用荷電性粉末であって、
     導電性金属粒子と、
     前記導電性金属粒子を覆うように配設されたセラミックコーティング層と、
     前記セラミックコーティング層に覆われた前記導電性金属粒子を複数個分散させた熱可塑性樹脂と、
     前記熱可塑性樹脂を覆うように配設されたシリカ微粒子層と
     を備えていることを特徴とする導体パターン形成用荷電性粉末。
    A conductive powder for forming a conductor pattern used when a conductor pattern is printed on a substrate by electrophotography,
    Conductive metal particles;
    A ceramic coating layer disposed to cover the conductive metal particles;
    A thermoplastic resin in which a plurality of the conductive metal particles covered with the ceramic coating layer are dispersed;
    A conductive powder for forming a conductive pattern, comprising: a silica fine particle layer disposed so as to cover the thermoplastic resin.
  2.  前記熱可塑性樹脂中に複数個のセラミック粒子が分散されていることを特徴とする請求項1記載の導体パターン形成用荷電性粉末。 The charged powder for forming a conductor pattern according to claim 1, wherein a plurality of ceramic particles are dispersed in the thermoplastic resin.
  3.  前記導電性金属粒子が銅粒子であることを特徴とする請求項1または2記載の導体パターン形成用荷電性粉末。 The conductive powder for forming a conductive pattern according to claim 1 or 2, wherein the conductive metal particles are copper particles.
  4.  前記導体パターン形成用荷電性粉末が印刷される前記被印刷物がセラミックグリーンシートであることを特徴とする請求項1~3のいずれかに記載の導体パターン形成用荷電性粉末。 4. The conductive pattern forming charged powder according to claim 1, wherein the printed material on which the conductive pattern forming charged powder is printed is a ceramic green sheet.
  5.  電子写真法によって被印刷物上に導体パターンを印刷する際に使用される導体パターン形成用荷電性粉末であって、
     導電性金属粒子と、
     前記導電性金属粒子を覆うように配設されたセラミックコーティング層と、
     前記セラミックコーティング層を覆うように配設された熱可塑性樹脂層と、
     前記熱可塑性樹脂を覆うように配設されたシリカ微粒子層と
      を有することを特徴とする導体パターン形成用荷電性粉末。
    A conductive powder for forming a conductor pattern used when a conductor pattern is printed on a substrate by electrophotography,
    Conductive metal particles;
    A ceramic coating layer disposed to cover the conductive metal particles;
    A thermoplastic resin layer disposed to cover the ceramic coating layer;
    A conductive powder for forming a conductor pattern, comprising: a silica fine particle layer disposed so as to cover the thermoplastic resin.
  6.  前記導電性金属粒子が銅粒子であることを特徴とする請求項5記載の導体パターン形成用荷電性粉末。 The conductive powder for forming a conductor pattern according to claim 5, wherein the conductive metal particles are copper particles.
  7.  前記導体パターン形成用荷電性粉末が印刷される前記被印刷物がセラミックグリーンシートであることを特徴とする請求項5または6記載の導体パターン形成用荷電性粉末。 The conductive powder for forming a conductive pattern according to claim 5 or 6, wherein the printed material on which the conductive powder for forming a conductive pattern is printed is a ceramic green sheet.
  8.  請求項1~7のいずれかの導体パターン形成用荷電性粉末を印刷したセラミックグリーンシートを積層し、焼成する工程を経て形成されたセラミック積層体を備える積層セラミック電子部品であって、
     前記セラミック積層体の表面および/または内部に、請求項1~7のいずれかの導体パターン形成用荷電性粉末を焼結させた導体を備えていること
     を特徴とする積層セラミック電子部品。
    A multilayer ceramic electronic component comprising a ceramic laminate formed by laminating and firing a ceramic green sheet printed with a conductive powder for forming a conductor pattern according to any one of claims 1 to 7,
    A multilayer ceramic electronic component comprising a conductor obtained by sintering the conductive powder for forming a conductor pattern according to any one of claims 1 to 7 on the surface and / or inside of the ceramic laminate.
  9.  前記セラミック積層体の表面の導体が、請求項1~4のいずれかの導体パターン形成用荷電性粉末を焼結させたものであることを特徴とする請求項8記載の積層セラミック電子部品。 9. The multilayer ceramic electronic component according to claim 8, wherein the conductor on the surface of the ceramic laminate is obtained by sintering the conductive powder for forming a conductor pattern according to any one of claims 1 to 4.
  10.  前記セラミック積層体の内部の導体が、請求項5~7のいずれかの導体パターン形成用荷電性粉末を焼結させたものであることを特徴とする請求項8記載の積層セラミック電子部品。 The multilayer ceramic electronic component according to claim 8, wherein the conductor inside the ceramic laminate is obtained by sintering a conductive powder for forming a conductor pattern according to any one of claims 5 to 7.
PCT/JP2009/004409 2008-09-10 2009-09-07 Chargeable powder for forming conductive pattern and multilayer ceramic electronic component using same WO2010029719A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010528615A JP5056950B2 (en) 2008-09-10 2009-09-07 Chargeable powder for conductor pattern formation and multilayer ceramic electronic component using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-232235 2008-09-10
JP2008232235 2008-09-10

Publications (1)

Publication Number Publication Date
WO2010029719A1 true WO2010029719A1 (en) 2010-03-18

Family

ID=42004983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004409 WO2010029719A1 (en) 2008-09-10 2009-09-07 Chargeable powder for forming conductive pattern and multilayer ceramic electronic component using same

Country Status (2)

Country Link
JP (1) JP5056950B2 (en)
WO (1) WO2010029719A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101933403B1 (en) * 2011-11-21 2018-12-31 삼성전기 주식회사 Laminated ceramic electronic parts and fabrication method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237063A (en) * 1991-01-21 1992-08-25 Nec Corp Electrifiable particle for circuit printing
JPH05281779A (en) * 1992-01-31 1993-10-29 Xerox Corp Toner composition containing conductive color magnetic particle
JPH11265089A (en) * 1998-03-17 1999-09-28 Murata Mfg Co Ltd Electrifying powder for formation of circuit and multilayered wiring board using that
JPH11298119A (en) * 1998-04-14 1999-10-29 Murata Mfg Co Ltd Charged powder for circuit formation, method for forming circuit pattern using the same, and multilayer wiring board formed thereby
JP2005300681A (en) * 2004-04-07 2005-10-27 Toshiba Corp Toner for making wiring board and method for manufacturing wiring board using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237063A (en) * 1991-01-21 1992-08-25 Nec Corp Electrifiable particle for circuit printing
JPH05281779A (en) * 1992-01-31 1993-10-29 Xerox Corp Toner composition containing conductive color magnetic particle
JPH11265089A (en) * 1998-03-17 1999-09-28 Murata Mfg Co Ltd Electrifying powder for formation of circuit and multilayered wiring board using that
JPH11298119A (en) * 1998-04-14 1999-10-29 Murata Mfg Co Ltd Charged powder for circuit formation, method for forming circuit pattern using the same, and multilayer wiring board formed thereby
JP2005300681A (en) * 2004-04-07 2005-10-27 Toshiba Corp Toner for making wiring board and method for manufacturing wiring board using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101933403B1 (en) * 2011-11-21 2018-12-31 삼성전기 주식회사 Laminated ceramic electronic parts and fabrication method thereof

Also Published As

Publication number Publication date
JP5056950B2 (en) 2012-10-24
JPWO2010029719A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
US6403272B1 (en) Circuit-forming charging powder and multilayer wiring board using the same
WO2010061550A1 (en) Esd protection device and manufacturing method thereof
US20110222203A1 (en) Esd protection device and method for manufacturing the same
JP5003985B2 (en) ESD protection device
JPWO2010125924A1 (en) Manufacturing method of ceramic multilayer substrate
JP5257679B2 (en) Manufacturing method of ESD protection device and ESD protection device
JP5056950B2 (en) Chargeable powder for conductor pattern formation and multilayer ceramic electronic component using the same
US8207452B2 (en) Multilayer interconnection board
JP4543490B2 (en) Circuit pattern forming method and wiring board formed thereby
JP2000039737A (en) Coated metal particle and electrophotographic toner using that
JP4207241B2 (en) Chargeable powder for circuit formation and multilayer wiring board using the same
JP2008242352A (en) Charging powder and method of manufacturing multilayer ceramic electronic component
WO2010106969A1 (en) Charged powder for forming conductor pattern, method for producing same, and method for manufacturing multilayer ceramic electronic component using same
JP2000200973A (en) Low-temperature burning ceramic circuit substrate
JP4356181B2 (en) Wet developer for circuit formation and circuit formation method using this developer
JPH11298119A (en) Charged powder for circuit formation, method for forming circuit pattern using the same, and multilayer wiring board formed thereby
JP4427861B2 (en) Circuit pattern forming method and wiring board formed thereby
JP4363487B2 (en) Chargeable powder for circuit formation and multilayer wiring board using the same
JPH0653634A (en) Circuit forming method for wiring board
JP2001284770A (en) Circuit-patten formation method and wiring board formed thereby
JP2011165992A (en) Manufacturing method of ceramic multilayer substrate
JPH0669618A (en) Electrostatic particle for circuit printing
JP2005302955A (en) Image forming apparatus
JP2014038145A (en) Method for manufacturing multilayer electronic component
JP2008203883A (en) Charged powder for circuit formation and multilayer wiring board using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528615

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09812868

Country of ref document: EP

Kind code of ref document: A1