WO2010024267A1 - 有用物質の製造法 - Google Patents

有用物質の製造法 Download PDF

Info

Publication number
WO2010024267A1
WO2010024267A1 PCT/JP2009/064821 JP2009064821W WO2010024267A1 WO 2010024267 A1 WO2010024267 A1 WO 2010024267A1 JP 2009064821 W JP2009064821 W JP 2009064821W WO 2010024267 A1 WO2010024267 A1 WO 2010024267A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
pts
strain
seq
protein
Prior art date
Application number
PCT/JP2009/064821
Other languages
English (en)
French (fr)
Inventor
正人 池田
誠記 竹野
裕太 水野
敏 三橋
Original Assignee
国立大学法人信州大学
協和発酵バイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学, 協和発酵バイオ株式会社 filed Critical 国立大学法人信州大学
Priority to US13/061,551 priority Critical patent/US8530203B2/en
Priority to EP09809918.7A priority patent/EP2330184B1/en
Priority to JP2010526727A priority patent/JP5833311B2/ja
Publication of WO2010024267A1 publication Critical patent/WO2010024267A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present invention relates to a method for producing a useful substance.
  • Phosphotransferase System (hereinafter also referred to as PTS) is a system involved in sugar uptake and phosphorylation found in many bacteria.
  • Phosphoenolpyruvate is a phosphate donor, and the three components, EI protein, HPr protein, and EII protein, relay phosphate to phosphorylate certain sugars and take them into cells.
  • the sugar taken up by PTS is called PTS sugar. It is known that when PTS is deficient, it cannot grow on a minimal medium using the PTS sugar as a single carbon source (see Non-Patent Document 1).
  • strains having a PTS sugar uptake system other than PTS have been reported, such as strains (see Non-Patent Document 2) that can grow again in a glucose medium due to mutations in the galactose permease gene.
  • Such a system is not known for microorganisms belonging to type bacteria.
  • An object of the present invention is to provide an efficient method for producing useful substances.
  • the present invention relates to the following (1) to (9).
  • (1) The ability of sugars taken into cells via a phosphotransferase system (hereinafter abbreviated as PTS) to be taken up into cells via a system different from PTS is enhanced, and has the ability to produce useful substances.
  • a method for producing a useful substance comprising culturing a microorganism belonging to a coryneform bacterium in a medium, producing and accumulating a useful substance in the culture, and collecting the useful substance from the culture.
  • (2) The production method according to (1), wherein the sugar taken into the cell via PTS is a sugar selected from glucose, fructose and sucrose.
  • the microorganism belonging to the coryneform bacterium is a microorganism belonging to a genus selected from the group consisting of the genus Corynebacterium, Brevibacterium and Microbacterium, (1) Or the manufacturing method of (2) description.
  • a microorganism belonging to a coryneform bacterium having an enhanced ability to take a sugar taken into a cell through PTS into a cell through a system different from PTS and produce a useful substance is [ (1) The production method according to (1), which is a microorganism having an enhanced ability to produce the protein according to any one of [1] to [5].
  • a protein comprising the amino acid sequence represented by SEQ ID NO: 12 or 14 [2] consisting of an amino acid sequence in which one or more amino acids are added, deleted or substituted in the amino acid sequence represented by SEQ ID NO: 12 or 14;
  • a protein having a myo-inositol transport activity [3] a protein encoded by the base sequence represented by SEQ ID NO: 13 or 15 [4] a DNA comprising a base sequence complementary to the base sequence represented by SEQ ID NO: 13 or 15
  • a protein having a myo-inositol transport activity [5] a base sequence encoded by DNA that hybridizes under stringent conditions with the base sequence having 80% or more homology or identity with the base sequence represented by SEQ ID NO: 13 or 15
  • the present invention can provide an efficient method for producing useful substances.
  • FIG. 1 is a schematic diagram of the construction of a DNA fragment for ptsH gene disruption and an approximate position where the primer binds.
  • FIG. 2 is a diagram showing the growth of the SupH strain and ATCC31833 strain in a glucose medium. The black square indicates the SupH strain, and the open triangle indicates the ATCC31833 strain.
  • the microorganism used in the production method of the present invention has an ability to take a sugar taken into a cell through PTS into a cell through a system different from PTS and to produce a useful substance. Any microorganism may be used as long as it belongs to coryneform bacteria.
  • Corynebacterium Corynebacterium
  • Brevibacterium Brevibacterium
  • Microbacterium microorganism belonging to the genus
  • Corynebacterium acetamide A Sid Fi ram Corynebacterium acetoacidophilum
  • Corynebacterium aceto glutamicum Corynebacteriumacetoglutamicum
  • Corynebacterium Karunae Corynebacterium callunae
  • Corynebacterium glutamicum Corynebacteriumglutamicum
  • Korinebakuteri um Hakyurisu Corynebacterium herculis
  • Corynebacterium Lilium Corynebacteriumlilium
  • Corynebacterium Merasekora Corynebacterium melassecola
  • Corynebacterium thermo amino monocytogenes Corynebacteriumthermoaminogenes
  • Brevibacterium sucker Lori tee cam Brevibacterium saccharolyticum
  • Brevibacterium Imari office lamb Brevibacteriumimmariophilum
  • Brevibacterium Rozeumu Brevibacterium rose
  • sugars taken into cells via PTS include glucose, fructose, sucrose and the like.
  • the useful substance may be any industrially useful substance that can be produced by microorganisms belonging to coryneform bacteria, such as amino acids, nucleic acids, vitamins, proteins such as various enzymes, peptides such as glutathione, and xylose. And the like, sugar alcohols such as xylitol, alcohols such as ethanol, organic acids such as lactic acid and succinic acid, lipids, and the like, preferably amino acids, nucleic acids and vitamins, particularly preferably amino acids.
  • Amino acids include L-alanine, glycine, L-glutamine, L-glutamic acid, L-asparagine, L-aspartic acid, L-lysine, L-methionine, L-threonine, L-leucine, L-valine, L-isoleucine , L-proline, L-histidine, L-arginine, L-tyrosine, L-tryptophan, L-phenylalanine, L-serine, L-cysteine, L-3-hydroxyproline, L-4-hydroxyproline, etc.
  • nucleic acids include inosine, guanosine, inosinic acid, guanylic acid, and examples of vitamins include riboflavin, thiamine, and ascorbic acid.
  • the microorganism used in the production method of the present invention has a capability of taking a sugar taken into a cell through PTS into a cell through a system different from PTS, so that PTS does not function, for example, PTS Even when the function is inhibited, a minimal medium using PTS sugar as a single carbon source, such as MM agar medium (10 g PTS sugar, 0.4 g magnesium sulfate heptahydrate, 4 g ammonium chloride, 2 g urea, monophosphate) Potassium hydrogen 3g, potassium dihydrogen phosphate 1 g of iron sulfate heptahydrate 10 mg, manganese sulfate pentahydrate 1 mg, nicotinic acid 5 mg, biotin 0.1 mg, thiamine hydrochloride 5 mg, and bactagar 20 g in 1 liter of water and adjusted to pH 7.2
  • the medium can be grown at 30-39 ° C.
  • PTS of a microorganism As a method for examining whether or not PTS of a microorganism is functioning, there is a method using an analog of PTS sugar showing growth inhibition. For example, when the growth of the microorganism is observed at 30-37 ° C. in a minimal medium containing a non-PTS sugar such as ribose as a carbon source and containing an analog of PTS sugar, If growth inhibition is not observed, it can be determined that PTS is not functioning.
  • a non-PTS sugar such as ribose as a carbon source
  • the presence or absence of growth inhibition is determined by the nutrient agar medium [for example, a medium containing BY agar medium (7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract and 15 g of bacto agar) adjusted to pH 7.2. )] In comparison with the growth at the same temperature.
  • a medium containing BY agar medium (7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract and 15 g of bacto agar) adjusted to pH 7.2.
  • An example of an analog of PTS sugar is 2-deoxyglucose, which is an analog of glucose.
  • concentration of the PTS sugar analog in the minimal medium may be appropriately determined using as an index the concentration at which growth of the wild type strain on the nutrient agar medium is inhibited. For example, 1 mg / ml is preferable for 2-deoxyglucose.
  • Examples of a method for inhibiting the function of PTS include a mutation treatment method and a method for artificially deleting PTS using recombinant DNA technology, and a method using recombinant DNA technology is preferably used.
  • Examples of the method using the recombinant DNA technique include substitution, deletion, insertion, addition, or inversion of one or more bases in DNA encoding PTS on the chromosome of a coryneform bacterium or its transcription / translation regulatory region.
  • the method of introducing is mentioned.
  • ⁇ PTS consists of a total of three components: the EI protein and HPr protein that are commonly involved in the uptake of all PTS sugars, and the EII protein unique to each PTS sugar. Accordingly, PTS is preferably introduced by introducing one or more base substitutions, deletions, insertions, additions, or inversions into the gene encoding the common component EI protein or HPr protein or the transcriptional / translational regulatory region thereof. The function of can be lost.
  • DNA from which the coding region of the gene encoding EI protein or HPr protein has been deleted cannot replicate autonomously in the host cell, and is resistant to antibiotics and the Bacillus subtilis levanschrase gene sacB (Mol. Microbiol. , 6 , 1195 (1992)] and introduced into the target microorganism. Since the recombinant plasmid cannot replicate autonomously in the host cell, the recombinant plasmid is chromosomally transformed by Campbell-type homologous recombination by selecting resistance to the antibiotic present on the recombinant plasmid as an index. Can be obtained.
  • cell fusion in addition to the above gene replacement method, cell fusion, transduction, etc. can also be used as a method using recombinant DNA technology.
  • Examples of the protein of the present invention that can enhance the ability of a sugar taken into a cell via PTS into the cell via a system different from PTS include the following proteins.
  • a protein having a myo-inositol transport activity [3] a protein encoded by the base sequence represented by SEQ ID NO: 13 or 15
  • a protein having a myo-inositol transport activity [5] a base sequence encoded by DNA that hybridizes under stringent conditions with the base sequence having 80% or more homology or identity with the base sequence represented by SEQ ID NO: 13 or 15
  • the DNAs having the nucleotide sequences of SEQ ID NOs: 13 and 15 are DNAs registered as Cgl0181 (NCgl0178) and Cgl3058 (NCgl2953) in DDBJ / GenBank / EMBL, respectively, and Cgl0181 (NCgl0178) and Cgl3058 ( NCgl2953) encodes the proteins described in SEQ ID NOs: 12 and 14, each having myo-inositol transport activity.
  • amino acid sequence represented by SEQ ID NO: 12 or 14 Comprising DNA encoding a protein (e.g., DNA having the nucleotide sequence represented by SEQ ID NO: 13 or 15) by introducing a site-specific mutation, it is possible to obtain.
  • the number of amino acids to be deleted, substituted or added is not particularly limited, but is a number that can be deleted, substituted or added by a known method such as the above-described site-directed mutagenesis method, 1 to several tens, The number is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • amino acid sequence represented by SEQ ID NO: 12 or 14 one or more amino acids are deleted, substituted or added.
  • One or more amino acids are deleted, substituted or added at any position in the same sequence. May be.
  • amino acid positions at which amino acid deletions or additions can be made include 1 to several amino acids on the N-terminal side and C-terminal side of the amino acid sequence represented by SEQ ID NO: 12 or 14.
  • Natural amino acids include L-alanine, L-asparagine, L-aspartic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-arginine, L -Methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine and the like.
  • amino acids included in the same group can be substituted for each other.
  • Group A leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine
  • Group B aspartic acid, glutamic acid, isoaspartic acid, Isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid
  • Group C asparagine, glutamine
  • D lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid
  • Group E proline, 3 -Hydroxyproline, 4-hydroxyproline
  • Group F serine, threonine, homoserine
  • Group G phenylalanine, tyrosine
  • SEQ ID NO: 12 or 14 is used.
  • Homology or identity with the amino acid sequence shown is 80% or more, preferably 90% or more, more preferably 95% or more, even more preferably 98% or more, particularly preferably 99% or more. It is desirable to have.
  • Gapped BLAST can be used as described in Altschul et al. (1997, Nucleic Acids Res. 25: 3389-3402).
  • PSI-Blast or PHI-Blast can be used to perform an iterated search that detects the positional relationship (Id.) Between molecules and the relationship between molecules that share a common pattern.
  • the default parameters of the respective programs can be used. See http://www.ncbi.nlm.nih.gov.
  • hybridize means that DNA hybridizes to DNA having a specific base sequence or a part of the DNA under specific conditions. Accordingly, the DNA having the specific base sequence or a part of the base sequence of the DNA is useful as a probe for Northern or Southern blot analysis, or has a length that can be used as an oligonucleotide primer for PCR analysis. May be.
  • DNA used as a probe include DNA of at least 100 bases, preferably 200 bases or more, more preferably 500 bases or more, but may be DNA of at least 10 bases, preferably 15 bases or more. .
  • the above stringent conditions include, for example, a DNA-immobilized filter and probe DNA, 50% formamide, 5 ⁇ SSC (750 mM sodium chloride, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6). ), Incubated in a solution containing 5 ⁇ Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g / l denatured salmon sperm DNA overnight at 42 ° C., for example, in a 0.2 ⁇ SSC solution at about 65 ° C. Conditions for washing the filter can be raised, but lower stringent conditions can also be used.
  • Stringent conditions can be changed by adjusting the concentration of formamide (the lower the formamide concentration, the lower the stringency), and changing the salt concentration and temperature conditions.
  • low stringent conditions for example, 6 ⁇ SSCE (20 ⁇ SSCE is 3 mol / l sodium chloride, 0.2 mol / l sodium dihydrogen phosphate, 0.02 mol / l EDTA, pH 7.4), 0.5% Incubate overnight at 37 ° C in a solution containing SDS, 30% formamide, 100 ⁇ g / l denatured salmon sperm DNA, then wash with 50 ° C 1x SSC, 0.1% SDS solution.
  • examples of lower stringent conditions include conditions in which hybridization is performed using a solution having a high salt concentration (for example, 5 ⁇ SSC) under the above-described low stringency conditions and then washed.
  • the various conditions described above can also be set by adding or changing a blocking reagent used to suppress the background of the hybridization experiment.
  • the addition of the blocking reagent described above may be accompanied by a change in hybridization conditions in order to adapt the conditions.
  • the DNA that can hybridize under the above stringent conditions includes, for example, the base sequence represented by SEQ ID NO: 13 or 15 when calculated based on the above parameters using a program such as the above BLAST and FASTA. And DNA having a base sequence having homology or identity of at least 80%, preferably 90% or more, more preferably 95% or more, further preferably 98% or more, particularly preferably 99% or more.
  • a DNA that hybridizes with the above DNA under stringent conditions, or a DNA that comprises an amino acid sequence in which one or more amino acids are added, deleted or substituted, and that encodes a protein having myo-inositol transport activity, is coryneform.
  • a coryneform bacterium having the DNA is a DNA encoding a protein that enhances the ability of a saccharide to be taken into a cell through PTS and into the cell through a system different from PTS. This can be confirmed by growing in a medium containing a sugar that is not taken up via PTS as the sole carbon source.
  • a DNA encoding a protein that enhances the ability of a sugar incorporated into a cell via PTS to be incorporated into the cell in a system different from PTS is obtained by, for example, the method of Saito et al. From a microorganism belonging to a coryneform bacterium (Biochim. Biophys. Acta, 72 , 619 (1963)] can be obtained by PCR using a chromosomal DNA prepared as a template and a primer DNA designed and synthesized based on the nucleotide sequence represented by SEQ ID NO: 13 or 15.
  • chromosomal DNA is prepared from Corynebacterium glutamicum ATCC13032 strain or ATCC31833 strain, and the 5 ′ end and 3 ′ end region sequences of the respective nucleotide sequences represented by SEQ ID NO: 2 or 4 are prepared using the DNA as a template.
  • the DNA of the present invention can be obtained by PCR using the contained DNA as a primer set.
  • DNA that can be obtained include Cgl0181 (NCgl0178) having the nucleotide sequence represented by SEQ ID NO: 13, Cgl3058 (NCgl2953) having the nucleotide sequence represented by SEQ ID NO: 15, and the like.
  • This method can also be obtained by a method of chemically synthesizing DNA having the base sequence.
  • the DNA of the invention or the DNA used in the production method of the present invention can also be obtained.
  • the base sequence of DNA is determined by a commonly used base sequence analysis method such as dideoxy method [Proc. Natl. Acad. Sci., USA, 74 , 5463 (1977)], 373A DNA sequencer (manufactured by Perkin Elmer), etc. It can be determined by analyzing using a base sequence analyzer.
  • the full-length DNA can be obtained by Southern hybridization or the like for a chromosomal DNA library using the partial length DNA as a probe.
  • a vector which can autonomously replicate in coryneform bacteria or can be integrated into a chromosome and contains a promoter at a position where the DNA of the present invention can be transcribed is preferably used.
  • pCG1 JP 57-134500
  • pCG2 JP 58-35197
  • pCG4 JP 57-183799
  • pCG11 JP 57-134500
  • pCG116 JP 57-134500
  • pCE54 pCB101
  • pCE51, pCE52, pCE53 all of which are Molecular and General Genetics, 196 , 175 (1984)] and the like are preferably used.
  • the recombinant DNA obtained by incorporating the DNA of the present invention into a vector is preferably composed of a promoter, a ribosome binding sequence, the DNA of the present invention, and a transcription termination sequence.
  • a gene that controls the promoter may also be included.
  • any promoter can be used as long as it functions in a host cell (coryneform bacterium).
  • trp promoter P trp
  • lac promoter P L promoter
  • P R promoter can be mentioned promoters derived from such T7 promoter, E. coli or phage, or the like.
  • P trp promoters P trp ⁇ 2
  • tac promoter tac promoter
  • lacT7 promoter let I promoter and P54-6 promoter for expression in microorganisms belonging to the genus Corynebacterium [Appl. Artificially designed and modified promoters such as Microbiol. Biotechnol., 53 , 674-679 (2000)] can also be used.
  • the distance between the Shine-Dalgarno sequence, which is a ribosome binding sequence, and the start codon is adjusted to an appropriate distance (eg, 6 to 18 bases).
  • a transcription termination sequence is not necessarily required, but it is preferable that the transcription termination sequence is located immediately below the structural gene.
  • the resulting recombinant DNA is introduced into a coryneform bacterium serving as a host.
  • any method that can introduce DNA into coryneform bacteria can be used.
  • a method using calcium ion [Proc. Natl. Acad. Sci., USA, 69 , 2110 (1972)]
  • protoplast method Japanese Patent Laid-Open No. 63-248394
  • electroporation method [Nucleic Acids Res., 16 , 6127 (1988)] and the like.
  • a DNA encoding a protein having an activity of enhancing the ability of a sugar incorporated into cells via PTS to be incorporated into cells via a system different from PTS may be incorporated into the chromosome of a coryneform bacterium as a plasmid. It may be introduced into a coryneform bacterium to form a transformant.
  • DNA derived from coryneform bacteria is preferably used as a DNA encoding a protein having an activity of enhancing the ability of a sugar taken into a cell via PTS into a cell via a system different from PTS.
  • the microorganism of the present invention is, for example, treated with a mutagen such as N-methyl-N′-nitro-N-nitrosoguanidine (microorganism experiment manual, 1986, p. 131, Kodansha Scientific).
  • Fick has the ability to take sugars that are taken into cells through PTS from a strain obtained by performing mutation treatment such as ultraviolet irradiation treatment into cells through a system different from PTS It is possible to select and obtain the bacterial strain that has become.
  • the PTS function of a strain obtained by carrying out a mutation treatment is inhibited according to the above method, and then a minimal medium containing PTS sugar as a single carbon source at 30 to 39 ° C., preferably 35
  • a minimal medium containing PTS sugar as a single carbon source at 30 to 39 ° C., preferably 35
  • Examples thereof include a method of selecting a strain capable of growing at -39 ° C, more preferably at 37-39 ° C.
  • a system different from PTS at a frequency of 10 -5 to 10 -6 by spontaneous mutation is selected from strains that have previously lost the function of PTS obtained according to the above method. It is also possible to obtain a strain capable of incorporating PTS sugar into the cell.
  • the ability to produce a useful substance in the microorganism of the present invention may be an ability to produce one or more useful substances.
  • A a method for mitigating or releasing at least one of the mechanisms controlling biosynthesis of useful substances;
  • B a method for enhancing expression of at least one enzyme involved in biosynthesis of useful substances,
  • C a method of increasing at least one copy number of an enzyme gene involved in biosynthesis of a useful substance,
  • D a method for weakening or blocking at least one of metabolic pathways branching from a biosynthetic pathway of a useful substance to a metabolite other than the useful substance, and (e) a degree of resistance to an analog of the useful substance compared to a wild-type strain
  • the above known methods can be used alone or in combination.
  • Production of useful substances using microorganisms with enhanced ability to take in sugars into cells via PTS and into cells via a system different from PTS follows the production of normal useful substances using microorganisms. It can be carried out.
  • useful substances can be efficiently produced by culturing the microorganisms in a medium and collecting useful substances produced and accumulated in the culture.
  • the medium either a synthetic medium or a natural medium can be used as long as it contains an appropriate amount of carbon source, nitrogen source, inorganic salts, and the like.
  • the carbon source may be any carbon source that can be assimilated by the microorganism, but PTS sugar that can be taken into cells without PTS is preferable.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium carbonate, ammonium acetate and other inorganic and organic ammonium salts, urea, other nitrogen-containing compounds, meat extract, yeast extract, corn steep liquor, soybean hydrolysate And nitrogen-containing organic substances such as
  • inorganic salts include potassium monohydrogen phosphate, potassium dihydrogen phosphate, ammonium sulfate, sodium chloride, magnesium sulfate, calcium carbonate and the like.
  • micronutrient sources such as biotin, thiamine, nicotinamide, and nicotinic acid may be added as necessary. These micronutrient sources can be substituted with meat extract, yeast extract, corn steep liquor, casamino acid and the like.
  • Cultivation is performed under aerobic conditions such as shaking culture and deep aeration stirring culture.
  • the culture temperature is generally preferably 20 to 42 ° C, more preferably 30 to 39 ° C.
  • the pH of the medium is preferably in the range of 5 to 9 and is maintained near neutrality.
  • the pH of the medium is adjusted using an inorganic or organic acid, an alkaline solution, urea, calcium carbonate, ammonia, a pH buffer solution, or the like.
  • the culture period is usually 1 to 6 days, and target useful substances such as L-amino acids can be produced and accumulated in the culture solution.
  • target useful substance can be recovered from the culture solution obtained by removing precipitates such as the cells by using a known method such as activated carbon treatment or ion exchange resin treatment.
  • the microorganism of the present invention has a good growth even at a high temperature, for example, 37-39 ° C., at which the growth rate of ordinary coryneform bacteria is reduced. It is possible not only to reduce the cooling cost in summer, but also to reduce the possibility of contamination with germs.
  • 5 ′ of the upstream region amplification 3 ′ primer (ptsHFusR; SEQ ID NO: 2)
  • the 5 ′ primer for downstream amplification (ptsHFusF; SEQ ID NO: 4) is complementary on the 3 ′ side with about 25 bases complementary to the 5 ′ side, and the ptsHFusF is about 25 bases on the 3 ′ side of ptsHFusR. Sequence was added.
  • FIG. 1 shows a schematic diagram of the construction of a DNA fragment for ptsH gene disruption and the approximate position where the primer binds.
  • SEQ ID NOs: 1 to 4 show the nucleotide sequences of the above four primers, ptsHup800F, ptsHFusR, ptsHdown800R and ptsHFusF.
  • ATCC31833 Chromosomal DNA of Corynebacterium glutamicum ATCC31833 (hereinafter referred to as ATCC31833), a wild-type strain of Corynebacterium glutamicum, was prepared according to the method of Saito et al. [Biochim. Biophys. Acta 72 , 619 (1963)].
  • chromosomal DNA as a template, subjected to the first PCR to amplify the basin and downstream region of the ptsH, to obtain a DNA fragment of about 0.82kb DNA fragment and downstream region of about 0.83kb the upstream region.
  • a second PCR was performed to link these upstream and downstream fragments, and a DNA fragment of about 1.65 kb was obtained as a DNA fragment for ptsH gene disruption (FIG. 1).
  • LB agar medium containing 20 ⁇ g / ml kanamycin Bacto agar (Difco) 16 g of water 1 L And the medium was adjusted to pH 7.0], and transformed strains were selected.
  • the transformed strain was inoculated in an LB medium containing 20 ⁇ g / ml kanamycin (a medium having the same composition as the LB agar medium except that it did not contain agar) and cultured overnight. From the obtained culture solution, alkaline SDS method [Molecular cloning: a laboratory manual, 3 rd ed, 2001, the plasmid was prepared by Cold Spring Harbor Laboratory Press]. By nucleotide sequence analysis, the plasmid was confirmed to be a plasmid having a structure in which an about 1.65 kb ptsH gene disruption DNA fragment was inserted into pESB30 . This plasmid was named pC ⁇ ptsH.
  • the transformed strain (single recombinant) was added to 1 liter of Suc agar medium (100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract (manufactured by Difco) and 15 g of bacto agar (manufactured by Difco). And a colony that grows by culturing at 30 ° C. for 1 day. Strains in which the sacB gene is present cannot grow in this medium because sucrose is converted to a suicide substrate [J. Bacteriol., 174, 5462 (1991)].
  • strains lacking the sacB gene due to the second homologous recombination between the wild-type and deletion-type ptsH genes that are close together on the chromosome cannot grow suicide substrates and grow on this medium. Can do. During this homologous recombination, either the wild type gene or the deletion type gene is lost together with sacB . At this time, in the strain in which the wild-type gene was dropped together with sacB , gene replacement with the deletion-type gene occurred.
  • the chromosomal DNA of the double recombinant thus obtained was prepared by the method of Saito et al. [Biochim. Biophys. Acta 72, 619 (1963)], and the base sequence of the PCR amplified ptsH gene region was determined by a conventional method. Determined by. As a result, it was found that the ptsH of the double recombinant named ⁇ ptsH strain was the target ptsH disruption strain lacking 216 bp in its structural gene.
  • the ⁇ ptsH strain and its parent strain, ATCC31833 strain were each a minimal medium containing glucose as a single carbon source, MM agar medium [glucose 10 g, magnesium sulfate heptahydrate 0.4 g, ammonium chloride 4 g, urea 2 g, phosphorus Potassium monohydrogen acid 3g, potassium dihydrogen phosphate 1 g of iron sulfate heptahydrate 10 mg, manganese sulfate pentahydrate 1 mg, nicotinic acid 5 mg, biotin 0.1 mg, thiamine hydrochloride 5 mg, and bactagar 20 g in 1 liter of water and adjusted to pH 7.2 Culture medium. (Hereinafter also referred to as glucose medium) and cultured at 30 ° C. for 2 days, the ATCC31833 strain grew well, while the ⁇ ptsH strain did not grow.
  • glucose medium glucose medium
  • the ⁇ ptsH strain was determined to be a strain deficient in ptsH (hereinafter referred to as a ptsH disrupted strain).
  • ⁇ ptsH strain was obtained from BY agar medium (7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract, bacto agar A medium containing 15 g in 1 L of water and adjusted to pH 7.2) was applied and cultured at 30 ° C. for 18 hours.
  • the cells grown on the medium were suspended in physiological saline so that the cell concentration was 10 8 / ml, and the suspension was applied to an MM agar medium and cultured at 30 ° C. for 6 days. As a result, colonies appeared on the MM agar medium at a frequency of about 10 ⁇ 5 . When these colonies were applied to MM agar medium and cultured at 30 ° C. for 2 days, using ⁇ ptsH and ATCC31833 as controls, ⁇ ptsH strains were not able to grow on the MM agar medium. It grew almost the same as MM agar medium.
  • Corynebacterium glutamicum SupH strain is based on the Budapest Treaty as of August 22, 2008 as FERM BP-10998, National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (1 1 East Higashi Tsukuba City, Ibaraki Prefecture, Japan) It is deposited at address 1 Chuo No. 6 (zip code 305-8566).
  • Table 1 shows the growth of each strain when ATCC31833 strain, ⁇ ptsH strain and SupH strain were applied to glucose medium and ribose medium and cultured at 30 ° C. for 2 days, respectively.
  • the ATCC31833 strain, ⁇ ptsH strain, and SupH strain were added to the medium in which 2-deoxyglucose, an analog of glucose, was added to the glucose medium, ribose medium, and ribose medium in (3) above, respectively. It was applied and cultured at 30 ° C. for 2 days to examine its growth. The results are shown in Table 1.
  • the wild type strain could not grow in the presence of 1 mg / ml 2-deoxyglucose, but the ⁇ ptsH strain and the SupH strain could grow. From these, it was judged that the SupH strain was a strain in which glucose was incorporated through a system other than PTS.
  • both the SupH and ATCC31833 strains grew well under the 30 ° C condition, but the growth of the ATCC31833 strain deteriorated significantly at 38 ° C, which was a high temperature condition, and almost stopped growing during the culture. In contrast, the SupH strain grew well.
  • the SupH strain has higher high-temperature resistance than the ATCC31833 strain in the liquid culture in the glucose medium.
  • this seed culture solution is added to the main culture medium (glucose 50 g, corn steep liquor 10 g, ammonium sulfate 45 g, urea 2 g, potassium dihydrogen phosphate 0.5 g, magnesium sulfate heptahydrate 0.5 g, biotin 0.3 mg in 1 L of water.
  • the medium is adjusted to pH 7.0, then added to 30 g of calcium carbonate) and inoculated into a large test tube containing 5 ml, and cultured with shaking at 30-37 ° C. for 72 hours.
  • the cells are removed from the culture by centrifugation, and the amount of L-lysine hydrochloride accumulated in the supernatant is quantified by high performance liquid chromatography (HPLC) to confirm that L-lysine is produced.
  • HPLC high performance liquid chromatography
  • L-lysine production test using SupH strain It is known that L-lysine-producing bacteria can be obtained by introducing lysC311 mutation (Thr311 ⁇ Ile) into a wild strain of Corynebacterium glutamicum [JP 2002] -191370, Appl. Microbiol. Biotechnol., 58 , 217 (2002)]. The method for introducing the mutation is also described in detail in the published patent publication [JP 2002-191370]. According to such information, the lysC311 mutation was introduced into the SupH strain obtained in Example 1 and its parent strain, ATCC31833 strain, respectively. The ATCC31833 strain and SupH strain having the lysC311 mutation were named ATCC31833 ( lysC311 ) strain and SupH ( lysC311 ) strain, respectively.
  • the L- lysine production tests of the thus ATCC31833 (lysC311) obtained by strain and SupH (lysC311) strains by in vitro culture was performed as follows. 1 platinum culture cultured on BY agar medium at 30 ° C for 24 hours, adjusted to pH 7.2 with seed medium (20g glucose, 7g meat extract, 10g peptone, 3g sodium chloride, 5g yeast extract in 1L water) The medium was inoculated into a thick test tube containing 5 ml of a medium supplemented with 10 g of calcium carbonate and cultured at 30 ° C. for 13 hours.
  • this seed culture solution is added to the main culture medium (glucose 50 g, corn steep liquor 10 g, ammonium sulfate 45 g, urea 2 g, potassium dihydrogen phosphate 0.5 g, magnesium sulfate heptahydrate 0.5 g, biotin 0.3 mg in 1 L of water.
  • the medium was inoculated into a large test tube containing 5 ml of a medium supplemented with 30 g of calcium carbonate, and cultured with shaking at 33 ° C. for 72 hours.
  • the cells were removed from the culture by centrifugation, and the amount of L-lysine hydrochloride accumulated in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2.
  • the DNA consisting of the base sequence represented by SEQ ID NO: 13 is represented by the amino acid sequence of Cgl0181 (NCgl0178) represented by SEQ ID NO: 12, and the DNA comprising the base sequence represented by SEQ ID NO: 15 is represented by SEQ ID NO: 14.
  • Cgl3058 (NCgl2953) amino acid sequence is encoded.
  • PCR was performed using DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 5 and 7 and DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 10 and 11 as primer sets, respectively, and chromosomal DNA of the ATCC31833 strain as a template. .
  • the amplified DNA fragments of about 1 kb and about 1.68 kb were mixed and used as a template, and a second PCR was performed.
  • a DNA fragment for Cgl3058 expression (about 2.68 kb DNA fragment in which a DNA encoding Cgl3058 was inserted downstream of the gapA promoter) was obtained.
  • Plasmid pCS299P [Appl. Microbiol. Biotech. , 63 , 592 (2004)] and the DNA fragment for Cgl0181 expression obtained in (1) above was cleaved with restriction enzymes Sal I and Xho I, respectively, and then ligated using ligation kit ver1 (Takara Shuzo). It was. On the other hand, pCS299P and the Cgl3058 expression DNA obtained in (1) above were cleaved with the restriction enzyme Bam HI, and then subjected to the same ligase reaction. Using each reaction product, Escherichiacoli DH5a was transformed according to a conventional method.
  • the obtained strain was cultured on an LB agar medium containing 20 mg / ml kanamycin, and a transformant was selected.
  • the transformed strain was inoculated into an LB medium containing 20 mg / ml kanamycin and cultured overnight, and a plasmid was prepared from the obtained culture solution by the alkaline SDS method.
  • the plasmid was confirmed to be a plasmid having a structure in which a fragment of about 2.88 kb or about 2.68 kb was inserted into pCS299P.
  • These plasmids were named pPgapA-0181 and pPgapA-3058, respectively.
  • the ⁇ ptsH strain cannot grow on the glucose medium, but the ⁇ ptsH / pPgapA-0181 strain and the ⁇ ptsH / pPgapA-3058 strain grew. Furthermore, both of these strains grew in the presence of 2-deoxyglucose as well as the ⁇ ptsH strain. From the above, it was found that both ⁇ ptsH / pPgapA-0181 strain and ⁇ ptsH / pPgapA-3058 strain have the ability to take in glucose via a system other than PTS.
  • the ATCC31833 ( lysC311 ) strain having pPgapA-0181 or pPgapA-3058 has a significantly higher production amount of L-lysine hydrochloride than the ATCC31833 ( lysC311 ) strain having no such plasmid. Had improved.
  • the present invention can provide an efficient method for producing useful substances.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、効率のよい有用物質の製造法、または該製造法に用いることのできるコリネ型細菌に属する微生物を提供する。本発明は、ホスホトランスフェラーゼ・システム(PTS)を介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力を有し、かつ有用物質を生産する能力を有するコリネ型細菌に属する微生物を用いる有用物質の製造法を提供する。

Description

有用物質の製造法
 本発明は、有用物質の製造法に関する。
 ホスホトランスフェラーゼ・システム(Phosphotransferase System、以下PTSともいう)は、多くの細菌で見られる糖の取り込みとリン酸化に関与するシステムである。ホスホエノールピルビン酸をリン酸ドナーとし、EIタンパク質、HPrタンパク質およびEIIタンパク質の3つのコンポーネントがリン酸をリレーしてある種の糖をリン酸化しつつ細胞内に取り込む。PTSにより取り込まれる糖はPTS糖と呼ばれる。PTSが欠損すると、該PTS糖を単一の炭素源とする最少培地では生育できなくなることが知られている(非特許文献1参照)。
 PTSを介さずにパーミアーゼで細胞内に取り込まれ、次いでキナーゼによってリン酸化を受ける糖、いわゆる非PTS糖もあるが、微生物を用いる発酵生産に一般に用いられるグルコースは、多くの微生物においてPTS糖に分類される。したがって、PTSを欠損したコリネバクテリウム・グルタミカム(Corynebacteriumglutamicum)等のコリネバクテリウム属に属する微生物や大腸菌〔エシェリシア・コリ(Escherichia coli)〕等をグルコースを炭素源とする発酵生産に用いると、グルコースを利用できないため生育が悪く、そのため生産性も悪い。
 大腸菌においては、ガラクトースパーミアーゼ遺伝子の変異により、グルコース培地で再び生育できるようになる菌株(非特許文献2参照)等、PTS以外のPTS糖の取り込みシステムを有する菌株が報告されているが、コリネ型細菌に属する微生物においては、このようなシステムは知られていない。
 コリネバクテリウム・グルタミカムの染色体DNA上のORFのうちで、Cgl0181 (NCgl0178)およびCgl3058 (NCgl2953)はともに、ミオイノシトールの輸送に関わる蛋白質をコードしていることが報告されている(非特許文献3)。しかしこれらの蛋白質をコードする遺伝子の発現が強化された微生物のグルコース取り込み能がどうなっているか、当該蛋白質の発現強化が微生物の有用物質生産能に与える効果については知られていない。
Biochem. Biophys. Res. Commun., 289, 1307(2001) Nat. Biotechnol., 14, 620(1996) J. Bacteriol., 188, 8054 (2006)
 本発明の目的は、効率のよい有用物質の製造法を提供することにある。
 本発明は以下の(1)~(9)に関する。
(1)ホスホトランスフェラーゼ・システム(以下、PTSと略す)を介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力が強化され、かつ有用物質を生産する能力を有するコリネ型細菌に属する微生物を培地に培養し、培養物中に有用物質を生成、蓄積させ、該培養物から有用物質を採取することを特徴とする有用物質の製造法。
(2)PTSを介して細胞内に取り込まれる糖がグルコース、フラクトースおよびスクロースから選ばれる糖である、(1)記載の製造法。
(3)コリネ型細菌に属する微生物が、コリネバクテリウム(Corynebacterium)属、ブレビバクテリウム(Brevibacterium)属およびミクロバクテリウム(Microbacterium)属からなる群より選ばれる属に属する微生物である、(1)または(2)記載の製造法。
(4)コリネ型細菌に属する微生物が、コリネバクテリウム属に属する微生物である、(1)~(3)のいずれか1項に記載の製造法。
(5)コリネ型細菌に属する微生物が、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)に属する微生物である、(1)~(4)のいずれか1項に記載の製造法。
(6)微生物が、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum) SupH(FERM BP-10998)株である、(1)記載の製造法。
(7)培養を35~38℃で行うことを特徴とする(1)~(6)のいずれか1項に記載の製造法。
(8)有用物質がアミノ酸である、(1)~(7)のいずれか1項に記載の製造法。
(9)PTSを介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力が強化され、かつ有用物質を生産する能力を有するコリネ型細菌に属する微生物が、[1]~[5]のいずれかに記載の蛋白質の生成能が強化された微生物である、(1)記載の製造法。
[1]配列番号12または14で表されるアミノ酸配列からなる蛋白質
[2]配列番号12または14で表されるアミノ酸配列において1以上のアミノ酸が付加、欠失または置換されたアミノ酸配列からなり、かつミオイノシトール輸送活性を有する蛋白質
[3]配列番号13または15で表される塩基配列にコードされる蛋白質
[4]配列番号13または15で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAにコードされ、かつミオイノシトール輸送活性を有する蛋白質
[5]配列番号13または15で表される塩基配列と80%以上の相同性ないし同一性を有する塩基配列からなるDNAにコードされ、かつミオイノシトール輸送活性を有する蛋白質。
 本発明により、効率のよい有用物質の製造法を提供することができる。
図1はptsH遺伝子破壊用DNA断片の構築の模式図とプライマーが結合するおおよその位置を示す図である。 図2は、グルコース培地における、SupH株およびATCC31833株の生育を示す図である。黒四角はSupH株を示し、白抜きの三角はATCC31833株を示す。
 本発明の製造法で用いられる微生物は、PTSを介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力を有し、かつ有用物質を生産する能力を有していれば、コリネ型細菌に属するいずれの微生物であってもよい。
 コリネ型細菌としては、Bergeys Manual of Determinative Bacteriology, 8, 599 (1974)に定義される、コリネバクテリウム(Corynebacterium)属、ブレビバクテリウム(Brevibacterium)属、またはミクロバクテリウム(Microbacterium)属に属する微生物があげられる。
 具体的には、コリネバクテリウム・アセトアシドフィラム(Corynebacterium acetoacidophilum)、コリネバクテリウム・アセトグルタミカム(Corynebacteriumacetoglutamicum)、コリネバクテリウム・カルナエ(Corynebacterium callunae)、コリネバクテリウム・グルタミカム(Corynebacteriumglutamicum)、コリネバクテリウム・ハーキュリス(Corynebacterium herculis)、コリネバクテリウム・リリウム(Corynebacteriumlilium)、コリネバクテリウム・メラセコラ(Corynebacterium melassecola)、コリネバクテリウム・サーモアミノゲネス(Corynebacteriumthermoaminogenes)、ブレビバクテリウム・サッカロリティカム(Brevibacterium saccharolyticum)、ブレビバクテリウム・イマリオフィラム(Brevibacteriumimmariophilum)、ブレビバクテリウム・ローゼウム(Brevibacterium roseum)、ブレビバクテリウム・チオゲニタリス(Brevibacteriumthiogenitalis)、ミクロバクテリウム・アンモニアフィラム(Microbacterium ammoniaphilum)等をあげることができる。
 PTSを介して細胞内へ取り込まれる糖としては、グルコース、フラクトース、スクロース等があげられる。
 有用物質としては、コリネ型細菌に属する微生物が生産することができる工業上有用とされている物質であればいずれでもよく、アミノ酸、核酸、ビタミン、各種酵素等のタンパク質、グルタチオン等のペプチド、キシロース等の糖、キシリトール等の糖アルコール、エタノール等のアルコール、乳酸、コハク酸等の有機酸および脂質等をあげることができ、好ましくはアミノ酸、核酸およびビタミン、特に好ましくはアミノ酸があげられる。
 アミノ酸としては、L-アラニン、グリシン、L-グルタミン、L-グルタミン酸、L-アスパラギン、L-アスパラギン酸、L-リジン、L-メチオニン、L-スレオニン、L-ロイシン、L-バリン、L-イソロイシン、L-プロリン、L-ヒスチジン、L-アルギニン、L-チロシン、L-トリプトファン、L-フェニルアラニン、L-セリン、L-システイン、L-3-ヒドロキシプロリン、L-4-ヒドロキシプロリン等があげられ、核酸としては、イノシン、グアノシン、イノシン酸、グアニル酸等があげられ、ビタミンとしては、リボフラビン、チアミン、アスコルビン酸等があげられる。
 本発明の製造法で用いられる微生物は、PTSを介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力を有することから、PTSが機能しない状態、例えばPTSの機能を阻害した場合においても、PTS糖を単一の炭素源とする最少培地、たとえば、MM寒天培地(PTS糖10g、硫酸マグネシウム7水和物0.4g、塩化アンモニウム 4g、尿素2g、リン酸一水素カリウム 3g、リン酸二水素カリウム 1g、硫酸鉄7水和物10 mg、硫酸マンガン5水和物1 mg、ニコチン酸 5 mg、ビオチン 0.1 mg、チアミン塩酸塩 5 mg、およびバクトアガー20gを水1リットルに含み、pH 7.2に調整した培地)で30~39℃で生育が可能である。なお、本発明の微生物のPTSが、既に機能していない場合は、あえてPTSの機能を阻害する必要はない。 
 微生物のPTSが機能しているか否かを調べる方法としては、生育阻害を示すPTS糖のアナログを用いる方法があげられる。たとえば、リボース等の非PTS糖を炭素源とし、PTS糖のアナログを含有する最少培地における30~37℃での該微生物の生育を観察し、生育阻害が認められる場合は、PTSが機能していると判断し、逆に生育阻害が認められない場合は、PTSが機能していないと判断することができる。生育阻害の有無は、該微生物の、栄養寒天培地〔たとえば、BY寒天培地(肉エキス7g、ペプトン10g、塩化ナトリウム3g、酵母エキス5gおよびバクトアガー15gを水1Lに含み、pH7.2に調整した培地)〕における同温度での生育と比較することにより判断できる。
 PTS糖のアナログとしては、例えば、グルコースのアナログである、2-デオキシグルコースがあげられる。最少培地中のPTS糖アナログの濃度は、野生型株の栄養寒天培地での生育が阻害される濃度を指標として適宜決めればよい。例えば、2-デオキシグルコースでは1mg/mlが好ましい。
 PTSの機能を阻害する方法としては、例えば、突然変異処理法、組換えDNA技術を用いて人為的にPTSを欠損させる方法があげられるが、組換えDNA技術を用いる方法が好ましく用いられる。
 組換えDNA技術を用いる方法としては、例えば、コリネ型細菌の染色体上のPTSをコードするDNAまたはその転写・翻訳調節領域中に1以上の塩基の置換、欠失、挿入、付加、または逆位を導入する方法があげられる。
 PTSは、すべてのPTS糖の取り込みに共通して関与するEIタンパク質とHPrタンパク質、および個々のPTS糖に固有のEIIタンパク質の計3つのコンポーネントからなる。したがって、好ましくは共通コンポーネントであるEIタンパク質またはHPrタンパク質をコードする遺伝子またはその転写・翻訳調節領域中に1以上の塩基の置換、欠失、挿入、付加、または逆位を導入することにより、PTSの機能を喪失させることができる。
 PTSをコードするDNAまたはその転写・翻訳調節領域中に1以上の塩基の置換、欠失、挿入、付加、または逆位を生じさせる方法としては、例えばMolecular cloning: a laboratory manual, 3rd ed., Cold Spring Harbor Laboratory Press (2001)、Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997)、Nucleic Acids Research, 10, 6487 (1982)、Proc. Natl. Acad. Sci. USA, 79, 6409 (1982)、Gene, 34, 315 (1985)、Nucleic Acids Research, 13, 4431 (1985)、Proc. Natl. Acad. Sci. USA, 82, 488(1985) 等に記載の部位特異的変異導入法をあげることができる。
 例えばEIタンパク質またはHPrタンパク質をコードする遺伝子のコーディング領域が削除されたDNAを、宿主細胞中では自律複製できず、かつ抗生物質に対する耐性マーカー遺伝子および枯草菌のレバンシュクラーゼ遺伝子sacB[Mol. Microbiol., 6, 1195 (1992)]を有するプラスミドに組み込み、目的の微生物に導入する。該組換え体プラスミドは宿主細胞中で自律複製できないので、該組換え体プラスミド上に存在する抗生物質に対する耐性を指標として選択することにより、該組換え体プラスミドがCampbellタイプの相同組換えにより染色体に組み込まれた形質転換株を取得することができる。つぎに、該遺伝子のコーディング領域が削除されたDNAと共に染色体上に組み込まれる枯草菌レバンシュクラーゼが自殺基質を生産することを利用した選択[J. Bacteriol., 174, 5462 (1992)]を行うことによって、宿主染色体上の正常なEIタンパク質またはHPrタンパク質をコードする遺伝子が欠失型のものに置換された株を取得することができる。
 組換えDNA技術を用いる方法としては、上記遺伝子置換法以外にも、細胞融合、形質導入等を用いることもできる。
 PTSを介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力が強化され得る本発明の蛋白質としては、例えば以下の蛋白質があげられる。
[1]配列番号12または14で表されるアミノ酸配列からなる蛋白質
[2]配列番号12または14で表されるアミノ酸配列において1以上のアミノ酸が付加、欠失または置換されたアミノ酸配列からなり、かつミオイノシトール輸送活性を有する蛋白質
[3]配列番号13または15で表される塩基配列にコードされる蛋白質
[4]配列番号13または15で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAにコードされ、かつミオイノシトール輸送活性を有する蛋白質
[5]配列番号13または15で表される塩基配列と80%以上の相同性ないし同一性を有する塩基配列からなるDNAにコードされ、かつミオイノシトール輸送活性を有する蛋白質。
 なお、配列番号13および15記載の塩基配列を有するDNAは、DDBJ/GenBank/EMBLに、それぞれ、Cgl0181 (NCgl0178)およびCgl3058 (NCgl2953)として登録されているDNAであり、Cgl0181 (NCgl0178)とCgl3058 (NCgl2953)は、ミオイノシトール輸送活性を有する配列番号12,14に記載の蛋白質をそれぞれコードしている。
 上記において、1以上のアミノ酸が欠失、置換または付加されたアミノ酸配列からなり、かつ、PTSを介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力が強化される活性を有する蛋白質は、Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)(以下、モレキュラー・クローニング第2版と略す)、Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997)(以下、カレント・プロトコールズ・イン・モレキュラー・バイオロジーと略す)、Nucleic Acids Research, 10, 6487 (1982)、Proc. Natl. Acad. Sci. USA, 79, 6409(1982)、Gene, 34, 315 (1985)、Nucleic Acids Research, 13, 4431 (1985)、Proc. Natl. Acad. Sci. USA, 82, 488 (1985)等に記載の部位特異的変異導入法を用いて、例えば配列番号12または14で表されるアミノ酸配列からなる蛋白質をコードするDNA(例えば、配列番号13または15で表される塩基配列を有するDNA)に部位特異的変異を導入することにより、取得することができる。
 欠失、置換または付加されるアミノ酸の数は特に限定されないが、上記の部位特異的変異法等の周知の方法により欠失、置換または付加できる程度の数であり、1個から数十個、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個である。
 配列番号12または14で表されるアミノ酸配列において1以上のアミノ酸が欠失、置換または付加されたとは、同一配列中の任意の位置において、1または複数のアミノ酸が欠失、置換または付加されていてもよい。
 アミノ酸の欠失または付加が可能なアミノ酸の位置としては、例えば配列番号12または14で表されるアミノ酸配列のN末端側およびC末端側の1~数個のアミノ酸をあげることができる。
 欠失、置換または付加は同時に生じてもよく、置換または付加されるアミノ酸は天然型と非天然型とを問わない。天然型アミノ酸としては、L-アラニン、L-アスパラギン、L-アスパラギン酸、L-グルタミン、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-アルギニン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシン、L-バリン、L-システインなどがあげられる。
 以下に、相互に置換可能なアミノ酸の例を示す。同一群に含まれるアミノ酸は相互に置換可能である。
 A群:ロイシン、イソロイシン、ノルロイシン、バリン、ノルバリン、アラニン、2-アミノブタン酸、メチオニン、O-メチルセリン、t-ブチルグリシン、t-ブチルアラニン、シクロヘキシルアラニン
 B群:アスパラギン酸、グルタミン酸、イソアスパラギン酸、イソグルタミン酸、2-アミノアジピン酸、2-アミノスベリン酸
 C群:アスパラギン、グルタミン
 D群:リジン、アルギニン、オルニチン、2,4-ジアミノブタン酸、2,3-ジアミノプロピオン酸
 E群:プロリン、3-ヒドロキシプロリン、4-ヒドロキシプロリン
 F群:セリン、スレオニン、ホモセリン
 G群:フェニルアラニン、チロシン
 また、本発明の蛋白質が、PTSを介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力が強化される活性を有するためには、配列番号12または14で表されるアミノ酸配列との相同性ないし同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、特に好ましくは99%以上の相同性ないし同一性を有していることが望ましい。
 アミノ酸配列や塩基配列の相同性ないし同一性は、Karlin and AltschulによるアルゴリズムBLAST[Pro. Natl. Acad. Sci. USA, 90, 5873(1993)]やFASTA[Methods Enzymol., 183, 63 (1990)]を用いて決定することができる。このアルゴリズムBLASTに基づいて、BLASTNやBLASTXとよばれるプログラムが開発されている[J. Mol. Biol., 215, 403(1990)]。BLASTに基づいてBLASTNによって塩基配列を解析する場合には、パラメータは例えばScore=100、wordlength=12とする。また、BLASTに基づいてBLASTXによってアミノ酸配列を解析する場合には、パラメータは例えばscore=50、wordlength=3とする。gapped alignmentを得るために、Altschulら(1997, Nucleic Acids Res. 25:3389-3402)に記載されるようにGapped BLASTを利用することができる。あるいは、PSI-BlastまたはPHI-Blastを用いて、分子間の位置関係(Id.)および共通パターンを共有する分子間の関係を検出する繰返し検索を行うことができる。BLAST、Gapped BLAST、PSI-Blast、およびPHI-Blastプログラムを利用する場合、それぞれのプログラムのデフォルトパラメータを用いることができる。http://www.ncbi.nlm.nih.gov.を参照されたい。
 配列番号12または14で表されるアミノ酸配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、特に好ましくは99%以上の相同性ないし同一性を有するアミノ酸配列からなり、かつ、有用物質を生産する能力を有するコリネ型細菌において、PTSを介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力が強化される蛋白質もまた本発明の蛋白質である。
 本明細書において、「ハイブリダイズする」とは、特定の条件下で特定の塩基配列を有するDNAまたは該DNAの一部にDNAがハイブリダイズすることをいう。したがって、該特定の塩基配列を有するDNAまたは該DNAの一部の塩基配列は、ノーザンまたはサザンブロット解析のプローブとして有用であるか、またはPCR解析のオリゴヌクレオチドプライマーとして使用できる長さのDNAであってもよい。プローブとして用いるDNAとしては、少なくとも100塩基以上、好ましくは200塩基以上、より好ましくは500塩基以上のDNAをあげることができるが、少なくとも10塩基以上、好ましくは15塩基以上のDNAであってもよい。
 DNAのハイブリダイゼーション実験の方法はよく知られており、例えばモレキュラー・クローニング第2版、第3版(2001年)、Methods for General and Molecular Bacteriolgy, ASM Press(1994)、Immunology methods manual, Academic press(Molecular)に記載の他、多数の他の標準的な教科書に従ってハイブリダイゼーションの条件を決定し、実験を行うことができる。
 上記のストリンジェントな条件とは、例えばDNAを固定化したフィルターとプローブDNAとを50%ホルムアミド、5×SSC(750mMの塩化ナトリウム、75mMのクエン酸ナトリウム)、50mMのリン酸ナトリウム(pH7.6)、5×デンハルト溶液、10%の硫酸デキストラン、および20μg/lの変性させたサケ精子DNAを含む溶液中で42℃で一晩、インキュベートした後、例えば約65℃の0.2×SSC溶液中で該フィルターを洗浄する条件をあげることができるが、より低いストリンジェント条件を用いることもできる。ストリンジェントな条件の変更は、ホルムアミドの濃度調整(ホルムアミドの濃度を下げるほど低ストリンジェントになる)、塩濃度および温度条件の変更により可能である。低ストリンジェント条件としては、例えば6×SSCE(20×SSCEは、3mol/lの塩化ナトリウム、0.2mol/lのリン酸二水素ナトリウム、0.02mol/lのEDTA、pH7.4)、0.5%のSDS、30%のホルムアミド、100μg/lの変性させたサケ精子DNAを含む溶液中で、37℃で一晩インキュベートした後、50℃の1×SSC、0.1%SDS溶液を用いて洗浄する条件をあげることができる。また、さらに低いストリンジェントな条件としては、上記した低ストリンジェント条件において、高塩濃度(例えば5×SSC)の溶液を用いてハイブリダイゼーションを行った後、洗浄する条件をあげることができる。
 上記した様々な条件は、ハイブリダイゼーション実験のバックグラウンドを抑えるために用いるブロッキング試薬を添加、または変更することにより設定することもできる。上記したブロッキング試薬の添加は、条件を適合させるために、ハイブリダイゼーション条件の変更を伴ってもよい。
 上記したストリンジェントな条件下でハイブリダイズ可能なDNAとしては、例えば上記したBLASTおよびFASTA等のプログラムを用いて、上記パラメーターに基づいて計算したときに、配列番号13または15で表される塩基配列と少なくとも80%、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、特に好ましくは99%以上の相同性ないし同一性を有する塩基配列からなるDNAをあげることができる。
 上記したDNAとストリンジェントな条件下でハイブリダイズするDNA、或いは1以上のアミノ酸が付加、欠失または置換されたアミノ酸配列からなり、かつミオイノシトール輸送活性を有する蛋白質をコードするDNAが、コリネ型細菌の、PTSを介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力を強化する蛋白質をコードするDNAであることは、当該DNAを有するコリネ型細菌が、PTSを介して取り込まれない糖を唯一の炭素源とする培地中で増殖することで確認できる。
 PTSを介して細胞内へ取り込まれる糖を、PTSとは異なるシステムで細胞内に取り込む能力を強化する蛋白質をコードするDNAは、例えばコリネ型細菌に属する微生物から斎藤らの方法〔Biochim. Biophys. Acta, 72, 619 (1963)〕に従い調製した染色体DNAを鋳型として、配列番号13または15で表される塩基配列に基づき設計、合成したプライマーDNAを用いてPCRにより取得することができる。
 例えば、コリネバクテリウム・グルタミカム ATCC13032株またはATCC31833株から染色体DNAを調製し、該DNAを鋳型として、配列番号2または4で表されるそれぞれの塩基配列の5’末端および3’末端領域の配列を有するDNAをプライマーセットとして用いたPCRにより本発明のDNAを取得することができる。
 取得できる具体的なDNAとしては、配列番号13で表される塩基配列を有するCgl0181 (NCgl0178)および配列番号15で表される塩基配列を有するCgl3058 (NCgl2953)等をあげることができる。
 また、配列番号13または配列番号15で表される塩基配列からなるDNAの一部、または全部をプローブとしたハイブリダイゼーション法、または配列番号13または配列番号15で表される塩基配列に基づき、公知の方法で該塩基配列を有するDNAを化学合成する方法等によっても取得することができる。
 また、各種の遺伝子配列データベースに対して配列番号12または14で表されるアミノ酸配列をコードするDNAの塩基配列と80%以上もしくは90%以上、好ましくは95%以上、より好ましくは98%以上、特に好ましくは99%以上の相同性ないし同一性を有する配列を検索し、該検索によって得られた塩基配列に基づき、該塩基配列を有する生物の染色体DNA、cDNAライブラリー等から上記した方法により本発明のDNA、または本発明の製造法に用いられるDNAを取得することもできる。
 DNAの塩基配列は、通常用いられる塩基配列解析方法、例えばジデオキシ法 [Proc. Natl. Acad. Sci., USA, 74, 5463 (1977)]、373A・DNAシークエンサー(パーキン・エルマー社製)等の塩基配列分析装置を用いて分析することにより決定することができる。
 塩基配列を決定した結果、取得されたDNAが部分長であった場合は、該部分長DNAをプローブに用いた、染色体DNAライブラリーに対するサザンハイブリダイゼーション法等により、全長DNAを取得することができる。
 取得したDNAをそのまま、または必要に応じてコリネ型細菌の発現に最適なコドンとなるように塩基を置換したDNAを調製し、さらに必要に応じて該蛋白質をコードする部分を含む適当な長さのDNA断片とし、コリネ型細菌に適した発現ベクターのプロモーターの下流に挿入して組換え体DNAを調製する。
 ベクターとしては、コリネ型細菌において自律複製可能または染色体中への組み込みが可能で、本発明のDNAを転写できる位置にプロモーターを含有しているものが好ましく用いられる。
 例えば、pCG1(特開昭57-134500)、pCG2(特開昭58-35197)、pCG4(特開昭57-183799)、pCG11(特開昭57-134500)、pCG116、pCE54、pCB101(いずれも特開昭58-105999)、pCE51、pCE52、pCE53〔いずれもMolecular and General Genetics, 196, 175 (1984)〕等が好適に用いられる。
 ベクターに本発明のDNAを組み込んで得られる組換え体DNAは、プロモーター、リボソーム結合配列、本発明のDNA、転写終結配列、より構成されることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。
 プロモーターとしては、宿主細胞(コリネ型細菌)中で機能するものであればいかなるものでもよい。例えば、trpプロモーター(P trp )、lacプロモーター、PLプロモーター、PRプロモーター、T7プロモーター等の、大腸菌やファージ等に由来するプロモーターをあげることができる。またPtrpを2つ直列させたプロモーター(Ptrp×2)、tacプロモーター、lacT7プロモーター、let Iプロモーターやコリネバクテリウム(Corynebacterium)属に属する微生物中で発現させるためのP54-6プロモーター[Appl. Microbiol. Biotechnol., 53, 674-679 (2000)]のように人為的に設計改変されたプロモーター等も用いることができる。
 リボソーム結合配列であるシャイン-ダルガノ(Shine-Dalgarno)配列と開始コドンとの間は適当な距離(例えば6~18塩基)に調節されていることが好ましい。転写終結配列は必ずしも必要ではないが、構造遺伝子の直下に転写終結配列が配置されていることが好ましい。
 得られた組換え体DNAを宿主となるコリネ型細菌に導入する。
 組換え体DNAの導入方法としては、コリネ型細菌へDNAを導入できる方法であればいずれも用いることができ、例えば、カルシウムイオンを用いる方法[Proc. Natl. Acad. Sci., USA, 69, 2110 (1972)]、プロトプラスト法(特開昭63-248394)、エレクトロポレーション法[Nucleic Acids Res., 16, 6127 (1988)]等をあげることができる。
 PTSを介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力を強化する活性を有する蛋白質をコードするDNAは、コリネ型細菌の染色体に組み込んでもよく、プラスミドとしてコリネ型細菌に導入して形質転換体としてもよい。また、PTSを介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力を強化する活性を有する蛋白質をコードするDNAは、コリネ型細菌由来のDNAが好ましく使用される。
 本発明の微生物は、たとえば、コリネ型細菌に属する微生物に、N-メチル-N'-ニトロ-N-ニトロソグアニジン等の突然変異誘発剤処理(微生物実験マニュアル、1986年、131頁、講談社サイエンティフィック社)、紫外線照射処理等の突然変異処理を行って得られた菌株の中から、PTSを介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力を有するようになった菌株を選択して取得することができる。
 例えば、突然変異処理を行って得られた菌株のPTSの機能を、上記方法に準じて阻害した後、PTS糖を単一の炭素源とする最少培地で、30~39℃で、好ましくは35~39℃で、さらに好ましくは37~39℃で生育可能である菌株を選択する方法があげられる。
 コリネ型細菌に属する微生物として、あらかじめ上記方法に準じて得られるPTSの機能を喪失している株の中から、自然突然変異によって10-5~10-6の頻度で、PTSとは異なるシステムを介してPTS糖を細胞内に取り込むことのできる菌株を取得することもできる。
 本発明の微生物における有用物質を生産する能力は、1種以上の有用物質を生産する能力であればよく、育種の過程において、必要に応じて公知の方法により所望の有用物質を生産する能力を人為的に付与または増強してもよい。
 当該公知の方法としては、
 (a)有用物質の生合成を制御する機構の少なくとも1つを緩和または解除する方法、
 (b)有用物質の生合成に関与する酵素の少なくとも1つを発現強化する方法、
 (c)有用物質の生合成に関与する酵素遺伝子の少なくとも1つのコピー数を増加させる方法、
 (d)有用物質の生合成経路から該有用物質以外の代謝産物へ分岐する代謝経路の少なくとも1つを弱化または遮断する方法、および
 (e)野生型株に比べ、有用物質のアナログに対する耐性度が高い細胞株を選択する方法、
 などをあげることができ、上記公知の方法は単独または組み合わせて用いることができる。
 上記(a)~(e)の具体的な方法は、例えば有用物質がアミノ酸である場合については、上記(a)の方法に関してはAgric. Biol. Chem., 43, 105-111(1979)、J. Bacteriol., 110, 761-763(1972)およびAppl. Microbiol. Biotechnol., 39, 318-323(1993)などに記載されている。上記(b)の方法に関しては、Agric. Biol. Chem., 43, 105-111(1979)およびJ. Bacteriol., 110, 761-763(1972)などに記載されている。上記(c)の方法に関しては、Appl. Microbiol. Biotechnol., 39, 318-323(1993)およびAgric. Biol. Chem., 39, 371-377(1987)などに記載されている。上記(d)の方法に関しては、Appl. Environ. Micribiol., 38, 181-190(1979)およびAgric. Biol. Chem., 42, 1773-1778(1978)などに記載されている。上記(e)の方法に関しては、Agric. Biol. Chem., 36, 1675-1684(1972)、Agric. Biol. Chem., 41, 109-116(1977)、Agric. Biol. Chem., 37, 2013-2023(1973)およびAgric. Biol. Chem., 51, 2089-2094(1987)などに記載されている。上記文献等を参考に各種アミノ酸を生成、蓄積する能力を有する微生物を調製することができる。
 さらに上記(a)~(e)のいずれかまたは組み合わせた方法によるアミノ酸を生成、蓄積する能力を有する微生物の調製方法については、Biotechnology 2nd ed., Vol.6, Products of Primary Metabolism (VCH Verlagsgesellschaft mbH, Weinheim, 1996) section 14a, 14bやAdvances in Biochemical Engineering/ Biotechnology 79, 1-35 (2003)、アミノ酸発酵、学会出版センター、相田 浩ら(1986)に多くの例が記載されている。また、上記以外にも具体的なアミノ酸を生成、蓄積する能力を有する微生物の調製方法は、特開2003-164297、Agric. Biol. Chem., 39, 153-160 (1975)、Agric. Biol. Chem., 39, 1149-1153(1975)、特開昭58-13599、J. Gen. Appl. Microbiol., 4, 272-283(1958)、特開昭63-94985、Agric. Biol. Chem., 37, 2013-2023(1973)、WO97/15673、特開昭56-18596、特開昭56-144092および特表2003-511086など数多くの報告があり、上記文献等を参照することにより1種以上のアミノ酸を生産する能力を有する微生物を調製することができる。
 アミノ酸以外の有用物質を生産する能力を微生物に付与する方法もまた、多くの報告があり、従来知られているすべての方法は、本発明の製造法に用いられる微生物の調製に用いることができる。
 PTSを介して細胞内に取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力が強化された微生物を用いる有用物質の生産は、微生物を用いる通常の有用物質の生産に準じて行うことができる。
 たとえば、該微生物を培地に培養し、培養物中に生成蓄積した有用物質を採取することにより、有用物質を効率よく生産することができる。
 培地としては、炭素源、窒素源、無機塩類などを適量含有する培地であれば合成培地または天然培地のいずれも使用できる。
 炭素源としては、該微生物が資化できるものであればよいが、PTSを介さずに細胞内に取り込まれるようになったPTS糖が好ましい。
 窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、炭酸アンモニウム、酢酸アンモニウムなどの各種無機および有機アンモニウム塩類、尿素、その他窒素含有化合物、ならびに肉エキス、酵母エキス、コーン・スティープ・リカー、大豆加水分解物等の窒素含有有機物等があげられる。
 無機塩としては、リン酸第一水素カリウム、リン酸第二水素カリウム、硫酸アンモニウム、塩化ナトリウム、硫酸マグネシウム、炭酸カルシウム等があげられる。
 その他、必要に応じて、ビオチン、チアミン、ニコチンアミド、ニコチン酸等の微量栄養源を加えてもよい。これら微量栄養源は、肉エキス、酵母エキス、コーン・スティープ・リカー、カザミノ酸等で代用することもできる。
 培養は、振とう培養、深部通気撹拌培養等の好気的条件下で行う。培養温度は一般に20~42℃が好適であり、さらに好ましくは30~39℃である。培地のpHは5~9の範囲で、中性付近に維持することが好ましい。培地のpHの調整は、無機あるいは有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニア、pH緩衝液などを用いて行う。
 培養期間は通常1~6日間であり、培養液中にL-アミノ酸等の目的とする有用物質を生成蓄積させることができる。培養終了後、菌体などの沈殿物を除去して得られた培養液より、活性炭処理、イオン交換樹脂処理などの公知の方法を併用することにより目的とする有用物質を回収することができる。
 本発明の微生物は、たとえば37~39℃という、通常のコリネ型細菌では生育速度が低下するような高温であっても生育が良好であるため、有用物質の生産のための培養において高温で培養することが可能となり、夏季における冷却コストを低減できるだけでなく、雑菌汚染の可能性も低減することができる。
 以下に、本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。
(1)ptsH遺伝子破壊用DNA断片の構築
 日本DNAデータバンクDDBJから入手したコリネバクテリウム・グルタミカム野生株ATCC13032のゲノム情報(http://gib.genes.nig.ac.jp/single/index.php?spid=Cglu_ATCC13032)をもとに、HPrタンパク質をコードする遺伝子であるptsH[遺伝子番号:Cgl1937 (NCgl1862)]の上流域を増幅するためのプライマーを2種(ptsHup800F(配列番号1)とptsHFusR(配列番号2))、ならびに、ptsHの下流域を増幅するためのプライマーを2種(ptsHdown800R(配列番号3)とptsHFusF(配列番号4))、デザインした。
 その際、1回目のPCRで増幅した上流域断片と下流域断片を連結する2回目のPCR (fusion PCR)を行うために、上流域増幅用の3’プライマー(ptsHFusR;配列番号2)の5’側に下流域増幅用の5’プライマー(ptsHFusF;配列番号4)の3’側約25塩基の相補的な配列を、ptsHFusFの5’側にptsHFusRの3’側約25塩基の相補的な配列を付加した。さらに上流域増幅用の5’プライマー(ptsHup800F)と下流域増幅用の3’プライマー(ptsHdown800R)の5’側に制限酵素FbaIサイトとその足場となる塩基を付加した。図1に、ptsH遺伝子破壊用DNA断片の構築の模式図とプライマーが結合するおおよその位置を示した。また、配列番号1~4に、上記4種のプライマー、ptsHup800F、ptsHFusR、ptsHdown800RおよびptsHFusFの塩基配列を示した。
 コリネバクテリウム・グルタミカムの野生型株であるコリネバクテリウム・グルタミカムATCC31833株(以下、ATCC31833株という)の染色体DNAを斎藤らの方法[Biochim. Biophys. Acta 72, 619 (1963)]に従って調製した。
 該染色体DNAを鋳型として用い、ptsH の上流域および下流域を増幅させる1回目のPCRを行い、上流域の約0.83kbのDNA断片および下流域の約0.82kbのDNA断片を得た。次いで、これらの上流域断片と下流域断片を連結する2回目のPCRを行い、約1.65kbのDNA断片を、ptsH遺伝子破壊用DNA断片として得た(図1)。
(2)ptsH破壊用プラスミドの構築
 カナマイシン耐性遺伝子を有するEscherichia coliのベクターpHSG299 [Gene, 61, 63,(1987)]のPstI切断部位に、Bucillus subtilisのレバンシュクラーゼ遺伝子sacBを含む2.6kbのPstI DNA断片[Mol. Microbiol., 6, 1195 (1992)]を連結したプラスミドpESB30および上記で取得したptsH遺伝子破壊用DNA断片を、それぞれ制限酵素FbaIおよびBamHIで切断後、ライゲーションキットver1(宝酒造社製)を用い、リガーゼ反応を行った。該反応産物を用い、常法[Molecular cloning: a laboratory manual, 3rd ed.,2001, Cold Spring Harbor Laboratory Press]に従ってEscherichia coliDH5α[東洋紡社製]を形質転換した。
 得られた菌株を、20μg/mlのカナマイシンを含むLB寒天培地[バクトトリプトン(ディフコ社製)10g、酵母エキス(ディフコ社製)5g、塩化ナトリウム 10g、バクトアガー(ディフコ社製)16gを水1Lに含み、pH7.0に調整された培地]上で培養し、形質転換株を選択した。
 該形質転換株を20μg/mlのカナマイシンを含むLB培地(寒天を含まない以外はLB寒天培地と同じ組成の培地)に植菌して終夜培養し、得られた培養液からアルカリSDS法[Molecular cloning: a laboratory manual, 3rd ed,2001, Cold Spring Harbor Laboratory Press]によりプラスミドを調製した。塩基配列解析により、該プラスミドは、pESB30に約1.65kbのptsH遺伝子破壊用DNA断片が挿入された構造を有するプラスミドであることを確認した。このプラスミドをpCΔptsHと命名した。
(3)コリネバクテリウム・グルタミカムのptsH破壊株の造成
 レストらの方法[Appl. Microbiol. Biotech., 52, 541 (1999)]に従って電気穿孔法にてATCC31833株にpCΔptsHを導入し、カナマイシン耐性株を選択した。該カナマイシン耐性株の1株から得た染色体の構造をサザンハイブリダイゼーション[Molecular cloning: a laboratory manual, 3rd ed.,2001, Cold Spring Harbor Laboratory Press]により調べたところ、pCΔptsHがCampbellタイプの相同組換えにより染色体に組み込まれていることが確認された。
 該形質転換株(一回組換え体)をSuc寒天培地〔スクロース100g、肉エキス7g、ペプトン10g、塩化ナトリウム3g、酵母エキス(ディフコ社製)5g、バクトアガー(ディフコ社製)15gを水1Lに含み、pH7.2に調整した培地〕上に塗布し、30℃で1日間培養して生育するコロニーを選択した。sacB遺伝子が存在する株は、スクロースを自殺基質に転換するので、この培地では生育できない[J. Bacteriol., 174, 5462 (1991)]。これに対し、染色体上に近接して存在する野生型と欠失型のptsH遺伝子間での2回目の相同組み換えによりsacB遺伝子が欠失した株では、自殺基質はできずこの培地で生育することができる。この相同組み換えの際には、野生型遺伝子もしくは欠失型遺伝子のいずれかが、sacBとともに脱落する。このとき野生型遺伝子がsacBとともに脱落した株では、欠失型遺伝子への遺伝子置換が起こったことになる。
 このようにして得られた2回組換え体の染色体DNAを、斎藤らの方法[Biochim. Biophys. Acta 72, 619 (1963)]により調製し、PCR増幅したptsH遺伝子領域の塩基配列を常法により決定した。その結果、ΔptsH株と命名した2回組換え体のptsHは、その構造遺伝子中の216bpを欠失した目的のptsH破壊株であることがわかった。
 ΔptsH株およびその親株であるATCC31833株を、それぞれグルコースを単一の炭素源として含有する最少培地であるMM寒天培地〔グルコース10g、硫酸マグネシウム7水和物0.4g、塩化アンモニウム 4g、尿素2g、リン酸一水素カリウム 3g、リン酸二水素カリウム 1g、硫酸鉄7水和物10 mg、硫酸マンガン5水和物1 mg、ニコチン酸 5 mg、ビオチン 0.1 mg、チアミン塩酸塩 5 mg、およびバクトアガー20gを水1リットルに含み、pH 7.2に調整した培地。以下、グルコース培地ともいう〕に塗布し、30℃で2日間培養したところ、ATCC31833株が良好に生育するのに対し、ΔptsH株は生育しなかった。
 一方、グルコース培地のグルコースを非PTS糖であるリボースに置換した培地(以下、リボース培地ともいう)では、ΔptsH株およびATCC31833株ともに良好に生育した。結果を第1表に示す。
 これらのことから、ΔptsH株はptsHが欠損した株(以下、ptsH破壊株という)であると判断した。
(4)ptsH破壊株のグルコース培地での生育が回復した株(以下、サプレッサー変異株という)の取得
 ΔptsH株を、BY寒天培地(肉エキス 7g、ペプトン 10g、塩化ナトリウム 3g、酵母エキス 5g、バクトアガー 15gを水1Lに含み、pH7.2に調整した培地)に塗布し、30℃で18時間培養した。 
 該培地上に生育した菌体を生理食塩水に菌体濃度が108/mlになるように懸濁し、該懸濁液をMM寒天培地に塗布して30℃で6日間培養した。その結果、約10-5の頻度でMM寒天培地上にコロニーが出現した。これらのコロニーを、ΔptsH株およびATCC31833株を対照として、MM寒天培地に塗布し30℃で2日間培養したところ、ΔptsH株が該MM寒天培地上で生育できないのに対し、取得したコロニーはいずれもMM寒天培地とほぼ同等に生育した。
 このようにして得たサプレッサー変異株のうちの1株を分離してSupH株を得た。コリネバクテリウム・グルタミカムSupH株は、ブダペスト条約に基づいて2008年8月22日付けで、FERM BP-10998として独立行政法人産業技術総合研究所 特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1 中央第6 郵便番号305-8566)に寄託されている。
 ATCC31833株、ΔptsH株およびSupH株を、それぞれグルコース培地、およびリボース培地に塗布し、30℃で2日間培養した場合の各菌株の生育を第1表に示す。
 また、上記(3)におけるグルコース培地、リボース培地、およびリボース培地に1mg/mlとなるように、グルコースのアナログである2-デオキシグルコースを添加した培地に、ATCC31833株、ΔptsH株およびSupH株をそれぞれ塗布し、30℃で2日間培養して生育を調べた。結果を第1表にあわせて示す。
Figure JPOXMLDOC01-appb-T000001
 第1表に示すとおり、野生型株は1mg/mlの2-デオキシグルコース存在下で生育できなかったが、ΔptsH株およびSupH株は生育できた。これらのことから、SupH株はPTS以外のシステムを介してグルコースが取り込まれるようになった菌株であると判断した。
(5)グルコース培地でのSupH株の生育
  SupH株およびATCC31833株をBY寒天培地に塗布し、30℃で18時間培養し、生育した菌体を、BY培地(寒天を含まない以外はBY寒天培地と同じ組成の培地) 5mlの入った太型試験管に植菌した。30℃で12時間培養し、得られた培養液0.05mLを、MM培地(寒天を含まない以外はMM寒天培地と同じ組成の培地)5mlの入ったL字型試験管にそれぞれ2本ずつ植菌して1本は30℃で、他方は38℃で好気培養した。OD660にて測定した生育の経過を図2に示す。
 図2に示すとおり、30℃条件ではSupH株およびATCC31833株の両株とも良好に生育したが、高温条件である38℃では、ATCC31833株の生育は著しく悪化して培養途中から生育がほぼ停止したのに対し、SupH株は良好に生育した。
 このように、グルコース培地での液体培養において、SupH株はATCC31833株よりも高い高温抵抗性を有していることが示された。
 SupH株を用いるL-リジンの製造
 実施例1で得たSupH株に特開2002-191370号公報(米国特許7332310号公報)の記載に準じて、lysC311変異を導入してSupH(lysC311)株を作製する。
 BY寒天培地上で30℃、24時間培養したSupH(lysC311)株の菌体1白金耳を、種培地(グルコース 20g、肉エキス 7g、ペプトン 10g、塩化ナトリウム 3g、酵母エキス 5gを水1Lに含みpH7.2に調整後、炭酸カルシウムを10g加えた培地)5mlを含む太型試験管に植菌して30℃で15時間培養する。この種培養液 0.5mlを本培養培地(グルコース 50g、コーン・スティープ・リカー 10g、硫酸アンモニウム 45g、尿素 2g、リン酸二水素カリウム 0.5g、硫酸マグネシウム7水和物 0.5g、ビオチン 0.3mgを水 1Lに含みpH7.0に調整後、炭酸カルシウムを30g加えた培地) 5mlを含む太型試験管に接種し、30~37℃で72時間振とう培養する。遠心分離により培養物から菌体を除去し、上清中のL-リジン塩酸塩の蓄積量を高速液体クロマトグラフィー(HPLC)により定量し、L-リジンが生成していることを確認する。
 SupH株を用いたL-リジン生産試験
 コリネバクテリウム・グルタミカムの野生株に、lysC311変異(Thr311→Ile)を導入すると、L-リジン生産菌が得られることが公知となっている[特開2002-191370、Appl. Microbiol. Biotechnol., 58, 217 (2002)]。また、該変異の導入方法についても、該公開特許公報[特開2002-191370]に詳細に記載されている。それらの情報に従い、lysC311変異を実施例1で得たSupH株およびその親株であるATCC31833株にそれぞれ導入した。lysC311変異を有するATCC31833株およびSupH株を、それぞれ、ATCC31833(lysC311)株およびSupH(lysC311)株と命名した。
 このようにして得たATCC31833 (lysC311)株およびSupH(lysC311)株のL-リジン生産試験を試験管培養により次のように行った。BY寒天培地上で30℃、24時間培養した培養菌体1白金を、種培地(グルコース 20g、肉エキス 7g、ペプトン 10g、塩化ナトリウム 3g、酵母エキス 5gを水1Lに含みpH7.2に調整後、炭酸カルシウムを10g加えた培地)5mlを含む太型試験管に植菌して30℃で13時間培養した。この種培養液 0.5mlを本培養培地(グルコース 50g、コーンスティープリカー 10g、硫酸アンモニウム 45g、尿素 2g、リン酸二水素カリウム 0.5g、硫酸マグネシウム7水和物 0.5g、ビオチン 0.3mgを水 1Lに含みpH7.0に調整後、炭酸カルシウムを30g加えた培地) 5mlを含む太型試験管に接種し、33℃で72時間振とう培養した。遠心分離により培養物から菌体を除去し、上清中のL-リジン塩酸塩の蓄積量を高速液体クロマトグラフィー(HPLC)により定量した。結果を第2表に示す。
Figure JPOXMLDOC01-appb-T000002
 第2表から明らかなように、本発明のサプレッサー変異株にlysC311変異を導入したSupH(lysC311)株では、ATCC31833株に同変異を導入したATCC31833(lysC311)株に比べ、L-リジン塩酸塩の生産量は有意に向上していた。
  Cgl0181遺伝子またはCgl3058遺伝子の発現株によるL-リジン生産試験
 以下のように配列番号13または15で表される塩基配列からなるDNA断片を有するプラスミドを構築した。
 なお、配列番号13で表される塩基配列からなるDNAは配列番号12で表されるCgl0181 (NCgl0178)のアミノ酸配列を、配列番号15で表される塩基配列からなるDNAは配列番号14で表されるCgl3058 (NCgl2953)のアミノ酸配列をコードしている。
(1)Cgl0181およびCgl3058の発現用DNA断片の構築
  配列番号5および6で表される塩基配列からなるDNA、配列番号8および9で表される塩基配列からなるDNAをそれぞれプライマーセットとして用い、ATCC31833株の染色体DNAを鋳型としてPCRを行った。増幅されたそれぞれ約1kb、約1.88kbのDNA断片を混合してこれを鋳型として用い、配列番号5および9で表される塩基配列からなるDNAをプライマーセットとして用い、2回目のPCRを行った。これによりCgl0181発現用DNA断片(gapAプロモーターの下流にCgl0181をコードするDNAが挿入された約2.88kbのDNA断片)を取得した。
 同様に配列番号5および7で表される塩基配列からなるDNA、配列番号10および11で表される塩基配列からなるDNAをそれぞれプライマーセットとして用い、ATCC31833株の染色体DNAを鋳型としてPCRを行った。増幅されたそれぞれ約1kb、約1.68kbのDNA断片を混合してこれを鋳型として用い、2回目のPCRを行った。これによりCgl3058発現用DNA断片(gapAプロモーターの下流にCgl3058をコードするDNAが挿入された約2.68kbのDNA断片)を取得した。
(2)Cgl0181またはCgl3058の発現用DNA断片を有するプラスミドの構築
 プラスミドpCS299P[Appl.Microbiol.Biotech.,63,592(2004)]および上記(1)で得たCgl0181の発現用DNA断片をそれぞれ制限酵素SalIおよびXhoIで切断後、ライゲーションキットver1(宝酒造社製)を用い、リガーゼ反応を行った。一方、pCS299Pおよび上記(1)で得たCgl3058の発現用DNAを制限酵素BamHIで切断後、同様にリガーゼ反応を行った。それぞれの反応産物を用い、常法に従ってEscherichiacoli DH5aを形質転換した。
 得られた菌株を、20mg/mlのカナマイシンを含むLB寒天培地上で培養し、形質転換株を選択した。該形質転換株を20mg/mlのカナマイシンを含むLB培地に植菌して終夜培養し、得られた培養液からアルカリSDS法によりプラスミドを調製した。塩基配列解析により、該プラスミドは、pCS299Pに約2.88kbまたは約2.68kbの断片が挿入された構造を有するプラスミドであることを確認した。これらのプラスミドを、それぞれ、pPgapA-0181およびpPgapA-3058と命名した。
(3)pPgapA-0181またはpPgapA-3058を有するΔptsH株の生育特性試験
 実施例1で得たΔptsH株にpPgapA-0181およびpPgapA-3058を導入して、それぞれ、ΔptsH/pPgapA-0181株およびΔptsH/pPgapA-3058株を得た。これらを、グルコース培地、リボース培地、およびリボース培地に1mg/mlになるように2-デオキシグルコースを添加した培地にそれぞれ塗布し、30℃で2日間培養して生育を調べた。結果を第3表に示す。
Figure JPOXMLDOC01-appb-T000003
 第3表に示すとおり、ΔptsH株はグルコース培地で生育できないが、ΔptsH/ pPgapA-0181株およびΔptsH/ pPgapA-3058株は生育した。さらに、それら両株は、ΔptsH株と同様に、2-デオキシグルコース存在下でも生育した。以上より、ΔptsH/ pPgapA-0181株およびΔptsH/ pPgapA-3058株は、ともにPTS以外のシステムを介してグルコースを取り込む能力を有していることがわかった。
(4)pPgapA-0181またはpPgapA-3058を有するATCC31833(lysC311)株によるL-リジン生産試験
 実施例3で得たL-リジン生産菌ATCC31833(lysC311)株に、pPgapA-0181およびpPgapA-3058を導入して、それぞれ、ATCC31833(lysC311)/ pPgapA-0181株およびATCC31833(lysC311)/ pPgapA-3058株を得た。これらのL-リジン生産試験を、実施例3で示した試験管培養と同様な方法によって行った。遠心分離により培養物から菌体を除去し、上清中のL-リジン塩酸塩の蓄積量を高速液体クロマトグラフィー(HPLC)により定量した。結果を第4表に示す。
Figure JPOXMLDOC01-appb-T000004
 第4表から明らかなように、pPgapA-0181またはpPgapA-3058を有するATCC31833(lysC311)株では、それらのプラスミドを有さないATCC31833(lysC311)株に比べ、L-リジン塩酸塩の生産量が有意に向上していた。
 本発明により、効率のよい有用物質の製造法を提供することができる。
配列番号1-人工配列の説明:合成DNA
配列番号2-人工配列の説明:合成DNA
配列番号3-人工配列の説明:合成DNA
配列番号4-人工配列の説明:合成DNA
配列番号5-人工配列の説明:合成DNA
配列番号6-人工配列の説明:合成DNA
配列番号7-人工配列の説明:合成DNA
配列番号8-人工配列の説明:合成DNA
配列番号9-人工配列の説明:合成DNA
配列番号10-人工配列の説明:合成DNA
配列番号11-人工配列の説明:合成DNA

Claims (9)

  1.  ホスホトランスフェラーゼ・システム(PTS)を介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力が強化され、かつ有用物質を生産する能力を有するコリネ型細菌に属する微生物を培地に培養し、培養物中に有用物質を生成、蓄積させ、該培養物から有用物質を採取することを特徴とする有用物質の製造法。
  2.  PTSを介して細胞内に取り込まれる糖がグルコース、フラクトースおよびスクロースから選ばれる糖である、請求項1記載の製造法。
  3.  コリネ型細菌に属する微生物が、コリネバクテリウム(Corynebacterium)属、ブレビバクテリウム(Brevibacterium)属およびミクロバクテリウム(Microbacterium)属からなる群より選ばれる属に属する微生物である、請求項1または2記載の製造法。
  4.  コリネ型細菌に属する微生物が、コリネバクテリウム属に属する微生物である、請求項1~3のいずれか1項に記載の製造法。
  5.  コリネ型細菌に属する微生物が、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)に属する微生物である、請求項1~4のいずれか1項に記載の製造法。
  6.  微生物が、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum) SupH(FERM BP-10998)株である、請求項1記載の製造法。
  7.  培養を35~38℃で行うことを特徴とする請求項1~6のいずれか1項に記載の製造法。
  8.  有用物質がアミノ酸である、請求項1~7のいずれか1項に記載の製造法。
  9.  PTSを介して細胞内へ取り込まれる糖を、PTSとは異なるシステムを介して細胞内に取り込む能力が強化され、かつ有用物質を生産する能力を有するコリネ型細菌に属する微生物が、[1]~[5]のいずれかに記載の蛋白質の生成能が強化された微生物である、請求項1記載の製造法。
    [1]配列番号12または14で表されるアミノ酸配列からなる蛋白質
    [2]配列番号12または14で表されるアミノ酸配列において1以上のアミノ酸が付加、欠失または置換されたアミノ酸配列からなり、かつミオイノシトール輸送活性を有する蛋白質
    [3]配列番号13または15で表される塩基配列にコードされる蛋白質
    [4]配列番号13または15で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAにコードされ、かつミオイノシトール輸送活性を有する蛋白質
    [5]配列番号13または15で表される塩基配列と80%以上の相同性ないし同一性を有する塩基配列からなるDNAにコードされ、かつミオイノシトール輸送活性を有する蛋白質。
PCT/JP2009/064821 2008-09-01 2009-08-26 有用物質の製造法 WO2010024267A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/061,551 US8530203B2 (en) 2008-09-01 2009-08-26 Process for producing useful substance
EP09809918.7A EP2330184B1 (en) 2008-09-01 2009-08-26 Process for producing a useful substance in coryneform bacteria
JP2010526727A JP5833311B2 (ja) 2008-09-01 2009-08-26 有用物質の製造法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008223739 2008-09-01
JP2008-223739 2008-09-01
JP2009041363 2009-02-24
JP2009-041363 2009-02-24

Publications (1)

Publication Number Publication Date
WO2010024267A1 true WO2010024267A1 (ja) 2010-03-04

Family

ID=41721434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064821 WO2010024267A1 (ja) 2008-09-01 2009-08-26 有用物質の製造法

Country Status (4)

Country Link
US (1) US8530203B2 (ja)
EP (1) EP2330184B1 (ja)
JP (2) JP5833311B2 (ja)
WO (1) WO2010024267A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567616B2 (en) 2011-02-09 2017-02-14 Kyowa Hakko Bio Co., Ltd. Process for producing target substance by fermentation
KR20140102393A (ko) * 2013-02-13 2014-08-22 씨제이제일제당 (주) L-쓰레오닌 생산능을 가지는 재조합 에스케리키아 속 미생물 및 이를 이용한 l-쓰레오닌의 생산방법
CA3007635A1 (en) 2015-12-07 2017-06-15 Zymergen Inc. Promoters from corynebacterium glutamicum
US11208649B2 (en) 2015-12-07 2021-12-28 Zymergen Inc. HTP genomic engineering platform
US9988624B2 (en) 2015-12-07 2018-06-05 Zymergen Inc. Microbial strain improvement by a HTP genomic engineering platform
EP3478845A4 (en) 2016-06-30 2019-07-31 Zymergen, Inc. METHODS OF PRODUCING A GLUCOSE PERMEASE BANK AND USES THEREOF
US10544390B2 (en) 2016-06-30 2020-01-28 Zymergen Inc. Methods for generating a bacterial hemoglobin library and uses thereof
WO2020130067A1 (ja) * 2018-12-20 2020-06-25 公益財団法人地球環境産業技術研究機構 カルボニル化合物の製造法
KR102306007B1 (ko) * 2021-04-07 2021-09-27 씨제이제일제당 (주) 신규한 슈가 포터 계열 mfs 트랜스포터 변이체 및 이를 이용한 l-발린 생산 방법

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618596A (en) 1979-07-23 1981-02-21 Ajinomoto Co Inc Production of l-lysine through fermentation process
JPS56144092A (en) 1980-04-14 1981-11-10 Ajinomoto Co Inc Preparation of l-methionine by fermentation
JPS57134500A (en) 1981-02-12 1982-08-19 Kyowa Hakko Kogyo Co Ltd Plasmid pcg1
JPS57183799A (en) 1981-04-17 1982-11-12 Kyowa Hakko Kogyo Co Ltd Novel plasmid
JPS5813599A (ja) 1981-07-08 1983-01-26 シエ−リング・アクチエンゲゼルシヤフト プラスミド、その製法、e・コリ−突然変異体、l−プロリンの製法及び新規菌株物の製法
JPS5835197A (ja) 1981-08-26 1983-03-01 Kyowa Hakko Kogyo Co Ltd プラスミドpcg2
JPS58105999A (ja) 1981-12-17 1983-06-24 Kyowa Hakko Kogyo Co Ltd 新規ベクタ−プラスミド
JPS6394985A (ja) 1986-10-09 1988-04-26 Kyowa Hakko Kogyo Co Ltd L−チロシンの製造法
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
WO1997015673A1 (de) 1995-10-26 1997-05-01 Consortium für elektrochemische Industrie GmbH Verfahren zur herstellung von o-acetylserin, l-cystein und l-cystein-verwandten produkten
WO2000037497A1 (fr) * 1998-12-18 2000-06-29 Ajinomoto Co., Inc. Transporteur de sucre et gene le codant
JP2002191370A (ja) 1999-12-16 2002-07-09 Kyowa Hakko Kogyo Co Ltd 新規ポリヌクレオチド
JP2003511086A (ja) 1999-10-14 2003-03-25 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング L−システイン又はl−システイン誘導体を発酵により製造する方法
WO2003040292A2 (de) * 2001-11-05 2003-05-15 Basf Aktiengesellschaft Gene die für membransynthese- und membrantransport-proteine codieren
JP2003164297A (ja) 2001-11-30 2003-06-10 Ajinomoto Co Inc 新規変異型グルタミンシンテターゼ、およびアミノ酸の生産方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE391786T1 (de) * 1995-05-05 2008-04-15 Genencor Int Anwendung von glukosetransportmutanten tur herstellung von verbindungen des aromatischen syntheseweges
DE19644567A1 (de) 1996-10-26 1998-04-30 Forschungszentrum Juelich Gmbh Mikrobielle Herstellung von Substanzen aus dem aromatischen Stoffwechsel / II
EP1098696B2 (de) 1998-07-15 2010-07-14 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Polyelektrolythüllen auf biologischen templaten
US6884614B1 (en) * 1999-07-01 2005-04-26 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding phosphoenolpyruvate: sugar phosphotransferase system proteins
KR101130587B1 (ko) * 2002-10-04 2012-03-30 다니스코 유에스 인크. 생물질 제조용 글루코오스 수송 돌연변이
DE10314618A1 (de) 2003-04-01 2004-10-14 Degussa Ag Verfahren zur Herstellung von L-Aminosäuren unter Verwendung von Stämmen der Familie Enterobacteriaceae
RU2004130954A (ru) 2004-10-22 2006-04-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) Способ получения l-аминокислот с использованием бактерий семейства enterobacteriaceae
CN102066553B (zh) 2008-06-17 2013-08-07 财团法人地球环境产业技术研究机构 具有改进的d-木糖利用能力的棒状杆菌转化体

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618596A (en) 1979-07-23 1981-02-21 Ajinomoto Co Inc Production of l-lysine through fermentation process
JPS56144092A (en) 1980-04-14 1981-11-10 Ajinomoto Co Inc Preparation of l-methionine by fermentation
JPS57134500A (en) 1981-02-12 1982-08-19 Kyowa Hakko Kogyo Co Ltd Plasmid pcg1
JPS57183799A (en) 1981-04-17 1982-11-12 Kyowa Hakko Kogyo Co Ltd Novel plasmid
JPS5813599A (ja) 1981-07-08 1983-01-26 シエ−リング・アクチエンゲゼルシヤフト プラスミド、その製法、e・コリ−突然変異体、l−プロリンの製法及び新規菌株物の製法
JPS5835197A (ja) 1981-08-26 1983-03-01 Kyowa Hakko Kogyo Co Ltd プラスミドpcg2
JPS58105999A (ja) 1981-12-17 1983-06-24 Kyowa Hakko Kogyo Co Ltd 新規ベクタ−プラスミド
JPS6394985A (ja) 1986-10-09 1988-04-26 Kyowa Hakko Kogyo Co Ltd L−チロシンの製造法
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
WO1997015673A1 (de) 1995-10-26 1997-05-01 Consortium für elektrochemische Industrie GmbH Verfahren zur herstellung von o-acetylserin, l-cystein und l-cystein-verwandten produkten
WO2000037497A1 (fr) * 1998-12-18 2000-06-29 Ajinomoto Co., Inc. Transporteur de sucre et gene le codant
JP2003511086A (ja) 1999-10-14 2003-03-25 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング L−システイン又はl−システイン誘導体を発酵により製造する方法
JP2002191370A (ja) 1999-12-16 2002-07-09 Kyowa Hakko Kogyo Co Ltd 新規ポリヌクレオチド
US7332310B2 (en) 1999-12-16 2008-02-19 Kyowa Hakko Kogyo Co., Ltd. Mutant of homoserine dehydrogenase from Corynebacterium and DNA encoding thereof
WO2003040292A2 (de) * 2001-11-05 2003-05-15 Basf Aktiengesellschaft Gene die für membransynthese- und membrantransport-proteine codieren
JP2003164297A (ja) 2001-11-30 2003-06-10 Ajinomoto Co Inc 新規変異型グルタミンシンテターゼ、およびアミノ酸の生産方法

Non-Patent Citations (52)

* Cited by examiner, † Cited by third party
Title
"Biotechnology", vol. 6, 1996, VCH VERLAGSGESELLSCHAFT MBH
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS
"Immunology Methods Manual", ACADEMIC PRESS
"Methods for General and Molecular Bacteriology", 1994, ASM PRESS
"Microorganism Experiment Manual", 1986, KODANSHA SCIENTIFIC LTD., pages: 131
"Molecular Cloning", 2001
"Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
"Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY, vol. 79, 2003, pages 1 - 35
AGRIC. BIOL. CHEM., vol. 36, 1972, pages 1675 - 1684
AGRIC. BIOL. CHEM., vol. 37, 1973, pages 2013 - 2023
AGRIC. BIOL. CHEM., vol. 39, 1975, pages 1149 - 1153
AGRIC. BIOL. CHEM., vol. 39, 1975, pages 153 - 160
AGRIC. BIOL. CHEM., vol. 39, 1987, pages 371 - 377
AGRIC. BIOL. CHEM., vol. 41, 1977, pages 109 - 116
AGRIC. BIOL. CHEM., vol. 42, 1978, pages 1773 - 1778
AGRIC. BIOL. CHEM., vol. 43, 1979, pages 105 - 111
AGRIC. BIOL. CHEM., vol. 51, 1987, pages 2089 - 2094
ALTSCHUL ET AL., NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402
APPL. ENVIRON. MICROBIOL, vol. 38, 1979, pages 181 - 190
APPL. MICROBIOL. BIOTECH., vol. 63, 2004, pages 592
APPL. MICROBIOL. BIOTECHNOL, vol. 39, 1993, pages 318 - 323
APPL. MICROBIOL. BIOTECHNOL., vol. 39, 1993, pages 318 - 323
APPL. MICROBIOL. BIOTECHNOL., vol. 53, 2000, pages 674 - 679
APPL. MICROBIOL. BIOTECHNOL., vol. 58, 2002, pages 217
BIOCHEM. BIOPHYS. RES. COMMUN., vol. 289, 2001, pages 1307
FLORES, N. ET AL.: "Pathway engineering for the production of aromatic compounds in Escherichia coli", NAT. BIOTECHNOL., vol. 14, May 1996 (1996-05-01), pages 620 - 623, XP002053707 *
GENE, vol. 34, 1985, pages 315
GENE, vol. 61, 1987, pages 63
HIROSHI AIDA ET AL.: "Amino san Hakko", 1986, JAPAN SCIENTIFIC SOCIETIES PRESS
J. BACTERIOL., vol. 110, 1972, pages 761 - 763
J. BACTERIOL., vol. 174, 1991, pages 5462
J. BACTERIOL., vol. 174, 1992, pages 5462
J. BACTERIOL., vol. 188, 2006, pages 8054
J. GEN. APPL. MICROBIOL., vol. 4, 1958, pages 272 - 283
J. MOL. BIOL., vol. 215, 1990, pages 403
KARLIN, ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873
METHODS ENZYMOL., vol. 183, 1990, pages 63
MOL. MICROBIOL., vol. 6, 1992, pages 1195
MOLECULAR AND GENERAL GENETICS, 1984, pages 175,196
NAT. BIOTECHNOL., vol. 14, 1996, pages 620
NUCLEIC ACIDS RESEARCH, vol. 10, 1982, pages 6487
NUCLEIC ACIDS RESEARCH, vol. 13, 1985, pages 4431
NUCLEIC ACIDS, RES., vol. 16, 1988, pages 6127
PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 6409
PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488
PROC. NATL. ACAD. SCI., USA, vol. 69, 1972, pages 2110
PROC. NATL. ACAD. SCI., USA, vol. 74, 1977, pages 5463
REST ET AL., APPL. MICROBIOL. BIOTECH., vol. 52, 1999, pages 541
SAITO ET AL., BIOCHIM. BIOPHYS. ACTA, vol. 72, 1963, pages 619
See also references of EP2330184A1 *
YUTA MIZUNO ET AL.: "Coryne-gata Amino-san Seisankin no Seiiku Ondo no Kitei Yoin", NIPPON NOGEI KAGAKUKAI 2008 NENDO (HEISEI 20 NENDO) TAIKAI KOEN YOSHISHU, 5 March 2008 (2008-03-05), pages 105, XP008144799 *

Also Published As

Publication number Publication date
EP2330184A1 (en) 2011-06-08
US8530203B2 (en) 2013-09-10
EP2330184A4 (en) 2012-05-09
EP2330184B1 (en) 2020-11-25
JP2016013141A (ja) 2016-01-28
JPWO2010024267A1 (ja) 2012-01-26
JP5833311B2 (ja) 2015-12-16
JP5897197B2 (ja) 2016-03-30
US20110244528A1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5897197B2 (ja) 有用物質の製造法
EP1801206B1 (en) Method for producing l-arginine, l-ornithine or l-citrulline
JP2926991B2 (ja) 発酵法によるl−リジン及びl−グルタミン酸の製造方法
JP2003164297A (ja) 新規変異型グルタミンシンテターゼ、およびアミノ酸の生産方法
US11180784B2 (en) Microorganism of the genus Corynebacterium producing L-amino acids and a method for producing L-amino acids using the same
KR20130082124A (ko) 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2007024010A1 (ja) L−グルタミン酸生産菌及びl−グルタミン酸の製造方法
JP2017023147A (ja) 発酵法による目的物質の製造法
EP2990475A1 (en) Corynebacterium sp. microorganism having improved l-arginine productivity and method for producing l-arginine using same
JP5592059B2 (ja) L−グルタミンの製造法
CN108026147B (zh) 生产o-乙酰-高丝氨酸的微生物和使用其生产o-乙酰-高丝氨酸的方法
CN115552000A (zh) 新型双功能pyr操纵子转录调节因子/尿嘧啶磷酸核糖转移酶变体及使用其生产imp的方法
KR101687474B1 (ko) L-아르기닌 생산능이 향상된 코리네박테리움속 미생물 및 이를 이용한 l-아르기닌의 생산 방법
EP2837688A1 (en) Method for producing amino acid
WO2010095642A1 (ja) 有用物質の製造方法
JP5537818B2 (ja) 有用物質の製造方法
JP2002051790A (ja) コリネ型細菌のアルギニンリプレッサー欠失株及びl−アルギニンの製造法
TW202307201A (zh) 具有減弱之LacI家族DNA結合性轉錄調節子之活性之微生物及使用其之L-麩胺酸之生產方法
CN115551999A (zh) 新型腺嘌呤磷酸核糖转移酶变体及使用其生产imp的方法
JP2000287693A (ja) コリネ型細菌のカルバモイルリン酸シンセターゼ遺伝子及びl−アルギニンの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526727

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13061551

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009809918

Country of ref document: EP