WO2010024214A1 - 撮像光学系及び撮像装置 - Google Patents

撮像光学系及び撮像装置 Download PDF

Info

Publication number
WO2010024214A1
WO2010024214A1 PCT/JP2009/064713 JP2009064713W WO2010024214A1 WO 2010024214 A1 WO2010024214 A1 WO 2010024214A1 JP 2009064713 W JP2009064713 W JP 2009064713W WO 2010024214 A1 WO2010024214 A1 WO 2010024214A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
resin
lens
imaging optical
imaging
Prior art date
Application number
PCT/JP2009/064713
Other languages
English (en)
French (fr)
Inventor
慶二 松坂
誠 神
みゆき 寺本
卓史 波多野
修二 村上
節夫 徳弘
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2010024214A1 publication Critical patent/WO2010024214A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • the present invention relates to an imaging optical system and an imaging apparatus, and more particularly to an imaging optical system for forming an optical image on a solid-state imaging device such as a CCD image sensor or a CMOS image sensor, and an imaging apparatus using the imaging optical system.
  • a solid-state imaging device such as a CCD image sensor or a CMOS image sensor
  • an imaging device having a solid-state imaging device such as a CCD (Charge Coupled Devices) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor has been developed.
  • Such an imaging apparatus is used not only for a digital camera but also for various applications such as an in-vehicle camera and a mobile phone.
  • CMOS Complementary Metal-Oxide Semiconductor
  • a resin lens that is lightweight and can be mass-produced inexpensively is often used as an imaging optical system mounted on the imaging apparatus.
  • the imaging optical system has problems to be solved such as lens moldability, resolution and birefringence according to the increase in the number of pixels of a small image sensor, or discoloration due to long-term use. There are many. In particular, the birefringence may degrade the resolution of the optical system and cause a reduction in image quality.
  • Non-Patent Document 1 has a high refractive index and a low birefringence compared to, for example, conventional polycarbonate, and has a high resin fluidity during molding. Attention was focused on whether this could be used as a material for lenses of imaging optical systems. If the lens material has a high refractive index, the imaging optical system can be made more compact, and the resin material becomes highly dispersed, which improves the degree of freedom in correcting chromatic aberration by combination and contributes to higher image quality. To do. Further, if the resin fluidity at the time of molding the resin is good, a lens having a high thickness deviation (a difference between the center thickness and the peripheral thickness is large), a lens having an extremely thin thickness, or the like can be easily molded.
  • Non-Patent Document 1 turns yellow during use, and the light transmittance is reduced. More specifically, when a specimen having a thickness of 3 mm made of such a resin material is left for 131 hours in an environment where light of 295 nm to 450 nm is irradiated at 1000 W / m 2 , the transmittance at 450 nm is reduced by 15%. did. On the other hand, in the case of polycarbonate used for a conventional optical element, the decrease in transmittance under the same conditions was 2%.
  • An object of the present invention is to provide an imaging optical system and an imaging apparatus capable of exhibiting stable optical performance over a long period of time by elucidating why, for example, the resin material of the above prior art changes to yellow and taking measures. To do.
  • Means for suppressing transmission of ultraviolet rays is provided in at least one of the inside of the resin lens, the object side surface of the resin lens, or the optical element on the object side of the resin lens.
  • Non-Patent Document 1 As a result of diligent research, the inventors of the present invention, in the resin material shown in Non-Patent Document 1, cause yellowing due to use because the fluorene skeleton, S atom or heavy metal atom contained in the resin material reacts with ultraviolet rays. I found that there is to do. On the other hand, it has also been found that if a fluorene skeleton, or S atoms or heavy metal atoms are excluded from the resin material, the resin material does not have a high refractive index.
  • the resin lens or means for suppressing the transmission of ultraviolet light to the optical element on the object side from the resin lens, ultraviolet light reaching the resin material is suppressed, discoloration of the resin material is suppressed, An imaging optical system capable of exhibiting stable optical performance over a long period of time has been realized.
  • a resin material include trade names OKP4 and OKP4HT of Osaka Gas Chemical Co., Ltd.
  • such a resin material has a higher refractive index, so that the imaging optical system can be made compact and the image quality can be improved.
  • the resin material having a high refractive index is highly dispersed, the effect of correcting chromatic aberration is increased by the combination, and the image quality can be improved. Furthermore, a resin material having a high refractive index tends to have low birefringence, and degradation of resolution in the imaging optical system can be suppressed.
  • the present inventors have found that the refractive index Nd of d-line becomes 1.6 or more by containing a fluorene skeleton, or S atom or heavy metal atom in the resin material. I discovered that there was a problem of discoloration. Therefore, by providing the resin lens, or means for suppressing the transmission of ultraviolet light to the optical element on the object side from the resin lens, ultraviolet light reaching the resin material is suppressed, discoloration of the resin material is suppressed, An imaging optical system capable of exhibiting stable optical performance over a long period of time has been realized. Examples of such a resin material include trade names OKP4 and OKP4HT of Osaka Gas Chemical Co., Ltd.
  • the imaging optical system according to claim 3 is the invention according to claim 1, wherein the resin material including the fluorene skeleton is a thermoplastic resin.
  • the resin material including the fluorene skeleton is a thermoplastic resin.
  • the refractive index Nd of the d-line becomes 1.6 or more. Therefore, the present invention is particularly effective because it may be yellowed by long-term use.
  • the resin material is not limited to a thermoplastic resin, and it is sufficient if it has a fluorene skeleton.
  • thermoplastic resin obtained by polycondensation of an aromatic dihydroxy compound represented by general formula (I) and an aliphatic dihydroxy compound represented by general formula (II) with a carbonic acid diester. It is.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, or a carbon number Represents an aryl group having 6 to 20 carbon atoms, a cycloalkoxyl group having 6 to 20 carbon atoms, or an aryloxy group having 6 to 20 carbon atoms, and m and n each represents an integer of 0 to 4.
  • aromatic dihydroxy compound represented by the general formula (I) examples include 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9- Bis (4-hydroxy-3-ethylphenyl) fluorene or the like is used.
  • the aliphatic dihydroxy compound represented by the general formula (II) is tricyclo (5.2.1.0 2.6 ) decanedimethanol.
  • the molar ratio (1) / (2) of the structural units respectively derived from the aromatic dihydroxy compound represented by the general formula (I) and the aliphatic dihydroxy compound represented by the general formula (II) is 70/30 to 5/95, more preferably 60/40 to 20/80. That is, when the molar ratio (1) / (2) of the structural units derived from the aromatic dihydroxy compounds (I) and (II) in the polycarbonate resin is higher than 70/30, the glass transition temperature becomes high. Since the fluidity at the time of shaping
  • the imaging optical system according to claim 4 is characterized in that, in the invention according to claim 1, the resin material having the S atom or the heavy metal atom is a curable resin.
  • the resin material having the S atom or the heavy metal atom is a curable resin.
  • the refractive index Nd of the d-line becomes 1.6 or more.
  • the present invention is particularly effective because it may be discolored to yellow when used for a long period of time.
  • the resin material is not limited to a curable resin, and it is sufficient if it contains S atoms or heavy metal atoms.
  • the imaging optical system according to claim 5 is characterized in that, in the invention according to any one of claims 1 to 4, the following conditional expression is satisfied.
  • Dt Thickness on the optical axis of the resin lens. However, when there are a plurality of the resin lenses, the total lens thickness is taken.
  • the resin structure is destroyed due to UV irradiation, and the tendency of the transmittance on the short wavelength side of the visible region to decrease is particularly significant. Color reproducibility deteriorates. In the case where there are a plurality of sheets, the decrease in the transmittance of each lens is small, but the decrease in the transmittance of the entire optical system is the same as described above, and the color reproducibility of the image also deteriorates.
  • the value Dt is less than or equal to the lower limit of the conditional expression (1), the fluidity at the time of molding the resin material is deteriorated. Birefringence may occur, leading to a decrease in image contrast. Therefore, it is preferable to satisfy the conditional expression (1). It is more preferable that the following conditional expression is satisfied.
  • An imaging optical system is characterized in that, in the invention according to any one of the first to fifth aspects, the following conditional expression is satisfied.
  • Dt Thickness on the optical axis of the resin lens. However, when there are a plurality of the resin lenses, the total lens thickness is taken.
  • TL Distance on the optical axis from the lens surface closest to the object side to the image plane.
  • the resin structure is destroyed with UV irradiation, and particularly the transmittance on the short wavelength side of the visible region tends to decrease.
  • the color reproducibility of the image will deteriorate.
  • the value Dt / TL is less than or equal to the lower limit of the conditional expression (2), the fluidity at the time of molding of the resin material is deteriorated. Or birefringence occurs, leading to a decrease in image contrast. Therefore, it is preferable to satisfy the conditional expression (2). It is more preferable that the following conditional expression is satisfied.
  • An imaging optical system according to a seventh aspect of the present invention is the imaging optical system according to any one of the first to sixth aspects, wherein the means for suppressing the transmission of ultraviolet rays is the resin lens or a lens closer to the object side than the resin lens. Or it is the UV cut coat provided in the flat plate.
  • An imaging optical system is the imaging optical system according to the seventh aspect, wherein the UV cut coat has a coating characteristic in which an average transmittance in a wavelength range of 360 to 400 nm is 70% or less. To do.
  • the imaging optical system according to claim 9 is the invention according to claim 7 or 8, wherein the UV cut coat also has an antireflection characteristic with an average reflectance of 3% or less in a wavelength region of 420 to 650 nm. It is characterized by.
  • the imaging optical system according to claim 10 is characterized in that, in the invention according to any one of claims 7 to 9, the UV cut coat is formed on a plurality of optical surfaces.
  • An imaging optical system is characterized in that, in the invention according to any one of the seventh to tenth aspects, the UV cut coat is formed by stacking two or more films of oxide or fluoride. To do.
  • the imaging optical system according to a twelfth aspect of the present invention is the imaging optical system according to any one of the twelfth to eleventh aspects, wherein at least one of the optical surfaces on which the UV cut coat is formed has a light incident angle to the optical surface.
  • the maximum value of the light emission angle is 40 degrees or less.
  • the “ray incident angle” is the absolute value of the angle between the incident light beam and the normal of the optical surface
  • the “light output angle” is the absolute value of the angle between the outgoing light beam and the normal of the optical surface. It is.
  • An imaging optical system is the imaging optical system according to any of the seventh to twelfth aspects, wherein a maximum value of a light incident angle or a light emitting angle on the optical surface on which the UV cut coat is formed is 40 degrees.
  • a UV cut coat is formed on at least one surface other than the optical surface.
  • An imaging optical system is the imaging optical system according to any one of the seventh to thirteenth aspects, wherein at least one of the optical surfaces on which the UV cut coat is formed is a film at a central portion and a peripheral portion.
  • the thickness ratio satisfies the following conditional expression.
  • conditional expression (3) it is preferable to satisfy the conditional expression (3). It is more preferable that the following conditional expression is satisfied.
  • the imaging optical system according to claim 15 is the invention according to any one of claims 7 to 13, wherein when the optical surface on which the UV cut coat is formed satisfies the following conditional expression, at least the optical surface: It is characterized in that a UV cut coat is formed on one optical surface.
  • An imaging optical system is the invention according to any one of the seventh to fifteenth aspects, wherein at least one of the optical surfaces on which the UV cut coat is formed has a maximum optical surface angle of 40. It is characterized by being less than or equal to degrees.
  • the “optical surface angle” refers to an absolute value of an angle formed between the optical axis and the normal line of the optical surface at the light beam passing position.
  • the imaging optical system according to claim 17 is the invention according to any one of claims 7 to 16, wherein the maximum optical surface angle of the optical surface on which the UV cut coat is formed is 40 degrees or more.
  • a UV cut coat is formed on at least one optical surface other than the optical surface.
  • An imaging optical system is the imaging optical system according to any one of the first to seventeenth aspects, wherein the means for suppressing the transmission of ultraviolet rays is disposed on the object side of the resin lens, and is a 10 mm thick flat plate
  • the lens or flat plate is made of a glass or resin UV-cutting material having a transmittance at a wavelength of 400 nm of 70% or less.
  • the UV cut material is any one of boric acid glass, silica glass, and phosphoric acid glass.
  • the boric acid glass for example, those described in JP-A-2006-248897 can be used.
  • the UV cut material is a glass containing colored component atoms including at least one of Ti, Nb, W, and Bi.
  • the UV cut material is preferably boric acid glass having a total content of coloring components including at least one of Ti, Nb, W, and Bi of 17 wt% or more. More preferably, the total content of the coloring components is 23 wt% or more.
  • the UV cut material is silica-based glass having a total content of coloring components including at least one of Ti, Nb, W, and Bi of 30 wt% or more. More preferably, the total content of the coloring components is 40 wt% or more.
  • the UV cut material is a phosphate glass having a total content of coloring components including at least one of Ti, Nb, W, and Bi of 33 wt% or more. More preferably, the total content of the coloring components is 45 wt% or more.
  • the means for suppressing the transmission of ultraviolet light contains a UV absorber in the optical element closer to the object side than the resin lens or the resin lens.
  • the UV absorber contains at least one antiseptic fungicide such as benzoic acid and salicylic acid, oxybenzone, and ethyl p-aminobenzoate.
  • an antiseptic fungicide such as benzoic acid and salicylic acid, oxybenzone, and ethyl p-aminobenzoate.
  • the imaging optical system of the present invention is a resin formed from a resin material having a refractive index Nd of d-line of less than 1.6 on the object side of a resin lens formed of a resin material having a refractive index Nd of d-line of 1.6 or more. It is preferable to make a lens.
  • the imaging optical system of the present invention is preferably provided with a nano antireflection structure in order to suppress reflection of light rays.
  • a nano antireflection structure By forming the conical projections densely on the surface of the optical surface at a minute interval (pitch) that is a fraction of the wavelength of light transmitted through the optical element, the light reflection suppressing function can be exhibited. That is, the refractive index change at the interface with the air when the light wave enters the optical element is not instantaneously changed from 1 to the medium refractive index as in the conventional optical element, but is arranged at a fine interval. By changing the shape of the protrusions gradually, the reflection of light can be suppressed.
  • the optical surface on which such protrusions are formed has a fine structure called a so-called “eye eye”, and the structure finer than the wavelength of light is arranged with a period shorter than half of the wavelength, so that individual The structure does not diffract and acts as an average refractive index for light waves.
  • Such a region is generally called an equivalent refractive index region.
  • an equivalent refractive index region see, for example, the Journal of the Institute of Electronics, Information and Communication Engineers C Vol. J83-C No. 3pp. 173-181 It is stated in March 2000.
  • a structure having such an equivalent refractive index region is called a nano-reflection preventing structure.
  • FIG. 23 shows a graph showing the relationship between the wavelength and the reflectance according to an example of the nano-reflection preventing structure
  • FIG. 24 shows a graph showing the relationship between the wavelength and the transmittance according to an example of the nano-reflection preventing structure.
  • a combination of a UV absorbing resin or UV absorbing glass and a nano antireflection structure is preferable.
  • the nano-reflection preventing structure is formed on a flat plate arranged inside the imaging optical system.
  • the imaging optical system according to claim 19 is the imaging optical system according to any one of claims 1 to 17, wherein the means for suppressing the transmission of ultraviolet rays is disposed on the object side of the resin lens and is 180 nm or more and less than 210 nm. It is characterized by being a nano antireflection structure having a pitch of.
  • the nano antireflection structure is a periodic structure, and exhibits a reflection suppressing function for light having a wavelength of about twice or more the pitch. Therefore, by making it less than 210 nm, the reflection suppressing function is exhibited for visible light having a wavelength of 420 nm or more, and UV light having a wavelength of 360 nm or more and less than 420 nm is diffracted and scattered, and UV is applied to the resin lens. It is possible to prevent light from entering.
  • An imaging apparatus includes the imaging optical system according to any one of claims 1 to 19, an imaging element, and an adjusting unit that adjusts a white balance of an image signal obtained by the imaging element. It is characterized by having.
  • the imaging device includes an RGB color filter, and the image signal has a blue wavelength component signal intensity higher than the signal intensity of other colors. It is small.
  • the white balance is optimized by making the signal intensity of the blue wavelength component in the image signal smaller than the signal intensity of other colors. Can be achieved.
  • an imaging optical system and an imaging apparatus that can exhibit stable optical performance over a long period of time.
  • FIG. 1 is a block diagram of an imaging apparatus 100.
  • FIG. 4 is a block diagram showing an internal configuration of a mobile phone 300.
  • FIG. 1 is a cross-sectional view of an imaging optical system according to Example 1.
  • FIG. 6 is a cross-sectional view of an imaging optical system according to Example 2.
  • FIG. 6 is a cross-sectional view of an imaging optical system according to Example 3.
  • FIG. 6 is a cross-sectional view of an imaging optical system according to Example 4.
  • FIG. 10 is a cross-sectional view of an imaging optical system according to Example 5.
  • FIG. 10 is a cross-sectional view of an imaging optical system according to Example 6.
  • FIG. 10 is a cross-sectional view of an image pickup optical system according to a seventh embodiment.
  • FIG. 10 is a cross-sectional view of an image pickup optical system according to Example 8.
  • FIG. 10 is a cross-sectional view of an image pickup optical system according to Example 9.
  • FIG. 12 is a cross-sectional view of the imaging optical system according to Example 10.
  • 14 is a cross-sectional view of an image pickup optical system according to Example 11.
  • FIG. 10 is a graph showing the reflectance of Comparative Example 11.
  • 14 is a graph showing the reflectance of Comparative Example 12.
  • 14 is a graph showing the reflectance of Comparative Example 13.
  • 16 is a graph showing the reflectance of Comparative Example 14.
  • ⁇ 42 is a cross-sectional view showing a film configuration of Example 29.
  • 22 is a graph showing the reflectance of Example 23. 22 is a graph showing the reflectance of Example 24. 42 is a graph showing the reflectance of Example 25. 27 is a graph showing the reflectance of Example 26. 42 is a graph showing the reflectance of Example 27. 42 is a graph showing the reflectance of Example 28. 42 is a graph showing the reflectance of Example 29. It is a graph which shows the relationship between the wavelength of a nano reflection prevention structure, and a reflectance. It is a graph which shows the relationship between the wavelength of a nano reflection preventing structure, and the transmittance
  • FIG. 1 is a block diagram of the imaging apparatus 100.
  • the imaging apparatus 100 includes an imaging optical system 101, a solid-state imaging device 102, an A / D conversion unit 103, a control unit 104, an optical system driving unit 105, a timing generation unit 106,
  • the imaging device driving unit 107, the image memory 108, the image processing unit 109, the image compression unit 110, the image recording unit 111, the display unit 112, and the operation unit 113 are configured.
  • the imaging optical system 101 has a function of forming a subject image on the imaging surface of the solid-state imaging device 102.
  • the solid-state image sensor 102 is an image sensor such as a CCD or CMOS, and includes an RGB color filter.
  • the solid-state image sensor 102 photoelectrically converts incident light for each of R, G, and B and outputs an analog signal thereof.
  • the A / D conversion unit 103 converts an analog signal into digital image data.
  • the control unit 104 controls each unit of the imaging apparatus 100.
  • the control unit 104 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory), and various programs read out from the ROM and expanded in the RAM, and various types in cooperation with the CPU. Execute the process.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the optical system driving unit 105 controls the imaging optical system in zooming, focusing (movement of a second lens group G2, a fourth lens group G4, and a fifth lens group G5 described later), exposure, and the like under the control of the control unit 104. 101 is driven and controlled.
  • the timing generator 106 outputs a timing signal for analog signal output.
  • the image sensor drive unit 107 performs scanning drive control of the solid-state image sensor 102.
  • the image memory 108 stores image data so as to be readable and writable.
  • the image processing unit 109 performs various image processes on the image data.
  • the image compression unit 110 compresses the captured image data using a compression method such as JPEG (Joint Photographic Experts Group).
  • the image recording unit 111 records image data on a recording medium such as a memory card set in a slot (not shown).
  • the display unit 112 is a color liquid crystal panel or the like, and displays image data after shooting, a through image before shooting, various operation screens, and the like.
  • the operation unit 113 includes a release button, various modes, and various operation keys for setting values, and outputs information input by the user to the control unit 104.
  • subject photographing subject monitoring (through image display) and image photographing execution are performed.
  • image photographing an image of a subject obtained through the imaging optical system 101 is formed on the light receiving surface of the solid-state imaging device 102.
  • the solid-state imaging device 102 disposed behind the imaging optical axis of the imaging optical system 101 is scanned and driven by the timing generation unit 106 and the imaging device driving unit 107.
  • the analog signal is output for one screen.
  • the analog signal is appropriately gain-adjusted for each primary color component of RGB, and then converted into digital data by the A / D conversion unit 103.
  • the digital data is subjected to color process processing including pixel interpolation processing and ⁇ correction processing by the image processing unit 109 to generate a luminance signal Y and color difference signals Cb, Cr (image data) as digital values, and the image memory.
  • the signal is periodically read out and the video signal is generated and output to the display unit 112.
  • the control unit 104 which is a white balance adjusting unit, adjusts the white balance so that the signal intensity of the blue wavelength component in the image signal is smaller than the signal intensity of the other colors.
  • the display unit 112 functions as an electronic viewfinder in monitoring and displays captured images in real time. In this state, zooming, focusing, exposure, and the like of the imaging optical system 101 are set by driving the optical system driving unit 105 based on an operation input via the user operation unit 113 as needed.
  • each said embodiment and each Example is an example of the suitable optical system which concerns on this invention, and an imaging device, It is not limited to this.
  • an example of a digital still camera has been described as an imaging apparatus equipped with an optical system.
  • the present invention is not limited to this, and a video camera or a mobile phone with an imaging function is described. It may be a device such as a portable terminal having at least an imaging function, such as PHS (Personal Handy Phone System) and PDA (Personal Digital Assistant).
  • PHS Personal Handy Phone System
  • PDA Personal Digital Assistant
  • FIG. 2 is a block diagram showing an internal configuration of the mobile phone 300.
  • the mobile phone 300 has a control unit (CPU) 310 that performs overall control of each unit and executes a program corresponding to each process, and an operation unit 320 that inputs a number and the like using keys.
  • a display unit 330 that displays captured images in addition to predetermined data, a wireless communication unit 340 for realizing various information communication with an external server or the like via the antenna 341, and the imaging apparatus 100.
  • a storage unit (ROM) 360 that stores necessary data such as a system program, various processing programs, and a terminal ID of the mobile phone 300, and various processing programs and data executed by the control unit 310, or processing data
  • the imaging apparatus 100 includes a temporary storage unit (RAM) 370 that is used as a work area for temporarily storing imaging data and the like. To have.
  • control unit 104 of the imaging apparatus 100 and the control unit 310 of the mobile phone 300 are communicably connected.
  • the operation of the imaging apparatus 100 itself is basically the same.
  • an external connection terminal (not shown) of the imaging device 100 is connected to the control unit 310 of the mobile phone 300, and a release signal is transmitted from the mobile phone 300 side to the imaging device 100 side and obtained by imaging.
  • Image signals such as luminance signals and color difference signals are output from the imaging apparatus 100 side to the control unit 310 side.
  • Such an image signal can be stored in the storage unit 360 or displayed on the display unit 330 by the control system of the mobile phone 300, and further transmitted to the outside as video information via the wireless communication unit 340. .
  • an image pickup apparatus equipped with an optical system is arranged with a control unit and an image processing unit arranged on a substrate, and is coupled to a separate unit having a display unit and an operation unit by a connector or the like.
  • You may comprise as a camera module on the assumption that it is used.
  • Examples suitable for the above-described embodiment will be described.
  • r represents the radius of curvature (mm)
  • d represents the axial top surface spacing (mm)
  • nd and ⁇ d represent the refractive index and Abbe number for the d-line.
  • Fl is the focal length of the entire system (mm)
  • w is the maximum half angle of view (°)
  • ymax is the diagonal length of the imaging surface of the solid-state imaging device
  • TL is the distance on the optical axis from the lens surface closest to the object side to the image plane.
  • BF is back focus.
  • the radius of curvature for the aspheric lens shown in each table indicates a value near the center of the lens. For example, “e-01” represents 10 ⁇ 1 .
  • aspherical surfaces are aspherical refractive optical surfaces, surfaces having a refractive action equivalent to aspherical surfaces, etc.
  • An aspherical surface that is symmetric about the optical axis is defined by a mathematical expression in which the coefficients shown in the table are substituted into the spherical expression.
  • Example 3 is a sectional view of the image pickup optical system according to the first embodiment.
  • Table 1 shows lens data of Example 1.
  • the imaging optical system of Example 1 includes, in order from the object side, a negative meniscus lens L1 made of glass that is convex on the object side, a parallel plate P1 made of glass, a negative lens L2 made of resin, a negative lens L3 made of resin, an aperture S
  • the resin forming the negative lens L3 has a fluorene skeleton and the refractive index Nd is 1.63, and UV cut coat is applied to the object side surface and the image side surface of the parallel plate P1 closer to the object side. A film is formed.
  • an antireflection coating is formed on the object side surface of the parallel plate P1, and a nanoreflection preventing structure is applied on the image side surface.
  • the refractive index of the negative lens L2 disposed on the object side with respect to the negative lens L3 is 1.53.
  • FIG. 4 is a sectional view of the image pickup optical system according to the second embodiment.
  • Table 2 shows lens data of Example 2.
  • the imaging optical system of Example 2 includes, in order from the object side, a glass parallel plate P1, a diaphragm S, a resin positive lens L1, a resin negative lens L2, and a glass parallel plate P2.
  • the resin forming the negative lens L2 has a fluorene skeleton and the refractive index Nd is 1.63, and a UV cut coat is formed on the object side surface of the parallel plate P1 on the object side. It becomes.
  • an antireflection coat is formed on the object side surface of the parallel plate P1.
  • the refractive index of the positive lens L1 disposed on the object side with respect to the negative lens L2 is 1.53.
  • FIG. 5 is a sectional view of the image pickup optical system according to the third embodiment.
  • Table 3 shows lens data of Example 3.
  • the imaging optical system of Example 3 includes, in order from the object side, a glass negative meniscus lens L1, a resin negative lens L2, a resin positive lens L3, a diaphragm S, and a resin positive lens L4 that are convex on the object side. , A negative lens L5 made of resin, and a parallel flat plate P1 made of glass.
  • the resin that forms the positive lens L3 and the negative lens L5 has a fluorene skeleton and a refractive index Nd of 1.63, and thus on the object side surface and the image side surface of the negative meniscus lens L1 on the object side.
  • a UV cut coat is formed.
  • an antireflection coating is formed on the object side surface and / or the image side surface of the negative meniscus lens L1.
  • a water repellent coat may be further formed on the object side surface of the negative meniscus lens L1.
  • the refractive index of the negative lens L2 disposed on the object side from the positive lens L3 is 1.53, and the refractive index of the positive lens L4 disposed on the object side from the negative lens L5 is 1.53.
  • FIG. 6 is a sectional view of the image pickup optical system according to the fourth embodiment.
  • Table 4 shows lens data of Example 4.
  • a negative meniscus lens L1 made of glass convex to the object side in order from the object side, a negative lens L2 made of resin, a negative lens L3 made of resin, an aperture S, and a positive lens L4 made of glass.
  • the resin forming the negative lens L3 has a fluorene skeleton, and the refractive index Nd is 1.63. Therefore, the negative lens L2 on the object side has a UV-cut glass material (for example, low UV transmittance). Resin).
  • a compound that absorbs light having a wavelength of 220 to 600 nm is added to the resin.
  • examples of such compounds include antiseptic fungicides such as benzoic acid and salicylic acid, UV absorbers such as oxybenzone and ethyl p-aminobenzoate, surfactants such as sodium dodecylbenzenesulfonate and lauroylmethyltaurine, acetic acid- Antioxidants such as dl- ⁇ -tocopherol and butylhydroxytoluene, pharmaceutical agents such as guaiazulene and diphenhydramine hydrochloride, dyes such as red No. 2 and yellow No.
  • plasticizers such as dimethyl phthalate and triphenyl phosphate, stearin Examples thereof include oils such as acid and myristic acid, and organic acids such as malic acid and succinic acid.
  • the refractive index of the negative lens L2 disposed on the object side from the negative lens L3 is 1.53.
  • FIG. 7 is a sectional view of the image pickup optical system according to the fifth embodiment.
  • Table 5 shows lens data of Example 5.
  • the imaging optical system according to the fifth exemplary embodiment includes, in order from the object side, a glass negative meniscus lens L1, a resin negative lens L2, a resin positive lens L3, a diaphragm S, and a resin positive lens L4. , Composed of a parallel plate P1 made of glass.
  • the resin forming the positive lens L3 has a fluorene skeleton, and the refractive index Nd is 1.63.
  • the negative meniscus lens L1 on the object side has a UV-cut glass material (for example, an ultraviolet ray transmittance).
  • Low borate glass K-PSFn2, etc. manufactured by Sumita Optical Co., Ltd.
  • the refractive index of the negative lens L2 disposed on the object side from the positive lens L3 is 1.53.
  • FIG. 8 is a sectional view of the image pickup optical system according to the sixth embodiment.
  • the lens data of Example 6 is the same as that of Example 4 except for the filter F1.
  • the imaging optical system according to the sixth embodiment includes, in order from the object side, a filter F1, a negative meniscus lens L1 made of glass convex to the object side, a negative lens L2 made of resin, a negative lens L3 made of resin, an aperture S, and a glass. It consists of a positive lens L4 and a resin negative lens L5.
  • the resin forming the negative lens L3 has a fluorene skeleton, and the refractive index Nd is 1.63.
  • the filter F1 on the object side has a UV cut glass material (for example, a low UV transmittance glass). Acid glass (K-PSFn2, etc. manufactured by Sumita Optical Co., Ltd.) is used.
  • the refractive index of the negative lens L2 disposed on the object side from the negative lens L3 is 1.53.
  • FIG. 9 is a sectional view of the image pickup optical system according to the seventh embodiment. Table 6 shows lens data of Example 7.
  • the imaging optical system of Example 7 includes, in order from the object side, a glass negative meniscus lens L1, a glass negative lens L2, a resin positive lens L3, a diaphragm S, and a glass positive lens L4 that are convex on the object side. Consists of.
  • Example 7 the resin forming the positive lens L3 has a fluorene skeleton, and the refractive index Nd is 1.63. From this, the negative meniscus lens L1 on the object side has a UV-cut glass material (for example, a transmittance of ultraviolet rays). Low glass (HODS FDS18 etc.) is used.
  • UV-cut glass material for example, a transmittance of ultraviolet rays.
  • Low glass HODS FDS18 etc.
  • FIG. 10 is a sectional view of the image pickup optical system according to the eighth embodiment.
  • Table 7 shows lens data of Example 8.
  • the imaging optical system of Example 8 includes, in order from the object side, a positive lens L1 made of a cyclic olefin copolymer resin containing a UV absorber, a negative meniscus lens L2 made of a target resin having a fluorene structure, and a positive lens made of a cyclic olefin copolymer resin.
  • Meniscus lens L3 It consists of a negative lens L4 made of a cyclic olefin copolymer resin and a parallel plate P1.
  • the positive lens L1 located on the object side of the negative meniscus lens L2 made of the target resin having a fluorene structure has a UV absorption function.
  • An antireflection coating is formed on the object side surface and the image side surface of the parallel plate P1.
  • a nano antireflection structure may be provided instead of the antireflection coating.
  • FIG. 11 is a sectional view of the image pickup optical system according to the ninth embodiment.
  • Table 8 shows lens data of Example 9.
  • the imaging optical system of Example 9 includes, in order from the object side, a positive lens L1 made of a cyclic olefin copolymer resin, a negative meniscus lens L2 made of a target resin having a fluorene structure containing a UV absorber, and a positive lens made of a cyclic olefin copolymer resin. It consists of a meniscus lens L3, a negative lens L4 made of a cyclic olefin copolymer resin, and a parallel plate P1.
  • the negative meniscus lens L2 itself made of a target resin having a fluorene structure has a UV absorption function.
  • An antireflection coating is formed on the object side surface and the image side surface of the parallel plate P1.
  • a nano antireflection structure may be provided instead of the antireflection coating.
  • FIG. 12 is a sectional view of the image pickup optical system according to the tenth embodiment.
  • Table 9 shows lens data of Example 10.
  • the imaging optical system of Example 10 includes, in order from the object side, a parallel plate P2 having a UV cut coat and containing a UV absorber, a positive lens L1 made of a cyclic olefin copolymer resin, and a negative meniscus made of a target resin having a fluorene structure.
  • Lens L2 positive meniscus lens L3 made of cyclic olefin copolymer resin, positive lens L4 made of cyclic olefin copolymer resin, negative lens L5 made of cyclic olefin copolymer resin, and parallel plate P1.
  • the parallel plate P2 located on the object side of the meniscus lens L2 made of the target resin having a fluorene structure has a function of absorbing UV while UV-cutting.
  • An antireflection coating is formed on the object side surface of the parallel plate P1.
  • a nano antireflection structure may be provided instead of the antireflection coating.
  • FIG. 13 is a sectional view of the image pickup optical system according to the eleventh embodiment.
  • Table 10 shows lens data of Example 11.
  • the imaging optical system of Example 11 includes, in order from the object side, a positive lens L1 made of a cyclic olefin copolymer resin with UV cut coating on both surfaces, a negative meniscus lens L2 made of a target resin having a fluorene structure, and a positive lens made of a polycarbonate resin L3, a positive meniscus lens L4 made of a cyclic olefin copolymer resin, a negative lens L5 made of a cyclic olefin copolymer resin, and a parallel plate P1.
  • Example 11 the positive lens L1 located on the object side of the meniscus lens L2 made of the target resin having a fluorene structure has a function of UV-cutting.
  • An antireflection coating is formed on the object side surface of the parallel plate P1.
  • a nano antireflection structure may be provided instead of the antireflection coating.
  • the nano antireflection structure provided for suppressing the transmission of infrared rays is not limited to the position in the above embodiment.
  • it can be provided on the cover glass of the sensor, and may be provided anywhere as long as the same effect can be obtained.
  • an antireflection coating may be provided instead of the nano antireflection structure.
  • the nano antireflection structure and antireflection coating are preferably provided on the same surface as the UV cut coating, but the location is not limited and may be provided on either the object side or the image side of the flat plate / lens. Further, the present invention is not limited to the boric acid glass used in the above examples, and the same effect can be obtained by adding colored component atoms to silica glass or phosphoric acid glass.
  • Table 12 shows the film configuration data of Comparative Examples 11-14.
  • 14 to 17 are graphs showing the reflectances of Comparative Examples 11 to 14 in order. It has antireflection performance at a wavelength of 420 to 650 nm which is a visible light region.
  • Tables 13 to 16 show the film configuration data of Examples 21 to 28.
  • FIG. 18 shows the film configuration of Example 29.
  • Example 29 UV cut coating is applied to both sides, and Example 26 is used on the object side and Example 21 is used on the image side.
  • Example 26 the surface was provided with water repellency by providing a water-repellent layer, and in Example 22, the surface was made hydrophilic by making the outermost layer an SiO 2 layer.
  • a material for the water repellent layer for imparting water repellency a general water repellent material can be used in addition to the WR1 listed here.
  • a method for imparting hydrophilicity polysilazane or the like may be applied to the outermost layer of the UV cut coat described in another embodiment.
  • Example 27 is an example of a UV cut coat for a plastic lens.
  • H1, H4, and WR1 are product names of Merck Co., Ltd.
  • OA600 is a product name of Optron Co., Ltd. described in Comparative Examples and Examples of Film Structures in Tables 12-15.
  • the film configurations given in the comparative examples and examples are merely examples, and other general thin film materials can be used.
  • the average transmittances at wavelengths of 360 to 400 nm in Comparative Examples 21 to 24 and Examples 21 to 28 are 90.8%, 94.1%, 96.7%, 89.9%, 36.7%, 55.5%, 57.7%, 0.01%, 0.01%, respectively.
  • the average reflectance at wavelengths of 420 to 650 nm is 0.05%, 0.13%, 0.05%, 0.14%, 0.20%, 0.44%, 0.29%, 0.59%, 0.62%, 0.44, respectively. %, 0.53%, and 0.25%.
  • the average transmittance at a wavelength of 360 to 400 nm in Example 29 in which UV cut coating was applied to both surfaces of the lens was 29.6%. Table 17 summarizes the average transmittance and the average reflectance of the comparative example and the example.

Abstract

 本発明は、長期間にわたって安定した光学性能を発揮できる撮像光学系及び撮像装置を提供する。  d線の屈折率Ndが1.6以上の樹脂製レンズ、又はその樹脂製レンズより物体側の光学素子に紫外線の透過を抑制するUVカットコートを設けたり、UVカット硝材を用いて形成することで、樹脂材料に到達する紫外線が抑制され、樹脂素材の変色を抑えて、長期間にわたって安定した光学性能を発揮できる撮像光学系を実現した。

Description

撮像光学系及び撮像装置
 本発明は、撮像光学系及び撮像装置に関し、例えばCCD型イメージセンサあるいはCMOS型イメージセンサ等の固体撮像素子に対して光学像を結像させるための撮像光学系及びそれを用いる撮像装置に関する。
 近年、CCD(Charge Coupled Devices)型イメージセンサあるいはCMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサ等の固体撮像素子を備えた撮像装置が開発されている。このような撮像装置としては、デジタルカメラに留まらず、車載用カメラや携帯電話など種々の用途に用いられているが、いずれの用途でも、小型化や低コストの要求が存在する。そこで、撮像装置に搭載される撮像光学系としては、軽量であって安価に大量生産が可能な樹脂製レンズを用いることが多い。
 一方、小型の撮像装置に搭載するためには、撮像光学系を最適なサイズに設計する必要があるが、そのために高屈折率の樹脂素材が注目されている。高屈折率の樹脂素材を用いることで、設計の自由度が広がり、広範な撮像装置に対して最適な撮像光学系の設計を行える。しかしながら、撮像光学系としては、屈折率以外にも、レンズの成形性や、小型撮像素子の高画素化に応じた解像度や複屈折性、或いは長期間の使用による変色等の解決すべき課題が多々ある。特に、複屈折性は光学系の解像力を劣化させ、低画質化を招く恐れがある。
 ここで、本発明者らは、非特許文献1に示す樹脂素材が、例えば従来のポリカーボネート等に比べて高屈折率・低複屈折性を有し、しかも成形時の樹脂流動性が高いことに着目し、これを撮像光学系のレンズの素材として用いることができないかを検討した。レンズの素材が高屈折率を有すれば、撮像光学系をよりコンパクト化でき、また樹脂素材が高分散になるので組み合わせによる色収差補正の自由度が向上し、画像の更なる高画質化に貢献する。又、樹脂の成形時の樹脂流動性が良好であれば、高偏肉度(中心厚と周辺厚の差が大きい)のレンズや、厚さが極端に薄いレンズなどを容易に成形できる。
大阪ガスケミカル株式会社 フルオレン誘導体[平成20年7月9日検索](URL:http://www.ogc.co.jp/seihin/fluorene/index.html)
 ところが、本発明者らの検討結果によれば、非特許文献1に示す樹脂素材は、使用する間に黄色く変色し、光の透過率が減少することが判明した。より具体的には、かかる樹脂材料からなる板厚3mmの試験片を、295nm~450nmの光が1000W/m2で照射される環境下に131時間放置したところ、450nmの透過率が15%低下した。一方、従来の光学素子に用いられるポリカーボネートの場合、同じ条件での透過率の低下は2%だった。
 本発明は、例えば上記従来技術の樹脂素材が、なぜ黄色く変色するのかを解明し対策を行うことで、長期間にわたって安定した光学性能を発揮できる撮像光学系及び撮像装置を提供することを目的とする。
 請求項1に記載の撮像光学系は、樹脂材料中に、フルオレン骨格、もしくはS原子又は重金属原子を含む樹脂製レンズを少なくとも1枚有する撮像光学系において、
 前記樹脂製レンズ内部、前記樹脂製レンズの物体側面、又は前記樹脂製レンズより物体側の光学素子、の少なくともいずれか1つに紫外線の透過を抑制する手段を設けたことを特徴とする。
 本発明者らは、鋭意研究の結果、非特許文献1に示された樹脂材料において、使用により黄色く変色する原因が、樹脂材料に含まれたフルオレン骨格、もしくはS原子又は重金属原子が紫外線に反応することにあることを発見した。一方、フルオレン骨格、もしくはS原子又は重金属原子を樹脂素材から除外してしまうと、高屈折率の樹脂素材とならないことも見出した。そこで、前記樹脂製レンズ、又は前記樹脂製レンズより物体側の光学素子に紫外線の透過を抑制する手段を設けることで、前記樹脂材料に到達する紫外線を抑制し、樹脂素材の変色を抑えて、長期間にわたって安定した光学性能を発揮できる撮像光学系を実現したのである。このような樹脂材料としては、大阪ガスケミカル株式会社の商品名OKP4、OKP4HTなどがある。尚、ポリカーボネート等と比較した場合、かかる樹脂材料はより高い屈折率を有するので、撮像光学系のコンパクト化、高画質化を図ることができる。又、高屈折率を有する樹脂材料は高分散であることから、組み合わせにより色収差補正の効果が大きくなり、高画質化を図れる。更に、高屈折率を有する樹脂材料は複屈折性が小さい傾向があり、撮像光学系における解像力の劣化を抑えることができる。
 請求項2に記載の撮像光学系は、d線の屈折率Ndが1.6以上の樹脂材料から形成された樹脂製レンズを少なくとも1枚有する撮像光学系において、
 前記樹脂製レンズ内部、前記樹脂製レンズの物体側面、又は前記樹脂製レンズより物体側の光学素子、の少なくともいずれか1つに紫外線の透過を抑制する手段を設けたことを特徴とする。
 本発明者らは、鋭意研究の結果、樹脂材料にフルオレン骨格、もしくはS原子又は重金属原子を含有することで、d線の屈折率Ndが1.6以上になるが、そのために長期間の使用により黄色く変色するという問題があることを発見した。そこで、前記樹脂製レンズ、又は前記樹脂製レンズより物体側の光学素子に紫外線の透過を抑制する手段を設けることで、前記樹脂材料に到達する紫外線を抑制し、樹脂素材の変色を抑えて、長期間にわたって安定した光学性能を発揮できる撮像光学系を実現したのである。このような樹脂材料としては、大阪ガスケミカル株式会社の商品名OKP4、OKP4HTなどがある。
 請求項3に記載の撮像光学系は、請求項1に記載の発明において、前記フルオレン骨格を含む前記樹脂材料は、熱可塑性樹脂であることを特徴とする。熱可塑性樹脂にフルオレン骨格を与えることで、d線の屈折率Ndが1.6以上となるが、そのために長期間の使用により黄色く変色する恐れがあるので、本発明が特に有効である。但し、前記樹脂材料は熱可塑性樹脂に限られず、フルオレン骨格を有すれば足りる。
 このような熱可塑性樹脂の一例は、一般式(I)で表される芳香族ジヒドロキシ化合物および一般式(II)で表される脂肪族ジヒドロキシ化合物と、炭酸ジエステルとを重縮合して得られるものである。
Figure JPOXMLDOC01-appb-C000001
(式中、R1 、R2 は、それぞれ独立に水素原子、ハロゲン原子、炭素数1から20のアルキル基、炭素数1から20のアルコキシル基、炭素数6から20のシクロアルキル基、炭素数6から20のアリール基、炭素数6から20のシクロアルコキシル基または炭素数6から20のアリールオキシ基を表す。また、mおよびnは0から4の整数を表す。)
 一般式(I)で表される芳香族ジヒドロキシ化合物としては、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-エチルフェニル)フルオレン等が用いられる。
 一般式(II)で表される脂肪族ジヒドロキシ化合物は、トリシクロ(5.2.1.02.6 )デカンジメタノールである。
Figure JPOXMLDOC01-appb-C000002
 本発明においては、一般式(I)で表される芳香族ジヒドロキシ化合物と一般式(II)で表される脂肪族ジヒドロキシ化合物からそれぞれ誘導される構成単位のモル比(1)/(2)が、70/30~5/95であり、より好ましくは60/40から20/80である。すなわち、ポリカーボネート樹脂中の芳香族ジヒドロキシ化合物(I)および(II)からそれぞれ誘導される構成単位のモル比(1)/(2)が、70/30より高いとガラス転移温度が高くなるため、成形時の流動性が低下するため好ましくない。加えて、成形時の流動性を向上させるために分子量を低く抑えると成形体の耐衝撃性が低下するため好ましくない。また、5/95より低いとガラス転移温度が低くなり、耐熱性が低下し実用に耐えるのが困難になるため好ましくない。
 請求項4に記載の撮像光学系は、請求項1に記載の発明において、前記S原子又は前記重金属原子を有する前記樹脂材料は、硬化性樹脂であることを特徴とする。硬化性樹脂にS原子又は重金属原子を含有させることで、d線の屈折率Ndが1.6以上となるが、そのために長期間の使用により黄色く変色する恐れがあるので、本発明が特に有効である。但し、前記樹脂材料は硬化性樹脂に限られず、S原子又は重金属原子を含有すれば足りる。
 請求項5に記載の撮像光学系は、請求項1~4のいずれかに記載の発明において、以下の条件式を満たすことを特徴とする。
 0.1mm < Dt < 10mm   (1)
Dt:前記樹脂製レンズの光軸上厚み。但し、前記樹脂製レンズが複数枚ある場合はレンズ厚みの総和とする。
 値Dtが条件式(1)の上限以上となると、UV照射に伴って樹脂構造が破壊され、特に可視域短波長側の透過率が低下する傾向が顕著となるため、経時変化として、画像の色再現性が劣化してしまう。また複数枚ある場合には、各々のレンズでの透過率低下は小さいものの、光学系全体での透過率低下は上記と同様であり、やはり画像の色再現性が劣化してしまう。一方、値Dtが条件式(1)の下限以下となると、前記樹脂材料の成形時の流動性が悪くなるため、ゲート方向と反対側にウェルドが発生し不要光や外観不良の原因となったり、複屈折が生じて画像のコントラスト低下につながってしまったりする。従って、条件式(1)を満たすのがよい。尚、以下の条件式を満たすとより好ましい。
 1.0mm < Dt < 5.0mm   (1’)
 請求項6に記載の撮像光学系は、請求項1~5のいずれかに記載の発明において、以下の条件式を満たすことを特徴とする。
 0.02 < Dt/TL < 0.5    (2)
Dt:前記樹脂製レンズの光軸上厚み。但し、前記樹脂製レンズが複数枚ある場合はレンズ厚みの総和とする。
TL:最も物体側のレンズ面から像面までの光軸上距離。
 値Dt/TLが、条件式(2)の上限以上となると、UV照射に伴って樹脂構造が破壊され、特に可視域短波長側の透過率が低下する傾向が顕著となるため、経時変化として、画像の色再現性が劣化してしまう。また複数枚ある場合には、各々のレンズでの透過率低下は小さいものの、光学系全体での透過率低下は上記と同様であり、やはり画像の色再現性が劣化してしまう。一方、値Dt/TLが、条件式(2)の下限以下となると、前記樹脂材料の成形時の流動性が悪くなるため、ゲート方向と反対側にウェルドが発生し不要光や外観不良の原因となったり、複屈折が生じて画像のコントラスト低下につながってしまったりする。従って、条件式(2)を満たすのがよい。尚、以下の条件式を満たすとより好ましい。
 0.05 < Dt/TL < 0.25  (2’)
 請求項7に記載の撮像光学系は、請求項1~6のいずれかに記載の発明において、前記紫外線の透過を抑制する手段は、前記樹脂製レンズ、又は前記樹脂製レンズより物体側のレンズ又は平板に設けられたUVカットコートであることを特徴とする。
 請求項8に記載の撮像光学系は、請求項7に記載の発明において、前記UVカットコートは、360~400nmの波長域での平均透過率が70%以下のコート特性を有することを特徴とする。
 請求項9に記載の撮像光学系は、請求項7又は8に記載の発明において、前記UVカットコートは、420~650nmの波長域での平均反射率が3%以下の反射防止特性も併せ持つことを特徴とする。
 請求項10に記載の撮像光学系は、請求項7~9のいずれかに記載の発明において、前記UVカットコートは、複数の光学面に成膜されていることを特徴とする。
 請求項11に記載の撮像光学系は、請求項7~10のいずれかに記載の発明において、前記UVカットコートは、酸化物又はフッ化物の2層以上の膜を重ねてなることを特徴とする。
 請求項12に記載の撮像光学系は、請求項7~11のいずれかに記載の発明において、前記UVカットコートを成膜した光学面のうち少なくとも1面は、その光学面への光線入射角又は光線出射角の最大値が40度以下であることを特徴とする。ここで、「光線入射角」とは、入射光線と光学面の法線とのなす角度の絶対値、「光線出射角」とは、出射光線と光学面の法線とのなす角度の絶対値である。
 請求項13に記載の撮像光学系は、請求項7~12のいずれかに記載の発明において、前記UVカットコートを成膜した光学面への光線入射角又は光線出射角の最大値が40度以上の場合、前記光学面以外にも少なくとも1面にUVカットコートを成膜していることを特徴とする。
 請求項14に記載の撮像光学系は、請求項7~13のいずれかに記載の発明において、前記UVカットコートを成膜した光学面のうち少なくとも1面は、中心部と周辺部での膜厚比が下記条件式を満たすことを特徴とする。
 0.8 < Cb/Ca ≦ 1.0    (3)
Ca:光学面中心部での膜厚
Cb:光学面周辺部での膜厚の最小値
 値Cb/Caが、条件式(3)の上限を上回ると、成膜時に蒸着源と光学面の配置を高精度に制御する必要が生じ、大幅なコスト増につながる。一方、値Cb/Caが、条件式(3)の下限以下となると、光学面の中心部と周辺部での反射率特性が大きく変化してしまうため、中心部でUV光を抑制するような膜設計を行うと、周辺部でUV光が透過してしまい、前記光学面より像側に配置された前記樹脂の黄変が顕著となり、画像の色再現性低下や輪帯状の照度ムラが生じてしまう。従って、条件式(3)を満たすのがよい。尚、以下の条件式を満たすとより好ましい。
 0.85 < Cb/Ca < 1.0  (3’)
 請求項15に記載の撮像光学系は、請求項7~13のいずれかに記載の発明において、前記UVカットコートを成膜した光学面が下記条件式を満たす場合、前記光学面以外にも少なくとも1つの光学面にUVカットコートを成膜していることを特徴とする。
 0.1 < Cb/Ca ≦ 0.8     (4)
Ca:光学面中心部での膜厚
Cb:光学面周辺部での膜厚の最小値
 値Cb/Caが、条件式(4)の上限を上回ると、前記光学面のみで十分なUV光の抑制が行えるため前記光学面以外にUVカットコートをする必要がなく、逆にコートするとコスト増につながってしまう。一方、値Cb/Caが、条件式(4)の下限以下となると、前記光学面の周辺部でのUV光の抑制効果がほとんどなく、UVカットコートをしない場合に対する優位性が得られない。従って、条件式(4)を満たすのがよい。
 請求項16に記載の撮像光学系は、請求項7~15のいずれかに記載の発明において、前記UVカットコートを成膜した光学面のうち少なくとも1面は、光学面角度の最大値が40度以下であることを特徴とする。ここで、「光学面角度」とは、光軸と、光線通過位置の光学面の法線とのなす角度の絶対値をいう。
 請求項17に記載の撮像光学系は、請求項7~16のいずれかに記載の発明において、前記UVカットコートを成膜した光学面の光学面角度の最大値が40度以上の場合、前記光学面以外にも少なくとも1つの光学面にUVカットコートを成膜していることを特徴とする。
 請求項18に記載の撮像光学系は、請求項1~17のいずれかに記載の発明において、前記紫外線の透過を抑制する手段は、前記樹脂製レンズの物体側に配置され、10mm厚の平板における波長400nmの透過率が70%以下であるガラス又は樹脂のUVカット材料からなるレンズ又は平板であることを特徴とする。
 本発明の撮像光学系は、前記UVカット材料が、ホウ酸系ガラス、シリカ系ガラス、リン酸系ガラスのいずれかであると好ましい。ホウ酸系ガラスとしては、例えば特開2006-248897に記載されたものを用いることができる。
 本発明の撮像光学系は、前記UVカット材料が、Ti、Nb、W、及びBiを少なくとも1つ含む着色成分原子を含有するガラスであると好ましい。
 本発明の撮像光学系は、前記UVカット材料が、Ti、Nb、W、及びBiを少なくとも1つ含む着色成分の合計含有量が17wt%以上のホウ酸系ガラスであると好ましい。より好ましくは、着色成分の合計含有量が23wt%以上である。
 本発明の撮像光学系は、前記UVカット材料が、Ti、Nb、W、及びBiを少なくとも1つ含む着色成分の合計含有量が30wt%以上のシリカ系ガラスであると好ましい。より好ましくは、着色成分の合計含有量が40wt%以上である。
 本発明の撮像光学系は、前記UVカット材料が、Ti、Nb、W、及びBiを少なくとも1つ含む着色成分の合計含有量が33wt%以上のリン酸系ガラスであると好ましい。より好ましくは、着色成分の合計含有量が45wt%以上である。
 本発明の撮像光学系は、前記紫外線の透過を抑制する手段が、前記樹脂製レンズ又は前記樹脂製レンズより物体側の光学素子にUV吸収剤を含有させていると好ましい。
 本発明の撮像光学系は、前記UV吸収剤が、安息香酸、サリチル酸等の防腐殺菌剤、オキシベンゾン、p-アミノ安息香酸エチルを少なくとも1つ含むと好ましい。
 本発明の撮像光学系は、前記d線の屈折率Ndが1.6以上の樹脂材料から形成された樹脂製レンズの物体側に、d線の屈折率Ndが1.6未満の樹脂材料から形成された樹脂製レンズを配置していると好ましい。
 本発明の撮像光学系は、光線の反射を抑制するために、ナノ反射防止構造を設けていると好ましい。光学素子を透過する光の波長の数分の一という微細な間隔(ピッチ)で、円錐形状の突起を光学面の表面に密集させて形成させることで、光の反射抑制機能を発揮できる。即ち、光波が光学素子に入射する際の空気との境界面での屈折率変化を、従来の光学素子のように1から媒体屈折率まで瞬間的に変化させるのではなく、微細な間隔で並んだ突起の円錐形状によって緩やかに変化させ、それにより光の反射を抑制することができるのである。このような突起を形成した光学面は、いわゆる蛾の眼(moth eye)と呼ばれる微細構造で、光の波長よりも微細な構造体が波長の半分よりも短い周期で並ぶことにより、もはや個々の構造が回折せずに光波に対して平均的な屈折率として働くものである。このような領域を等価屈折率領域と一般に呼んでいる。このような等価屈折率領域に関しては、例えば電子情報通信学会論文誌C Vol.J83-C No.3pp.173-181 2000年3月に述べられている。又、このような等価屈折率領域を有する構造を、ナノ反射防止構造と呼ぶ。図23に、ナノ反射防止構造の一例にかかる波長と反射率の関係を示すグラフを示し、図24に、ナノ反射防止構造の一例にかかる波長と透過率の関係を示すグラフを示す。特に、UV吸収樹脂又はUV吸収ガラスとナノ反射防止構造との組み合わせが好ましい。
 本発明の撮像光学系は、前記ナノ反射防止構造は、前記撮像光学系内部に配置された平板に形成されていると好ましい。
 請求項19に記載の撮像光学系は、請求項1~17のいずれかに記載の発明において、前記紫外線の透過を抑制する手段は、前記樹脂製レンズの物体側に配置され、180nm以上210nm未満のピッチを有するナノ反射防止構造であることを特徴とする。
 ナノ反射防止構造は周期構造であり、ピッチの略2倍以上の波長の光に対して反射抑制機能を発揮する。従って、210nm未満にすることで、420nm以上の波長を有する可視光に対して反射抑制機能を発揮し、360nm以上420nm未満の波長を有するUV光を回折して散乱させ、前記樹脂製レンズにUV光が入射させないことが可能となる。
 請求項20に記載の撮像装置は、請求項1~19のいずれかに記載の撮像光学系と、撮像素子と、前記撮像素子によって得られた画像信号のホワイトバランスを調整する調整手段と、を有することを特徴とする。
 請求項21に記載の撮像装置は、請求項20に記載の発明において、前記撮像素子はRGBカラーフィルターを備え、かつ前記画像信号は青色の波長成分の信号強度が他の色の信号強度よりも小さいことを特徴とする。前記撮像光学系に、紫外線の透過を抑制する手段を設けたことに鑑み、前記画像信号における青色の波長成分の信号強度を他の色の信号強度よりも小さくすることで、ホワイトバランスの最適化を図ることができる。
 本発明によれば、長期間にわたって安定した光学性能を発揮できる撮像光学系及び撮像装置を提供することができる。
撮像装置100のブロック図である。 携帯電話機300の内部構成を示すブロック図である。 実施例1の撮像光学系の断面図である。 実施例2の撮像光学系の断面図である。 実施例3の撮像光学系の断面図である。 実施例4の撮像光学系の断面図である。 実施例5の撮像光学系の断面図である。 実施例6の撮像光学系の断面図である。 実施例7の撮像光学系の断面図である。 実施例8の撮像光学系の断面図である。 実施例9の撮像光学系の断面図である。 実施例10の撮像光学系の断面図である。 実施例11の撮像光学系の断面図である。 比較例11の反射率を示すグラフである。 比較例12の反射率を示すグラフである。 比較例13の反射率を示すグラフである。 比較例14の反射率を示すグラフである。・ 実施例29の膜構成を示す断面図である。 実施例21の反射率を示すグラフである。 実施例22の反射率を示すグラフである。 実施例23の反射率を示すグラフである。 実施例24の反射率を示すグラフである。 実施例25の反射率を示すグラフである。 実施例26の反射率を示すグラフである。 実施例27の反射率を示すグラフである。 実施例28の反射率を示すグラフである。 実施例29の反射率を示すグラフである。 ナノ反射防止構造の波長と反射率の関係を示すグラフである。 ナノ反射防止構造の波長と透過率の関係を示すグラフである。
 図1及び図2を参照して、本発明の実施の形態にかかる光学系を搭載した撮像装置100について説明する。撮像装置100は、携帯電話に用いると好適であるが、監視カメラや車載用カメラにも応用できる。図1は、撮像装置100のブロック図である。
 図1に示すように、撮像装置100は、撮像光学系101と、固体撮像素子102と、A/D変換部103と、制御部104と、光学系駆動部105と、タイミング発生部106と、撮像素子駆動部107と、画像メモリ108と、画像処理部109と、画像圧縮部110と、画像記録部111と、表示部112と、動作部113とを備えて構成される。
 撮像光学系101は、被写体像を固体撮像素子102の撮像面に結像させる機能を有する。固体撮像素子102は、CCDやCMOS等の撮像素子であり、RGBカラーフィルターを備え、入射光をR、G、B毎に光電変換してそのアナログ信号を出力する。A/D変換部103は、アナログ信号をデジタルの画像データに変換する。
 制御部104は、撮像装置100の各部を制御する。制御部104は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)を含み、ROMから読み出されてRAMに展開された各種プログラムと、CPUとの協働で各種処理を実行する。
 光学系駆動部105は、制御部104の制御により、変倍、合焦(後述する第2レンズ群G2、第4レンズ群G4及び第5レンズ群G5の移動)、露出等において、撮像光学系101を駆動制御する。タイミング発生部106は、アナログ信号出力用のタイミング信号を出力する。撮像素子駆動部107は、固体撮像素子102を走査駆動制御する。
 画像メモリ108は、画像データを読み出し及び書き込み可能に記憶する。画像処理部109は、画像データに各種画像処理を施す。画像圧縮部110は、JPEG(Joint Photographic Experts Group)等の圧縮方式により、撮像画像データを圧縮する。画像記録部111は、図示しないスロットにセットされた、メモリカード等の記録メディアに画像データを記録する。
 表示部112は、カラー液晶パネル等であり、撮影後の画像データ、撮影前のスルー画像、各種操作画面等を表示する。動作部113は、レリーズボタン、各種モード、値を設定するための各種操作キーを含み、ユーザにより操作入力された情報を制御部104に出力する。
 ここで、撮像装置100における動作を説明する。被写体撮影では、被写体のモニタリング(スルー画像表示)と、画像撮影実行とが行われる。モニタリングにおいては、撮像光学系101を介して得られた被写体の像が、固体撮像素子102の受光面に結像される。撮像光学系101の撮影光軸後方に配置された固体撮像素子102が、タイミング発生部106、撮像素子駆動部107によって走査駆動され、一定周期毎に結像した光像に対応する光電変換出力としてのアナログ信号を1画面分出力する。
 このアナログ信号は、RGBの各原色成分毎に適宜ゲイン調整された後に、A/D変換部103でデジタルデータに変換される。そのデジタルデータは、画像処理部109により、画素補間処理及びγ補正処理を含むカラープロセス処理が行なわれて、デジタル値の輝度信号Y及び色差信号Cb、Cr(画像データ)が生成されて画像メモリ108に格納され、定期的にその信号が読み出されてそのビデオ信号が生成されて、表示部112に出力される。尚、ホワイトバランス調整手段である制御部104は、画像信号における青色の波長成分の信号強度が他の色の信号強度よりも小さくなるようにホワイトバランスを調整する。
 この表示部112は、モニタリングにおいては電子ファインダとして機能し、撮像画像をリアルタイムに表示することとなる。この状態で、随時、ユーザの動作部113を介する操作入力に基づいて、光学系駆動部105の駆動により撮像光学系101の変倍、合焦、露出等が設定される。
 このようなモニタリング状態において、静止画撮影を行ないたいタイミングで、ユーザが動作部113のレリーズボタンを操作することにより、静止画像データが撮影される。レリーズボタンの操作に応じて、画像メモリ108に格納された1コマの画像データが読み出されて、画像圧縮部110により圧縮される。その圧縮された画像データが、画像記録部111により記録メディアに記録される。
 なお、上記各実施の形態及び各実施例における記述は、本発明に係る好適な光学系及び撮像装置の一例であり、これに限定されるものではない。
 例えば、上記各実施の形態及び各実施例において、光学系を搭載した撮像装置として、デジタルスチルカメラの例を説明したがこれに限定されるものではなく、ビデオカメラや、撮像機能付の携帯電話機、PHS(Personal Handyphone System)、PDA(Personal Digital Assistant)等の少なくとも撮像機能を有する携帯端末等の機器としてもよい。
 また、光学系を搭載した撮像装置を、上記機器に搭載される撮像ユニットとしてもよい。ここで、図2を参照して、撮像装置100を搭載した携帯電話機300の例を説明する。図2は、携帯電話機300の内部構成を示すブロック図である。
 図2に示すように、携帯電話機300は、各部を統括的に制御すると共に各処理に応じたプログラムを実行する制御部(CPU)310と、番号等をキーにより操作入力するための操作部320と、所定のデータの他に撮像した映像等を表示する表示部330と、アンテナ341を介して外部サーバ等との間の各種情報通信を実現するための無線通信部340と、撮像装置100と、携帯電話機300のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)360と、制御部310によって実行される各種処理プログラムやデータ、若しくは処理データ、或いは撮像装置100により撮像データ等を一時的に格納する作業領域として用いられる及び一時記憶部(RAM)370とを備えている。
 尚、撮像装置100の制御部104と、携帯電話機300の制御部310とは通信可能に接続されており、かかる場合、図1に示す表示部112,操作部113などの機能は、携帯電話機300側に持たせることができるが、撮像装置100自体の動作は基本的に同様である。より具体的には、撮像装置100の外部接続端子(不図示)は、携帯電話機300の制御部310と接続され、携帯電話機300側から撮像装置100側にレリーズ信号が送信され、撮像により得られた輝度信号や色差信号等の画像信号は撮像装置100側から制御部310側に出力する。かかる画像信号は、携帯電話機300の制御系により、記憶部360に記憶されたり、或いは表示部330で表示され、さらには、無線通信部340を介して映像情報として外部に送信されることができる。
 また、光学系を搭載した撮像装置は、これと、基板上に配置された制御部及び画像処理部等と、を配置して、コネクタ等により表示部及び操作部等を有する別体に結合され用いられることを前提とするカメラモジュールとして構成してもよい。
(撮像光学系の実施例)
 以下、上述した実施の形態に好適な実施例について説明する。尚、以下の実施例で、各実施例のレンズデータにおいて、rは曲率半径(mm)、dは軸上面間隔(mm)を示しており、nd、νdはd線に対する屈折率,アッベ数を示している。また、flは全系の焦点距離(mm)、wは最大半画角(°)、Fno.はFナンバー、ymaxは固体撮像素子の撮像面対角線長、TLは、最も物体側のレンズ面から像面までの光軸上距離である。BFはバックフォーカスである。各表に示した非球面レンズに対する曲率半径は、レンズの中心付近の値を示している。又、例えば「e-01」は、10-1を表す。
 曲率半径riに*印が付された面は、非球面(非球面形状の屈折光学面、非球面と等価な屈折作用を有する面等)であり、非球面の面形状は、それぞれ以下の非球面表現式に表に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。
[非球面表現式]
z=(y2/R)/[1+√{1-(K+1)(y/R)2}]+A44+A66+A88+A1010+A1212+A1414+A1616+A1818+A2020
但し、
z:非球面形状(非球面の面頂点から光軸に沿った方向の距離)
y:光軸からの距離
R:曲率半径
K:コーニック係数
4,A6,A8,A10,A12,A14,A16,A18,A20:非球面係数
(実施例1)
 図3に実施例1の撮像光学系の断面図を示す。表1に実施例1のレンズデータを示す。実施例1の撮像光学系は、物体側から順に、物体側に凸のガラス製の負メニスカスレンズL1,ガラス製の平行平板P1、樹脂製の負レンズL2、樹脂製の負レンズL3,絞りS、ガラス製の正レンズL4,樹脂製の負レンズL5からなる。実施例1においては、負レンズL3を形成する樹脂がフルオレン骨格を有し屈折率Ndが1.63であって、それより物体側の平行平板P1の物体側面及び像側面に、UVカットコートを成膜してなる。これに加えて、平行平板P1の物体側面には反射防止コートが成膜され、像側面にはナノ反射防止構造が施されている。又、負レンズL3より物体側に配置された負レンズL2の屈折率は1.53である。
Figure JPOXMLDOC01-appb-T000003
(実施例2)
 図4に実施例2の撮像光学系の断面図を示す。表2に実施例2のレンズデータを示す。実施例2の撮像光学系は、物体側から順に、ガラス製の平行平板P1、絞りS、樹脂製の正レンズL1,樹脂製の負レンズL2、ガラス製の平行平板P2からなる。実施例2においては、負レンズL2を形成する樹脂がフルオレン骨格を有し屈折率Ndが1.63であって、それより物体側の平行平板P1の物体側面に、UVカットコートを成膜してなる。これに加えて、平行平板P1の物体側面には反射防止コートが成膜されている。又、負レンズL2より物体側に配置された正レンズL1の屈折率は1.53である。
Figure JPOXMLDOC01-appb-T000004
(実施例3)
 図5に実施例3の撮像光学系の断面図を示す。表3に実施例3のレンズデータを示す。実施例3の撮像光学系は、物体側から順に、物体側に凸のガラス製の負メニスカスレンズL1,樹脂製の負レンズL2,樹脂製の正レンズL3、絞りS、樹脂製の正レンズL4,樹脂製の負レンズL5,ガラス製の平行平板P1からなる。実施例3においては、正レンズL3と負レンズL5を形成する樹脂がフルオレン骨格を有し屈折率Ndが1.63であって、それより物体側の負メニスカスレンズL1の物体側面及び像側面に、UVカットコートを成膜してなる。これに加えて、負メニスカスレンズL1の物体側面及び/又は像側面には反射防止コートが成膜されている。尚、負メニスカスレンズL1の物体側面に、更に撥水コートを成膜しても良い。又、正レンズL3より物体側に配置された負レンズL2の屈折率は1.53であり、負レンズL5より物体側に配置された正レンズL4の屈折率は1.53である。
Figure JPOXMLDOC01-appb-T000005
(実施例4)
 図6に実施例4の撮像光学系の断面図を示す。表4に実施例4のレンズデータを示す。実施例4の撮像光学系は、物体側から順に、物体側に凸のガラス製の負メニスカスレンズL1,樹脂製の負レンズL2、樹脂製の負レンズL3,絞りS、ガラス製の正レンズL4,樹脂製の負レンズL5からなる。実施例4においては、負レンズL3を形成する樹脂がフルオレン骨格を有し屈折率Ndが1.63であって、それより物体側の負レンズL2にUVカット硝材(例えば紫外線の透過率が低い樹脂)を用いている。本実施例では、樹脂に、波長220~600nmの光を吸収する化合物を添加している。このような化合物としては、例えば、安息香酸、サリチル酸等の防腐殺菌剤、オキシベンゾン、p-アミノ安息香酸エチル等のUV吸収剤、ドデシルベンゼンスルホン酸ナトリウム、ラウロイルメチルタウリン等の界面活性剤、酢酸-dl-α-トコフェロール、ブチルヒドロキシトルエン等の酸化防止剤、グアイアズレン、ジフェンヒドラミン塩酸塩等の薬効剤、赤色2号、黄色403号等の色素、フタル酸ジメチル、リン酸トリフェニル等の可塑剤、ステアリン酸、ミリスチン酸等の油剤、リンゴ酸、コハク酸等の有機酸等が挙げられる。又、負レンズL3より物体側に配置された負レンズL2の屈折率は1.53である。
Figure JPOXMLDOC01-appb-T000006
(実施例5)
 図7に実施例5の撮像光学系の断面図を示す。表5に実施例5のレンズデータを示す。実施例5の撮像光学系は、物体側から順に、物体側に凸のガラス製の負メニスカスレンズL1,樹脂製の負レンズL2、樹脂製の正レンズL3,絞りS、樹脂製の正レンズL4,ガラス製の平行平板P1からなる。実施例5においては、正レンズL3を形成する樹脂がフルオレン骨格を有し屈折率Ndが1.63であって、それより物体側の負メニスカスレンズL1にUVカット硝材(例えば紫外線の透過率が低いホウ酸系ガラス(住田光学製K-PSFn2等))を用いている。又、正レンズL3より物体側に配置された負レンズL2の屈折率は1.53である。
Figure JPOXMLDOC01-appb-T000007
(実施例6)
 図8に実施例6の撮像光学系の断面図を示す。実施例6のレンズデータは、フィルタF1を除き、実施例4のものと同一である。実施例6の撮像光学系は、物体側から順に、フィルタF1、物体側に凸のガラス製の負メニスカスレンズL1,樹脂製の負レンズL2、樹脂製の負レンズL3,絞りS、ガラス製の正レンズL4,樹脂製の負レンズL5からなる。実施例5においては、負レンズL3を形成する樹脂がフルオレン骨格を有し屈折率Ndが1.63であって、それより物体側のフィルタF1にUVカット硝材(例えば紫外線の透過率が低いホウ酸系ガラス(住田光学株式会社製K-PSFn2等))を用いている。又、負レンズL3より物体側に配置された負レンズL2の屈折率は1.53である。
(実施例7)
 図9に実施例7の撮像光学系の断面図を示す。表6に実施例7のレンズデータを示す。実施例7の撮像光学系は、物体側から順に、物体側に凸のガラス製の負メニスカスレンズL1,ガラス製の負レンズL2、樹脂製の正レンズL3,絞りS、ガラス製の正レンズL4からなる。実施例7においては、正レンズL3を形成する樹脂がフルオレン骨格を有し屈折率Ndが1.63であって、それより物体側の負メニスカスレンズL1にUVカット硝材(例えば紫外線の透過率が低いガラス(HOYA株式会社製FDS18等))を用いている。
Figure JPOXMLDOC01-appb-T000008
(実施例8)
 図10に実施例8の撮像光学系の断面図を示す。表7に実施例8のレンズデータを示す。
 実施例8の撮像光学系は、物体側から順に、UV吸収剤を含有した環状オレフィンコポリマー樹脂からなる正レンズL1,フルオレン構造を有する対象樹脂からなる負メニスカスレンズL2,環状オレフィンコポリマー樹脂からなる正メニスカスレンズL3,
環状オレフィンコポリマー樹脂からなる負レンズL4,平行平板P1からなる。
 実施例8においては、フルオレン構造を有する対象樹脂からなる負メニスカスレンズL2の物体側に位置する正レンズL1がUV吸収の機能を有する。平行平板P1の物体側面、像側面には反射防止コートが成膜されている。反射防止コートの代わりにナノ反射防止構造を施してもよい。
Figure JPOXMLDOC01-appb-T000009
(実施例9)
 図11に実施例9の撮像光学系の断面図を示す。表8に実施例9のレンズデータを示す。
 実施例9の撮像光学系は、物体側から順に、環状オレフィンコポリマー樹脂からなる正レンズL1,UV吸収剤を含有したフルオレン構造を有する対象樹脂からなる負メニスカスレンズL2,環状オレフィンコポリマー樹脂からなる正メニスカスレンズL3,環状オレフィンコポリマー樹脂からなる負レンズL4,平行平板P1からなる。実施例9においては、フルオレン構造を有する対象樹脂からなる負メニスカスレンズL2自体がUV吸収の機能を有する。平行平板P1の物体側面、像側面には反射防止コートが成膜されている。反射防止コートの代わりにナノ反射防止構造を施してもよい。
Figure JPOXMLDOC01-appb-T000010
(実施例10)
 図12に実施例10の撮像光学系の断面図を示す。表9に実施例10のレンズデータを示す。
 実施例10の撮像光学系は、物体側から順に、UVカットコートを有しUV吸収剤を含有した平行平板P2、環状オレフィンコポリマー樹脂からなる正レンズL1,フルオレン構造を有する対象樹脂からなる負メニスカスレンズL2,環状オレフィンコポリマー樹脂からなる正メニスカスレンズL3,環状オレフィンコポリマー樹脂からなる正レンズL4,環状オレフィンコポリマー樹脂からなる負レンズL5,平行平板P1からなる。
 実施例10においては、フルオレン構造を有する対象樹脂からなるメニスカスレンズL2の物体側に位置する平行平板P2が、UVカットしつつUV吸収する機能を有する。平行平板P1の物体側面には反射防止コートが成膜されている。反射防止コートの代わりにナノ反射防止構造を施してもよい。
Figure JPOXMLDOC01-appb-T000011
(実施例11)
 図13に実施例11の撮像光学系の断面図を示す。表10に実施例11のレンズデータを示す。
 実施例11の撮像光学系は、物体側から順に、両面にUVカットコートを施し環状オレフィンコポリマー樹脂からなる正レンズL1,フルオレン構造を有する対象樹脂からなる負メニスカスレンズL2,ポリカーボネート樹脂からなる正レンズL3,環状オレフィンコポリマー樹脂からなる正メニスカスレンズL4,環状オレフィンコポリマー樹脂からなる負レンズL5,平行平板P1からなる。
 実施例11においては、フルオレン構造を有する対象樹脂からなるメニスカスレンズL2の物体側に位置する正レンズL1がUVカットする機能を有する。平行平板P1の物体側面には反射防止コートが成膜されている。反射防止コートの代わりにナノ反射防止構造を施してもよい。
Figure JPOXMLDOC01-appb-T000012
 以下の表11に、実施例1~11に関して、Dt、Dt/TL、Cb/Ca、UVカットコートが設けられた光学面の光線入射角及び光線出射角、光学面角度をまとめて示す。尚、赤外線の透過を抑制するために設けたナノ反射防止構造は、以上の実施例における位置に限定されない。例えば、センサーのカバーガラスに設けることもでき、同様の効果が得られればいずれに設けても構わない。また、ナノ反射防止構造の代わりに、反射防止コートを設けてももちろん構わない。ナノ反射防止構造や反射防止コートは、UVカットコートと同一面に設けることが好ましいが、設ける場所は限定されず、平板・レンズの物体側面でも像側面でもどちらに設けても良い。更に、本発明は、以上の実施例で用いたホウ酸系ガラスに限らず、シリカ系ガラスやリン酸系ガラスに着色成分原子を含有させることにより、同様の効果を得ることができる。
Figure JPOXMLDOC01-appb-T000013
(UVカットコートの実施例)
 次に、UVカットコートの比較例と比較した実施例について説明する。表12に、比較例11~14の膜構成データを示す。図14~17は、順番に、比較例11~14の反射率を示すグラフである。可視光領域である波長420~650nmで反射防止性能を持つ。又、表13~16に、実施例21~28の膜構成データを示す。
 図18に、実施例29の膜構成を示す。実施例29は両面にUVカットコートを施したものであり、物体側には実施例26,像側には実施例21を用いている。
 図19~27は、順番に、実施例21~29の反射率を示すグラフである。
 尚、実施例26は最表層に撥水層を設けることで表面に撥水性を付与しており、実施例22は最表層をSiO2層にすることで表面を親水性にしている。撥水性を付与するための撥水層の材料には、ここに挙げたWR1以外にも一般的な撥水材料を使用することができる。又、親水性を付与する方法として、他の実施例に挙げたUVカットコートの最表層にポリシラザン等を塗布してもよい。実施例27はプラスチックレンズに対するUVカットコートの例である。表12~15の比較例、実施例の膜構成に記載した、H1、H4、WR1はメルク(株)の製品名、OA600は(株)オプトロンの製品名である。比較例、実施例中に挙げた膜構成は一例であり、他一般的な薄膜材料が使用可能である。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 比較例21~24,実施例21~28における波長360~400nmの平均透過率は、それぞれ90.8%、94.1%、96.7%、89.9%、36.7%、55.5%、57.7%、0.01%、0.01%、55.6%、59.5%、48.6%であり、波長420~650nmの平均反射率は、それぞれ0.05%、0.13%、0.05%、0.14%、0.20%、0.44%、0.29%、0.59%、0.62%、0.44%、0.53%、0.25%である。レンズ両面にUVカットコートを施した実施例29における360~400nmの波長の平均透過率は、29.6%である。表17に、比較例及び実施例の平均透過率及び平均反射率をまとめて示す。
Figure JPOXMLDOC01-appb-T000019
 100 撮像装置
 101 光学素子
 102 固体撮像素子
 103 変換部
 104 制御部
 105 光学系駆動部
 106 タイミング発生部
 107 撮像素子駆動部
 108 画像メモリ
 109 画像処理部
 110 画像圧縮部
 111 画像記録部
 112 表示部
 113 動作部
 113 操作部
 300 携帯電話機
 310 制御部
 320 操作部
 330 表示部
 340 無線通信部
 341 アンテナ
 360 記憶部
 CCD 固体撮像素子

Claims (21)

  1.  樹脂材料中に、フルオレン骨格、もしくはS原子又は重金属原子を含む樹脂製レンズを少なくとも1枚有する撮像光学系において、
     前記樹脂製レンズ内部、前記樹脂製レンズの物体側面、又は前記樹脂製レンズより物体側の光学素子、の少なくともいずれか1つに紫外線の透過を抑制する手段を設けたことを特徴とする撮像光学系。
  2.  d線の屈折率Ndが1.6以上の樹脂材料から形成された樹脂製レンズを少なくとも1枚有する撮像光学系において、
     前記樹脂製レンズ内部、前記樹脂製レンズの物体側面、又は前記樹脂製レンズより物体側の光学素子、の少なくともいずれか1つに紫外線の透過を抑制する手段を設けたことを特徴とする撮像光学系。
  3.  前記フルオレン骨格を含む前記樹脂材料は、熱可塑性樹脂であることを特徴とする請求項1に記載の撮像光学系。
  4.  前記S原子又は前記重金属原子を有する前記樹脂材料は、硬化性樹脂であることを特徴とする請求項1に記載の撮像光学系。
  5.  以下の条件式を満たすことを特徴とする請求項1~4のいずれかに記載の撮像光学系。
     0.1mm < Dt < 10mm   (1)
    Dt:前記樹脂製レンズの光軸上厚み。但し、前記樹脂製レンズが複数枚ある場合はレンズ厚みの総和とする。
  6.  以下の条件式を満たすことを特徴とする請求項1~5のいずれかに記載の撮像光学系。
     0.02 < Dt/TL < 0.5    (2)
    Dt:前記樹脂製レンズの光軸上厚み。但し、前記樹脂製レンズが複数枚ある場合はレンズ厚みの総和とする。
    TL:最も物体側のレンズ面から像面までの光軸上距離。
  7.  前記紫外線の透過を抑制する手段は、前記樹脂製レンズ、又は前記樹脂製レンズより物体側のレンズ又は平板に設けられたUVカットコートであることを特徴とする請求項1~6のいずれかに記載の撮像光学系。
  8.  前記UVカットコートは、360~400nmの波長域での平均透過率が70%以下のコート特性を有することを特徴とする請求項7に記載の撮像光学系。
  9.  前記UVカットコートは、420~650nmの波長域での平均反射率が3%以下の反射防止特性も併せ持つことを特徴とする請求項7又は8に記載の撮像光学系。
  10.  前記UVカットコートは、複数の光学面に成膜されていることを特徴とする請求項7~9のいずれかに記載の撮像光学系。
  11.  前記UVカットコートは、酸化物又はフッ化物の2層以上の膜を重ねてなることを特徴とする請求項7~10のいずれかに記載の撮像光学系。
  12.  前記UVカットコートを成膜した光学面のうち少なくとも1面は、その光学面への光線入射角又は光線出射角の最大値が40度以下であることを特徴とする請求項7~11のいずれかに記載の撮像光学系。
  13.  前記UVカットコートを成膜した光学面への光線入射角又は光線出射角の最大値が40度以上の場合、前記光学面以外にも少なくとも1面にUVカットコートを成膜していることを特徴とする請求項7~12のいずれかに記載の撮像光学系。
  14.  前記UVカットコートを成膜した光学面のうち少なくとも1面は、中心部と周辺部での膜厚比が下記条件式を満たすことを特徴とする請求項7~13のいずれかに記載の撮像光学系。
     0.8 < Cb/Ca ≦ 1.0    (3)
    Ca:光学面中心部での膜厚
    Cb:光学面周辺部での膜厚の最小値
  15.  前記UVカットコートを成膜した光学面が下記条件式を満たす場合、前記光学面以外にも少なくとも1つの光学面にUVカットコートを成膜していることを特徴とする請求項7~13のいずれかに記載の撮像光学系。
     0.1 < Cb/Ca ≦ 0.8     (4)
    Ca:光学面中心部での膜厚
    Cb:光学面周辺部での膜厚の最小値
  16.  前記UVカットコートを成膜した光学面のうち少なくとも1面は、光学面角度の最大値が40度以下であることを特徴とする請求項7~15のいずれかに記載の撮像光学系。
  17.  前記UVカットコートを成膜した光学面の光学面角度の最大値が40度以上の場合、前記光学面以外にも少なくとも1つの光学面にUVカットコートを成膜していることを特徴とする請求項7~16のいずれかに記載の撮像光学系。
  18.  前記紫外線の透過を抑制する手段は、前記樹脂製レンズの物体側に配置され、10mm厚の平板における波長400nmの透過率が70%以下であるガラス又は樹脂のUVカット材料からなるレンズ又は平板であることを特徴とする請求項1~17のいずれかに記載の撮像光学系。
  19.  前記紫外線の透過を抑制する手段は、前記樹脂製レンズの物体側に配置され、180nm以上210nm未満のピッチを有するナノ反射防止構造であることを特徴とする請求項1~17のいずれかに記載の撮像光学系。
  20.  請求項1~19のいずれかに記載の撮像光学系と、撮像素子と、前記撮像素子によって得られた画像信号のホワイトバランスを調整する調整手段と、を有することを特徴とする撮像装置。
  21.  前記撮像素子はRGBカラーフィルターを備え、かつ前記画像信号は青色の波長成分の信号強度が他の色の信号強度よりも小さいことを特徴とする請求項20に記載の撮像装置。
PCT/JP2009/064713 2008-08-29 2009-08-24 撮像光学系及び撮像装置 WO2010024214A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008221057 2008-08-29
JP2008-221057 2008-08-29

Publications (1)

Publication Number Publication Date
WO2010024214A1 true WO2010024214A1 (ja) 2010-03-04

Family

ID=41721382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064713 WO2010024214A1 (ja) 2008-08-29 2009-08-24 撮像光学系及び撮像装置

Country Status (1)

Country Link
WO (1) WO2010024214A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176433A1 (ja) * 2011-06-22 2012-12-27 富士フイルム株式会社 撮像レンズおよび撮像装置
US9335522B2 (en) 2014-10-08 2016-05-10 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
JP2017026962A (ja) * 2015-07-27 2017-02-02 キヤノン株式会社 光学系及びそれを備える光学機器
US10215966B2 (en) 2012-06-14 2019-02-26 Largan Precision Co., Ltd. Optical image lens system
US10247911B2 (en) 2015-12-15 2019-04-02 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing apparatus and electronic device
JP2021009389A (ja) * 2019-07-02 2021-01-28 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド レンズモジュール及び結像システム
US11256070B2 (en) 2014-12-05 2022-02-22 Largan Precision Co., Ltd. Image capturing optical lens assembly, image capturing device and electronic device
CN114660769A (zh) * 2020-12-23 2022-06-24 大立光电股份有限公司 光学镜头、取像装置及电子装置
EP4020022A3 (en) * 2020-12-23 2022-10-12 Largan Precision Co. Ltd. Imaging lens assembly and electronic device
EP4057046A3 (en) * 2020-12-23 2022-10-19 Largan Precision Co. Ltd. Optical lens assembly, imaging apparatus and electronic device
EP4102263A1 (en) * 2021-06-10 2022-12-14 Largan Precision Co. Ltd. Camera module and electronic device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331889A (ja) * 1993-05-19 1994-12-02 Minolta Camera Co Ltd プラスチックレンズを含む撮影光学系
JPH1130702A (ja) * 1997-05-15 1999-02-02 Minolta Co Ltd 光学系
JP2000147201A (ja) * 1998-11-06 2000-05-26 Ito Kogaku Kogyo Kk プラスチックレンズ
JP2002341243A (ja) * 2001-05-11 2002-11-27 Sony Corp ズームレンズ及び撮像装置
JP2006071782A (ja) * 2004-08-31 2006-03-16 Fuji Photo Film Co Ltd プラスチック製レンズを用いた光学ユニット
JP2006163340A (ja) * 2004-12-03 2006-06-22 Samsung Electro-Mechanics Co Ltd プラスチックレンズを利用した高解像度光学系
JP2007114378A (ja) * 2005-10-19 2007-05-10 Ricoh Co Ltd ズームレンズ、撮像装置および撮影装置
JP2007293176A (ja) * 2006-04-27 2007-11-08 Konica Minolta Opto Inc 撮像レンズ、撮像装置及び該撮像装置を備えた携帯端末
JP3137570U (ja) * 2006-12-08 2007-11-29 一品光学工業股▲ふん▼有限公司 三枚のレンズから構成される撮像レンズ
JP2008092284A (ja) * 2006-10-02 2008-04-17 Nikon Corp 撮像装置
JP2008180744A (ja) * 2005-10-03 2008-08-07 Milestone Kk 撮像レンズ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331889A (ja) * 1993-05-19 1994-12-02 Minolta Camera Co Ltd プラスチックレンズを含む撮影光学系
JPH1130702A (ja) * 1997-05-15 1999-02-02 Minolta Co Ltd 光学系
JP2000147201A (ja) * 1998-11-06 2000-05-26 Ito Kogaku Kogyo Kk プラスチックレンズ
JP2002341243A (ja) * 2001-05-11 2002-11-27 Sony Corp ズームレンズ及び撮像装置
JP2006071782A (ja) * 2004-08-31 2006-03-16 Fuji Photo Film Co Ltd プラスチック製レンズを用いた光学ユニット
JP2006163340A (ja) * 2004-12-03 2006-06-22 Samsung Electro-Mechanics Co Ltd プラスチックレンズを利用した高解像度光学系
JP2008180744A (ja) * 2005-10-03 2008-08-07 Milestone Kk 撮像レンズ
JP2007114378A (ja) * 2005-10-19 2007-05-10 Ricoh Co Ltd ズームレンズ、撮像装置および撮影装置
JP2007293176A (ja) * 2006-04-27 2007-11-08 Konica Minolta Opto Inc 撮像レンズ、撮像装置及び該撮像装置を備えた携帯端末
JP2008092284A (ja) * 2006-10-02 2008-04-17 Nikon Corp 撮像装置
JP3137570U (ja) * 2006-12-08 2007-11-29 一品光学工業股▲ふん▼有限公司 三枚のレンズから構成される撮像レンズ

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012176433A1 (ja) * 2011-06-22 2015-02-23 富士フイルム株式会社 撮像レンズおよび撮像装置
US9036269B2 (en) 2011-06-22 2015-05-19 Fujifilm Corporation Imaging lens and imaging apparatus
WO2012176433A1 (ja) * 2011-06-22 2012-12-27 富士フイルム株式会社 撮像レンズおよび撮像装置
US10215966B2 (en) 2012-06-14 2019-02-26 Largan Precision Co., Ltd. Optical image lens system
US9335522B2 (en) 2014-10-08 2016-05-10 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US11256070B2 (en) 2014-12-05 2022-02-22 Largan Precision Co., Ltd. Image capturing optical lens assembly, image capturing device and electronic device
JP2017026962A (ja) * 2015-07-27 2017-02-02 キヤノン株式会社 光学系及びそれを備える光学機器
US10401544B2 (en) 2015-07-27 2019-09-03 Canon Kabushiki Kaisha Optical system and optical apparatus including the same
US11886038B2 (en) 2015-12-15 2024-01-30 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing apparatus and electronic device
US10247911B2 (en) 2015-12-15 2019-04-02 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing apparatus and electronic device
JP2021009389A (ja) * 2019-07-02 2021-01-28 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド レンズモジュール及び結像システム
EP4020022A3 (en) * 2020-12-23 2022-10-12 Largan Precision Co. Ltd. Imaging lens assembly and electronic device
EP4057046A3 (en) * 2020-12-23 2022-10-19 Largan Precision Co. Ltd. Optical lens assembly, imaging apparatus and electronic device
EP4075171A1 (en) * 2020-12-23 2022-10-19 Largan Precision Co. Ltd. Optical lens assembly, imaging apparatus and electronic device
EP4235228A3 (en) * 2020-12-23 2023-09-20 Largan Precision Co. Ltd. Imaging lens assembly and electronic device
CN114660769A (zh) * 2020-12-23 2022-06-24 大立光电股份有限公司 光学镜头、取像装置及电子装置
EP4102263A1 (en) * 2021-06-10 2022-12-14 Largan Precision Co. Ltd. Camera module and electronic device

Similar Documents

Publication Publication Date Title
WO2010024214A1 (ja) 撮像光学系及び撮像装置
US9557536B2 (en) Zoom lens and image pickup device
JP4518836B2 (ja) 撮像レンズ系
JP4840719B2 (ja) ズームレンズ及び撮像装置
US8576501B2 (en) Wide-angle optical system, image pickup lens device, monitor camera, and digital apparatus
CN113238360A (zh) 摄像镜头
TWI487938B (zh) Camera lens
US8947791B2 (en) Large aperture zoom optical system and image pickup apparatus
WO2010001713A1 (ja) 広角光学系および撮像装置
US7859764B2 (en) Variable-power optical system, image pickup device, and digital apparatus
WO2013161995A1 (ja) ズームレンズ、撮像装置、及びデジタル機器
JP2015072402A (ja) 撮像レンズ、撮像装置及び携帯端末
TW201326957A (zh) 攝像鏡頭
JPWO2009066532A1 (ja) 広角光学系、撮像レンズ装置、モニタカメラおよびデジタル機器
JP2007114727A (ja) ズームレンズ
JP2008064884A (ja) 撮像レンズ
US9715127B2 (en) Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens
US7715114B2 (en) Zoom lens and pickup apparatus
JP5305831B2 (ja) 結像光学系
US20190154946A1 (en) Imaging lens, camera, and portable information terminal device
WO2014181643A1 (ja) 複眼撮像系及び撮像装置
US20080212202A1 (en) Zoom lens system and optical apparatus using the same
KR101561819B1 (ko) 초소형 촬상렌즈
JP5110187B2 (ja) 撮影レンズ、光学装置、撮影レンズの製造方法
JP5110186B2 (ja) 撮影レンズ、光学装置、撮影レンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09809865

Country of ref document: EP

Kind code of ref document: A1