WO2010106969A1 - Charged powder for forming conductor pattern, method for producing same, and method for manufacturing multilayer ceramic electronic component using same - Google Patents
Charged powder for forming conductor pattern, method for producing same, and method for manufacturing multilayer ceramic electronic component using same Download PDFInfo
- Publication number
- WO2010106969A1 WO2010106969A1 PCT/JP2010/054181 JP2010054181W WO2010106969A1 WO 2010106969 A1 WO2010106969 A1 WO 2010106969A1 JP 2010054181 W JP2010054181 W JP 2010054181W WO 2010106969 A1 WO2010106969 A1 WO 2010106969A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- resin
- thermoplastic resin
- forming
- conductor pattern
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/0821—Developers with toner particles characterised by physical parameters
- G03G9/0823—Electric parameters
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/0825—Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08797—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/097—Plasticisers; Charge controlling agents
- G03G9/09708—Inorganic compounds
- G03G9/09725—Silicon-oxides; Silicates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0218—Composite particles, i.e. first metal coated with second metal
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
- H05K3/1266—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by electrographic or magnetographic printing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4611—Manufacturing multilayer circuits by laminating two or more circuit boards
- H05K3/4626—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
- H05K3/4629—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
Definitions
- the present invention relates to a conductive pattern forming charged powder used when a conductor pattern is printed on a substrate by electrophotography, a method for producing the same, and a multilayer ceramic electronic component using the conductive pattern forming charged powder. It relates to a manufacturing method.
- conductive powder for forming conductive patterns is printed by electrophotography. Then, there is a method of baking the chargeable powder and the ceramic layer at the same time.
- This electrophotographic method is a method in which a pattern due to static electricity is drawn on a substrate to be printed, and a charged toner is attached thereto and fixed by heating. There is a demand for improvement in chargeability that affects the accuracy of the toner and relaxation of the fusion (pressing and heating) conditions during fixing.
- the chargeable toner when used for forming a conductor pattern in a multilayer ceramic electronic component, patterning accuracy deteriorates in processes such as a lamination process performed after fixing, a thermocompression bonding process of the laminated body, and a heat cutting process. It is important that the charged toner itself is not destroyed so as not to cause delamination.
- a chargeable toner 60 in which is coated with a resin coating layer 54 made of a thermoplastic resin Patent Document 1. That is, in the chargeable toner 60, the inner resin particles 53 are made of a thermosetting resin for the purpose of improving the strength, and the outer coating resin layer 54 is thermoplastic to improve the fixing property. It is made of resin.
- thermoplastic resin is used for the outer covering resin layer 54 as described above, so that the pattern fixing property is excellent and the resin constituting the inner resin particles 53 is thermoset. Since the conductive resin 53a is used, it has sufficient strength even during heat-compression bonding and heat-cutting, and is not destroyed, so that a highly accurate pattern can be formed.
- thermosetting resin is used for the resin particles, even if the resin component does not soften in the firing step and eventually burns and scatters, The conductive particles contained in the conductive pattern cannot freely move, and in the conductor pattern, the conductive particles are sintered while being separated from each other, so that a dense conductive layer cannot be formed. There is a point.
- the present invention solves the above-mentioned problems, and uses a conductive pattern-forming charged powder capable of forming a dense and low-resistance conductor layer, a method for producing the same, and the conductive pattern-forming charged powder.
- An object of the present invention is to provide a method for manufacturing a multilayer ceramic electronic component capable of manufacturing a multilayer ceramic electronic component having good characteristics.
- the charged powder for forming a conductor pattern of the present invention is A conductive powder for forming a conductor pattern used when printing a conductor pattern on a substrate, Resin particles made of a first thermoplastic resin in which conductive metal particles are dispersed; And a coating resin layer made of a second thermoplastic resin having a softening point lower than that of the first thermoplastic resin constituting the resin particles.
- the difference between the softening point of the first thermoplastic resin and the softening point of the second thermoplastic resin is 20 ° C. or more.
- the coating resin layer is preferably formed using ultrafine thermoplastic resin particles having a diameter of 50 nm to 500 nm.
- the coating resin layer has a silica coating layer made of silica particles on the surface thereof.
- the conductive powder for forming a conductor pattern of the present invention is desirably used for printing a conductor pattern on a ceramic green sheet by electrophotography.
- the resin particles contain ceramic particles containing the same component as at least one component of the ceramic constituting the ceramic substrate
- the resin particles contain glass particles containing the same component as at least one component of the glass constituting the glass substrate. Is desirable.
- the method for producing a conductive powder for forming a conductor pattern of the present invention A method for producing a conductive powder for forming a conductor pattern used when printing a conductor pattern on a substrate by electrophotography, Dispersing the conductive metal particles in the first thermoplastic resin; Pulverizing the first thermoplastic resin to form resin particles in which the conductive metal particles are dispersed in the first thermoplastic resin; and The resin particles are mixed with thermoplastic resin fine particles made of a second thermoplastic resin having a softening point lower than that of the first thermoplastic resin. And a step of forming a coating resin layer made of a thermoplastic resin.
- the method for manufacturing the multilayer ceramic electronic component of the present invention includes: Printing the conductive powder for forming a conductor pattern according to any one of claims 1 to 5 on a ceramic green sheet by electrophotography so as to form a predetermined pattern;
- the conductive powder for forming a conductive pattern printed on the ceramic green sheet is higher than the softening point of the second thermoplastic resin constituting the coating resin layer, and the first thermoplastic resin constituting the resin particles Heating at a temperature lower than the softening point of the layer to fix the conductive pattern forming charged powder on the ceramic green sheet; and Forming a mother laminate by stacking and pressing a plurality of ceramic green sheets including the ceramic green sheet; and Cutting the mother laminate while heating at a temperature lower than the softening point of the second thermoplastic resin layer constituting the coating resin layer, and dividing the mother laminate into individual laminates; A degreasing step of removing organic components including the thermoplastic resin from the laminate; And a firing step in which the degreased laminate is fired to form a sintered body
- the conductive powder for forming a conductive pattern of the present invention is a second thermoplastic resin having a lower softening point than that of the first thermoplastic resin, in which conductive metal particles are dispersed and the first thermoplastic resin is dispersed. Since a coating (printing pattern) formed using the conductive pattern-forming chargeable powder is heated and fixed, the first thermoplastic resin constituting the resin particles is coated with the coating resin layer made of Although the resin is not softened, the second thermoplastic resin constituting the coating resin layer is heated to such a temperature that it softens, thereby softening the second thermoplastic resin at a relatively low temperature and improving the fixability. Can be made.
- thermoplastic resin is used as the resin constituting the resin particles, the resin particles are softened when the binder is removed, and the conductive particles contained therein are movable, so that the conductor layer is dense and has low resistance. Can be formed.
- the resin particles are coated with the coating resin layer, the exposure of the conductive metal particles can be suppressed and the charging characteristics can be ensured. In addition, preventing the exposure of the conductive metal particles in this way is a matter that is a basic condition for imparting electric resistance and is an important requirement.
- various known charge control agents can be blended.
- the charge control agent suitable for use in the conductive powder for forming a conductor pattern of the present invention include azo-containing metal compounds, salicylic acid compounds, azine compounds, and quaternary ammonium salts.
- the conductive powder for forming a conductor pattern of the present invention by setting the difference between the softening point of the first thermoplastic resin and the softening point of the second thermoplastic resin to 20 ° C. or more, in the fixing step, while the coated resin layer softens, it is possible to reliably realize a state in which the resin particles inside do not soften, and in the subsequent heat treatment process such as degreasing, the resin particles are quickly softened at a relatively low temperature.
- the conductive metal particles can be made to flow at an early timing, and the present invention can be more effectively realized.
- the 5 mm flow start temperature by the flow tester apparatus was defined as the “softening point” of the thermoplastic resin.
- thermoplastic resin ultrafine particles having a diameter of 50 nm to 500 nm when used, the thermoplastic resin ultrafine particles collide with the resin particles by mechanical mixing, and the impact at that time It is possible to efficiently form a coated resin layer by using a method (mechanical coating method) in which the thermoplastic resin ultrafine particles are deformed by force and adhered to the surface of the resin particles so that the thermoplastic resin ultrafine particles adhere to the surface. become.
- mechanical coating method it is desirable that the resin particles have a diameter 5 to 10 times that of the ultrafine thermoplastic resin particles or more.
- silica coating layer made of silica particles on the surface of the coating resin layer, it becomes possible to impart sufficient chargeability. From the viewpoint of improving the chargeability, it is preferable to use hydrophobized silica fine particles.
- the silica particles when applying the silica particles by a mechanical coating method, if the bite into the coating resin layer and the exposure amount is too small, the effect of providing the silica coating layer will be reduced. It is desirable to give the coating resin layer an appropriate hardness so that the silica particles do not bite into the coating resin layer too much. Furthermore, by covering the thermoplastic resin with the silica fine particle layer, it is possible to ensure the fluidity of the conductive pattern forming chargeable powder.
- the charged powder for forming a conductor pattern of the present invention can be suitably used when a conductor pattern is printed on a ceramic green sheet by electrophotography.
- the conductive powder for forming a conductor pattern of the present invention is used for printing a conductor pattern on a ceramic substrate
- at least one component of the ceramic constituting the ceramic substrate is added to the resin particles.
- the glass substrate is added to the resin particles.
- a conductive metal is used as the resin particles constituting the conductive powder for forming the conductor pattern.
- Al 2 O 3 particles As ceramic particles together with powder and the like, it is possible to form a conductor pattern having a large adhering force to the ceramic substrate.
- the conductive metal particles are dispersed in the first thermoplastic resin, and then the first thermoplastic resin is pulverized to obtain the conductive metal particles.
- the resin particles dispersed in the first thermoplastic resin are formed, and the resin particles are mixed with the thermoplastic resin fine particles made of the second thermoplastic resin having a softening point lower than that of the first thermoplastic resin. Since the coating resin layer made of the second thermoplastic resin is formed on the surface of the resin particles by the coating method, a conductive powder for forming a conductor pattern capable of forming a dense and low resistance conductor layer That is, it becomes possible to reliably manufacture the conductive pattern forming powder having the requirements of the present invention.
- the silica coating layer is formed by attaching silica particles to the surface of the coating resin layer, the conductive pattern forming charged powder having sufficient chargeability and excellent fluidity is ensured. To be able to get to.
- the method for producing a multilayer ceramic electronic component of the present invention includes a second thermoplastic resin that forms a coating resin layer by printing the conductive pattern forming charged powder of the present invention on a ceramic green sheet by electrophotography. Heating is performed at a temperature higher than the softening point of the first thermoplastic resin layer constituting the resin particles and lower than the softening point of the first thermoplastic resin layer to fix the conductive pattern forming charged powder. Sheets are laminated and pressure-bonded to form a mother laminate, cut while heating at a temperature lower than the softening point of the second thermoplastic resin layer, and divided into individual laminates, followed by degreasing and firing. Therefore, it is possible to efficiently manufacture a multilayer ceramic electronic component having a good characteristic with a dense and low resistance conductor pattern, such as a ceramic multilayer substrate. It made.
- Example 1 It is sectional drawing which shows the structure of the conductive powder for conductor pattern formation concerning one Example (Example 1) of this invention. It is sectional drawing which shows typically the ceramic multilayer substrate manufactured using the ceramic green sheet which formed the conductive pattern by printing the conductive powder for conductor pattern formation of this invention. It is sectional drawing which shows the structure of the conventional chargeable toner.
- the first conductive pattern forming charged powder of the present invention will be described as an example.
- FIG. 1 is a diagram showing a configuration of a conductive pattern forming powder according to an embodiment of the present invention.
- the conductive powder 10 for forming a conductor pattern of this embodiment is a conductive powder for forming a conductor pattern used when printing a conductor pattern by electrophotography.
- the conductive pattern forming chargeable powder 10 includes copper particles (conductive metal particles) 1 having an average particle size of 1 ⁇ m, ceramic particles (alumina particles in this embodiment) 2 having a particle size of 0.5 ⁇ m, and
- the charge control agent (in this embodiment, an azo-containing metal compound) 6 is dispersed on the surface of the resin particle 3 in which the softening point is dispersed in a polyester resin 3a having a softening point of about 180 ° C. (first thermoplastic resin in the present invention).
- a coating resin layer 4 comprising a second thermoplastic resin (acrylic resin having a softening point of 120 ° C.) 4a having a softening point lower than that of the first thermoplastic resin (polyester resin having a softening point of about 180 ° C.) 3a; And a silica coating layer 5 made of silica particles (silica ultrafine particles) 5 a disposed so as to cover the coating resin layer 4.
- a second thermoplastic resin (acrylic resin having a softening point of 120 ° C.) 4a having a softening point lower than that of the first thermoplastic resin (polyester resin having a softening point of about 180 ° C.) 3a
- a silica coating layer 5 made of silica particles (silica ultrafine particles) 5 a disposed so as to cover the coating resin layer 4.
- the conductive pattern forming chargeable powder 10 includes a coating resin layer 4 made of a second thermoplastic resin 4a having a softening point lower than that of the first thermoplastic resin 3a.
- the first thermoplastic resin 3a is not softened.
- the second thermoplastic resin 4a can be softened at a relatively low temperature and the fixability can be improved.
- the conductor pattern is fixed by heating and cutting to a temperature lower than the softening point of the first and second thermoplastic resins 3a and 4a constituting the resin particles 3 and the coating resin layer 4. It is possible to prevent the deterioration of the properties and to suppress the occurrence of delamination caused by the resin particles 3 being destroyed due to insufficient strength at the time of cutting.
- the first thermoplastic resin constituting the resin particle 3 has a higher softening point than the second thermoplastic resin, it is the thermoplastic resin 3a, so that it softens at the time of binder removal and is included inside. Since the conductive metal particles 1 are movable, a dense and low-resistance conductive layer can be formed.
- the conductive metal particles 1 can be prevented from being exposed, and charging characteristics can be imparted.
- the charge control agent 6 is further blended and the silica coating layer 5 is disposed so as to cover the coating resin layer 4, desired charging characteristics can be provided. .
- the resin particles 3 contain alumina particles 2 that are one of ceramic materials constituting the ceramic green sheet that is the printed material. It is possible to form a conductor layer having a large affinity and adhesion strength.
- the first thermoplastic resin in the present invention) and the charge control agent (azo-containing metal compound in this example) are weighed so that the ratio of the inorganic material to the organic material is 9: 1 by weight, Mixed.
- a salicylic acid compound, an azine compound, a quaternary ammonium salt, or the like can be used as the charge control agent.
- the obtained kneaded material was finely pulverized using a jet mill, whereby conductive metal particles, alumina particles, and a charge control agent were dispersed in the polyester resin (first thermoplastic resin). Resin particles were obtained.
- the resin particles are mixed with acrylic resin ultrafine particles having a diameter of about 100 nm that are softened at a temperature (120 ° C.) lower than that of the polyester resin (first thermoplastic resin), and the mixture is mixed with Mitsui.
- the polyester resin (first thermoplastic resin) 3a By putting it into a mine MP mixer and stirring for 5 minutes at a rotational speed of 5000 rpm, as shown in FIG. 1, in the polyester resin (first thermoplastic resin) 3a, conductive metal particles 1 and alumina particles. 2.
- the coated particles 7 having the resin particles 3 in which the charge control agent 6 was dispersed and having the surface coated with the coated resin layer 4 made of an acrylic resin (second thermoplastic resin) 4a were obtained.
- ultrafine silica particles (silica particles) 5 a having a diameter of 7 nm were adhered to the surface of the coated resin layer 4 by further mixing the coated particles 7.
- Part of the silica ultrafine particles 5a bites into the coating resin layer 4 during mixing, so that the silica coating layer 5 is formed on the surface of the coating resin layer 4.
- silica particles it is desirable to use silica ultrafine particles as described above. In that case, it is desirable to use particles having a diameter of 5 nm to 20 nm.
- the surface of the resin particle 3 made of the first thermoplastic resin 3a is covered with the covering resin layer 4 made of the acrylic resin (second thermoplastic resin) 4a.
- a conductive pattern forming chargeable powder 10 having a structure in which the resin layer 4 is coated with the silica coating layer 5 is obtained.
- the charging characteristics were measured.
- the charging characteristics of the resin particles 3 before forming the coating resin layer 4 were ⁇ 4.8 ⁇ C / g.
- the coating resin layer 4 it was ⁇ 12.8 ⁇ C / g, and it was confirmed that the charge amount of the negative charge was greatly improved.
- the exposed surface of the conductive metal particle 1 exposed on the surface of the resin particle 3 is coated with the coating resin layer 4 made of an acrylic resin as an insulator, and the negative charge amount is improved because the insulation is improved. Conceivable.
- thermoplastic resin constituting the resin particles and the second thermoplastic resin constituting the coating resin layer those having various softening points as shown in Table 1 were prepared, and the same conditions as in the examples Thus, a chargeable powder for forming a conductor pattern having a structure as shown in FIG. 1 was produced. And about these chargeable powders for conductor pattern formation, fluidity
- thermosetting polyester resin polyester thermosetting resin
- thermoplastic resin a thermosetting polyester resin (polyester thermosetting resin)
- the plastic resin a conductive powder for forming a conductive pattern was prepared using the same ultrafine particles of an acrylic resin as a thermoplastic resin as in the above-described example, and the characteristics thereof were evaluated. The results are shown in Table 1.
- the laminated body (ceramic multilayer board
- Each conductive pattern forming chargeable powder shown in Table 1 has a predetermined pattern on a ceramic green sheet mainly composed of a BaO—Al 2 O 3 —SiO 2 ceramic material by electrophotography. To print.
- thermoplastic resin layer constituting the resin particles wherein the conductive pattern forming charged powder printed on the ceramic green sheet is higher than the softening point of the second thermoplastic resin constituting the coating resin layer.
- the conductive pattern forming charged powder is fixed on the ceramic green sheet by heating at a temperature lower than the softening point.
- a mother laminated body is formed by stacking and pressing a plurality of ceramic green sheets including ceramic green sheets to which the conductive pattern forming chargeable powder is fixed.
- a ceramic green sheet As a ceramic green sheet, a via hole through hole for interlayer connection is formed as necessary, and a via hole conductor is disposed there, and a predetermined conductor pattern is used as a via hole conductor. Interlayer connection was made through this.
- the mother laminate is cut while being heated to a temperature lower than the softening point of the second thermoplastic resin layer constituting the coating resin layer, and divided into individual laminates.
- the laminate is heat-treated at a predetermined temperature to remove organic components including the thermoplastic resin from the laminate.
- ⁇ Fixability> The printed conductive pattern-forming charged powder is heated at a temperature higher than the softening point of the second thermoplastic resin constituting the coating resin layer and lower than the softening point of the first thermoplastic resin layer constituting the resin particles. After fixing on the ceramic green sheet, the fixability was evaluated by examining the extent to which the conductive pattern forming charged powder (printed film) was transferred to the finger by rubbing with a finger. In addition, evaluation by ⁇ , ⁇ , ⁇ , ⁇ of fixability is based on the following criteria. A: The printed film cannot be removed even when rubbed with a finger after fixing. ⁇ : When rubbing with a finger after fixing, the conductive pattern forming charged powder adheres to the finger even though there is no pattern omission.
- Conductive powder for forming a conductor pattern adheres to a finger when rubbed after fixing, and a part of the pattern is missing.
- Charged powder for forming a conductor pattern adheres to a finger when rubbed after fixing, and the entire pattern is missing.
- ⁇ Chargeability> The charge amount of the chargeable powder for forming a conductor pattern was examined with a blow-off charge amount measuring device, and the chargeability was evaluated.
- the evaluation based on ⁇ , ⁇ , ⁇ , and ⁇ of the charging property is based on the following criteria.
- each of the structural defects and porosity of the laminate shown in Table 1 The characteristics were evaluated by the following method.
- the conductive pattern-forming chargeable powders according to the examples of the present invention with sample numbers 1 to 13 have practical characteristics (fluidity, fixability, and chargeability characteristics). It was confirmed.
- a laminate produced by laminating ceramic green sheets having a conductor pattern formed using the conductive powder for forming a conductor pattern of the present invention is also practical with regard to structural defects and porosity. It was confirmed that
- polyester-based thermosetting is used as the first resin that constitutes the resin particles
- acrylic resin that is a thermoplastic resin as the second thermoplastic resin that constitutes the coating resin layer.
- thermoplastic resin constituting the resin particles and an acrylic resin ultrafine particle is used as the second thermoplastic resin constituting the coating resin layer.
- various resins can be used as long as the second thermoplastic resin satisfies the requirement that the softening point is lower than that of the first thermoplastic resin.
- thermoplastic resin has a lower softening point
- acrylic resins having different points the second thermoplastic resin has a lower softening point
- a resin other than the polyester resin and the acrylic resin is used in combination with the polyester resin and the acrylic resin, or a resin other than the polyester resin and the acrylic resin is used for both the first thermoplastic resin and the second thermoplastic resin. It is also possible to do.
- the silica coating layer was formed on the surface of the coating resin layer, it can also be set as the structure which does not form a silica coating layer on the surface of a coating resin layer depending on the case.
- alumina particles are contained in the resin particles as ceramic particles.
- the ceramic green sheet You may make it contain the other kind of ceramic particle containing the same component as the at least 1 component of the ceramic which comprises a ceramic substrate. Further, in some cases, it is possible not to contain the ceramic particles as contained in the above examples.
- alumina particles are contained in the resin particles as ceramic particles.
- the resin particles are ceramic. It is also possible to make it contain glass particles instead of particles.
- the present invention is not limited to the above-described embodiment in other points as well, and the types and blending ratios of the components constituting the conductive pattern-forming charged powder, the types and properties of the printed material, and the conductive pattern of the present invention.
- Various types of applications and modifications can be made within the scope of the invention with respect to the types of multilayer ceramic electronic parts manufactured using the chargeable powder for forming.
- Conductive metal particles Alumina particles (ceramic particles) 3a Polyester resin (first thermoplastic resin) 3 Resin particles 4a Acrylic resin (second thermoplastic resin) 4 Coating resin layer 5a Silica particles (silica ultrafine particles) DESCRIPTION OF SYMBOLS 5 Silica coating layer 6 Charge control agent 7 Coated particle 10 Chargeable powder for conductor pattern formation 20 Ceramic multilayer substrate (laminated body) 21 Ceramic layer 22 Conductor pattern 23 Via hole conductor
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
Disclosed is a charged powder for forming a conductor pattern, which is used for forming a dense conductor layer having low resistance. Also disclosed are a method for producing the charged powder for forming a conductor pattern, and a method for manufacturing a multilayer ceramic electronic component using the charged powder for forming a conductor pattern.
Specifically disclosed is a charged powder for forming a conductor pattern, which is used when a conductor pattern is printed on a print-receiving material. The charged powder for forming a conductor pattern is configured of resin particles (3) each of which is formed from a first thermoplastic resin (3a) in which conductive metal particles (1) are dispersed, and a coating resin layer (4) which covers each resin particle (3) and is formed from a second thermoplastic resin (4a) that has a softening point lower than that of the first thermoplastic resin (3a) constituting the resin particles.
The difference between the softening point of the first thermoplastic resin and the softening point of the second thermoplastic resin is not less than 20˚C.
Ultrafine thermoplastic resin particles having a diameter of 50-500 nm are used for the coating resin layer.
A silica coating layer (5) which is configured of silica particles is provided on the surface of the coating resin layer.
Each resin particle is formed to contain ceramic particles (2) or glass particles.
Description
本発明は、電子写真法によって被印刷物上に導体パターンを印刷する際に使用される導体パターン形成用荷電性粉末、その製造方法、および導体パターン形成用荷電性粉末を用いた積層セラミック電子部品の製造方法に関する。
The present invention relates to a conductive pattern forming charged powder used when a conductor pattern is printed on a substrate by electrophotography, a method for producing the same, and a multilayer ceramic electronic component using the conductive pattern forming charged powder. It relates to a manufacturing method.
セラミック多層基板などの積層セラミック電子部品において、セラミック層間に配設される内部導体や、外表面に配設される外部導体の形成方法として、導体パターン形成用の荷電性粉末を電子写真法で印刷し、その後、荷電性粉末とセラミック層を同時に焼き付ける方法がある。
In multilayer ceramic electronic parts such as ceramic multilayer substrates, as a method of forming internal conductors disposed between ceramic layers and external conductors disposed on the outer surface, conductive powder for forming conductive patterns is printed by electrophotography. Then, there is a method of baking the chargeable powder and the ceramic layer at the same time.
この電子写真法は、被印刷物に静電気によるパターンを描き、そこに荷電性トナーを付着させ、加熱して定着させる方法であり、この電子写真法に用いられる荷電性トナーに対しては、パターニング時の精度に影響する帯電性の向上や、定着時における融着(加圧・加熱)条件の緩和などが求められている。
This electrophotographic method is a method in which a pattern due to static electricity is drawn on a substrate to be printed, and a charged toner is attached thereto and fixed by heating. There is a demand for improvement in chargeability that affects the accuracy of the toner and relaxation of the fusion (pressing and heating) conditions during fixing.
また、荷電性トナーが、積層セラミック電子部品における導体パターンの形成に使用される場合、定着後に行われる積層工程、積層体の加熱圧着工程、加熱切断工程などの工程で、パターニング精度が悪化したり、デラミネーションを生じたりしないように、荷電性トナー自体が破壊されないことが重要になる。
In addition, when the chargeable toner is used for forming a conductor pattern in a multilayer ceramic electronic component, patterning accuracy deteriorates in processes such as a lamination process performed after fixing, a thermocompression bonding process of the laminated body, and a heat cutting process. It is important that the charged toner itself is not destroyed so as not to cause delamination.
このような条件を満たすため、図3に示すように、金属粉末(導電性粒子)51と、荷電制御剤52を分散させた熱硬化性樹脂(エポキシ系樹脂)53aからなる樹脂粒子53の表面を、熱可塑性樹脂からなる樹脂被覆層54で被覆した荷電性トナー60が提案されている(特許文献1)。
すなわち、この荷電性トナー60において、内側の樹脂粒子53は、強度の向上を意図して熱硬化性樹脂から構成されており、外側の被覆樹脂層54は、定着性を向上させるために熱可塑性樹脂から構成されている。 In order to satisfy these conditions, as shown in FIG. 3, the surface ofresin particles 53 made of a metal powder (conductive particles) 51 and a thermosetting resin (epoxy resin) 53a in which a charge control agent 52 is dispersed. There has been proposed a chargeable toner 60 in which is coated with a resin coating layer 54 made of a thermoplastic resin (Patent Document 1).
That is, in thechargeable toner 60, the inner resin particles 53 are made of a thermosetting resin for the purpose of improving the strength, and the outer coating resin layer 54 is thermoplastic to improve the fixing property. It is made of resin.
すなわち、この荷電性トナー60において、内側の樹脂粒子53は、強度の向上を意図して熱硬化性樹脂から構成されており、外側の被覆樹脂層54は、定着性を向上させるために熱可塑性樹脂から構成されている。 In order to satisfy these conditions, as shown in FIG. 3, the surface of
That is, in the
この荷電性トナーの場合、上述のように、外側の被覆樹脂層54に熱可塑性樹脂が用いられているため、パターンの定着性に優れ、また、内側の樹脂粒子53を構成する樹脂として熱硬化性樹脂53a用いられていることから、加熱圧着時や加熱切断時にも十分な強度を有し、破壊されたりすることがないため、精度の高いパターンを形成することが可能になる。
In the case of this chargeable toner, the thermoplastic resin is used for the outer covering resin layer 54 as described above, so that the pattern fixing property is excellent and the resin constituting the inner resin particles 53 is thermoset. Since the conductive resin 53a is used, it has sufficient strength even during heat-compression bonding and heat-cutting, and is not destroyed, so that a highly accurate pattern can be formed.
しかしながら、樹脂粒子に熱硬化性樹脂が用いられているため、焼成工程で、樹脂成分が軟化せず、最終的には燃焼、飛散することになるとしても、それまでは、熱硬化性樹脂中に包含されている導電性粒子が自由に移動することができず、導体パターン中において、導電性粒子どうしが離れたまま焼結することになり、緻密な導体層を形成することができないという問題点がある。
However, since a thermosetting resin is used for the resin particles, even if the resin component does not soften in the firing step and eventually burns and scatters, The conductive particles contained in the conductive pattern cannot freely move, and in the conductor pattern, the conductive particles are sintered while being separated from each other, so that a dense conductive layer cannot be formed. There is a point.
本発明は、上記課題を解決するものであり、緻密で抵抗の低い導体層を形成することが可能な導体パターン形成用荷電性粉末、その製造方法、および該導体パターン形成用荷電性粉末を用いた、特性の良好な積層セラミック電子部品を製造することが可能な積層セラミック電子部品の製造方法を提供することを目的とする。
The present invention solves the above-mentioned problems, and uses a conductive pattern-forming charged powder capable of forming a dense and low-resistance conductor layer, a method for producing the same, and the conductive pattern-forming charged powder. An object of the present invention is to provide a method for manufacturing a multilayer ceramic electronic component capable of manufacturing a multilayer ceramic electronic component having good characteristics.
本発明の導体パターン形成用荷電性粉末は、
被印刷物上に導体パターンを印刷する際に使用される導体パターン形成用荷電性粉末であって、
導電性金属粒子を分散させた第1の熱可塑性樹脂からなる樹脂粒子と、
前記樹脂粒子を被覆する、前記樹脂粒子を構成する前記第1の熱可塑性樹脂より軟化点の低い第2の熱可塑性樹脂からなる被覆樹脂層と
を備えていることを特徴としている。 The charged powder for forming a conductor pattern of the present invention is
A conductive powder for forming a conductor pattern used when printing a conductor pattern on a substrate,
Resin particles made of a first thermoplastic resin in which conductive metal particles are dispersed;
And a coating resin layer made of a second thermoplastic resin having a softening point lower than that of the first thermoplastic resin constituting the resin particles.
被印刷物上に導体パターンを印刷する際に使用される導体パターン形成用荷電性粉末であって、
導電性金属粒子を分散させた第1の熱可塑性樹脂からなる樹脂粒子と、
前記樹脂粒子を被覆する、前記樹脂粒子を構成する前記第1の熱可塑性樹脂より軟化点の低い第2の熱可塑性樹脂からなる被覆樹脂層と
を備えていることを特徴としている。 The charged powder for forming a conductor pattern of the present invention is
A conductive powder for forming a conductor pattern used when printing a conductor pattern on a substrate,
Resin particles made of a first thermoplastic resin in which conductive metal particles are dispersed;
And a coating resin layer made of a second thermoplastic resin having a softening point lower than that of the first thermoplastic resin constituting the resin particles.
本発明の導体パターン形成用荷電性粉末においては、前記第1の熱可塑性樹脂の軟化点と、前記第2の熱可塑性樹脂の軟化点の差が20℃以上であることが望ましい。
In the conductive powder for forming a conductor pattern of the present invention, it is desirable that the difference between the softening point of the first thermoplastic resin and the softening point of the second thermoplastic resin is 20 ° C. or more.
また、前記被覆樹脂層は、直径50nm~500nmの熱可塑性樹脂超微粒子を用いて形成されたものであることが望ましい。
The coating resin layer is preferably formed using ultrafine thermoplastic resin particles having a diameter of 50 nm to 500 nm.
また、前記被覆樹脂層は、その表面に、シリカ粒子からなるシリカ被覆層を備えていることが望ましい。
Further, it is desirable that the coating resin layer has a silica coating layer made of silica particles on the surface thereof.
また、本発明の導体パターン形成用荷電性粉末は、電子写真法によって、セラミックグリーンシート上に導体パターンを印刷するのに用いられるものであることが望ましい。
Also, the conductive powder for forming a conductor pattern of the present invention is desirably used for printing a conductor pattern on a ceramic green sheet by electrophotography.
また、セラミック基板に導体パターンを印刷するのに用いられるものである場合においては、前記樹脂粒子が、前記セラミック基板を構成するセラミックの少なくとも一つの構成成分と同じ成分を含むセラミック粒子を含有し、また、
ガラス基板に導体パターンを印刷するのに用いられるものである場合においては、前記樹脂粒子が、前記ガラス基板を構成するガラスの少なくとも一つの構成成分と同じ成分を含むガラス粒子を含有していること
が望ましい。 Further, in the case where it is used to print a conductor pattern on a ceramic substrate, the resin particles contain ceramic particles containing the same component as at least one component of the ceramic constituting the ceramic substrate, Also,
In the case of being used for printing a conductor pattern on a glass substrate, the resin particles contain glass particles containing the same component as at least one component of the glass constituting the glass substrate. Is desirable.
ガラス基板に導体パターンを印刷するのに用いられるものである場合においては、前記樹脂粒子が、前記ガラス基板を構成するガラスの少なくとも一つの構成成分と同じ成分を含むガラス粒子を含有していること
が望ましい。 Further, in the case where it is used to print a conductor pattern on a ceramic substrate, the resin particles contain ceramic particles containing the same component as at least one component of the ceramic constituting the ceramic substrate, Also,
In the case of being used for printing a conductor pattern on a glass substrate, the resin particles contain glass particles containing the same component as at least one component of the glass constituting the glass substrate. Is desirable.
また、本発明の導体パターン形成用荷電性粉末の製造方法は、
電子写真法によって被印刷物上に導体パターンを印刷する際に使用される導体パターン形成用荷電性粉末の製造方法であって、
導電性金属粒子を第1の熱可塑性樹脂に分散させる工程と、
前記第1の熱可塑性樹脂を粉砕することにより、前記第1の熱可塑性樹脂に前記導電性金属粒子が分散した樹脂粒子を形成する工程と、
前記樹脂粒子と、前記第1の熱可塑性樹脂よりも軟化点の低い第2の熱可塑性樹脂からなる熱可塑性樹脂微粒子とを混合し、機械被覆法により、前記樹脂粒子の表面に、第2の熱可塑性樹脂からなる被覆樹脂層を形成する工程と
を具備することを特徴としている。 Further, the method for producing a conductive powder for forming a conductor pattern of the present invention,
A method for producing a conductive powder for forming a conductor pattern used when printing a conductor pattern on a substrate by electrophotography,
Dispersing the conductive metal particles in the first thermoplastic resin;
Pulverizing the first thermoplastic resin to form resin particles in which the conductive metal particles are dispersed in the first thermoplastic resin; and
The resin particles are mixed with thermoplastic resin fine particles made of a second thermoplastic resin having a softening point lower than that of the first thermoplastic resin. And a step of forming a coating resin layer made of a thermoplastic resin.
電子写真法によって被印刷物上に導体パターンを印刷する際に使用される導体パターン形成用荷電性粉末の製造方法であって、
導電性金属粒子を第1の熱可塑性樹脂に分散させる工程と、
前記第1の熱可塑性樹脂を粉砕することにより、前記第1の熱可塑性樹脂に前記導電性金属粒子が分散した樹脂粒子を形成する工程と、
前記樹脂粒子と、前記第1の熱可塑性樹脂よりも軟化点の低い第2の熱可塑性樹脂からなる熱可塑性樹脂微粒子とを混合し、機械被覆法により、前記樹脂粒子の表面に、第2の熱可塑性樹脂からなる被覆樹脂層を形成する工程と
を具備することを特徴としている。 Further, the method for producing a conductive powder for forming a conductor pattern of the present invention,
A method for producing a conductive powder for forming a conductor pattern used when printing a conductor pattern on a substrate by electrophotography,
Dispersing the conductive metal particles in the first thermoplastic resin;
Pulverizing the first thermoplastic resin to form resin particles in which the conductive metal particles are dispersed in the first thermoplastic resin; and
The resin particles are mixed with thermoplastic resin fine particles made of a second thermoplastic resin having a softening point lower than that of the first thermoplastic resin. And a step of forming a coating resin layer made of a thermoplastic resin.
前記被覆樹脂層の表面にシリカ粒子を付着させて、シリカ被覆層を形成する工程を備えていることが望ましい。
It is desirable to provide a step of forming a silica coating layer by attaching silica particles to the surface of the coating resin layer.
また、本発明の積層セラミック電子部品の製造方法は、
請求項1~5のいずれかの導体パターン形成用荷電性粉末を、電子写真法により、セラミックグリーンシート上に所定のパターンとなるように印刷する工程と、
前記セラミックグリーンシート上に印刷された前記導体パターン形成用荷電性粉末を、前記被覆樹脂層を構成する第2の熱可塑性樹脂の軟化点より高く、前記樹脂粒子を構成する第1の熱可塑性樹脂層の軟化点より低い温度で加熱して前記導体パターン形成用荷電性粉末を前記セラミックグリーンシート上に定着させる工程と、
前記セラミックグリーンシートを含む複数のセラミックグリーンシートを積み重ねて圧着することによりマザー積層体を形成する工程と、
前記マザー積層体を、前記被覆樹脂層を構成する第2の熱可塑性樹脂層の軟化点より低い温度で加熱しつつ切断して個々の積層体に分割する工程と、
前記積層体から熱可塑性樹脂を含む有機物成分を除去する脱脂工程と、
脱脂された前記積層体を焼成して焼結体とする焼成工程と
を具備することを特徴としている。 In addition, the method for manufacturing the multilayer ceramic electronic component of the present invention includes:
Printing the conductive powder for forming a conductor pattern according to any one ofclaims 1 to 5 on a ceramic green sheet by electrophotography so as to form a predetermined pattern;
The conductive powder for forming a conductive pattern printed on the ceramic green sheet is higher than the softening point of the second thermoplastic resin constituting the coating resin layer, and the first thermoplastic resin constituting the resin particles Heating at a temperature lower than the softening point of the layer to fix the conductive pattern forming charged powder on the ceramic green sheet; and
Forming a mother laminate by stacking and pressing a plurality of ceramic green sheets including the ceramic green sheet; and
Cutting the mother laminate while heating at a temperature lower than the softening point of the second thermoplastic resin layer constituting the coating resin layer, and dividing the mother laminate into individual laminates;
A degreasing step of removing organic components including the thermoplastic resin from the laminate;
And a firing step in which the degreased laminate is fired to form a sintered body.
請求項1~5のいずれかの導体パターン形成用荷電性粉末を、電子写真法により、セラミックグリーンシート上に所定のパターンとなるように印刷する工程と、
前記セラミックグリーンシート上に印刷された前記導体パターン形成用荷電性粉末を、前記被覆樹脂層を構成する第2の熱可塑性樹脂の軟化点より高く、前記樹脂粒子を構成する第1の熱可塑性樹脂層の軟化点より低い温度で加熱して前記導体パターン形成用荷電性粉末を前記セラミックグリーンシート上に定着させる工程と、
前記セラミックグリーンシートを含む複数のセラミックグリーンシートを積み重ねて圧着することによりマザー積層体を形成する工程と、
前記マザー積層体を、前記被覆樹脂層を構成する第2の熱可塑性樹脂層の軟化点より低い温度で加熱しつつ切断して個々の積層体に分割する工程と、
前記積層体から熱可塑性樹脂を含む有機物成分を除去する脱脂工程と、
脱脂された前記積層体を焼成して焼結体とする焼成工程と
を具備することを特徴としている。 In addition, the method for manufacturing the multilayer ceramic electronic component of the present invention includes:
Printing the conductive powder for forming a conductor pattern according to any one of
The conductive powder for forming a conductive pattern printed on the ceramic green sheet is higher than the softening point of the second thermoplastic resin constituting the coating resin layer, and the first thermoplastic resin constituting the resin particles Heating at a temperature lower than the softening point of the layer to fix the conductive pattern forming charged powder on the ceramic green sheet; and
Forming a mother laminate by stacking and pressing a plurality of ceramic green sheets including the ceramic green sheet; and
Cutting the mother laminate while heating at a temperature lower than the softening point of the second thermoplastic resin layer constituting the coating resin layer, and dividing the mother laminate into individual laminates;
A degreasing step of removing organic components including the thermoplastic resin from the laminate;
And a firing step in which the degreased laminate is fired to form a sintered body.
本発明の導体パターン形成用荷電性粉末は、導電性金属粒子を分散させた、第1の熱可塑性樹脂からなる樹脂粒子を、第1の熱可塑性樹脂より軟化点の低い第2の熱可塑性樹脂からなる被覆樹脂層により被覆するようにしているので、この導体パターン形成用荷電性粉末を用いて形成したパターン(印刷パターン)を加熱して定着させるにあたり、樹脂粒子を構成する第1の熱可塑性樹脂は軟化しないが、被覆樹脂層を構成する第2の熱可塑性樹脂は軟化するような温度に加熱することにより、比較的低い温度で第2の熱可塑性樹脂を軟化させて、定着性を向上させることができる。
The conductive powder for forming a conductive pattern of the present invention is a second thermoplastic resin having a lower softening point than that of the first thermoplastic resin, in which conductive metal particles are dispersed and the first thermoplastic resin is dispersed. Since a coating (printing pattern) formed using the conductive pattern-forming chargeable powder is heated and fixed, the first thermoplastic resin constituting the resin particles is coated with the coating resin layer made of Although the resin is not softened, the second thermoplastic resin constituting the coating resin layer is heated to such a temperature that it softens, thereby softening the second thermoplastic resin at a relatively low temperature and improving the fixability. Can be made.
また、導体パターンを定着させたセラミックグリーンシートを積層して積層体とした後、これを加熱して積層体のバインダ成分(セラミックグリーンシートに含まれるバインダ成分)を軟化させてから切断を行う場合には、樹脂粒子および被覆樹脂層を構成する、第1および第2の熱可塑性樹脂の軟化点よりも低い温度に加熱して切断することにより、導体パターンの定着性が劣化することを防止し、また、切断時の強度不足により樹脂粒子が破壊されてしまうことに起因するデラミネーションの発生を抑制、防止することができる。
Also, after laminating ceramic green sheets to which conductor patterns are fixed to form a laminate, this is heated to soften the binder component of the laminate (binder component contained in the ceramic green sheet) before cutting In this case, the fixing property of the conductor pattern is prevented from being deteriorated by heating to a temperature lower than the softening point of the first and second thermoplastic resins constituting the resin particles and the coating resin layer. Moreover, it is possible to suppress or prevent the occurrence of delamination caused by the resin particles being destroyed due to insufficient strength during cutting.
さらに、樹脂粒子を構成する樹脂として、熱可塑性樹脂を使用しているため、脱バインダ時には軟化し、内部に包含されている導電性粒子が移動可能になるため、緻密で、低抵抗の導体層を形成することが可能になる。
Furthermore, since a thermoplastic resin is used as the resin constituting the resin particles, the resin particles are softened when the binder is removed, and the conductive particles contained therein are movable, so that the conductor layer is dense and has low resistance. Can be formed.
また、樹脂粒子を被覆樹脂層により被覆しているので、導電性金属粒子の露出を抑えて、帯電特性を確保することができる。なお、このように、導電性金属粒子の露出を防止することは、耐電性を付与するための基本条件となる事項であり重要な要件である。
In addition, since the resin particles are coated with the coating resin layer, the exposure of the conductive metal particles can be suppressed and the charging characteristics can be ensured. In addition, preventing the exposure of the conductive metal particles in this way is a matter that is a basic condition for imparting electric resistance and is an important requirement.
また、本発明の導体パターン形成用荷電性粉末においては、公知の種々の荷電制御剤を配合することが可能である。本発明の導体パターン形成用荷電性粉末において用いるのに好適な荷電制御剤としては、例えば、アゾ含有金属化合物、サリチル酸系化合物、アジン系化合物、4級アンモニウム塩などが例示される。
In the charged powder for forming a conductor pattern of the present invention, various known charge control agents can be blended. Examples of the charge control agent suitable for use in the conductive powder for forming a conductor pattern of the present invention include azo-containing metal compounds, salicylic acid compounds, azine compounds, and quaternary ammonium salts.
また、本発明の導体パターン形成用荷電性粉末においては、第1の熱可塑性樹脂の軟化点と、第2の熱可塑性樹脂の軟化点の差を20℃以上とすることにより、定着工程で、被覆樹脂層は軟化するが、その内側の樹脂粒子は軟化しない状態を確実に実現することが可能になるとともに、その後の脱脂などの熱処理の工程で、樹脂粒子を比較的低い温度で速やかに軟化させ、早いタイミングで、導電性金属粒子を流動可能な状態にすることが可能になり、本発明をより実効あらしめることができる。
なお、本発明においては、フローテスター装置による5mm流動開始温度を、熱可塑性樹脂の「軟化点」とした。 Further, in the conductive powder for forming a conductor pattern of the present invention, by setting the difference between the softening point of the first thermoplastic resin and the softening point of the second thermoplastic resin to 20 ° C. or more, in the fixing step, While the coated resin layer softens, it is possible to reliably realize a state in which the resin particles inside do not soften, and in the subsequent heat treatment process such as degreasing, the resin particles are quickly softened at a relatively low temperature. Thus, the conductive metal particles can be made to flow at an early timing, and the present invention can be more effectively realized.
In the present invention, the 5 mm flow start temperature by the flow tester apparatus was defined as the “softening point” of the thermoplastic resin.
なお、本発明においては、フローテスター装置による5mm流動開始温度を、熱可塑性樹脂の「軟化点」とした。 Further, in the conductive powder for forming a conductor pattern of the present invention, by setting the difference between the softening point of the first thermoplastic resin and the softening point of the second thermoplastic resin to 20 ° C. or more, in the fixing step, While the coated resin layer softens, it is possible to reliably realize a state in which the resin particles inside do not soften, and in the subsequent heat treatment process such as degreasing, the resin particles are quickly softened at a relatively low temperature. Thus, the conductive metal particles can be made to flow at an early timing, and the present invention can be more effectively realized.
In the present invention, the 5 mm flow start temperature by the flow tester apparatus was defined as the “softening point” of the thermoplastic resin.
また、被覆樹脂層を形成するにあたって、直径50nm~500nmの熱可塑性樹脂超微粒子を用いた場合、機械的な混合を行うことにより、熱可塑性樹脂超微粒子を樹脂粒子に衝突させ、その際の衝撃力により熱可塑性樹脂超微粒子を変形させて、樹脂粒子の表面にへばりつくように熱可塑性樹脂超微粒子を付着させる方法(機械被覆法)を利用して、効率よく被覆樹脂層を形成することが可能になる。
なお、上記の機械被覆法の場合、樹脂粒子は、直径が熱可塑性樹脂超微粒子の5~10倍、あるいはそれ以上であることが望ましい。 In addition, when forming the coating resin layer, when the thermoplastic resin ultrafine particles having a diameter of 50 nm to 500 nm are used, the thermoplastic resin ultrafine particles collide with the resin particles by mechanical mixing, and the impact at that time It is possible to efficiently form a coated resin layer by using a method (mechanical coating method) in which the thermoplastic resin ultrafine particles are deformed by force and adhered to the surface of the resin particles so that the thermoplastic resin ultrafine particles adhere to the surface. become.
In the case of the above-mentioned mechanical coating method, it is desirable that the resin particles have adiameter 5 to 10 times that of the ultrafine thermoplastic resin particles or more.
なお、上記の機械被覆法の場合、樹脂粒子は、直径が熱可塑性樹脂超微粒子の5~10倍、あるいはそれ以上であることが望ましい。 In addition, when forming the coating resin layer, when the thermoplastic resin ultrafine particles having a diameter of 50 nm to 500 nm are used, the thermoplastic resin ultrafine particles collide with the resin particles by mechanical mixing, and the impact at that time It is possible to efficiently form a coated resin layer by using a method (mechanical coating method) in which the thermoplastic resin ultrafine particles are deformed by force and adhered to the surface of the resin particles so that the thermoplastic resin ultrafine particles adhere to the surface. become.
In the case of the above-mentioned mechanical coating method, it is desirable that the resin particles have a
また、被覆樹脂層の表面にシリカ粒子からなるシリカ被覆層を設けることにより、十分な帯電性を付与することが可能になる。なお、帯電性を向上させる見地からは、疎水化したシリカ微粒子を用いることが好ましい。
Also, by providing a silica coating layer made of silica particles on the surface of the coating resin layer, it becomes possible to impart sufficient chargeability. From the viewpoint of improving the chargeability, it is preferable to use hydrophobized silica fine particles.
なお、シリカ粒子を機械被覆法により付与する場合、被覆樹脂層にシリカ粒子に食い込んで、その露出量が少なくなりすぎると、シリカ被覆層を設ける効果が低減することになるため、かかる見地からは、被覆樹脂層に適度な硬度を持たせて、シリカ粒子が被覆樹脂層に食い込みすぎないようにすることが望ましい。
さらに、熱可塑性樹脂をシリカ微粒子層で覆うことにより、導体パターン形成用荷電性粉末の流動性を確保することが可能になる。 In addition, when applying the silica particles by a mechanical coating method, if the bite into the coating resin layer and the exposure amount is too small, the effect of providing the silica coating layer will be reduced. It is desirable to give the coating resin layer an appropriate hardness so that the silica particles do not bite into the coating resin layer too much.
Furthermore, by covering the thermoplastic resin with the silica fine particle layer, it is possible to ensure the fluidity of the conductive pattern forming chargeable powder.
さらに、熱可塑性樹脂をシリカ微粒子層で覆うことにより、導体パターン形成用荷電性粉末の流動性を確保することが可能になる。 In addition, when applying the silica particles by a mechanical coating method, if the bite into the coating resin layer and the exposure amount is too small, the effect of providing the silica coating layer will be reduced. It is desirable to give the coating resin layer an appropriate hardness so that the silica particles do not bite into the coating resin layer too much.
Furthermore, by covering the thermoplastic resin with the silica fine particle layer, it is possible to ensure the fluidity of the conductive pattern forming chargeable powder.
また、本発明の導体パターン形成用荷電性粉末は、電子写真法によって、セラミックグリーンシート上に導体パターンを印刷する場合に好適に用いることができる。
The charged powder for forming a conductor pattern of the present invention can be suitably used when a conductor pattern is printed on a ceramic green sheet by electrophotography.
また、本発明の導体パターン形成用荷電性粉末が、セラミック基板に導体パターンを印刷するのに用いられるものである場合においては、樹脂粒子に、セラミック基板を構成するセラミックの少なくとも一つの構成成分と同じ成分を含むセラミック粒子を含有させ、また、本発明の導体パターン形成用荷電性粉末が、ガラス基板に導体パターンを印刷するのに用いられるものである場合においては、樹脂粒子に、ガラス基板を構成するガラスの少なくとも一つの構成成分と同じ成分を含むガラス粒子を含有させることにより、形成されるべき導体パターンの、セラミック基板やガラス基板への親和性、固着性を向上させアンカー効果を得ることが可能になり、本発明をより実効あらしめることができる。
例えば、BaO-Al2O3-SiO2系のセラミック材料を主成分とするセラミックグリーンシート上に導体パターンを形成する場合において、導体パターン形成用荷電性粉末を構成する樹脂粒子に、導電性金属粉末などとともに、セラミック粒子としてAl2O3粒子を添加することにより、セラミック基板に対する固着力の大きい導体パターンを形成することが可能になる。 Further, in the case where the conductive powder for forming a conductor pattern of the present invention is used for printing a conductor pattern on a ceramic substrate, at least one component of the ceramic constituting the ceramic substrate is added to the resin particles. In the case where ceramic particles containing the same component are contained and the conductive powder for forming a conductor pattern of the present invention is used for printing a conductor pattern on a glass substrate, the glass substrate is added to the resin particles. By including glass particles containing the same component as at least one component of the glass to be formed, the affinity of the conductive pattern to be formed to the ceramic substrate or the glass substrate and the adhesion can be improved and an anchor effect can be obtained. Thus, the present invention can be made more effective.
For example, in the case where a conductor pattern is formed on a ceramic green sheet mainly composed of a BaO—Al 2 O 3 —SiO 2 based ceramic material, a conductive metal is used as the resin particles constituting the conductive powder for forming the conductor pattern. By adding Al 2 O 3 particles as ceramic particles together with powder and the like, it is possible to form a conductor pattern having a large adhering force to the ceramic substrate.
例えば、BaO-Al2O3-SiO2系のセラミック材料を主成分とするセラミックグリーンシート上に導体パターンを形成する場合において、導体パターン形成用荷電性粉末を構成する樹脂粒子に、導電性金属粉末などとともに、セラミック粒子としてAl2O3粒子を添加することにより、セラミック基板に対する固着力の大きい導体パターンを形成することが可能になる。 Further, in the case where the conductive powder for forming a conductor pattern of the present invention is used for printing a conductor pattern on a ceramic substrate, at least one component of the ceramic constituting the ceramic substrate is added to the resin particles. In the case where ceramic particles containing the same component are contained and the conductive powder for forming a conductor pattern of the present invention is used for printing a conductor pattern on a glass substrate, the glass substrate is added to the resin particles. By including glass particles containing the same component as at least one component of the glass to be formed, the affinity of the conductive pattern to be formed to the ceramic substrate or the glass substrate and the adhesion can be improved and an anchor effect can be obtained. Thus, the present invention can be made more effective.
For example, in the case where a conductor pattern is formed on a ceramic green sheet mainly composed of a BaO—Al 2 O 3 —SiO 2 based ceramic material, a conductive metal is used as the resin particles constituting the conductive powder for forming the conductor pattern. By adding Al 2 O 3 particles as ceramic particles together with powder and the like, it is possible to form a conductor pattern having a large adhering force to the ceramic substrate.
また、本発明の導体パターン形成用荷電性粉末の製造方法では、導電性金属粒子を第1の熱可塑性樹脂に分散させた後、第1の熱可塑性樹脂を粉砕して、導電性金属粒子が第1の熱可塑性樹脂に分散した樹脂粒子を形成し、この樹脂粒子と、第1の熱可塑性樹脂よりも軟化点の低い第2の熱可塑性樹脂からなる熱可塑性樹脂微粒子とを混合し、機械被覆法により樹脂粒子の表面に、第2の熱可塑性樹脂からなる被覆樹脂層を形成するようにしているので、緻密で抵抗の低い導体層を形成することが可能な導体パターン形成用荷電性粉末、すなわち、本発明の要件を備えた導体パターン形成用荷電性粉末を確実に製造することが可能になる。
In the method for producing a conductive powder for forming a conductor pattern according to the present invention, the conductive metal particles are dispersed in the first thermoplastic resin, and then the first thermoplastic resin is pulverized to obtain the conductive metal particles. The resin particles dispersed in the first thermoplastic resin are formed, and the resin particles are mixed with the thermoplastic resin fine particles made of the second thermoplastic resin having a softening point lower than that of the first thermoplastic resin. Since the coating resin layer made of the second thermoplastic resin is formed on the surface of the resin particles by the coating method, a conductive powder for forming a conductor pattern capable of forming a dense and low resistance conductor layer That is, it becomes possible to reliably manufacture the conductive pattern forming powder having the requirements of the present invention.
また、被覆樹脂層の表面にシリカ粒子を付着させて、シリカ被覆層を形成するようにした場合、十分な帯電性を有し、かつ、流動性にすぐれた導体パターン形成用荷電性粉末を確実に得ることが可能になる。
In addition, when the silica coating layer is formed by attaching silica particles to the surface of the coating resin layer, the conductive pattern forming charged powder having sufficient chargeability and excellent fluidity is ensured. To be able to get to.
また、本発明の積層セラミック電子部品の製造方法は、本発明の導体パターン形成用荷電性粉末を、電子写真法によりセラミックグリーンシート上に印刷し、被覆樹脂層を構成する第2の熱可塑性樹脂の軟化点より高く、樹脂粒子を構成する第1の熱可塑性樹脂層の軟化点より低い温度で加熱して、導体パターン形成用荷電性粉末を定着させ、このセラミックグリーンシートを含む複数のセラミックグリーンシートを積層、圧着してマザー積層体を形成し、第2の熱可塑性樹脂層の軟化点より低い温度で加熱しつつ切断して個々の積層体に分割した後、脱脂、焼成を行うようにしているので、緻密で、低抵抗の導体パターンを備えた、特性の良好な積層セラミック電子部品、例えば、セラミック多層基板などを効率よく製造することが可能になる。
Also, the method for producing a multilayer ceramic electronic component of the present invention includes a second thermoplastic resin that forms a coating resin layer by printing the conductive pattern forming charged powder of the present invention on a ceramic green sheet by electrophotography. Heating is performed at a temperature higher than the softening point of the first thermoplastic resin layer constituting the resin particles and lower than the softening point of the first thermoplastic resin layer to fix the conductive pattern forming charged powder. Sheets are laminated and pressure-bonded to form a mother laminate, cut while heating at a temperature lower than the softening point of the second thermoplastic resin layer, and divided into individual laminates, followed by degreasing and firing. Therefore, it is possible to efficiently manufacture a multilayer ceramic electronic component having a good characteristic with a dense and low resistance conductor pattern, such as a ceramic multilayer substrate. It made.
以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。
Hereinafter, the features of the present invention will be described in more detail with reference to examples of the present invention.
この実施例では、本発明の第1の導体パターン形成用荷電性粉末を例にとって説明する。
In this embodiment, the first conductive pattern forming charged powder of the present invention will be described as an example.
図1は、本発明の一実施例にかかる導体パターン形成用荷電性粉末の構成を示す図である。
この実施例の導体パターン形成用荷電性粉末10は、電子写真法により、導体パターンを印刷する際に使用される導体パターン形成用荷電性粉末である。 FIG. 1 is a diagram showing a configuration of a conductive pattern forming powder according to an embodiment of the present invention.
Theconductive powder 10 for forming a conductor pattern of this embodiment is a conductive powder for forming a conductor pattern used when printing a conductor pattern by electrophotography.
この実施例の導体パターン形成用荷電性粉末10は、電子写真法により、導体パターンを印刷する際に使用される導体パターン形成用荷電性粉末である。 FIG. 1 is a diagram showing a configuration of a conductive pattern forming powder according to an embodiment of the present invention.
The
そして、この導体パターン形成用荷電性粉末10は、平均粒径が1μmの銅粒子(導電性金属粒子)1と、粒径が0.5μmのセラミック粒子(この実施例では、アルミナ粒子)2と、荷電制御剤(この実施例ではアゾ含有金属化合物)6とを、軟化点が約180℃のポリエステル樹脂(本発明における第1の熱可塑性樹脂)3aに分散させてなる樹脂粒子3の表面に、上記第1の熱可塑性樹脂(軟化点が約180℃のポリエステル樹脂)3aより軟化点の低い第2の熱可塑性樹脂(軟化点が120℃のアクリル樹脂)4aからなる被覆樹脂層4と、被覆樹脂層4を覆うように配設されたシリカ粒子(シリカ超微粒子)5aからなるシリカ被覆層5とを備えている。
The conductive pattern forming chargeable powder 10 includes copper particles (conductive metal particles) 1 having an average particle size of 1 μm, ceramic particles (alumina particles in this embodiment) 2 having a particle size of 0.5 μm, and The charge control agent (in this embodiment, an azo-containing metal compound) 6 is dispersed on the surface of the resin particle 3 in which the softening point is dispersed in a polyester resin 3a having a softening point of about 180 ° C. (first thermoplastic resin in the present invention). A coating resin layer 4 comprising a second thermoplastic resin (acrylic resin having a softening point of 120 ° C.) 4a having a softening point lower than that of the first thermoplastic resin (polyester resin having a softening point of about 180 ° C.) 3a; And a silica coating layer 5 made of silica particles (silica ultrafine particles) 5 a disposed so as to cover the coating resin layer 4.
この導体パターン形成用荷電性粉末10は、第1の熱可塑性樹脂3aからなる樹脂粒子3を、第1の熱可塑性樹脂3aより軟化点の低い第2の熱可塑性樹脂4aからなる被覆樹脂層4により被覆するようにしているので、この導体パターン形成用荷電性粉末10を用いて形成した導体パターン(印刷パターン)を加熱して定着させる工程において、第1の熱可塑性樹脂3aは軟化しないが、第2の熱可塑性樹脂4aは軟化するような温度に加熱することにより、比較的低い温度で第2の熱可塑性樹脂4aを軟化させて、定着性を向上させることができる。
The conductive pattern forming chargeable powder 10 includes a coating resin layer 4 made of a second thermoplastic resin 4a having a softening point lower than that of the first thermoplastic resin 3a. In the process of heating and fixing the conductor pattern (printing pattern) formed using the conductive pattern forming chargeable powder 10, the first thermoplastic resin 3a is not softened. By heating the second thermoplastic resin 4a to a temperature at which it softens, the second thermoplastic resin 4a can be softened at a relatively low temperature and the fixability can be improved.
また、導体パターン(印刷パターン)を定着させたセラミックグリーンシートを積層して積層体とした後、これを加熱して積層体のバインダ成分(セラミックグリーンシート中のバインダ成分)を軟化させてから切断を行う場合においては、樹脂粒子3および被覆樹脂層4を構成する、第1および第2の熱可塑性樹脂3a,4aの軟化点よりも低い温度に加熱して切断することにより、導体パターンの定着性が劣化することを防止するとともに、切断時の強度不足により樹脂粒子3が破壊されてしまうことに起因するデラミネーションの発生を抑制することができる。
Also, after laminating ceramic green sheets with a conductive pattern (printing pattern) fixed thereon to form a laminate, this is heated to soften the binder component of the laminate (binder component in the ceramic green sheet) before cutting. In the case of performing the above, the conductor pattern is fixed by heating and cutting to a temperature lower than the softening point of the first and second thermoplastic resins 3a and 4a constituting the resin particles 3 and the coating resin layer 4. It is possible to prevent the deterioration of the properties and to suppress the occurrence of delamination caused by the resin particles 3 being destroyed due to insufficient strength at the time of cutting.
さらに、樹脂粒子3を構成する第1の熱可塑性樹脂は、第2の熱可塑性樹脂よりも高軟化点のものではあるが、熱可塑性樹脂3aであるため、脱バインダ時には軟化し、内部に包含している導電性金属粒子1が移動可能になるため、緻密で、低抵抗の導電層を形成することができる。
Furthermore, although the first thermoplastic resin constituting the resin particle 3 has a higher softening point than the second thermoplastic resin, it is the thermoplastic resin 3a, so that it softens at the time of binder removal and is included inside. Since the conductive metal particles 1 are movable, a dense and low-resistance conductive layer can be formed.
なお、樹脂粒子3が被覆樹脂層4により被覆されているので、導電性金属粒子1の露出を防止して、帯電特性を持たせることができる。そして、このことを前提として、さらに荷電制御剤6が配合され、かつ、被覆樹脂層4を覆うようにシリカ被覆層5が配設されていることから、所望の帯電特性を持たせることができる。
In addition, since the resin particles 3 are covered with the coating resin layer 4, the conductive metal particles 1 can be prevented from being exposed, and charging characteristics can be imparted. On the premise of this, since the charge control agent 6 is further blended and the silica coating layer 5 is disposed so as to cover the coating resin layer 4, desired charging characteristics can be provided. .
また、この実施例の導体パターン形成用荷電性粉末10は、樹脂粒子3が、被印刷物であるセラミックグリーンシートを構成するセラミック材料の一つであるアルミナ粒子2を含有しているので、被印刷物に対する、親和力、固着力の大きい導体層を形成することができる。
In the conductive pattern forming chargeable powder 10 of this embodiment, the resin particles 3 contain alumina particles 2 that are one of ceramic materials constituting the ceramic green sheet that is the printed material. It is possible to form a conductor layer having a large affinity and adhesion strength.
次に、この導体パターン形成用荷電性粉末の製造方法について説明する。
(1)導電性金属粒子である、平均粒径が1μmの銅粒子と、粒径が0.5μmのセラミック粒子(この実施例では、アルミナ粒子)と、軟化点が約180℃のポリエステル樹脂(本発明における第1の熱可塑性樹脂)と、荷電制御剤(この実施例ではアゾ含有金属化合物)とを、無機材料と有機材料の比率が重量比で9:1となるように秤取し、混合した。
なお、荷電制御剤としては、上記のアゾ含有金属化合物のほかにも、サリチル酸系化合物、アジン系化合物、4級アンモニウム塩などを用いることが可能である。 Next, a method for producing the conductive pattern forming powder will be described.
(1) Copper particles having an average particle diameter of 1 μm, ceramic particles having an average particle diameter of 0.5 μm (in this example, alumina particles), and a polyester resin having a softening point of about 180 ° C. The first thermoplastic resin in the present invention) and the charge control agent (azo-containing metal compound in this example) are weighed so that the ratio of the inorganic material to the organic material is 9: 1 by weight, Mixed.
In addition to the azo-containing metal compound, a salicylic acid compound, an azine compound, a quaternary ammonium salt, or the like can be used as the charge control agent.
(1)導電性金属粒子である、平均粒径が1μmの銅粒子と、粒径が0.5μmのセラミック粒子(この実施例では、アルミナ粒子)と、軟化点が約180℃のポリエステル樹脂(本発明における第1の熱可塑性樹脂)と、荷電制御剤(この実施例ではアゾ含有金属化合物)とを、無機材料と有機材料の比率が重量比で9:1となるように秤取し、混合した。
なお、荷電制御剤としては、上記のアゾ含有金属化合物のほかにも、サリチル酸系化合物、アジン系化合物、4級アンモニウム塩などを用いることが可能である。 Next, a method for producing the conductive pattern forming powder will be described.
(1) Copper particles having an average particle diameter of 1 μm, ceramic particles having an average particle diameter of 0.5 μm (in this example, alumina particles), and a polyester resin having a softening point of about 180 ° C. The first thermoplastic resin in the present invention) and the charge control agent (azo-containing metal compound in this example) are weighed so that the ratio of the inorganic material to the organic material is 9: 1 by weight, Mixed.
In addition to the azo-containing metal compound, a salicylic acid compound, an azine compound, a quaternary ammonium salt, or the like can be used as the charge control agent.
(2)それから、この混合物をニーダーに投入し、170℃で30分間混練した。
(2) Then, this mixture was put into a kneader and kneaded at 170 ° C. for 30 minutes.
(3)次に、得られた混錬物を、ジェットミルを用いて微粉砕することにより、導電性金属粒子、アルミナ粒子、荷電制御剤がポリエステル樹脂(第1の熱可塑性樹脂)に分散した樹脂粒子を得た。
(3) Next, the obtained kneaded material was finely pulverized using a jet mill, whereby conductive metal particles, alumina particles, and a charge control agent were dispersed in the polyester resin (first thermoplastic resin). Resin particles were obtained.
(4)それから、この樹脂粒子と、上記のポリエステル樹脂(第1の熱可塑性樹脂)よりも低い温度(120℃)で軟化する、直径が約100nmのアクリル樹脂超微粒子を混合し、混合物を三井鉱山製MPミキサーに投入して、5000rpmの回転条件で5分間攪拌することにより、図1に示すように、ポリエステル樹脂(第1の熱可塑性樹脂)3a中に、導電性金属粒子1,アルミナ粒子2、荷電制御剤6が分散した樹脂粒子3を備え、かつ、その表面が、アクリル樹脂(第2の熱可塑性樹脂)4aからなる被覆樹脂層4により被覆された被覆粒子7を得た。
(4) Then, the resin particles are mixed with acrylic resin ultrafine particles having a diameter of about 100 nm that are softened at a temperature (120 ° C.) lower than that of the polyester resin (first thermoplastic resin), and the mixture is mixed with Mitsui. By putting it into a mine MP mixer and stirring for 5 minutes at a rotational speed of 5000 rpm, as shown in FIG. 1, in the polyester resin (first thermoplastic resin) 3a, conductive metal particles 1 and alumina particles. 2. The coated particles 7 having the resin particles 3 in which the charge control agent 6 was dispersed and having the surface coated with the coated resin layer 4 made of an acrylic resin (second thermoplastic resin) 4a were obtained.
(5)それから、この被覆粒子7にさらに混合処理によって直径7nmのシリカ超微粒子(シリカ粒子)5aを被覆樹脂層4の表面に付着させた。
このシリカ超微粒子5aは、混合の際に被覆樹脂層4に一部が食い込むことにより、被覆樹脂層4の表面に保持され、シリカ被覆層5が形成される。
なお、シリカ粒子としては、上述のようにシリカ超微粒子を用いることが望ましいが、その場合、直径が5nm~20nmのものを用いることが望ましい。 (5) Then, ultrafine silica particles (silica particles) 5 a having a diameter of 7 nm were adhered to the surface of the coatedresin layer 4 by further mixing the coated particles 7.
Part of the silicaultrafine particles 5a bites into the coating resin layer 4 during mixing, so that the silica coating layer 5 is formed on the surface of the coating resin layer 4.
As the silica particles, it is desirable to use silica ultrafine particles as described above. In that case, it is desirable to use particles having a diameter of 5 nm to 20 nm.
このシリカ超微粒子5aは、混合の際に被覆樹脂層4に一部が食い込むことにより、被覆樹脂層4の表面に保持され、シリカ被覆層5が形成される。
なお、シリカ粒子としては、上述のようにシリカ超微粒子を用いることが望ましいが、その場合、直径が5nm~20nmのものを用いることが望ましい。 (5) Then, ultrafine silica particles (silica particles) 5 a having a diameter of 7 nm were adhered to the surface of the coated
Part of the silica
As the silica particles, it is desirable to use silica ultrafine particles as described above. In that case, it is desirable to use particles having a diameter of 5 nm to 20 nm.
これにより、図1に示すように、第1の熱可塑性樹脂3aからなる樹脂粒子3の表面が、アクリル樹脂(第2の熱可塑性樹脂)4aからなる被覆樹脂層4により被覆され、さらに、被覆樹脂層4がシリカ被覆層5により被覆された構造を有する導体パターン形成用荷電性粉末10が得られる。
Thereby, as shown in FIG. 1, the surface of the resin particle 3 made of the first thermoplastic resin 3a is covered with the covering resin layer 4 made of the acrylic resin (second thermoplastic resin) 4a. A conductive pattern forming chargeable powder 10 having a structure in which the resin layer 4 is coated with the silica coating layer 5 is obtained.
なお、この導体パターン形成用荷電性粉末10を製造する工程において、帯電特性を測定したところ、被覆樹脂層4を形成する前の樹脂粒子3の帯電特性が-4.8μC/gであったのに対し、被覆樹脂層4の形成後では、-12.8μC/gであり、負電荷の帯電量が大幅に向上することが確認された。
In the process of producing the conductive pattern forming chargeable powder 10, the charging characteristics were measured. The charging characteristics of the resin particles 3 before forming the coating resin layer 4 were −4.8 μC / g. On the other hand, after the formation of the coating resin layer 4, it was −12.8 μC / g, and it was confirmed that the charge amount of the negative charge was greatly improved.
これは絶縁体であるアクリル樹脂からなる被覆樹脂層4により、樹脂粒子3の表面に露出した導電性金属粒子1の露出面が被覆され、絶縁性が向上したために負帯電量が向上したものと考えられる。
This is because the exposed surface of the conductive metal particle 1 exposed on the surface of the resin particle 3 is coated with the coating resin layer 4 made of an acrylic resin as an insulator, and the negative charge amount is improved because the insulation is improved. Conceivable.
[特性の評価]
樹脂粒子を構成する第1の熱可塑性樹脂と、被覆樹脂層を構成する第2の熱可塑性樹脂として、表1に示すような種々の軟化点のものを用意し、実施例の場合と同じ条件で、図1に示すような構造を有する導体パターン形成用荷電性粉末を作製した。
そして、これらの導体パターン形成用荷電性粉末について、流動性、定着性、帯電性を調べた。 [Characteristic evaluation]
As the first thermoplastic resin constituting the resin particles and the second thermoplastic resin constituting the coating resin layer, those having various softening points as shown in Table 1 were prepared, and the same conditions as in the examples Thus, a chargeable powder for forming a conductor pattern having a structure as shown in FIG. 1 was produced.
And about these chargeable powders for conductor pattern formation, fluidity | liquidity, fixing property, and charging property were investigated.
樹脂粒子を構成する第1の熱可塑性樹脂と、被覆樹脂層を構成する第2の熱可塑性樹脂として、表1に示すような種々の軟化点のものを用意し、実施例の場合と同じ条件で、図1に示すような構造を有する導体パターン形成用荷電性粉末を作製した。
そして、これらの導体パターン形成用荷電性粉末について、流動性、定着性、帯電性を調べた。 [Characteristic evaluation]
As the first thermoplastic resin constituting the resin particles and the second thermoplastic resin constituting the coating resin layer, those having various softening points as shown in Table 1 were prepared, and the same conditions as in the examples Thus, a chargeable powder for forming a conductor pattern having a structure as shown in FIG. 1 was produced.
And about these chargeable powders for conductor pattern formation, fluidity | liquidity, fixing property, and charging property were investigated.
また、比較のため、樹脂粒子を構成する第1の樹脂として、熱可塑性ではなく、熱硬化性のポリエステル系樹脂(ポリエステル系熱硬化性樹脂)を用い、被覆樹脂層を構成する第2の熱可塑性樹脂として、上記実施例の場合と同じ、熱可塑性樹脂であるアクリル樹脂の超微粒子を用いて導体パターン形成用荷電性粉末を作製し、その特性を評価した。
その結果を表1に示す。 For comparison, as the first resin constituting the resin particles, a thermosetting polyester resin (polyester thermosetting resin) is used instead of thermoplastic, and the second heat constituting the coating resin layer is used. As the plastic resin, a conductive powder for forming a conductive pattern was prepared using the same ultrafine particles of an acrylic resin as a thermoplastic resin as in the above-described example, and the characteristics thereof were evaluated.
The results are shown in Table 1.
その結果を表1に示す。 For comparison, as the first resin constituting the resin particles, a thermosetting polyester resin (polyester thermosetting resin) is used instead of thermoplastic, and the second heat constituting the coating resin layer is used. As the plastic resin, a conductive powder for forming a conductive pattern was prepared using the same ultrafine particles of an acrylic resin as a thermoplastic resin as in the above-described example, and the characteristics thereof were evaluated.
The results are shown in Table 1.
また、表1に示す各導体パターン形成用荷電性粉末を用いて、以下の手順で積層体(セラミック多層基板)を作製した。
(1)表1に示す各導体パターン形成用荷電性粉末を、電子写真法により、BaO-Al2O3-SiO2系のセラミック材料を主成分とするセラミックグリーンシート上に所定のパターンとなるように印刷する。 Moreover, the laminated body (ceramic multilayer board | substrate) was produced in the following procedures using the conductive powder for each conductor pattern formation shown in Table 1.
(1) Each conductive pattern forming chargeable powder shown in Table 1 has a predetermined pattern on a ceramic green sheet mainly composed of a BaO—Al 2 O 3 —SiO 2 ceramic material by electrophotography. To print.
(1)表1に示す各導体パターン形成用荷電性粉末を、電子写真法により、BaO-Al2O3-SiO2系のセラミック材料を主成分とするセラミックグリーンシート上に所定のパターンとなるように印刷する。 Moreover, the laminated body (ceramic multilayer board | substrate) was produced in the following procedures using the conductive powder for each conductor pattern formation shown in Table 1.
(1) Each conductive pattern forming chargeable powder shown in Table 1 has a predetermined pattern on a ceramic green sheet mainly composed of a BaO—Al 2 O 3 —SiO 2 ceramic material by electrophotography. To print.
(2)セラミックグリーンシート上に印刷された導体パターン形成用荷電性粉末を、被覆樹脂層を構成する第2の熱可塑性樹脂の軟化点より高く、樹脂粒子を構成する第1の熱可塑性樹脂層の軟化点より低い温度で加熱して導体パターン形成用荷電性粉末をセラミックグリーンシート上に定着させる。
(2) The first thermoplastic resin layer constituting the resin particles, wherein the conductive pattern forming charged powder printed on the ceramic green sheet is higher than the softening point of the second thermoplastic resin constituting the coating resin layer. The conductive pattern forming charged powder is fixed on the ceramic green sheet by heating at a temperature lower than the softening point.
(3)導体パターン形成用荷電性粉末を定着させたセラミックグリーンシートを含む複数のセラミックグリーンシートを積み重ねて圧着することによりマザー積層体を形成する。
なお、ここでは、セラミックグリーンシートとして、必要に応じて層間接続のためのビアホール用貫通孔が形成され、そこにビアホール導体が配設された構造のものを用い、所定の導体パターンを、ビアホール導体を介して、層間接続するようにした。 (3) A mother laminated body is formed by stacking and pressing a plurality of ceramic green sheets including ceramic green sheets to which the conductive pattern forming chargeable powder is fixed.
Here, as a ceramic green sheet, a via hole through hole for interlayer connection is formed as necessary, and a via hole conductor is disposed there, and a predetermined conductor pattern is used as a via hole conductor. Interlayer connection was made through this.
なお、ここでは、セラミックグリーンシートとして、必要に応じて層間接続のためのビアホール用貫通孔が形成され、そこにビアホール導体が配設された構造のものを用い、所定の導体パターンを、ビアホール導体を介して、層間接続するようにした。 (3) A mother laminated body is formed by stacking and pressing a plurality of ceramic green sheets including ceramic green sheets to which the conductive pattern forming chargeable powder is fixed.
Here, as a ceramic green sheet, a via hole through hole for interlayer connection is formed as necessary, and a via hole conductor is disposed there, and a predetermined conductor pattern is used as a via hole conductor. Interlayer connection was made through this.
(4)それから、マザー積層体を、被覆樹脂層を構成する第2の熱可塑性樹脂層の軟化点より低い温度に加熱しつつ切断して個々の積層体に分割する。
(4) Then, the mother laminate is cut while being heated to a temperature lower than the softening point of the second thermoplastic resin layer constituting the coating resin layer, and divided into individual laminates.
(5)次に、積層体を所定の温度で熱処理して、積層体から熱可塑性樹脂を含む有機物成分を除去する。
(5) Next, the laminate is heat-treated at a predetermined temperature to remove organic components including the thermoplastic resin from the laminate.
(6)その後、熱可塑性樹脂を含む有機物成分が除去された(脱脂された)積層体を焼成する。
これにより、例えば、図2に模式的に示すように、絶縁層であるセラミック層21と導体パターン22とが積層され、所定の導体パターン22がビアホール導体23により接続された構造を有するセラミック多層基板(積層体)20が得られる。 (6) Thereafter, the laminate from which the organic component including the thermoplastic resin has been removed (defatted) is fired.
Thereby, for example, as schematically shown in FIG. 2, a ceramic multilayer substrate having a structure in which aceramic layer 21 that is an insulating layer and a conductor pattern 22 are laminated and a predetermined conductor pattern 22 is connected by a via-hole conductor 23. (Laminate) 20 is obtained.
これにより、例えば、図2に模式的に示すように、絶縁層であるセラミック層21と導体パターン22とが積層され、所定の導体パターン22がビアホール導体23により接続された構造を有するセラミック多層基板(積層体)20が得られる。 (6) Thereafter, the laminate from which the organic component including the thermoplastic resin has been removed (defatted) is fired.
Thereby, for example, as schematically shown in FIG. 2, a ceramic multilayer substrate having a structure in which a
そして、このセラミック多層基板(積層体)について、構造欠陥の有無および導体パターン(導体層)の空隙率を調べ、評価した(試料数:100)。
その結果を、表1に併せて示す。 And about this ceramic multilayer substrate (laminated body), the presence or absence of the structural defect and the porosity of the conductor pattern (conductor layer) were investigated and evaluated (number of samples: 100).
The results are also shown in Table 1.
その結果を、表1に併せて示す。 And about this ceramic multilayer substrate (laminated body), the presence or absence of the structural defect and the porosity of the conductor pattern (conductor layer) were investigated and evaluated (number of samples: 100).
The results are also shown in Table 1.
なお、表1の、導体パターン形成用荷電性粉末に関する流動性、定着性、帯電性の各特性は、以下の方法により評価した。
<流動性>
50mLメスシリンダーに導体パターン形成用荷電性粉末を3g投入し、初期の充填高さ(軸方向の距離)に対する、メスシリンダーを横に倒したときの、メスシリンダーの内側底面から、導体パターン形成用荷電性粉末の先端が到達した位置までの、メスシリンダーの軸方向の距離の比率を調べ、この値から流動性を評価した。なお、◎,○,△,×による流動性の評価結果と、上記比率の値との関係は以下の通りである。
◎:2.0以上
○:1.5~2.0未満
△:1.2~1.5未満
×:1.2未満 In addition, each characteristic of the fluidity | liquidity regarding the chargeable powder for conductor pattern formation of Table 1, a fixing property, and charging property was evaluated with the following method.
<Fluidity>
3 g of charged powder for conductor pattern formation is put into a 50 mL graduated cylinder, and the conductor pattern is formed from the inner bottom surface of the graduated cylinder when the graduated cylinder is tilted sideways with respect to the initial filling height (axial distance). The ratio of the axial distance of the graduated cylinder to the position where the tip of the chargeable powder reached was examined, and the fluidity was evaluated from this value. In addition, the relationship between the evaluation result of fluidity by ◎, ○, Δ, × and the value of the above ratio is as follows.
◎: 2.0 or more ○: 1.5 to less than 2.0 △: Less than 1.2 to 1.5 ×: Less than 1.2
<流動性>
50mLメスシリンダーに導体パターン形成用荷電性粉末を3g投入し、初期の充填高さ(軸方向の距離)に対する、メスシリンダーを横に倒したときの、メスシリンダーの内側底面から、導体パターン形成用荷電性粉末の先端が到達した位置までの、メスシリンダーの軸方向の距離の比率を調べ、この値から流動性を評価した。なお、◎,○,△,×による流動性の評価結果と、上記比率の値との関係は以下の通りである。
◎:2.0以上
○:1.5~2.0未満
△:1.2~1.5未満
×:1.2未満 In addition, each characteristic of the fluidity | liquidity regarding the chargeable powder for conductor pattern formation of Table 1, a fixing property, and charging property was evaluated with the following method.
<Fluidity>
3 g of charged powder for conductor pattern formation is put into a 50 mL graduated cylinder, and the conductor pattern is formed from the inner bottom surface of the graduated cylinder when the graduated cylinder is tilted sideways with respect to the initial filling height (axial distance). The ratio of the axial distance of the graduated cylinder to the position where the tip of the chargeable powder reached was examined, and the fluidity was evaluated from this value. In addition, the relationship between the evaluation result of fluidity by ◎, ○, Δ, × and the value of the above ratio is as follows.
◎: 2.0 or more ○: 1.5 to less than 2.0 △: Less than 1.2 to 1.5 ×: Less than 1.2
<定着性>
印刷した導体パターン形成用荷電性粉末を、被覆樹脂層を構成する第2の熱可塑性樹脂の軟化点より高く、樹脂粒子を構成する第1の熱可塑性樹脂層の軟化点より低い温度で加熱してセラミックグリーンシート上に定着させた後、指でこすって導体パターン形成用荷電性粉末(印刷膜)が指に移行する程度を調べることにより定着性を評価した。なお、定着性の◎,○,△,×による評価は以下の基準による。
◎:定着後に指で擦っても印刷膜が全くとれない。
○:定着後に指で擦ると薄っすらと導体パターン形成用荷電性粉末が指に付くがパターン欠落は無い。
△:定着後に擦ると指に導体パターン形成用荷電性粉末が付着し、パターンが一部欠落する
×:定着後に擦ると指に導体パターン形成用荷電性粉末が付着し、パターンが全部欠落する。 <Fixability>
The printed conductive pattern-forming charged powder is heated at a temperature higher than the softening point of the second thermoplastic resin constituting the coating resin layer and lower than the softening point of the first thermoplastic resin layer constituting the resin particles. After fixing on the ceramic green sheet, the fixability was evaluated by examining the extent to which the conductive pattern forming charged powder (printed film) was transferred to the finger by rubbing with a finger. In addition, evaluation by ◎, ○, Δ, × of fixability is based on the following criteria.
A: The printed film cannot be removed even when rubbed with a finger after fixing.
◯: When rubbing with a finger after fixing, the conductive pattern forming charged powder adheres to the finger even though there is no pattern omission.
Δ: Conductive powder for forming a conductor pattern adheres to a finger when rubbed after fixing, and a part of the pattern is missing. ×: Charged powder for forming a conductor pattern adheres to a finger when rubbed after fixing, and the entire pattern is missing.
印刷した導体パターン形成用荷電性粉末を、被覆樹脂層を構成する第2の熱可塑性樹脂の軟化点より高く、樹脂粒子を構成する第1の熱可塑性樹脂層の軟化点より低い温度で加熱してセラミックグリーンシート上に定着させた後、指でこすって導体パターン形成用荷電性粉末(印刷膜)が指に移行する程度を調べることにより定着性を評価した。なお、定着性の◎,○,△,×による評価は以下の基準による。
◎:定着後に指で擦っても印刷膜が全くとれない。
○:定着後に指で擦ると薄っすらと導体パターン形成用荷電性粉末が指に付くがパターン欠落は無い。
△:定着後に擦ると指に導体パターン形成用荷電性粉末が付着し、パターンが一部欠落する
×:定着後に擦ると指に導体パターン形成用荷電性粉末が付着し、パターンが全部欠落する。 <Fixability>
The printed conductive pattern-forming charged powder is heated at a temperature higher than the softening point of the second thermoplastic resin constituting the coating resin layer and lower than the softening point of the first thermoplastic resin layer constituting the resin particles. After fixing on the ceramic green sheet, the fixability was evaluated by examining the extent to which the conductive pattern forming charged powder (printed film) was transferred to the finger by rubbing with a finger. In addition, evaluation by ◎, ○, Δ, × of fixability is based on the following criteria.
A: The printed film cannot be removed even when rubbed with a finger after fixing.
◯: When rubbing with a finger after fixing, the conductive pattern forming charged powder adheres to the finger even though there is no pattern omission.
Δ: Conductive powder for forming a conductor pattern adheres to a finger when rubbed after fixing, and a part of the pattern is missing. ×: Charged powder for forming a conductor pattern adheres to a finger when rubbed after fixing, and the entire pattern is missing.
<帯電性>
ブローオフ帯電量測定装置により導体パターン形成用荷電性粉末の帯電量を調べ、帯電性を評価した。なお、帯電性の◎,○,△,×による評価は以下の基準による。
◎:-10μC/g以上
○:-7~-10μC/g未満
△:-6~-7μC/g未満
×:-6μC/g未満
また、表1の、積層体に関する構造欠陥、空隙率の各特性は、以下の方法により評価した。 <Chargeability>
The charge amount of the chargeable powder for forming a conductor pattern was examined with a blow-off charge amount measuring device, and the chargeability was evaluated. In addition, the evaluation based on ◎, ○, Δ, and × of the charging property is based on the following criteria.
A: -10 μC / g or more B: −7 to less than −10 μC / g Δ: −6 to less than −7 μC / g ×: less than −6 μC / g Also, each of the structural defects and porosity of the laminate shown in Table 1 The characteristics were evaluated by the following method.
ブローオフ帯電量測定装置により導体パターン形成用荷電性粉末の帯電量を調べ、帯電性を評価した。なお、帯電性の◎,○,△,×による評価は以下の基準による。
◎:-10μC/g以上
○:-7~-10μC/g未満
△:-6~-7μC/g未満
×:-6μC/g未満
また、表1の、積層体に関する構造欠陥、空隙率の各特性は、以下の方法により評価した。 <Chargeability>
The charge amount of the chargeable powder for forming a conductor pattern was examined with a blow-off charge amount measuring device, and the chargeability was evaluated. In addition, the evaluation based on ◎, ○, Δ, and × of the charging property is based on the following criteria.
A: -10 μC / g or more B: −7 to less than −10 μC / g Δ: −6 to less than −7 μC / g ×: less than −6 μC / g Also, each of the structural defects and porosity of the laminate shown in Table 1 The characteristics were evaluated by the following method.
<構造欠陥>
焼成後の積層体の断面を金属顕微鏡で観察することにより評価した。なお、構造欠陥の◎,○,△,×による評価は以下の基準による。
◎:まったく層ハガレが認められない。
○:全試料のうち1~20%の試料において層ハガレの発生が認められた。
△:全試料のうち20~30%の試料において層ハガレの発生が認められた。
×:全試料のうち30%以上の試料において層ハガレの発生が認められた。 <Structural defects>
Evaluation was made by observing the cross section of the fired laminate with a metallographic microscope. The evaluation of structural defects by ◎, ○, Δ, × is based on the following criteria.
(Double-circle): Layer peeling is not recognized at all.
○: Generation of layer peeling was observed in 1 to 20% of all samples.
Δ: Generation of layer peeling was observed in 20 to 30% of all samples.
X: Generation of layer peeling was observed in 30% or more of all samples.
焼成後の積層体の断面を金属顕微鏡で観察することにより評価した。なお、構造欠陥の◎,○,△,×による評価は以下の基準による。
◎:まったく層ハガレが認められない。
○:全試料のうち1~20%の試料において層ハガレの発生が認められた。
△:全試料のうち20~30%の試料において層ハガレの発生が認められた。
×:全試料のうち30%以上の試料において層ハガレの発生が認められた。 <Structural defects>
Evaluation was made by observing the cross section of the fired laminate with a metallographic microscope. The evaluation of structural defects by ◎, ○, Δ, × is based on the following criteria.
(Double-circle): Layer peeling is not recognized at all.
○: Generation of layer peeling was observed in 1 to 20% of all samples.
Δ: Generation of layer peeling was observed in 20 to 30% of all samples.
X: Generation of layer peeling was observed in 30% or more of all samples.
<空隙率>
焼成後の積層体の断面を金属顕微鏡で観察して、導体層(電極)へのボイドの発生状態を調べることにより評価した。なお、空隙率の◎,○,△,×による評価は以下の基準による。
◎:電極にボイドが認められない。
○:全試料のうち1~20%の試料においてボイドの発生が認められた。
△:全試料のうち20~30%の試料においてボイドの発生が認められた。
×:全試料のうち30%以上の試料においてボイドの発生が認められた。 <Porosity>
Evaluation was made by observing the cross section of the fired laminate with a metal microscope and examining the occurrence of voids on the conductor layer (electrode). In addition, the evaluation by the porosity of ◎, ○, Δ, × is based on the following criteria.
(Double-circle): A void is not recognized by an electrode.
○: Generation of voids was observed in 1 to 20% of all samples.
Δ: Generation of voids was observed in 20 to 30% of all samples.
X: Generation of voids was observed in 30% or more of all samples.
焼成後の積層体の断面を金属顕微鏡で観察して、導体層(電極)へのボイドの発生状態を調べることにより評価した。なお、空隙率の◎,○,△,×による評価は以下の基準による。
◎:電極にボイドが認められない。
○:全試料のうち1~20%の試料においてボイドの発生が認められた。
△:全試料のうち20~30%の試料においてボイドの発生が認められた。
×:全試料のうち30%以上の試料においてボイドの発生が認められた。 <Porosity>
Evaluation was made by observing the cross section of the fired laminate with a metal microscope and examining the occurrence of voids on the conductor layer (electrode). In addition, the evaluation by the porosity of ◎, ○, Δ, × is based on the following criteria.
(Double-circle): A void is not recognized by an electrode.
○: Generation of voids was observed in 1 to 20% of all samples.
Δ: Generation of voids was observed in 20 to 30% of all samples.
X: Generation of voids was observed in 30% or more of all samples.
表1に示すように、試料番号1~13の本発明の実施例にかかる導体パターン形成用荷電性粉末は、実用可能な特性(流動性、定着性、帯電性の各特性)を備えていることが確認された。
As shown in Table 1, the conductive pattern-forming chargeable powders according to the examples of the present invention with sample numbers 1 to 13 have practical characteristics (fluidity, fixability, and chargeability characteristics). It was confirmed.
また、本発明の導体パターン形成用荷電性粉末を用いて形成した導体パターンを備えるセラミックグリーンシートを積層して作製した積層体(セラミック多層基板)も、構造欠陥および空隙率に関し、実用性を備えたものであることが確認された。
In addition, a laminate (ceramic multilayer substrate) produced by laminating ceramic green sheets having a conductor pattern formed using the conductive powder for forming a conductor pattern of the present invention is also practical with regard to structural defects and porosity. It was confirmed that
一方、比較例の場合のように、樹脂粒子を構成する第1の樹脂として、ポリエステル系熱硬化性を用い、被覆樹脂層を構成する第2の熱可塑性樹脂として、熱可塑性樹脂であるアクリル樹脂の超微粒子を用いた場合、導体パターン形成用荷電性粉末の流動性、定着性、帯電性は良好であったが、この比較例の導体パターン形成用荷電性粉末を用いて形成した導体パターンを備えるセラミックグリーンシートを積層して作製した積層体(セラミック多層基板)は、デラミネーションなどの構造欠陥は発生しなかったが、導体層(電極)の空隙率が高くなり、本発明の導体パターン形成用荷電性粉末を用いた場合のようには、緻密で低抵抗の導体層が得られないことが確認された。
On the other hand, as in the case of the comparative example, polyester-based thermosetting is used as the first resin that constitutes the resin particles, and acrylic resin that is a thermoplastic resin as the second thermoplastic resin that constitutes the coating resin layer. When the ultrafine particles of the above were used, the flowability, fixability, and chargeability of the conductive pattern forming powder were good, but the conductor pattern formed using the conductive pattern forming powder of this comparative example The laminated body (ceramic multilayer substrate) produced by laminating the ceramic green sheets provided did not cause structural defects such as delamination, but the porosity of the conductor layer (electrode) increased, and the conductor pattern formation of the present invention It was confirmed that a dense and low-resistance conductor layer could not be obtained as in the case of using the chargeable powder.
なお、上記実施例では、樹脂粒子を構成する第1の熱可塑性樹脂として、ポリエステル系樹脂を用い、被覆樹脂層を構成する第2の熱可塑性樹脂としてアクリル樹脂の超微粒子を用いた場合について説明したが、第2の熱可塑性樹脂の方が、第1の熱可塑性樹脂より軟化点が低いという要件を満たす範囲で、種々の樹脂を用いることが可能である。
In the above embodiment, a case where a polyester resin is used as the first thermoplastic resin constituting the resin particles and an acrylic resin ultrafine particle is used as the second thermoplastic resin constituting the coating resin layer is described. However, various resins can be used as long as the second thermoplastic resin satisfies the requirement that the softening point is lower than that of the first thermoplastic resin.
たとえば、第1の熱可塑性樹脂と第2の熱可塑性樹脂のいずれにも軟化点の異なる(第2の熱可塑性樹脂の方が軟化点が低い)ポリエステル樹脂を用いたり、また、いずれにも軟化点の異なる(第2の熱可塑性樹脂の方が軟化点が低い)アクリル樹脂を用いたりすることも可能である。
For example, a polyester resin having a different softening point (the second thermoplastic resin has a lower softening point) is used for both the first thermoplastic resin and the second thermoplastic resin, and both are softened. It is also possible to use acrylic resins having different points (the second thermoplastic resin has a lower softening point).
さらに、ポリエステル樹脂およびアクリル樹脂以外の樹脂を、ポリエステル樹脂およびアクリル樹脂と組み合わせて用いたり、第1の熱可塑性樹脂と第2の熱可塑性樹脂のいずれにもポリエステル樹脂およびアクリル樹脂以外の樹脂を用いたりすることも可能である。
また、上記実施例では、被覆樹脂層の表面にシリカ被覆層を形成したが、場合によっては、被覆樹脂層の表面にシリカ被覆層を形成しない構成とすることも可能である。 Further, a resin other than the polyester resin and the acrylic resin is used in combination with the polyester resin and the acrylic resin, or a resin other than the polyester resin and the acrylic resin is used for both the first thermoplastic resin and the second thermoplastic resin. It is also possible to do.
Moreover, in the said Example, although the silica coating layer was formed on the surface of the coating resin layer, it can also be set as the structure which does not form a silica coating layer on the surface of a coating resin layer depending on the case.
また、上記実施例では、被覆樹脂層の表面にシリカ被覆層を形成したが、場合によっては、被覆樹脂層の表面にシリカ被覆層を形成しない構成とすることも可能である。 Further, a resin other than the polyester resin and the acrylic resin is used in combination with the polyester resin and the acrylic resin, or a resin other than the polyester resin and the acrylic resin is used for both the first thermoplastic resin and the second thermoplastic resin. It is also possible to do.
Moreover, in the said Example, although the silica coating layer was formed on the surface of the coating resin layer, it can also be set as the structure which does not form a silica coating layer on the surface of a coating resin layer depending on the case.
また、上記実施例では、樹脂粒子に、セラミック粒子として、アルミナ粒子を含有させるようにしたが、導体パターン形成用荷電性粉末が印刷されるセラミックグリーンシートの構成材料に応じて、セラミックグリーンシート(セラミック基板)を構成するセラミックの少なくとも一つの構成成分と同じ成分を含む、他の種類のセラミック粒子を含有させるようにしてもよい。
また、場合によっては、上記実施例で含有させたようなセラミック粒子を含有させないようにすることも可能である。 Further, in the above-described embodiment, alumina particles are contained in the resin particles as ceramic particles. However, depending on the constituent material of the ceramic green sheet on which the conductive pattern forming chargeable powder is printed, the ceramic green sheet ( You may make it contain the other kind of ceramic particle containing the same component as the at least 1 component of the ceramic which comprises a ceramic substrate.
Further, in some cases, it is possible not to contain the ceramic particles as contained in the above examples.
また、場合によっては、上記実施例で含有させたようなセラミック粒子を含有させないようにすることも可能である。 Further, in the above-described embodiment, alumina particles are contained in the resin particles as ceramic particles. However, depending on the constituent material of the ceramic green sheet on which the conductive pattern forming chargeable powder is printed, the ceramic green sheet ( You may make it contain the other kind of ceramic particle containing the same component as the at least 1 component of the ceramic which comprises a ceramic substrate.
Further, in some cases, it is possible not to contain the ceramic particles as contained in the above examples.
また、上記実施例では樹脂粒子に、セラミック粒子として、アルミナ粒子を含有させるようにしたが、例えば、ガラス基板となる、ガラスを主成分とするグリーンシートを用いる場合においては、樹脂粒子に、セラミック粒子の代わりにガラス粒子を含有させるように構成することも可能である。
Further, in the above embodiment, alumina particles are contained in the resin particles as ceramic particles. For example, in the case of using a green sheet mainly composed of glass, which is a glass substrate, the resin particles are ceramic. It is also possible to make it contain glass particles instead of particles.
本発明はさらにその他の点においても上記実施例に限定されるものではなく、導体パターン形成用荷電性粉末を構成する各成分の種類や配合割合、被印刷物の種類や性状、本発明の導体パターン形成用荷電性粉末を用いて製造される積層セラミック電子部品の種類などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。
The present invention is not limited to the above-described embodiment in other points as well, and the types and blending ratios of the components constituting the conductive pattern-forming charged powder, the types and properties of the printed material, and the conductive pattern of the present invention. Various types of applications and modifications can be made within the scope of the invention with respect to the types of multilayer ceramic electronic parts manufactured using the chargeable powder for forming.
1 導電性金属粒子
2 アルミナ粒子(セラミック粒子)
3a ポリエステル樹脂(第1の熱可塑性樹脂)
3 樹脂粒子
4a アクリル樹脂(第2の熱可塑性樹脂)
4 被覆樹脂層
5a シリカ粒子(シリカ超微粒子)
5 シリカ被覆層
6 荷電制御剤
7 被覆粒子
10 導体パターン形成用荷電性粉末
20 セラミック多層基板(積層体)
21 セラミック層
22 導体パターン
23 ビアホール導体 1Conductive metal particles 2 Alumina particles (ceramic particles)
3a Polyester resin (first thermoplastic resin)
3Resin particles 4a Acrylic resin (second thermoplastic resin)
4Coating resin layer 5a Silica particles (silica ultrafine particles)
DESCRIPTION OFSYMBOLS 5 Silica coating layer 6 Charge control agent 7 Coated particle 10 Chargeable powder for conductor pattern formation 20 Ceramic multilayer substrate (laminated body)
21Ceramic layer 22 Conductor pattern 23 Via hole conductor
2 アルミナ粒子(セラミック粒子)
3a ポリエステル樹脂(第1の熱可塑性樹脂)
3 樹脂粒子
4a アクリル樹脂(第2の熱可塑性樹脂)
4 被覆樹脂層
5a シリカ粒子(シリカ超微粒子)
5 シリカ被覆層
6 荷電制御剤
7 被覆粒子
10 導体パターン形成用荷電性粉末
20 セラミック多層基板(積層体)
21 セラミック層
22 導体パターン
23 ビアホール導体 1
3a Polyester resin (first thermoplastic resin)
3
4
DESCRIPTION OF
21
Claims (9)
- 被印刷物上に導体パターンを印刷する際に使用される導体パターン形成用荷電性粉末であって、
導電性金属粒子を分散させた第1の熱可塑性樹脂からなる樹脂粒子と、
前記樹脂粒子を被覆する、前記樹脂粒子を構成する前記第1の熱可塑性樹脂より軟化点の低い第2の熱可塑性樹脂からなる被覆樹脂層と
を備えていることを特徴とする導体パターン形成用荷電性粉末。 A conductive powder for forming a conductor pattern used when printing a conductor pattern on a substrate,
Resin particles made of a first thermoplastic resin in which conductive metal particles are dispersed;
And a coating resin layer made of a second thermoplastic resin having a softening point lower than that of the first thermoplastic resin constituting the resin particles, which covers the resin particles. Charged powder. - 前記第1の熱可塑性樹脂の軟化点と、前記第2の熱可塑性樹脂の軟化点の差が20℃以上であることを特徴とする請求項1記載の導体パターン形成用荷電性粉末。 The charged powder for forming a conductor pattern according to claim 1, wherein the difference between the softening point of the first thermoplastic resin and the softening point of the second thermoplastic resin is 20 ° C or more.
- 前記被覆樹脂層は、直径50nm~500nmの熱可塑性樹脂超微粒子を用いて形成されたものであることを特徴とする請求項1または2記載の導体パターン形成用荷電性粉末。 3. The charged powder for forming a conductor pattern according to claim 1, wherein the coating resin layer is formed using ultrafine thermoplastic resin particles having a diameter of 50 nm to 500 nm.
- 前記被覆樹脂層は、その表面に、シリカ粒子からなるシリカ被覆層を備えていることを特徴とする請求項1~3のいずれかに記載の導体パターン形成用荷電性粉末。 The conductive powder for forming a conductor pattern according to any one of claims 1 to 3, wherein the coating resin layer has a silica coating layer made of silica particles on the surface thereof.
- 電子写真法によって、セラミックグリーンシート上に導体パターンを印刷するのに用いられるものであることを特徴とする請求項1~4のいずれかに記載の導体パターン形成用荷電性粉末。 The conductive powder for forming a conductor pattern according to any one of claims 1 to 4, which is used for printing a conductor pattern on a ceramic green sheet by electrophotography.
- セラミック基板に導体パターンを印刷するのに用いられるものである場合においては、前記樹脂粒子が、前記セラミック基板を構成するセラミックの少なくとも一つの構成成分と同じ成分を含むセラミック粒子を含有し、また、
ガラス基板に導体パターンを印刷するのに用いられるものである場合においては、前記樹脂粒子が、前記ガラス基板を構成するガラスの少なくとも一つの構成成分と同じ成分を含むガラス粒子を含有していること
を特徴とする請求項1~5のいずれかに記載の導体パターン形成用荷電性粉末。 In the case of being used for printing a conductor pattern on a ceramic substrate, the resin particles contain ceramic particles containing the same component as at least one component of the ceramic constituting the ceramic substrate, and
In the case of being used for printing a conductor pattern on a glass substrate, the resin particles contain glass particles containing the same component as at least one component of the glass constituting the glass substrate. The charged powder for forming a conductor pattern according to any one of claims 1 to 5. - 電子写真法によって被印刷物上に導体パターンを印刷する際に使用される導体パターン形成用荷電性粉末の製造方法であって、
導電性金属粒子を第1の熱可塑性樹脂に分散させる工程と、
前記第1の熱可塑性樹脂を粉砕することにより、前記第1の熱可塑性樹脂に前記導電性金属粒子が分散した樹脂粒子を形成する工程と、
前記樹脂粒子と、前記第1の熱可塑性樹脂よりも軟化点の低い第2の熱可塑性樹脂からなる熱可塑性樹脂微粒子とを混合し、機械被覆法により、前記樹脂粒子の表面に、第2の熱可塑性樹脂からなる被覆樹脂層を形成する工程と
を具備することを特徴とする導体パターン形成用荷電性粉末の製造方法。 A method for producing a conductive powder for forming a conductor pattern used when printing a conductor pattern on a substrate by electrophotography,
Dispersing the conductive metal particles in the first thermoplastic resin;
Crushing the first thermoplastic resin to form resin particles in which the conductive metal particles are dispersed in the first thermoplastic resin;
The resin particles and thermoplastic resin fine particles made of a second thermoplastic resin having a softening point lower than that of the first thermoplastic resin are mixed, and a second coating is made on the surface of the resin particles by a mechanical coating method. Forming a coating resin layer made of a thermoplastic resin. A method for producing a conductive powder for forming a conductor pattern. - 前記被覆樹脂層の表面にシリカ粒子を付着させて、シリカ被覆層を形成する工程を備えていることを特徴とする請求項7記載の導体パターン形成用荷電性粉末の製造方法。 The method for producing a conductive powder for forming a conductor pattern according to claim 7, further comprising the step of forming a silica coating layer by attaching silica particles to the surface of the coating resin layer.
- 請求項1~6のいずれかの導体パターン形成用荷電性粉末を、電子写真法により、セラミックグリーンシート上に所定のパターンとなるように印刷する工程と、
前記セラミックグリーンシート上に印刷された前記導体パターン形成用荷電性粉末を、前記被覆樹脂層を構成する第2の熱可塑性樹脂の軟化点より高く、前記樹脂粒子を構成する第1の熱可塑性樹脂層の軟化点より低い温度で加熱して前記導体パターン形成用荷電性粉末を前記セラミックグリーンシート上に定着させる工程と、
前記セラミックグリーンシートを含む複数のセラミックグリーンシートを積み重ねて圧着することによりマザー積層体を形成する工程と、
前記マザー積層体を、前記被覆樹脂層を構成する第2の熱可塑性樹脂層の軟化点より低い温度で加熱しつつ切断して個々の積層体に分割する工程と、
前記積層体から熱可塑性樹脂を含む有機物成分を除去する脱脂工程と、
脱脂された前記積層体を焼成して焼結体とする焼成工程と
を具備することを特徴とする積層セラミック電子部品の製造方法。 Printing the conductive powder for forming a conductor pattern according to any one of claims 1 to 6 so as to form a predetermined pattern on a ceramic green sheet by electrophotography;
The conductive powder for forming a conductive pattern printed on the ceramic green sheet is higher than the softening point of the second thermoplastic resin constituting the coating resin layer, and the first thermoplastic resin constituting the resin particles Heating at a temperature lower than the softening point of the layer to fix the conductive pattern forming charged powder on the ceramic green sheet; and
Forming a mother laminate by stacking and pressing a plurality of ceramic green sheets including the ceramic green sheet; and
Cutting the mother laminate while heating at a temperature lower than the softening point of the second thermoplastic resin layer constituting the coating resin layer, and dividing the mother laminate into individual laminates;
A degreasing step of removing organic components including the thermoplastic resin from the laminate;
And a firing step in which the degreased laminate is fired to form a sintered body.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009065885 | 2009-03-18 | ||
JP2009-065885 | 2009-03-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010106969A1 true WO2010106969A1 (en) | 2010-09-23 |
Family
ID=42739629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/054181 WO2010106969A1 (en) | 2009-03-18 | 2010-03-12 | Charged powder for forming conductor pattern, method for producing same, and method for manufacturing multilayer ceramic electronic component using same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010106969A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108293302A (en) * | 2015-11-30 | 2018-07-17 | 株式会社村田制作所 | Multilayer ceramic substrate and electronic unit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04237064A (en) * | 1991-01-21 | 1992-08-25 | Nec Corp | Electrifiable particle for circuit printing |
JPH1048881A (en) * | 1996-08-02 | 1998-02-20 | Fuji Photo Film Co Ltd | Production of electrophotographic printing plate |
JPH11265089A (en) * | 1998-03-17 | 1999-09-28 | Murata Mfg Co Ltd | Electrifying powder for formation of circuit and multilayered wiring board using that |
JP2005122106A (en) * | 2003-09-26 | 2005-05-12 | Neomax Co Ltd | Circuit pattern forming toner, method of manufacturing same, and circuit pattern forming method |
JP2006258975A (en) * | 2005-03-15 | 2006-09-28 | Ricoh Co Ltd | Recording material, electrostatic charge image developing toner and liquid developer, and image forming method using them |
JP2008242352A (en) * | 2007-03-29 | 2008-10-09 | Murata Mfg Co Ltd | Charging powder and method of manufacturing multilayer ceramic electronic component |
-
2010
- 2010-03-12 WO PCT/JP2010/054181 patent/WO2010106969A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04237064A (en) * | 1991-01-21 | 1992-08-25 | Nec Corp | Electrifiable particle for circuit printing |
JPH1048881A (en) * | 1996-08-02 | 1998-02-20 | Fuji Photo Film Co Ltd | Production of electrophotographic printing plate |
JPH11265089A (en) * | 1998-03-17 | 1999-09-28 | Murata Mfg Co Ltd | Electrifying powder for formation of circuit and multilayered wiring board using that |
JP2005122106A (en) * | 2003-09-26 | 2005-05-12 | Neomax Co Ltd | Circuit pattern forming toner, method of manufacturing same, and circuit pattern forming method |
JP2006258975A (en) * | 2005-03-15 | 2006-09-28 | Ricoh Co Ltd | Recording material, electrostatic charge image developing toner and liquid developer, and image forming method using them |
JP2008242352A (en) * | 2007-03-29 | 2008-10-09 | Murata Mfg Co Ltd | Charging powder and method of manufacturing multilayer ceramic electronic component |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108293302A (en) * | 2015-11-30 | 2018-07-17 | 株式会社村田制作所 | Multilayer ceramic substrate and electronic unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4677900B2 (en) | Mixed conductive powder and its use | |
JP3505993B2 (en) | Chargeable powder for circuit formation and multilayer wiring board using the same | |
JP5003985B2 (en) | ESD protection device | |
JP5093356B2 (en) | Manufacturing method of ceramic multilayer substrate | |
TW594795B (en) | Conductor paste and method for the production thereof | |
JP5257679B2 (en) | Manufacturing method of ESD protection device and ESD protection device | |
JP2007273271A (en) | Conductive paste composition, and printed wiring board | |
WO2010106969A1 (en) | Charged powder for forming conductor pattern, method for producing same, and method for manufacturing multilayer ceramic electronic component using same | |
JP2005093105A (en) | Conductive structure and its manufacturing method | |
US20090218123A1 (en) | Multilayer interconnection board | |
JP2010153506A (en) | Conductive bump forming composition and printed wiring board using the same | |
TWI296822B (en) | ||
JP2000039737A (en) | Coated metal particle and electrophotographic toner using that | |
JP4543490B2 (en) | Circuit pattern forming method and wiring board formed thereby | |
JP5056950B2 (en) | Chargeable powder for conductor pattern formation and multilayer ceramic electronic component using the same | |
JP4207241B2 (en) | Chargeable powder for circuit formation and multilayer wiring board using the same | |
JP2008242352A (en) | Charging powder and method of manufacturing multilayer ceramic electronic component | |
JP4134372B2 (en) | Chargeable powder for circuit formation, circuit pattern forming method using the same, and multilayer wiring board formed thereby | |
US20110265948A1 (en) | Via hole forming method using electrophotographic printing method | |
JP4811066B2 (en) | Chargeable powder for circuit formation, method for producing the same, and method for producing a glass substrate having a circuit pattern | |
JP4363488B2 (en) | Chargeable powder for circuit formation and multilayer wiring board using the same | |
JP2001284770A (en) | Circuit-patten formation method and wiring board formed thereby | |
JP2011165992A (en) | Manufacturing method of ceramic multilayer substrate | |
JP2001265066A (en) | Wet developer for circuit formation and circuit forming method using the developer | |
JP2008134656A (en) | Charged powder for forming circuit and multilayer wiring board using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10753461 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10753461 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |