WO2010027247A1 - Proceso para la producción de hidroxido de magnesio de alta pureza - Google Patents

Proceso para la producción de hidroxido de magnesio de alta pureza Download PDF

Info

Publication number
WO2010027247A1
WO2010027247A1 PCT/MX2008/000117 MX2008000117W WO2010027247A1 WO 2010027247 A1 WO2010027247 A1 WO 2010027247A1 MX 2008000117 W MX2008000117 W MX 2008000117W WO 2010027247 A1 WO2010027247 A1 WO 2010027247A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium hydroxide
high purity
acid
purity magnesium
alkali
Prior art date
Application number
PCT/MX2008/000117
Other languages
English (en)
French (fr)
Inventor
Ricardo BENAVIDES PÉREZ
José Gertrudis BOCANEGRA ROJAS
Jesús Manuel MARTÍNEZ MARTÍNEZ
Herlindo Ortiz Ortega
Original Assignee
Servicios Industriales Peñoles, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Servicios Industriales Peñoles, S.A. De C.V. filed Critical Servicios Industriales Peñoles, S.A. De C.V.
Priority to CN2008801318508A priority Critical patent/CN102216219A/zh
Priority to US13/062,242 priority patent/US8900545B2/en
Priority to PCT/MX2008/000117 priority patent/WO2010027247A1/es
Priority to CA2736379A priority patent/CA2736379C/en
Priority to MX2011002490A priority patent/MX342462B/es
Priority to CL2009001636A priority patent/CL2009001636A1/es
Priority to ARP090102838A priority patent/AR073185A1/es
Publication of WO2010027247A1 publication Critical patent/WO2010027247A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/22Magnesium hydroxide from magnesium compounds with alkali hydroxides or alkaline- earth oxides or hydroxides

Definitions

  • the present invention relates to the production of magnesium hydroxide, and in particular relates to a process for obtaining high purity Mg (OH) 2 , from dolomites, by the action of an acid and an alkali, which are regenerated within an internal cycle of the same process.
  • magnesium hydroxide For the production of magnesium hydroxide, precipitation processes are known for the addition to a solution containing Mg ++ , including seawater, of an alkali such as soda, potash, aquaponics or lime; In these processes the alkali is lost in the processes of washing and purification of magnesium hydroxide. Kirk-Othmer, Encyclopedia of Chemical Technology, Third Edition, VoI. 14, pp 629 to 631.
  • a solid material is used as raw material, which when reacting produces impurities such as sulfate, carbonate, hydroxide or calcium oxide, all precipitable and entrained with the product , resulting in a low purity product.
  • impurities such as sulfate, carbonate, hydroxide or calcium oxide
  • the purity of the magnesium hydroxide produced depends directly on that of the raw materials used.
  • the above processes do not guarantee a purity of magnesium hydroxide that allows it to be used in very demanding technical fields such as the manufacture of pharmaceutical and food products, starting from raw materials not necessarily of high purity, so operations are required of complex purification, such as the selective dissolution of undesirable insoluols.
  • Another object of the present invention is to provide a process in which, in a stable state, the alkali and acid flows required for the production of magnesium hydroxide are produced by regeneration in the same process.
  • Figure 1 is a block diagram representing the process flow of the present invention.
  • the process for obtaining magnesium hydroxide of the present invention is characterized in that the raw material (100) is a solid material, whether it is a compound or a mixture, natural or synthetic, containing magnesium in the forms of carbonate, hydroxide or oxide, the preferred materials are such as Dolomite, Huntite, Brucite, Periclase, Dolima or Magnesite.
  • the exposure to the reagents of the largest possible surface area of the material for example by increasing the area by subjecting the raw material to processes of particle size reduction, thereby ensuring the greatest extraction of magnesium.
  • the raw material (100) is fed to a leaching operation (200) with acid, which is selected from the group comprising sulfuric and hydrochloric acids such that the magnesium ion of the raw material remains in solution and a precipitated with the other cations present in the raw material, thus, if the raw material contains calcium, sulfuric acid that produces gypsum (calcium sulfate dihydrate) that precipitates should be used.
  • acid which is selected from the group comprising sulfuric and hydrochloric acids such that the magnesium ion of the raw material remains in solution and a precipitated with the other cations present in the raw material, thus, if the raw material contains calcium, sulfuric acid that produces gypsum (calcium sulfate dihydrate) that precipitates should be used.
  • the insoluble ones that are produced during the reaction of the raw material with the acid are used so that in their route by the effect of precipitation, they drag impurities such as heavy metals, organic matter and suspended solids, while the magnesium ion remains in the solution so purified.
  • the acid used to carry out the reaction comes from two sources:
  • the acid is in sufficient quantity for the complete leaching of the magnesium contained in the raw material (100), that is, to achieve the total dissolution of the magnesium contained in the raw material (100).
  • the stream (205) from the leaching (200) of the raw material (100) is separated (250) to produce:
  • the separation stage (250) guarantees the purification of the reagents used in the reactor (300) and that the current (220) is a practically pure solution of sulfate or magnesium chloride.
  • filtration is preferred because the bed formed by the precipitated solids acts as an additional filter medium to that provided in the equipment.
  • the magnesium solution (220) obtained from leaching (200) is fed to a reactor (300) where it is reacted with an alkali (310), preferably sodium hydroxide, from the "acid and alkali regeneration step""(400), although other alkali metal or alkaline earth metal hydroxides, such as potassium hydroxide, may be used, provided the salt formed by the substitution of OH " is soluble, to prevent it from creeping with precipitated magnesium hydroxide.
  • an alkali preferably sodium hydroxide
  • magnesium hydroxide is formed in suspension; this suspension (305) is subjected to a solid liquid separation (350) from which as a product (800) is obtained to high purity magnesium hydroxide;
  • the separation (350) is carried out by conventional methods, such as filtration, sedimentation, centrifugation, etc.
  • the remaining mother liquor (320) is an aqueous solution of soluble sodium salts and eventually the salt formed by the replacement of OH " in the alkali; this solution (320) is fed to the last stage (400) of" acid regeneration and alkali.
  • the alkali and acid regeneration in step (400) is carried out by electrochemical decomposition of the solution (320) in hydroxide and sulfuric or hydrochloric acid as appropriate, where the regenerated hydroxide is recirculated to step (300) by the stream (310) and the regenerated acid is recirculated to step (200) via the stream (210).
  • a natural dolomite is selected as raw material, with the composition shown in Table 2, in an amount of 3.16 kg.
  • the raw material is ground to a size less than 0.25 inches. It is placed in a reactor with stirrer, to which a solution of "new" sulfuric acid is added to 28%, this is in a concentration similar to that obtained from the regeneration of alkali and acid.
  • the composition of said sample acid in Table 3.
  • the resulting suspension is filtered using Whatman 40 paper as a filter medium with 8 micron pore opening.
  • the plaster formed is separated from the mother liquor Composed primarily of a solution of sodium sulfate and impurities of dolomite and "new" sulfuric acid.
  • the magnesium sulfate solution is placed in a stirred reactor and reacted with a solution of 26% sodium hydroxide, the composition of which is shown in Table 4, that is, in a concentration similar to that obtained from Alkali and acid regeneration.
  • the magnesium hydroxide suspension formed is separated from the mother liquor by centrifugation, the mother liquor, which is a solution of sodium sulfate, is separated for use in regeneration.
  • the magnesium hydroxide cake is subjected to a series of washing steps to remove the remaining mother liquor.
  • sulfuric acid and sodium hydroxide are regenerated in an electrodialysis cell which consists of two electrodes (anode and cathode) and pairs of selective membranes for cations and anions.
  • the regenerated soda is used in the subsequent reaction stages and only the necessary one will be replenished to compensate for process losses as a solution remaining in the magnesium hydroxide cake.
  • the regenerated sulfuric acid is used in the subsequent leaching stages of magnesium present in dolomite, but it is necessary to add "new" acid to compensate for that consumed with the plaster and as a remaining solution.
  • Table 5 shows the main components of the process currents, identified according to Figure 1. Table 5. MAIN COMPONENTS OF THE CURRENTS OF THE PROCESS FOLLOWED IN THE EXAMPLE.
  • hydrooxide refers to a strong alkali that can be regenerated by electrodialysis
  • acid although limited to sulfuric and hydrochloric, may refer to other strong acids that are feasible to regenerate by electrodialysis.

Abstract

La presente invención se refiere a un proceso novedoso para la obtención de hidróxido de magnesio de alta pureza a partir de una materia prima sólida que contiene magnesio en forma de, y/o combinado con, carbonatos, óxidos y/o hidróxidos, natural o sintético. El proceso consta de una lixiviación de la materia prima para disolver el magnesio; la solución se somete a un tratamiento con álcali para precipitar el hidróxido de magnesio de alta pureza, y el licor madre remanente se alimenta a una etapa de regeneración tanto del álcali empleado en la precipitación de hidróxido de magnesio de alta pureza como del ácido para la lixiviación; el proceso se caracteriza por la recirculación de reactivos (ácido y álcali) regenerados en el mismo proceso.

Description

PROCESO PARA LA PRODUCCIÓN DE HIDROXIDO DE MAGNESIO DE
ALTA PUREZA
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se relaciona con la producción de hidróxido de magnesio, y en particular se refiere a un procedimiento para la obtención de Mg(OH)2 de alta pureza, a partir de dolomitas, por la acción de un ácido y un álcali, los cuales se regeneran dentro de un ciclo interno del mismo proceso.
ANTECEDENTES DE LA INVENCIÓN
Para la producción de hidróxido de magnesio son conocidos los procesos de precipitación por la adición a una solución que contiene Mg++, incluyendo agua de mar, de un álcali tal como sosa, potasa, acuamonia o cal; en estos procesos el álcali se pierde en los procesos de lavado y purificación del hidróxido de magnesio. Kirk-Othmer, Encyclopedia of Chemical Technology, Third Edition, VoI. 14, pp 629 a 631. La patente de los Estados Unidos 2,801,155 (Kippe, 1957) describe la producción de hidróxido de magnesio a partir de dolomitas, al hacer reaccionar una dolomita con ácido nítrico y en pasos posteriores se mezcla adicionalmente con dolomita o amoniaco gas para producir hidróxido de magnesio que precipita y nitrato de calcio y/o nitrato de amonio, este proceso tiene la desventaja de que no hay regeneración del ácido utilizado en la lixiviación de la dolomita ni del álcali utilizado en la precipitación del hidróxido de magnesio.
En la patente de los Estados Unidos 4,937,056 (Kirk et al., 1990) se describe un proceso para la producción de hidróxido de magnesio a partir de sólidos que contienen magnesio en forma de carbonato, hidróxido u óxido, con un contenido de impurezas de por lo menos el 5%, mediante la lixiviación con una solución de SO2; el proceso tiene la desventaja de que para disminuir la impurezas se hacen incrementos graduales de pH con el fin de precipitarlas selectivamente, donde dichos incrementos son de 0.5 unidades, por lo que se requiere de controles muy sensibles en la operación. En la patente de los Estados Unidos 6,214,313 (Berisko et al., 2001) se expone un proceso para la producción de hidróxido de magnesio a partir de una corriente proveniente de la desulfuración de gases de chimenea, con la desventaja de que primero se debe llevar el sulfito de magnesio de la solución, a sulfato, por la adición de peróxido de hidrógeno, para luego precipitarlo con hidróxido de sodio.
En algunos de los procesos comúnmente usados para la producción de hidróxido de magnesio, se emplea como materia prima un material sólido, el cual al reaccionar produce impurezas tales como sulfato, carbonato, hidróxido u óxido de calcio, todos ellos precipitables y arrastrados con el producto, resultando en un producto de baja pureza. Estos procesos generalmente son altamente demandantes de energéticos (energía eléctrica y combustibles) y convencionalmente la pureza del hidróxido de magnesio producido depende directamente de aquella de las materias primas empleadas. Como se puede apreciar, los procesos anteriores no garantizan una pureza del hidróxido de magnesio que permita utilizarse en campos técnicos muy demandantes como son la fabricación de productos farmacéuticos y alimenticios, partiendo de materias primas no necesariamente de alta pureza, por lo que se requieren operaciones de purificación complejas, como la disolución selectiva de los insoluoles no deseables. Por ejemplo en la patente de los Estados Unidos 5,626,825 (Verri, 1997) se describe un proceso de purificación de hidróxido de magnesio por la adición de un agente quelante que atrapa las impurezas contenidas en una lechada de hidróxido de magnesio logrando una pureza de al menos 98%. Obsérvese que este proceso es para purificar un hidróxido de magnesio ya producido. La patente de los Estados Unidos 4,693,872 (Nakaya et al., 1987) revela un proceso para la producción de hidróxido de magnesio de alta pureza, que parte de un hidróxido de magnesio impuro, que en una primer etapa se disuelve en una corriente de cloruro de calcio, que proviene de la regeneración de amoniaco en una etapa posterior, y por la adición de bióxido de carbono gaseoso. El proceso tiene la desventaja de requerir el manejo de dos corrientes gaseosas, y la necesidad de que los equipos sean herméticos.
Como se observa en las referencias anteriores, los procesos de purificación normalmente se realizan como una etapa adicional a la de la producción de un hidróxido de magnesio impuro para lograr el grado de pureza deseado.
Las propiedades fisicas y quimicas de los subproductos o impurezas que resultan en la producción del hidróxido de magnesio, con los procedimientos conocidos, se aprovechan en otros campos técnicos como el de purificación de aguas, como medios filtrantes auxiliares para mejorar la calidad del liquido procesado, ya que retienen metales pesados, partículas en suspensión y materia orgánica. Llama la atención que estas propiedades no sean aprovechadas para la purificación del hidróxido de magnesio durante su producción. OBJETOS DE LA INVENCIÓN
En vista de los problemas no resueltos en la técnica anterior, es un objeto de la presente invención proveer de un nuevo proceso para la obtención de hidróxido de magnesio de alta pureza.
Es otro objeto de la presente invención proporcionar un proceso para la obtención de hidróxido de magnesio de alta pureza en el que el grado de pureza del producto no sea determinado directamente por la calidad de las materias primas.
Otro objeto de la presente invención es proveer de un proceso en el cual, en estado estable, los flujos de álcali y ácido requeridos para la producción del hidróxido de magnesio se produzcan por regeneración en el mismo proceso.
Estos y otros objetos serán evidentes a la luz de la descripción que sigue y de la o las figuras que la acompañan, la que deberá entenderse como ilustrativas y no limitativas del alcance de la invención. BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 es un diagrama de bloques que representa el flujo del proceso de la presente invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Para una mejor comprensión de la descripción que sigue, ésta deberá leerse en asociación con la figura 1, que representa el diagrama de bloques de flujo de proceso .
El proceso para la obtención de hidróxido de magnesio de la presente invención se caracteriza porque la materia prima (100) es un material sólido, ya sea éste un compuesto o una mezcla, naturales o sintéticos, que contienen magnesio en las formas de carbonato, hidróxido u óxido, los materiales preferidos son tales como Dolomita, Huntita, Brucita, Periclasa, Dolima o Magnesita.
Para lograr un óptimo rendimiento de la materia prima en el proceso de la invención, debiera producirse la exposición a los reactivos de la mayor área superficial posible del material, por ejemplo incrementando el área al someter la materia prima a procesos de reducción de tamaño de partícula, con lo que se garantiza la mayor extracción del magnesio.
La materia prima (100) se alimenta a una operación de lixiviación (200) con ácido, que se selecciona del grupo que comprende a los ácidos sulfúrico y clorhídrico de tal manera que el ion magnesio de la materia prima permanezca en solución y se forme un precipitado con los otros cationes presentes en la materia prima, de este modo, si la materia prima contiene calcio deberá utilizarse ácido sulfúrico que produce yeso (sulfato de calcio dihidratado) que precipita .
Los insolubles que se producen durante la reacción de la materia prima con el ácido, se aprovechan para que en su recorrido por efecto de la precipitación, arrastren impurezas tales como metales pesados, materia orgánica y sólidos suspendidos, mientras que el ion magnesio permanece en la solución asi purificada . El ácido que se emplea para llevar a cabo la reacción proviene de dos fuentes:
a) una corriente (210) que se recircula de una etapa posterior de "regeneración de ácido y álcali" (400), y b) una corriente (150) de ácido "nuevo", empleada para el arranque del proceso, reposición de pérdidas y ajuste estequiométrico,
durante la reacción, el ácido se encuentra en la cantidad suficiente para la lixiviación completa del magnesio contenido en la materia prima (100), es decir, para lograr la total disolución del magnesio contenido en la materia prima (100).
La corriente (205) producto de la lixiviación (200) de la materia prima (100) se separa (250) para producir:
i) una solución de magnesio (220), ii) una corriente (700) compuesta por los insolubles precipitados y los inertes de la materia prima, y iii) iii) un gas carbónico (710) que se genera cuando se utilizan materias primas que contienen carbonatos, la etapa de separación (250) garantiza la purificación de los reactivos utilizados en el reactor (300) y que la corriente (220) sea una solución prácticamente pura de sulfato o cloruro de magnesio.
Si bien en la etapa de separación (250) es posible utilizar cualquier técnica conocida comúnmente empleada, se prefiere la filtración en virtud de que el lecho formado por los sólidos precipitados actúa como un medio filtrante adicional al provisto en el equipo.
La solución de magnesio (220) obtenida de la lixiviación (200) se alimenta a un reactor (300) en donde se hace reaccionar con un álcali (310), preferentemente hidróxido de sodio, proveniente de la etapa de "regeneración de ácido y álcali" (400), aunque se pueden emplear otros hidróxidos de metales alcalinos o alcalinotérreos, tal como hidróxido de potasio, siempre que la sal formada por la sustitución del OH" sea soluble, para evitar que se arrastre con el hidróxido de magnesio precipitado.
Durante la reacción (300) con álcali (310), de la solución de magnesio (220) proveniente de la separación (250) , se forma hidróxido de magnesio en suspensión; esta suspensión (305) se somete a un separación sólido liquido (350) de la cual se obtiene como producto (800) al hidróxido de magnesio de alta pureza; la separación (350) se realiza por métodos convencionales, tales como filtración, sedimentación, centrifugación, etc.
En el arranque del proceso, al no existir una corriente de álcali regenerado (310), se hace necesario utilizar una fuente externa de álcali (315) para la obtención del hidróxido de magnesio de alta pureza .
Al realizar el análisis comparativo de la pureza del producto obtenido con el proceso de la presente invención en comparación a la de un producto obtenido mediante un proceso convencional vía dolomita y sometidos al mismo número de etapas de lavado en condiciones iguales de operación (temperatura, presión, flujo de liquido de lavado, equipo utilizado, etc.) se obtienen los resultados que se ilustran en la Tabla 1.
TABLA 1. ANÁLISIS COMPARATIVO DE LA PUREZA EN
HIDRÓXIDO DE MAGNESIO OBTENIDO POR UN PROCESO
CONVENCIONAL Y POR EL PROCESO DE LA INVENCIÓN*.
Producto Pureza SO4 Cl CaO
Mg(OH)2 D 98 50 % 0.21 % 0. 21 % 0 60 %
Mg(OH)2 2) 99 80 % 0.14 % 0. 013 % 0 00 %
* Expresada como peso en base al producto seco. Donde (1) se refiere al producto obtenido por un proceso convencional y (2) al producto obtenido por el proceso de la invención
La ventaja del proceso de la invención, al utilizar reiteradamente reactivos obtenidos de la regeneración, radica en que limita la entrada de impurezas solo a aquellas transportadas por la fuente de magnesio
(mineral y/o sintético) y eventualmente del ácido
"nuevo" de reposición, que son alimentados a la etapa de lixiviación, mismas que son eliminadas prácticamente en su totalidad, por medio de la corriente (700) .
El licor madre remanente (320) es una solución acuosa de sales solubles de sodio y eventualmente la sal formada por la sustitución del OH" en el álcali; esta solución (320) se alimenta a la última etapa (400) de "regeneración de ácido y álcali".
La regeneración de álcali y ácido en la etapa (400) se lleva a cabo por descomposición electroquimica de la solución (320) en hidróxido y ácido sulfúrico o clorhidrico según corresponda, donde el hidróxido regenerado se recircula a la etapa (300) mediante la corriente (310) y el ácido regenerado se recircula a la etapa (200) via la corriente (210) .
En el arranque del proceso las corrientes de ácido regenerado (210) y álcali regenerado (310) están vacias, por lo que las únicas fuentes de ácido y álcali serán las corrientes (150) y (315) respectivamente; estas corrientes durante la operación normal servirán para reponer las pérdidas, y como ya se mencionó anteriormente, en el caso del ácido, para ajustar la estequiometria de la reacción.
A continuación se un ejemplo de aplicación del procedimiento objeto de la presente invención descrito en los párrafos previos.
Ejemplo:
Se selecciona una dolomita natural como materia prima, con la composición que se muestra en la Tabla 2, en una cantidad de 3.16 kg.
Tabla 2. COMPOSICIÓN DE LA DOLOMITA NATURAL EMPLEADA
COMO MATERIA PRIMA EN EL EJEMPLO.
Figure imgf000016_0001
La materia prima se muele a un tamaño menor a 0.25 pulgadas. Se coloca en un reactor con agitador, al que se le agrega una solución de ácido sulfúrico "nuevo" al 28%, esto es en una concentración similar a la que se obtendrá de la regeneración del álcali y el ácido. La composición de dicho ácido de muestra en la Tabla 3.
Tabla 3. COMPOSICIÓN DEL ÁCIDO SULFÚRICO "NUEVO" EMPLEADO EN LA PRIMERA LIXIVIACIÓN DEL EJEMPLO.
Figure imgf000017_0001
Durante la reacción se desprende gas carbónico de la descomposición de la dolomita, observado por la formación de espuma en el proceso de lixiviado.
La suspensión resultante se filtra utilizando papel Whatman 40 como medio filtrante con apertura de poro de 8 mieras. El yeso formado se separa del licor madre compuesto principalmente por una solución de sulfato de sodio y las impurezas de la dolomita y el ácido sulfúrico "nuevo".
La solución de sulfato de magnesio se coloca en un reactor agitado y se hace reaccionar con una solución, de hidróxido de sodio al 26%, cuya composición se muestra en la Tabla 4, esto es, en una concentración similar a la que se obtendrá de la regeneración del álcali y el ácido.
Tabla 4. COMPOSICIÓN DE LA SOLUCIÓN DE HIDRÓXIDO DE SODIO EMPLEADO EN LA PRIMERA REACCIÓN DEL EJEMPLO.
Figure imgf000018_0001
La suspensión de hidróxido de magnesio formada se separa del licor madre por centrifugado, el licor madre, que es una solución de sulfato de sodio, se aparta para utilizarse en la regeneración. La torta de hidróxido de magnesio se somete a una serie de etapas de lavado para eliminar el licor madre remanente.
Con la solución de sulfato de sodio apartada se regenera el ácido sulfúrico y el hidróxido de sodio en una celda de electrodiálisis la cual consta de dos electrodos (ánodo y cátodo) y pares de membranas selectivas para cationes y aniones.
La sosa regenerada se utiliza en las etapas subsecuentes de reacción y solo se repondrá la necesaria para compensar las pérdidas del proceso como solución remanente en la torta de hidróxido de magnesio. El ácido sulfúrico regenerado se utiliza en las etapas subsecuentes de lixiviación del magnesio presente en la dolomita, pero es necesario adicionar ácido "nuevo" para compensar el que se consume con el yeso y como solución remanente.
En la Tabla 5 se muestran los componentes principales de las corrientes del proceso, identificadas de acuerdo a la Figura 1. Tabla 5. COMPONENTES PRINCIPALES DE LAS CORRIENTES DEL PROCESO SEGUIDO EN EL EJEMPLO.
CO
Figure imgf000020_0001
en el arranque del proceso, se requiere esta cantidad de ácido en operación continua, se utiliza para reposición esta corriente es necesaria solamente para el arranque del proceso
De acuerdo con la descripción anterior, podría ser evidente para un técnico con conocimientos en el área, que el término "hidróxido" se refiere a un álcali fuerte que puede regenerarse por electrodiálisis; y que el término "ácido", aunque se ha limitado a sulfúrico y clorhídrico, puede referirse a otros ácidos fuertes que sean factibles de regenerarse por electrodiálisis .
También podrá ser evidente para una persona con conocimientos en la materia, que las técnicas de separación descritas y ejemplificadas, pueden ser reemplazadas por otras comúnmente empleadas en el campo técnico, sin que este reemplazo lleve al proceso asi obtenido más allá del alcance definido por las siguientes reivindicaciones.

Claims

REIVINDICACIONESUna vez descrita la invención lo que se considera novedoso y por lo tanto se reclama su propiedad es:
1. Un proceso para la obtención de hidróxido de magnesio de alta pureza a partir de una mezcla o un compuesto sólidos, naturales o sintéticos, que contienen magnesio en las formas de carbonato, hidróxido u óxido, caracterizado porque comprende las etapas de: a) lixiviar la materia prima con un ácido, b) separar los sólidos insolubles precipitados, c) reaccionar la solución de magnesio obtenida en la separación, con un álcali, d) separar el hidróxido de magnesio formado, como producto final, e) regenerar el ácido y el álcali a partir del tratamiento del liquido remanente de la etapa anterior, y f) recircular el ácido regenerado a la etapa de lixiviación y el álcali regenerado a la etapa de reacción.
2. Un proceso para la obtención de hidróxido de magnesio de alta pureza de conformidad con la reivindicación 1, caracterizado porque en operación normal la materia prima se hace reaccionar con el ácido regenerado en la etapa
3. Un proceso para la obtención de hidróxido de magnesio de alta pureza de conformidad con la reivindicación 1, caracterizado porque en el arranque del proceso se emplea ácido "nuevo" para la lixiviación de la materia prima.
4. Un proceso para la obtención de hidróxido de magnesio de alta pureza de conformidad con la reivindicación 1, caracterizado porque para la lixiviación de la materia prima se alimenta una corriente de ácido "nuevo" en la cantidad necesaria para compensar las pérdidas en el proceso y ajustar los requerimientos estequiométricos .
5. Un proceso para la obtención de hidróxido de magnesio de alta pureza de conformidad con la reivindicación 1, caracterizado porque la corriente resultante de la lixiviación se alimenta a una operación de separación de fases, donde los sólidos insolubles precipitados asi como el dióxido de carbono gaseoso, son retirados del proceso.
6. Un proceso para la obtención de hidróxido de magnesio de alta pureza de conformidad con la reivindicación 5, caracterizado porque la operación de separación de los sólidos insolubles precipitados es preferentemente por filtración.
7. Un proceso para la obtención de hidróxido de magnesio de alta pureza de conformidad con la reivindicación 1, caracterizado porque la solución de magnesio resultante de la separación de fases, se hace reaccionar por mezclado con un álcali para producir un precipitado de hidróxido de magnesio de alta pureza como producto final.
8. Un proceso para la obtención de hidróxido de magnesio de alta pureza de conformidad con la reivindicación 7, caracterizado porque el álcali proviene de la regeneración en la etapa e) .
9. Un proceso para la obtención de hidróxido de magnesio de alta pureza de conformidad con la reivindicación 7, caracterizado porque en el arranque del proceso el álcali empleado proviene de una fuente externa al proceso.
10. Un proceso para la obtención de hidróxido de magnesio de alta pureza de conformidad con la reivindicación 1, caracterizado porque la corriente resultante de la reacción con álcali se alimenta a una operación de separación sólido- liquido, donde la fase sólida es el hidróxido de magnesio de alta pureza.
11. Un proceso para la obtención de hidróxido de magnesio de alta pureza de conformidad con la reivindicación 1, caracterizado porque el licor madre remanente de la separación del hidróxido de magnesio de alta pureza se somete a un proceso para la regeneración del ácido y el álcali que se recirculan para lixiviar la materia prima y precipitar el hidróxido de magnesio de alta pureza, respectivamente.
12. Un proceso para la obtención de hidróxido de magnesio de alta pureza de conformidad con la reivindicación 11, caracterizado porque la regeneración del ácido y el álcali se hace por procesos electroquímicos.
13. Un proceso para la obtención de hidróxido de magnesio de alta pureza de conformidad con la reivindicación 1, caracterizado porque el ácido utilizado es un ácido fuerte, seleccionado del grupo que comprende ácido sulfúrico y ácido clorhídrico. o
14. Un proceso para la obtención de hidróxido de magnesio de alta pureza de conformidad con la reivindicación 13, caracterizado porque cuando la materia prima contiene calcio, como por ejemplo Dolomita, el ácido utilizado es sulfúrico.
15. Un proceso para la obtención de hidróxido de magnesio de alta pureza de conformidad con la reivindicación 1, caracterizado porque el álcali es un hidróxido fuerte, preferentemente hidróxido de sodio.
PCT/MX2008/000117 2008-09-05 2008-09-05 Proceso para la producción de hidroxido de magnesio de alta pureza WO2010027247A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN2008801318508A CN102216219A (zh) 2008-09-05 2008-09-05 高纯度氢氧化镁的制备方法
US13/062,242 US8900545B2 (en) 2008-09-05 2008-09-05 Process for the production of high purity magnesium hydroxide
PCT/MX2008/000117 WO2010027247A1 (es) 2008-09-05 2008-09-05 Proceso para la producción de hidroxido de magnesio de alta pureza
CA2736379A CA2736379C (en) 2008-09-05 2008-09-05 Process for the production of high purity magnesium hydroxide
MX2011002490A MX342462B (es) 2008-09-05 2008-09-05 Proceso para la produccion de hidroxido de magnesio de alta pureza.
CL2009001636A CL2009001636A1 (es) 2008-09-05 2009-07-22 Proceso de obtencion de hidroxido de magnesio de alta pureza de mezcla o compuesto solido, natural o sinteticos que contienen magnesio como carbonato, hidroxido u oxido, comprende lixiviar materia con acido, separar solidos, reaccionar dicha solucion con alcali, separar mgoh, regenerar acido y alcali, y recircular acido y alcali.
ARP090102838A AR073185A1 (es) 2008-09-05 2009-07-24 Proceso para la produccion de hidroxido de magnesio de alta pureza

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2008/000117 WO2010027247A1 (es) 2008-09-05 2008-09-05 Proceso para la producción de hidroxido de magnesio de alta pureza

Publications (1)

Publication Number Publication Date
WO2010027247A1 true WO2010027247A1 (es) 2010-03-11

Family

ID=41797294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2008/000117 WO2010027247A1 (es) 2008-09-05 2008-09-05 Proceso para la producción de hidroxido de magnesio de alta pureza

Country Status (7)

Country Link
US (1) US8900545B2 (es)
CN (1) CN102216219A (es)
AR (1) AR073185A1 (es)
CA (1) CA2736379C (es)
CL (1) CL2009001636A1 (es)
MX (1) MX342462B (es)
WO (1) WO2010027247A1 (es)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101499139B1 (ko) * 2014-07-18 2015-03-06 주식회사 나노텍세라믹스 탄산염의 연속 제조방법
CN106882824A (zh) * 2015-12-16 2017-06-23 中国科学院大连化学物理研究所 一种纳米氢氧化镁制备方法及纳米氢氧化镁
ES2641269B1 (es) * 2016-04-05 2018-09-06 Abengoa Water, S.L. Procedimiento de obtención de hidróxido de magnesio a partir de efluentes salinos
CN107032384B (zh) * 2017-06-05 2019-02-22 中南大学 一种从钙镁矿物中分离回收钙镁的方法
US11560318B2 (en) 2017-08-18 2023-01-24 The Regents Of The University Of California Facile, low-energy routes for the production of hydrated calcium and magnesium salts from alkaline industrial wastes
US11040898B2 (en) * 2018-06-05 2021-06-22 The Regents Of The University Of California Buffer-free process cycle for CO2 sequestration and carbonate production from brine waste streams with high salinity
JP2022544772A (ja) 2019-08-13 2022-10-21 カリフォルニア インスティチュート オブ テクノロジー カルシウム含有岩石および鉱物から酸化カルシウムまたは普通ポルトランドセメントを作製するプロセス
WO2021217261A1 (en) * 2020-04-29 2021-11-04 Planetary Hydrogen Inc. Electrochemical system, apparatus and method to generate metal hydroxide in the presence of metal silicates
CN112723396A (zh) * 2021-01-04 2021-04-30 贵州芭田生态工程有限公司 一种化学选矿副产物制取氧化镁和硝酸铵钙的方法
CA3235332A1 (en) 2021-10-18 2023-04-27 The Regents Of The University Of California Seawater electrolysis enables mg(oh)2 production and co2 mineralization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103023A (ja) * 1983-11-10 1985-06-07 Shin Nippon Kagaku Kogyo Co Ltd 高純度水酸化マグネシウムの製造法
US4693872A (en) * 1984-01-20 1987-09-15 Asahi Glass Company Ltd. Process for producing highly pure magnesium hydroxide
ES2020135A6 (es) * 1990-04-16 1991-07-16 Ercros Sa Procedimiento para la obtencion de hidroxido de magnesio.
US5362460A (en) * 1993-09-24 1994-11-08 Science Ventures Inc. Magnesium separation from dolomitic phosphate by sulfuric acid leaching
CN101219800A (zh) * 2007-01-08 2008-07-16 杜高翔 一种利用低品味菱镁矿制备纳米氢氧化镁的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2178983A (en) * 1933-12-23 1939-11-07 Magnesium Dev Corp Production of magnesium hydroxide
US2167311A (en) * 1937-09-17 1939-07-25 Postma Frank Method of abrading crankshafts
US2245820A (en) * 1941-01-15 1941-06-17 Postma Frank Abrading device
US2801155A (en) * 1955-03-24 1957-07-30 Paul O Tobeler Method of producing magnesium hydroxide from dolomite by means of nitric acid
US4937056A (en) * 1986-06-20 1990-06-26 Materials-Concepts-Research Limited Process for obtaining high purity magnesium compounds from magnesium containing materials
JPH06103023A (ja) * 1992-04-24 1994-04-15 Nec Corp 日本語コード変換処理方式
US5749774A (en) * 1996-09-27 1998-05-12 Foster; John R. Valve refacing tool
US6113471A (en) * 1999-03-24 2000-09-05 Kuebler; David A. Chassis journal corrector system
US6214313B1 (en) * 1999-04-13 2001-04-10 Dravo Lime, Inc. High-purity magnesium hydroxide and process for its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103023A (ja) * 1983-11-10 1985-06-07 Shin Nippon Kagaku Kogyo Co Ltd 高純度水酸化マグネシウムの製造法
US4693872A (en) * 1984-01-20 1987-09-15 Asahi Glass Company Ltd. Process for producing highly pure magnesium hydroxide
ES2020135A6 (es) * 1990-04-16 1991-07-16 Ercros Sa Procedimiento para la obtencion de hidroxido de magnesio.
US5362460A (en) * 1993-09-24 1994-11-08 Science Ventures Inc. Magnesium separation from dolomitic phosphate by sulfuric acid leaching
CN101219800A (zh) * 2007-01-08 2008-07-16 杜高翔 一种利用低品味菱镁矿制备纳米氢氧化镁的方法

Also Published As

Publication number Publication date
CA2736379C (en) 2014-04-08
CN102216219A (zh) 2011-10-12
CL2009001636A1 (es) 2011-09-16
MX342462B (es) 2016-09-29
MX2011002490A (es) 2013-04-05
AR073185A1 (es) 2010-10-20
US20110195017A1 (en) 2011-08-11
US8900545B2 (en) 2014-12-02
CA2736379A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
WO2010027247A1 (es) Proceso para la producción de hidroxido de magnesio de alta pureza
US3970528A (en) Process for the purification of electrolysis brine
AU2011236094B2 (en) Production of high purity lithium compounds directly from lithium containing brines
US6936229B1 (en) Recovery of lithium compounds from brines
US20210079497A1 (en) Selective lithium extraction from brines
CN105753218B (zh) 一种去除三价砷的方法
ES2748429T3 (es) Proceso hidrometalúrgico para producir metal de magnesio puro y diversos subproductos
US20060115410A1 (en) Production of lithium compounds directly from lithium containing brines
US6143260A (en) Method for removing magnesium from brine to yield lithium carbonate
CN108862335A (zh) 一种用磷酸锂制备碳酸锂的方法
JP6299620B2 (ja) 硫酸ニッケルの製造方法
BR112018003045B1 (pt) Métodos para produção de um concentrado contendo escândio a partir de uma lama residual, e para produção de um óxido de escândio com elevada pureza
AU2007216890A1 (en) Process for treating electrolytically precipitated copper
KR20010034850A (ko) 황산칼륨 제조방법
CN102167369B (zh) 一种降低LiCl中NaCl含量的方法
US4508690A (en) Method of producing very pure magnesium oxide
CN103038170B (zh) 在氯化物形成的盐溶液中贫化镁和富集锂的方法
KR101551896B1 (ko) 직접 탄산염화 반응을 이용한 고순도 탄산칼슘의 제조방법
WO2022147632A1 (es) Método para la producción de hidróxido de litio (lioh) directamente a partir de cloruro de litio (lici), sin necesidad de una producción intermedia de carbonato de litio o similar
WO2017041738A1 (zh) 含铵根离子废水的回收利用工艺及金属氧化物的制备方法
US20150050206A1 (en) Method of preparing calcium carbonate using direct carbonation reaction
FI107253B (fi) Menetelmä lentotuhkan käsittelemiseksi
KR20110004288A (ko) 탄산망간의 제조 방법
CN106517200B (zh) 金属碳酸盐的制备方法
CN110498431A (zh) 一种高纯度球形氯化钾的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131850.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08812635

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2736379

Country of ref document: CA

Ref document number: MX/A/2011/002490

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 646/MUMNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13062242

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08812635

Country of ref document: EP

Kind code of ref document: A1