WO2010024190A1 - リニア同期モータ制御方法及び制御装置 - Google Patents

リニア同期モータ制御方法及び制御装置 Download PDF

Info

Publication number
WO2010024190A1
WO2010024190A1 PCT/JP2009/064617 JP2009064617W WO2010024190A1 WO 2010024190 A1 WO2010024190 A1 WO 2010024190A1 JP 2009064617 W JP2009064617 W JP 2009064617W WO 2010024190 A1 WO2010024190 A1 WO 2010024190A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
axis
current
control
speed
Prior art date
Application number
PCT/JP2009/064617
Other languages
English (en)
French (fr)
Inventor
祐樹 野村
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Priority to DE112009002086T priority Critical patent/DE112009002086T5/de
Priority to JP2010526676A priority patent/JP5487105B2/ja
Priority to US13/060,952 priority patent/US8310182B2/en
Priority to CN200980133824.3A priority patent/CN102171923B/zh
Publication of WO2010024190A1 publication Critical patent/WO2010024190A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/006Controlling linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type

Definitions

  • the present invention relates to a technical field of a control method and a control device of a linear synchronous motor using a permanent magnet as a field.
  • a position sensor In a linear synchronous motor in which a mover moves linearly by a magnetic field generated by a permanent magnet field and an armature, a position sensor, a speed sensor, a magnetic pole sensor, etc. are used to adjust the position and moving speed of the mover. I have control.
  • sensorless vector control is generally used as a control method for driving a linear synchronous motor without using such a sensor (for example, Patent Document 1).
  • sensorless vector control a method of estimating the position and moving speed of the mover using an induced electromotive force generated in the armature by the rotation of the linear synchronous motor is generally used.
  • the present invention has been made in view of the above points, and without using a position sensor, the mover can be smoothly moved by sensorless vector control in the constant speed region, and the stop control and the control in the low speed region can also be performed. It is an object of the present invention to provide a linear synchronous motor control method and a control device that can be used.
  • the invention described in claim 1 is a linear synchronous motor control method for controlling a current flowing through an armature of a linear synchronous motor in which a mover moves by movement of a magnetic field generated from the armature.
  • a mover moves by movement of a magnetic field generated from the armature.
  • the position is detected by a position sensor that detects a position of the movable element by reading a linear scale in the movable range of the movable element.
  • the current flowing through the armature is controlled based on the position of the mover detected by the position sensor. It is characterized by doing.
  • a control device that controls a current flowing through an armature of a linear synchronous motor in which a mover moves by movement of a magnetic field generated from the armature, and the electric machine uses predetermined sensorless vector control.
  • Sensorless vector control means for controlling the current flowing in the child
  • open loop control means for controlling the current flowing in the armature using open loop control
  • selection means for selecting the control means for controlling the current flowing in the armature
  • the open loop control means responds to the position command in the dq coordinate where the direction of the magnetic flux generated by the field is the d-axis and the phase advanced by ⁇ / 2 with respect to the d-axis is the q-axis.
  • Phase generating means for generating the d-axis electrical angle, phase generating means for generating the d-axis electrical angle corresponding to the position command, and a three-phase alternating current flowing through the armature. Based on the output current detection means and the electrical angle generated by the phase generation means, the three-phase alternating current detected by the current detection means is coordinate-converted into a d-axis armature current and a q-axis armature current.
  • Phase alternating current / dq coordinate conversion means and current control means for controlling the d-axis armature current and the q-axis armature current so that a current flows in the d-axis armature and no current flows in the q-axis armature
  • the selecting means has a moving speed of the mover in advance within a range in which the mover can be moved in synchronization with the movement of the magnetic field generated from the armature by the sensorless vector control.
  • the sensorless vector control means is selected when it is faster than a predetermined speed
  • the open loop control means is selected when the moving speed of the mover is slower than the predetermined speed.
  • the electric machine based on the position detected by the position sensor that reads the linear scale and detects the position of the mover, the electric machine is used using feedback control.
  • Feedback control means for controlling the current flowing through the child, and the selection means moves the movable element within a movable range of the movable element in which the position can be detected by the position sensor. When the movable element is stopped during the operation, the feedback control means is selected.
  • the movement of the mover when the moving speed of the mover is faster than a predetermined speed, the movement of the mover can be controlled by sensorless vector control.
  • the mover can be smoothly moved by the sensorless vector control.
  • an electronic angle corresponding to the position command is generated, and a current flows through the d-axis armature and a current flows through the q-axis armature.
  • FIG. 1 is a diagram illustrating a schematic configuration of a linear motor system 1 according to a first embodiment. It is the schematic which shows the synchronous motor for demonstrating the open loop control which concerns on 1st Embodiment. It is a block diagram of an example of a control device for explaining open loop control concerning a 1st embodiment. It is an operation diagram of a synchronous motor represented by dq coordinates, (a) is an operation diagram of conventional feedback control using a position detector, and (b) is an embodiment of the present invention that does not use a position detector. It is an operation
  • 2 is a block diagram illustrating an example of a schematic configuration of a driver 3 according to the first embodiment.
  • FIG. 9 is a block diagram illustrating an example of a schematic configuration of the driver 30 according to the second embodiment. It is a flowchart which shows the process example of the control switch 41 of the driver 30 which concerns on 2nd Embodiment.
  • FIG. 1 is a diagram illustrating a schematic configuration of the linear motor system 1 according to the first embodiment.
  • the linear motor system 1 includes an actuator 2 and a driver 3 as a control device.
  • the actuator 2 includes a slider (moving body) 4 and a base 5 that slidably supports the slider 4.
  • the linear synchronous motor 6 includes an armature 6 a as a mover attached to the lower part of the slider 4 and a magnet plate 6 b as a stator attached to the bottom surface of the base 5.
  • the armature 6a includes a core made of a magnetic material and a three-phase coil wound around the salient pole of the core. A three-phase alternating current is supplied to each of the three-phase coils.
  • the magnet plate 6b is configured by arranging a plurality of permanent magnets in the longitudinal direction of the base 5 so that magnetic poles of N and S poles appear alternately on the surface.
  • the three-phase current flowing in the three-phase coil of the armature 6a is controlled by the driver 3.
  • the three-phase current output from the driver 3 is supplied to the armature 6a via the power cable 51.
  • a linear scale and a position sensor are not attached to the linear motion device. Therefore, the driver 3 does not perform feedback control. Instead, the driver 3 performs sensorless vector control according to the moving speed of the slider 4 (armature 6a) and an open loop for controlling current to flow to the d-axis armature and not to flow to the q-axis armature. Control and change over selectively.
  • FIG. 2 is a schematic diagram showing a synchronous motor for explaining the open loop control according to the first embodiment.
  • FIG. 3 is a block diagram illustrating an example of a control device for explaining the open loop control according to the first embodiment.
  • the dq conversion converts both the fixed part and the movable part of the synchronous motor into rotating orthogonal coordinates, and the coordinate system is the dq coordinate system.
  • the q axis is in a phase advanced by ⁇ / 2 with respect to the d axis.
  • the d-axis is generally taken in the direction of the magnetic flux generated by the field.
  • Vda and vqa are d and q axis armature voltages
  • ida and iqa are d and q axis armature currents
  • ⁇ fa is the number of armature winding interlinkage magnetic fluxes
  • Ra is an armature winding resistance
  • La is an electric machine. This is the self-inductance of the child winding. From this equivalent circuit, a relational expression of voltage, current, impedance, that is, a circuit equation is obtained.
  • FIG. 2 shows that the armature windings are connected to a commutator like a DC motor and are innumerable in the radial direction, and Vda, through the brushes arranged on the d and q axes rotating at the same speed as the magnetic field. It shows that Vqa is applied and ida and iqa flow. If Vda and Vqa are set to DC voltages, ida and iqa also become DC voltages and can be handled by two-axis DC.
  • Equation 1 When transforming Equation 1 into a state equation (differential equation),
  • FIG. 3 is a block diagram of an example of a control device for explaining the open loop control according to the first embodiment.
  • this control device When driving the synchronous motor, this control device does not use a position detector, but always allows a constant current to flow through the d-axis (the direction of the magnetic flux of the permanent magnet) of the synchronous motor to drive the synchronous motor in an open loop.
  • the control device includes a position controller 11 that receives a position command, a q-axis armature current controller 12 and a d-axis armature current controller 13 that control q-axis and d-axis armature currents, and an electric power corresponding to the position command.
  • a phase detector 14 that generates an angle
  • a power converter 15 such as a voltage-type PWM (Pulse Width Modulation) inverter that supplies power to a synchronous motor according to q-axis and d-axis armature voltage commands
  • current detector 17 for detecting feedback current from synchronous motor 20, vector rotator / dq coordinate / 3-phase AC converter 19.
  • a position command ⁇ * rm is given to the position controller 11 from a host control device such as a computer.
  • the position controller 11 outputs the position command ⁇ * rm to the phase detector 14.
  • the phase detector 14 calculates an electrical angle ⁇ * re corresponding to the position command, and converts the electrical angle ⁇ * re into a vector rotator / three-phase AC / dq coordinate which is a three-phase AC / dq coordinate conversion means. Output to the converter 16.
  • the vector rotator / three-phase AC / dq coordinate converter 16 converts the three-phase feedback current values iu, iv, iw from the current detector 17 into the q-axis armature current iqa based on the electrical angle ⁇ * re. And d-axis armature current ida.
  • the q-axis armature current controller 12 calculates a difference between the q-axis armature current command and the q-axis armature current iqa, and calculates a command value v * qa of the q-axis armature voltage.
  • the q-axis armature current command is set to zero.
  • the q-axis armature current controller 12 controls the q-axis armature current iqa so that the q-axis armature current iqa becomes zero.
  • the q-axis armature current command is variable according to the required torque.
  • the q-axis armature current command is always set to 0. There is a feature in that.
  • the d-axis armature current controller 13 calculates a difference between the d-axis armature current command and the d-axis armature current ida, and calculates a command value v * da of the d-axis armature voltage.
  • the d-axis armature current command is set to a constant current value, for example, a rated current of the synchronous motor.
  • the rated current is a current value at which the synchronous motor does not burn even when a current is passed through the synchronous motor for a long time.
  • the d-axis current command i * da is normally set to 0, but this embodiment is characterized by being set to a constant current value.
  • the vector rotator / dq coordinate / 3-phase AC converter 19 generates a three-phase voltage command v * u, v * v, based on the voltage command v * da, v * qa and the electrical angle ⁇ * re. Outputs v * w.
  • the power converter 15 performs PWM control on the output voltage based on these voltage commands, and controls the current flowing through the synchronous motor 20.
  • FIG. 4 is an operation diagram of the synchronous motor represented by dq coordinates.
  • FIG. 4A shows an operation diagram of the conventional feedback control using the position detector
  • FIG. 4B shows an operation diagram of the open loop control of the present embodiment in which the position detector is not used.
  • the d-axis armature current is set to 0, and the q-axis armature current is controlled to a value that matches the required torque.
  • Torque was generated by passing a current through the q-axis armature, and the permanent magnet 23 of the synchronous motor 20 was rotating ((a1) ⁇ (a2) ⁇ (a3)).
  • the d-axis position (magnetic pole position) has been calculated from position information detected by the position detector.
  • the magnetic pole position command 22 (d-axis command) of the permanent magnet 23 to be driven is calculated from the position command. Then, the d-axis armature current and the q-axis armature current are controlled so that a constant current flows through the d-axis armature and no current flows through the q-axis armature. Then, the magnetic pole position (d-axis position) of the permanent magnet 23 is attracted to the magnetic pole position command 22 and stops at the position of the magnetic pole position command 22.
  • the magnetic pole position command 22 is changed in the order of (b1) ⁇ (b2) ⁇ (b3) in FIG. 4B, the permanent magnet 23 is rotated. When the motor stops, a holding force is generated when a rated current is passed through the synchronous motor 20.
  • the torque generated in the synchronous motor 20 is small. For this reason, when a load is applied to the synchronous motor 20, the synchronous motor 20 may not follow the change in the electrical angle. However, the torque of the synchronous motor 20 can be increased by passing the rated current through the synchronous motor 20. Further, as the electrical angle is gradually increased to +5 degrees, +10 degrees, +15 degrees, etc., the synchronous motor 20 gradually increases in torque (when the electrical angle is increased to +90 degrees, the largest torque is applied). The synchronous motor can be operated by increasing the electrical angle. Once the synchronous motor has operated, the synchronous motor continues to operate due to its inertia, so that it can finally approach the electrical angle.
  • FIG. 5 is a block diagram illustrating an example of a schematic configuration of the driver 3 according to the first embodiment.
  • the driver 3 includes a position controller 31 that receives a position command, a speed controller 32 that controls the moving speed of the armature 6a of the linear synchronous motor 6, and the position and moving speed of the armature 6a.
  • Position / speed estimator 33 to be estimated q-axis armature current controller 34 and d-axis armature current controller 35 as current control means for controlling the q-axis and d-axis armature currents, and the electric power corresponding to the position command
  • a phase detector 36 as phase generating means for generating an angle; a power converter 37 such as a voltage-type PWM inverter that supplies power to the synchronous motor in response to q-axis and d-axis armature voltage commands;
  • a vector rotator as a / dq coordinate conversion means, a three-phase AC / dq coordinate converter 39, a current detector 38 as a current detection means for detecting a feedback current from the synchronous motor 20, and a vector rotator Dq coordinate
  • the vector rotator / three-phase AC / dq coordinate converter 39 and the vector rotator / dq coordinate / three-phase AC converter 40 constitute sensorless vector control means.
  • the q coordinate converter 39 and the vector rotator / dq coordinate / 3 phase AC converter 40 constitute an open loop control means.
  • the position controller 31 performs two kinds of control according to the control command from the control switch 41.
  • This control command includes a sensorless vector control command and an open loop control command.
  • the position controller 31 outputs the position command ⁇ * rm output from a host control device such as a computer and the estimated position ⁇ ⁇ rm output from the position speed estimator 33.
  • the speed command ⁇ * rm is calculated based on the deviation between the speed command ⁇ * rm and the speed command ⁇ * rm is output to the speed controller 32.
  • the position controller 31 outputs the position command ⁇ * rm output from the host controller to the phase detector 14.
  • the speed controller 32 performs two kinds of control according to the control command from the control switch 41.
  • the position controller 31 outputs the speed command ⁇ * rm output from the position controller 31, the estimated speed ⁇ ⁇ rm output from the position speed estimator 33, and The thrust command is calculated based on the deviation, and the q-axis current command i * qa is further calculated.
  • the speed controller 32 outputs the q-axis current command i * qa to the q-axis armature current controller 34, and normally sets the d-axis current command i * da to 0 to control the d-axis armature current. Output to the device 35.
  • the speed controller 32 sets the d-axis current command i * da to, for example, a rated current and outputs it to the d-axis armature current controller 35.
  • the q-axis current command i * qa is set to 0 and output to the q-axis armature current controller 34.
  • the position / speed estimator 33 operates when a sensorless vector control command is output from the control switch 41.
  • the position / speed estimator 33 includes a d-axis armature current ida and a q-axis armature current iqa output from the vector rotator / three-phase AC / dq coordinate converter 39, and a d-axis current controller. Based on the d-axis armature voltage command output from the q-axis and the q-axis armature voltage command output from the q-axis current controller, the estimated position ⁇ ⁇ rm and the estimated speed ⁇ ⁇ rm are calculated.
  • the estimation method of the estimated position and the estimated speed a method used for general sensorless vector control can be applied. Further, the estimated position and the estimated speed may be calculated based on only one of the voltage command and the armature current.
  • the position / speed estimator 33 outputs the estimated position ⁇ ⁇ rm to the position controller 31 and the phase detector 36, and outputs the estimated speed ⁇ ⁇ rm to the speed controller and the control switch 41.
  • a position command ⁇ * rm or an estimated position ⁇ ⁇ rm is supplied to the phase detector 36 in accordance with a control command output from the control switch 41 to the position controller 31 and the position / speed estimator 33.
  • the control command is a sensorless vector control command
  • the estimated position ⁇ ⁇ rm is supplied to the phase detector 36 from the position / speed estimator 33.
  • the control command is an open loop control command
  • the phase command 36 is supplied with the position command ⁇ * rm.
  • the phase detector 36 calculates an electrical angle ⁇ * re corresponding to the position command ⁇ * rm or the estimated position ⁇ ⁇ rm, and converts the electrical angle ⁇ * re into a vector rotator / three-phase AC / dq coordinate conversion. Output to the converter 39 and the vector rotator / dq coordinate / 3-phase AC converter 40.
  • the vector rotator / three-phase AC / dq coordinate converter 39 converts the three-phase feedback current values iu, iv, iw from the current detector 38 into the q-axis armature current iqa based on the electrical angle ⁇ * re. And d-axis armature current ida.
  • the q-axis armature current controller 34 calculates a command value v * qa of the q-axis armature voltage by taking a deviation between the q-axis armature current command and the q-axis armature current iqa, and this command value v * qa. Is output to the position / speed estimator 33 and the vector rotator / dq coordinate / 3-phase AC converter 40.
  • the d-axis armature current controller 35 calculates a command value v * da of the d-axis armature voltage by taking a deviation between the d-axis armature current command and the d-axis armature current ida, and this command value v * da. Is output to the position / speed estimator 33 and the vector rotator / dq coordinate / 3-phase AC converter 40.
  • the vector rotator / dq coordinate / 3-phase AC converter 40 includes voltage commands v * da, v * qa and a phase detector 36 from the q-axis armature current controller 34 and the d-axis armature current controller 35.
  • the three-phase voltage commands v * u, v * v, v * w are output based on the electrical angle ⁇ * re from.
  • the power converter 15 performs PWM control on the output voltage based on these voltage commands, and controls the current flowing through the armature 6 a of the linear synchronous motor 6.
  • the control switch 41 determines whether to perform sensorless vector control or open loop control based on the moving speed of the armature 6a of the linear synchronous motor 6, and sends a control command as a result to the position controller 31 and the speed.
  • the data is output to the controller 32 and the position / speed estimator 33.
  • the armature 6a moves more smoothly when the movement of the armature 6a is controlled by sensorless vector control than when the armature 6a is controlled by the open loop control according to the present embodiment.
  • the control by the sensorless vector control is not effective. That is, the position estimation and the speed estimation by the sensorless vector control are performed based on, for example, the induced electromotive force generated in the armature 6a according to the moving speed of the armature 6a based on the applied voltage or the feedback current to the armature 6a.
  • it is performed by obtaining, if the armature 6a is stopped or the moving speed is too low, the induced electromotive force cannot be detected. Then, the magnetic field generated from the armature 6a cannot be moved in synchronization with the movement of the armature 6a.
  • the control switching device 41 switches control at a preset speed ⁇ .
  • This speed ⁇ is a preset speed within a speed range in which the movement of the armature 6a can be moved in synchronization with the movement of the magnetic field generated from the armature 6a by sensorless vector control. It is set based on the result of.
  • the speed ⁇ is set to be lower within a range in which the movement of the armature 6a can be controlled.
  • FIG. 6 is a graph showing the relationship between the moving time and the moving speed when the armature 6a is moved from one end to the other end in the longitudinal direction of the magnet plate 6b.
  • the horizontal axis represents the moving time.
  • the vertical axis represents the moving speed.
  • the open loop control is performed until the time t1 when the moving speed reaches the speed ⁇ after the armature 6a starts moving.
  • sensorless vector control is performed from time t1 to t2 and from t2 to t3.
  • the sensorless vector control is continuously performed from time t3 to time t4 when the moving speed drops to the speed ⁇ . Open loop control is performed from time t4 to te.
  • control switching device 41 outputs a sensorless vector control command when the moving speed of the armature 6a is equal to or higher than the speed ⁇ , and opens loop when the moving speed of the armature 6a is less than the speed ⁇ . Output control commands.
  • the position and speed estimator 33 can estimate the position and moving speed of the armature 6a. Which control is to be performed is determined based on the estimated position ⁇ ⁇ rm. Note that the estimated position ⁇ ⁇ rm is equivalent to the moving speed of the armature 6a.
  • the position / speed estimator 33 may not be able to accurately estimate the position and moving speed of the armature 6a.
  • the moving speed of the armature 6a is calculated based on the position command ⁇ * rm from the device.
  • Open-loop control according to the present embodiment generates an electrical angle theta * re corresponding to the position command theta * rm, electrical angle theta * re continuously changes according to the position command theta * rm continuously supplied
  • the armature 6a moves in synchronization with the change in the electrical angle ⁇ * re, and the moving speed of the armature 6a is obtained from the position command ⁇ * rm.
  • the driver 3 As a method for causing the driver 3 to recognize the initial position of the armature 6a, there is a method using a magnetic pole sensor. Further, the armature 6a can be forcibly moved to a set position without using a magnetic pole sensor, thereby replacing the recognition of the initial position of the armature 6a. This is performed, for example, by supplying a direct current from the driver 3 to the armature 6a at a predetermined electrical angle with reference to the center of the U-phase coil of the armature 6a. The electrical angle at this time can be set arbitrarily. The armature 6a is excited by the direct current, and an S-pole magnetic pole appears on the surface facing the magnet plate 6b at a position away from the center of the U-phase coil by the electrical angle.
  • the armature 6a moves by attracting the S pole and the N pole of the magnet plate 6b, and the armature 6a stops when the position of the S pole appearing on the armature 6a coincides with the position of the N pole of the magnet plate 6b. To do. Thus, the armature 6a is moved from the initial position of the main book to the set position. At this time, since the phase shift between the magnetic poles of the armature 6a and the magnet plate 6b is ⁇ 180 ° at the maximum, the armature 6a moves a distance half the magnetic pole pitch of the magnet plate 6b at the maximum.
  • FIG. 7 is a flowchart illustrating a processing example of the control switch 41 of the driver 3 according to the first embodiment.
  • the control switch 41 determines whether the moving speed of the armature 6a is equal to or higher than the speed ⁇ (step S1). At this time, if the moving speed is equal to or higher than the speed ⁇ (step S1: YES), the control switch 41 determines to perform sensorless vector control (step S2), and proceeds to step S1.
  • the control switch 41 outputs a sensorless vector control command to the position controller 31, the speed controller 32, and the position / speed estimator 33. Then, the position / speed estimator 33 calculates the estimated position ⁇ ⁇ rm and the estimated speed ⁇ ⁇ rm, outputs the estimated position ⁇ ⁇ rm to the position controller 31 and the phase detector 36, and calculates the estimated speed ⁇ ⁇ rm. Output to the control switch 41 and the speed controller 32.
  • the position controller 31 outputs the speed command ⁇ * rm to the speed controller 32 based on the position command ⁇ * rm and the estimated position ⁇ ⁇ rm, while the output of the position command ⁇ * rm to the phase detector 36 is Let it stop.
  • the speed controller 32 calculates the q-axis current command i * qa based on the speed command ⁇ * rm and the estimated speed ⁇ ⁇ rm. Moreover, the speed controller 32 sets the d-axis current command i * qa to 0.
  • the phase detector 36 calculates the electrical angle ⁇ * re corresponding to the estimated position ⁇ ⁇ rm. Thus, the driver 3 performs sensorless vector control.
  • step S3 determines to perform the open loop control (step S3), and proceeds to step S1.
  • the control switch 41 outputs an open loop control command to the position controller 31, the speed controller 32, and the position / speed estimator 33. Then, the position / speed estimator 33 stops the operation.
  • the position controller 31 outputs the position command ⁇ * rm to the phase detector 36 while stopping the calculation of the speed command ⁇ * rm.
  • the speed controller 32 sets the q-axis current command i * qa to 0, and sets the d-axis current command i * qa to the rated current.
  • the phase detector 36 calculates an electrical angle ⁇ * re corresponding to the position command ⁇ * rm. In this way, the driver 3 performs the open loop control described in the section 1.2. In this way, the control switch 41 repeats the control loop.
  • the switching control unit 41 controls each unit to perform sensorless vector control, and the armature 6a.
  • the phase detector 36 When the moving speed is less than the speed ⁇ , the phase detector 36 generates the d-axis electrical angle corresponding to the position command, and the q-axis armature current controller 34 and the d-axis armature current controller 35.
  • the armature 6a In the constant velocity range where the moving speed of the armature 6a is equal to or higher than the speed ⁇ , the movement of the armature 6a can be smoothly moved by the sensorless vector control, and the moving speed of the armature 6a is less than the speed ⁇ , Can also be controlled. Further, the return from the armature 6a stop state can be controlled.
  • the N pole of the magnet plate 6b is relatively attracted to the magnetic pole generated by the d-axis armature current corresponding to the electrical angle generated by the phase detector 36. Since the child 6a moves, the rotation control of the electrical angle is controlled by the position command, so that the stop control, the control in the low speed region, and the control at the time of return are also possible. Since stop control corresponding to the position command is performed, it is possible to stop at a desired position.
  • FIG. 8 is a diagram showing a schematic configuration of the linear motor system 10 according to the second embodiment.
  • the same elements as those in FIG. 8 are identical elements as those in FIG. 8.
  • the linear motor system 10 includes an actuator 2, a position information switching device 9, and a driver 30 as a control device.
  • the actuator 2 includes a slider 4, a base 5 that slidably supports the slider 4, a linear scale 7 attached to the slider 4, and a position of the slider 4 (an armature attached to the slider 4) that reads the linear scale 7. And a plurality of position sensors 8 for detecting.
  • a linear scale 7, a position sensor 8, and a position information switching device 9 are added.
  • the linear scale 7 is attached to the side surface of the slider 4, and slits, magnetic poles, and the like are arranged at regular intervals along the longitudinal direction of the base 5.
  • Each position sensor 8 reads the linear scale 7 optically or magnetically, and outputs position information indicating the position of the armature 6a to the position information switch 9 via the encoder cable 52.
  • the linear scale 7 is provided only in an area for positioning before and after the stop position (hereinafter referred to as “stop area”) including the stop position planned in advance in the movable range of the slider 4.
  • stop area an area for positioning before and after the stop position
  • a position sensor 8 is attached so that it can be read.
  • position sensors 8 are attached to both ends of the movable range of the slider 4, and a single position sensor 8 is attached slightly from the center. That is, the actuator 2 has three stop areas.
  • the area other than the stop area is an area where the slider 4 basically passes (hereinafter referred to as “passing area”). However, it is possible to stop the slider 4 as necessary even in the passage region.
  • the slider 4 may stop or pass depending on the moving procedure.
  • the current supplied to the armature 6a is controlled by sensorless vector control or open loop control.
  • Sensorless vector control or open loop control when the slider 4 is located in the stop region, Vector control is performed based on position information from the sensor 8. Then, when the slider 4 is positioned within the passage region, sensorless vector control or open loop control is performed.
  • the position information switcher 9 sends the position information output from the position sensor 8 attached to the stop area to the encoder cable 53 by a control signal output from the driver 30. To the driver 30.
  • FIG. 9 is a block diagram illustrating an example of a schematic configuration of the driver 30 according to the second embodiment.
  • elements similar to those in FIG. 5 are denoted by the same reference numerals.
  • the driver 30 includes a position controller 31, a speed controller 32, a position speed estimator 33, a q-axis armature current controller 34 as current control means, and a d-axis armature current control.
  • a phase detector 36 as a phase generation means
  • a power converter 37 as a current detection means
  • a vector rotator / three-phase as a three-phase AC / dq coordinate conversion means
  • a position detector 42 and a speed detector 43 as a selection means for switching control between sensorless vector control, open loop control and vector control.
  • the three-phase AC / dq coordinate converter 39, the vector rotator / dq coordinate / three-phase AC converter 40, the position detector 42, and the speed detector 43 constitute feedback control means.
  • the difference from the first embodiment is that a position detector 42 and a speed detector 43 are added.
  • the position information output from the position information switcher 9 is supplied to the position detector 42 and the speed detector 43 and also to the phase detector 36.
  • the position detector 42 calculates a position feedback value ⁇ rm indicating the position of the armature 6 a based on the position information, and outputs the position feedback value ⁇ rm to the position controller 31 and the control switch 41.
  • the position detector 42 calculates a speed feedback value ⁇ rm indicating the moving speed of the armature 6 a based on the position information, and outputs the position feedback value ⁇ rm to the speed controller 32 and the control switch 41.
  • the position controller 31 receives the position command ⁇ * rm output from the host controller and the position feedback output from the speed detector 43.
  • the speed command ⁇ * rm is calculated based on the deviation from the value ⁇ rm, and this speed command ⁇ * rm is output to the speed controller 32.
  • the speed controller 32 When a vector control command is supplied as a control command from the control switch 41, the speed controller 32 outputs a speed command ⁇ * rm output from the position controller 31 and a speed output from the position detector 42.
  • a thrust command is calculated based on a deviation between the feedback value ⁇ rm and a q-axis current command i * qa.
  • the control switch 41 determines whether to perform sensorless vector control, open loop control or vector control based on the current position and moving speed of the armature 6a of the linear synchronous motor 6, and a control command as a result thereof. Is output to the position controller 31, the speed controller 32, and the position / speed estimator 33.
  • This control command includes a sensorless vector control command, an open loop control command, and vector control.
  • the relationship between the range of the stop area and the position of the armature 6a (for example, coordinates x1 to x2) is stored in a memory (not shown). Is stored in the first stop area, the coordinates x3 to x4 are the second stop area, etc.).
  • the control switch 41 determines whether the armature 6a is located in the stop area by comparing the current position of the armature 6a with the stop area coordinate data.
  • the control switching device 41 performs vector control based on the current position of the armature 6a from the estimated position ⁇ ⁇ rm when performing sensorless vector control and from the position command ⁇ * rm when performing open loop control. When performing, it is obtained from the position feedback value ⁇ rm. Further, the control switch 41 obtains the moving speed of the armature 6a from the speed feedback value ⁇ rm when performing vector control.
  • the control switching unit 41 determines that the current position of the armature 6a is in any stop area based on the stop area coordinate data, the armature 6a among the plurality of position sensors 8 is positioned.
  • the position information switcher 9 is controlled so as to output the position information from the position sensor 8 attached to the stopping area.
  • FIG. 10 is a flowchart showing a processing example of the control switch 41 of the driver 30 according to the second embodiment.
  • the same elements as those in FIG. 10 are identical elements as those in FIG. 10
  • the control switch 41 determines whether or not the current position of the armature 6a is in the stop region (step S4). At this time, if the current position of the armature 6a is in the stop region (step S4: YES), the control switch 41 determines that vector control is to be performed (step S5), and proceeds to step S1.
  • the control switch 41 outputs a vector control command to the position controller 31, the speed controller 32, and the position / speed estimator 33. Then, the position / speed estimator 33 stops the operation.
  • the position controller 31 outputs the speed command ⁇ * rm to the speed controller 32 based on the position command ⁇ * rm and the position feedback value ⁇ rm, while the output of the position command ⁇ * rm to the phase detector 36 is stopped. Let it be in a state.
  • the speed controller 32 calculates the q-axis current command i * qa based on the speed command ⁇ * rm and the speed feedback value ⁇ rm. Moreover, the speed controller 32 sets the d-axis current command i * qa to 0.
  • the phase detector 36 calculates the electrical angle ⁇ * re corresponding to the position information from the position information switch 9. In this way, the driver 30 performs vector control.
  • control switch 41 moves the armature 6a when the current position of the armature 6a is not in the stop region, that is, when the armature 6a is in the passage region (step S4: NO). It is determined whether or not the speed is equal to or higher than speed ⁇ (step S1). At this time, if the moving speed is equal to or higher than the speed ⁇ (step S1: YES), the control switch 41 determines to perform sensorless vector control (step S2), and proceeds to step S1. The operation of each part at this time is the same as that in the first embodiment.
  • step S3 determines to perform the open loop control (step S3), and proceeds to step S1.
  • the operation of each part at this time is the same as that in the first embodiment. In this way, the control switch 41 repeats the control loop.
  • the control switch 41 detects by the position sensor 8 instead of the sensorless vector control and the open loop control. Since the vector control is performed based on the position of the armature 6a, the stop accuracy of the armature 6a in the stop region can be increased. On the other hand, the armature 6a can be smoothly moved by sensorless vector control when only passing through the passage area, while the armature 6a is stopped at a desired position even when the armature 6a is stopped in the passage area. Control can be performed. Moreover, even if the armature 6a stops once in the passage region due to an emergency stop or the like, it can be returned.
  • the vector control is always performed when the current position of the armature 6a is in the stop region.
  • the vector control is performed only when the armature 6a is stopped in the stop region. May be performed.
  • sensorless vector control or open loop control may be performed according to the moving speed of the armature 6a.
  • the linear scale 7 is attached to the slider 4 and the position sensor 8 is attached to the base 5.
  • the linear scale 7 is attached to the stop region of the base 5 and the position sensor 8 is attached to the slider 4. It may be attached. In this case, only one position sensor 8 can be used, and the cost can be reduced because it is not necessary to attach the linear scale 7 to the passage region.
  • the armature 6a is attached to the slider 4 and the magnet plate 6b is attached to the base 5.
  • the armature 6a is attached to the base 5 and the magnet plate 6b is attached to the slider 4. Also good.
  • the present invention is applied to a flat type linear synchronous motor, but may be applied to a rod type linear synchronous motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 位置センサを用いることなく、等速域ではセンサレスベクトル制御で滑らかに可動子を移動させ、且つ、停止制御及び低速域での制御も可能とする。  可動子の移動速度が、所定のセンサレスベクトル制御によって可動子を電機子から発生する磁界の移動に同期して移動させることができる範囲内の予め定められた所定速度より速い場合には、当該センサレスベクトル制御を用いて電機子に流れる電流を制御し、可動子の移動速度が所定速度よりも遅い場合には、界磁の作る磁束の方向をd軸とし、d軸に対してπ/2進んだ位相をq軸とするd-q座標において、位置指令に対応したd軸の電気角を生成し、d軸電機子に電流が流れ、且つq軸電機子に電流が流れないように、d軸電機子電流及びq軸電機子電流を制御する。

Description

リニア同期モータ制御方法及び制御装置
 本発明は、界磁に永久磁石を用いるリニア同期モータの制御方法及び制御装置の技術分野に関する。
 従来より、永久磁石による界磁と電機子から発生する移動磁界によって可動子が直進運動するリニア同期モータにおいては、位置センサ、速度センサ、磁極センサ等を使用して可動子の位置や移動速度を制御している。
 一方で、こうしたセンサを使用することなくリニア同期モータを駆動させる制御方法としては、センサレスベクトル制御が一般的に用いられている(例えば、特許文献1)。センサレスベクトル制御においては、可動子の位置や移動速度を、リニア同期モータの回転によって電機子に生じる誘導起電力を用いて推定する方法が一般的である。
特開2002-223587号公報
 しかしながら、誘導起電力が小さくなる低速走行時や減速停止時においては、可動子の位置や移動速度を正確に推定することができないため、可動子の位置や移動速度を制御することが困難であった。従って、センサレスベクトル制御は、可動子の位置決めを必要とする用途では使用されていなかった。
 本発明は、以上の点に鑑みてなされたものであり、位置センサを用いることなく、等速域ではセンサレスベクトル制御で滑らかに可動子を移動させ、且つ、停止制御及び低速域での制御も可能とするリニア同期モータ制御方法及び制御装置を提供することを目的とする。
 上記課題を解決するために、請求項1に記載の発明は、電機子から発生する磁界の移動によって可動子が移動するリニア同期モータの当該電機子に流れる電流を制御するリニア同期モータ制御方法において、前記可動子の移動速度が、所定のセンサレスベクトル制御によって前記可動子を前記電機子から発生する磁界の移動に同期して移動させることができる範囲内の予め定められた所定速度より速い場合には、当該センサレスベクトル制御を用いて前記電機子に流れる電流を制御し、前記可動子の移動速度が前記所定速度よりも遅い場合には、界磁の作る磁束の方向をd軸とし、d軸に対してπ/2進んだ位相をq軸とするd-q座標において、位置指令に対応したd軸の電気角を生成し、d軸電機子に電流が流れ、且つq軸電機子に電流が流れないように、d軸電機子電流及びq軸電機子電流を制御することを特徴とする。
 請求項2に記載の発明は、請求項1に記載のリニア同期モータ制御方法において、前記可動子の移動可能範囲のうち、リニアスケールを読み取り前記可動子の位置を検出する位置センサによって当該位置を検出することができる範囲を前記可動子が移動しているときに当該可動子を停止させる場合には、当該位置センサによって検出された前記可動子の位置に基づいて前記電機子に流れる電流を制御することを特徴とする。
 請求項3に記載の発明は、電機子から発生する磁界の移動によって可動子が移動するリニア同期モータの当該電機子に流れる電流を制御する制御装置において、所定のセンサレスベクトル制御を用いて前記電機子に流れる電流を制御するセンサレスベクトル制御手段と、オープンループ制御を用いて前記電機子に流れる電流を制御するオープンループ制御手段と、前記電機子に流れる電流を制御させる制御手段を選択する選択手段と、を備え、前記オープンループ制御手段は、界磁の作る磁束の方向をd軸とし、d軸に対してπ/2進んだ位相をq軸とするd-q座標において、位置指令に対応したd軸の電気角を生成する位相生成手段と、位置指令に対応したd軸の電気角を生成する位相生成手段と、前記電機子に流れる3相交流電流を検出する電流検出手段と、前記位相生成手段が生成した前記電気角に基づいて、前記電流検出手段が検出した3相交流電流を、d軸電機子電流及びq軸電機子電流に座標変換する3相交流/d-q座標変換手段と、d軸電機子に電流が流れ、且つq軸電機子に電流が流れないように、d軸電機子電流及びq軸電機子電流を制御する電流制御手段と、を有し、前記選択手段は、前記可動子の移動速度が、前記センサレスベクトル制御によって前記可動子を前記電機子から発生する磁界の移動に同期して移動させることができる範囲内の予め定められた所定速度より速い場合には、前記センサレスベクトル制御手段を選択し、前記可動子の移動速度が前記所定速度よりも遅い場合には、前記オープンループ制御手段を選択することを特徴とする。
 請求項4に記載の発明は、請求項3に記載の制御装置において、リニアスケールを読み取り前記可動子の位置を検出する位置センサによって検出された当該位置に基づいて、フィードバック制御を用いて前記電機子に流れる電流の制御を行うフィードバック制御手段を更に備え、前記選択手段は、前記可動子の移動可能範囲のうち、前記位置センサによって当該位置を検出することができる範囲を前記可動子が移動しているときに当該可動子を停止させる場合には、前記フィードバック制御手段を選択することを特徴とする。
 本発明によれば、可動子の移動速度が所定速度よりも速いときにはセンサレスベクトル制御による可動子の移動の制御が可能であるので、この場合には、当該センサレスベクトル制御によって可動子を滑らかに移動させることができ、且つ、可動子の移動速度が所定速度よりも遅い場合には、位置指令に対応した電子角を生成し、d軸電機子に電流が流れ且つq軸電機子に電流が流れないように制御することによって、可動子の停止制御や低速域での制御も行うことができる。
第1実施形態に係るリニアモータシステム1の概要構成を示す図である。 第1実施形態に係るオープンループ制御を説明するための同期モータを示す概略図である。 第1実施形態に係るオープンループ制御を説明するための制御装置の一例のブロック図である。 d-q座標で表された同期モータの動作図であり、(a)は、位置検出器を用いた従来のフィードバック制御の動作図であり、(b)は、位置検出器を使用しない本実施形態のオープンループ制御の動作図である。 第1実施形態に係るドライバ3の概要構成の一例を示すブロック図である。 第1実施形態において、電機子6aを、マグネットプレート6bの長手方向一端から他端まで移動させた場合における移動時間と移動速度との関係を示すグラフである。 第1実施形態に係るドライバ3の制御切替器41の処理例を示すフローチャートである。 第2実施形態に係るリニアモータシステム10の概要構成を示す図である。 図9は、第2実施形態に係るドライバ30の概要構成の一例を示すブロック図である。 第2実施形態に係るドライバ30の制御切替器41の処理例を示すフローチャートである。
 以下、本発明を実施するための好適な実施形態について、図面を参照しつつ説明する。なお、以下の各実施形態は、各請求項に係る発明を限定するものではなく、また、各実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 [1.第1実施形態]
 以下、リニア同期モータとして、フラットタイプのリニア同期モータに本発明を適用した場合における実施形態について説明する。
 [1.1 リニアモータシステムの構成]
 まず、第1実施形態に係るリニアモータシステム1の構成を、図1を用いて説明する。ここで、図1は、第1実施形態に係るリニアモータシステム1の概要構成を示す図である。
 図1に示すように、リニアモータシステム1は、アクチュエータ2と、制御装置としてのドライバ3と、を備えている。そして、アクチュエータ2は、スライダ(移動体)4と、スライダ4をスライド自在に支持するベース5と、を備えている。
 スライダ4の駆動手段としては、リニア同期モータ6が採用されている。リニア同期モータ6は、スライダ4の下部に取り付けられた可動子としての電機子6aと、ベース5の底面に取り付けられた固定子としてのマグネットプレート6bと、から構成される。電機子6aは、磁性素材からなるコアと、コアの突極に巻かれた3相コイルと、から構成される。3相コイルのそれぞれには、3相交流電流が供給される。マグネットプレート6bは、複数の永久磁石がその表面にN極とS極との磁極が交互に現れるようにベース5の長手方向に並べられて構成されている。3相コイルに3相電流が流れると、紙面左右方向に移動する移動磁界が発生する。電機子6a及びスライダ4は、移動磁界により推力を得て、移動磁界の速さに同期して直進運動する。
 電機子6aの3相コイルに流れる3相電流は、ドライバ3によって制御される。ドライバ3から出力された3相電流は、動力ケーブル51を介して電機子6aに供給される。直動装置には、リニアスケール及び位置センサは取り付けられてはいない。従って、ドライバ3は、フィードバック制御は行わない。その代わり、ドライバ3は、スライダ4(電機子6a)の移動速度に応じて、センサレスベクトル制御と、d軸電機子に電流が流れ且つq軸電機子に電流が流れないように制御するオープンループ制御と、選択的に切り替えながら行う。
 [1.2 本実施形態に係るオープンループ制御の原理]
 次に、本実施形態においてドライバ4が行うオープンループ制御の原理について、図2を用いて説明する。ここで、図2は、第1実施形態に係るオープンループ制御を説明するための同期モータを示す概略図である。図3は、第1実施形態に係るオープンループ制御を説明するための制御装置の一例を示すブロック図である。
 界磁が直線的に移動するリニア同期モータにおいても、回転座標のd-q座標系を用いてd,q軸電機子電流を制御することができる。同期モータの固定された部分と可動する部分をともに、回転する直交座標へ変換するのがd-q変換であり、その座標系がd-q座標系である。q軸はd軸に対してπ/2進んだ位相にある。d軸は界磁の作る磁束の方向にとるのが一般的である。
 図2において、Vda,vqaはd,q軸電機子電圧、ida,iqaはd,q軸電機子電流,φfaは電機子巻線鎖交磁束数,Raは電機子巻線抵抗,Laは電機子巻線の自己インダクタンスである。この等価回路から電圧、電流、インピーダンスの関係式、すなわち回路方程式を求めると、
Figure JPOXMLDOC01-appb-M000001
 となる。この式の右辺第2項は、永久磁石の界磁によってd,q軸電機子巻線に誘起する速度起電力eda,eqaを表しており、eda=0,eqa・=ωreφfaである。図2は、電機子巻線がDCモータのように整流子に接続されて半径方向に無数にあり、それらに界磁と同じ速度で回転するd,q軸上に配置されたブラシを通してVda,Vqaが印加され、ida,iqaが流れるということを示している。Vda,Vqaを直流電圧にすれば、ida,iqaも直流電圧になり、2軸直流で扱える。
 数1式を状態方程式(微分方程式)に変形すると、
Figure JPOXMLDOC01-appb-M000002
 が得られる。この式は、d,q軸電機子電圧であるVdaとVqaで、d,q軸電機子電流であるida,iqaを制御できることを意味している。
 図3は、第1実施形態に係るオープンループ制御を説明するための制御装置の一例のブロック図である。この制御装置は、同期モータを駆動するにあたり、位置検出器を使用せず、同期モータのd軸(永久磁石の磁束の方向)に一定の電流を常時流し、オープンループで同期モータを駆動する。
 制御装置は、位置指令を受ける位置制御器11と、q軸,d軸電機子電流を制御するq軸電機子電流制御器12及びd軸電機子電流制御器13と、位置指令に応じた電気角を生成する位相検出器14と、q軸,d軸電機子電圧指令に応じて、同期モータに電力を供給する電圧形PWM(Pulse Width Modulation)インバータなどの電力変換器15と、3相交流/d-q座標変換手段としてのベクトル回転器・3相交流/d-q座標変換器16と、同期モータ20からの帰還電流を検出する電流検出器17と、ベクトル回転器・d-q座標/3相交流変換器19と、を備えている。
 コンピュータなどの上位制御装置から、位置指令θrmが位置制御器11に与えられる。位置制御器11は、位置指令θrmを位相検出器14に出力する。位相検出器14は、位置指令に対応した電気角θreを算出し、電気角θreを3相交流/d-q座標変換手段であるベクトル回転器・3相交流/d-q座標変換器16に出力する。ベクトル回転器・3相交流/d-q座標変換器16は、電気角θreに基づいて、電流検出器17からの3相帰還電流値iu,iv,iwを、q軸電機子電流iqaとd軸電機子電流idaに変換する。
 q軸電機子電流制御器12は、q軸電機子電流指令とq軸電機子電流iqaとの偏差を取り、q軸電機子電圧の指令値vqaを演算する。ここで、q軸電機子電流指令は、0に設定される。q軸電機子電流制御器12は、q軸電機子電流iqaが0になるように、q軸電機子電流iqaを制御する。従来のサーボモータにおいては、必要とするトルクに応じてq軸電機子電流指令が可変していたが、本実施形態に係るオープンループ制御においては、q軸電機子電流指令が常に0に設定されることに特徴がある。
 d軸電機子電流制御器13は、d軸電機子電流指令とd軸電機子電流idaとの偏差を取り、d軸電機子電圧の指令値vdaを演算する。ここで、d軸電機子電流指令は一定の電流値、例えば同期モータの定格電流に設定される。定格電流とは、同期モータに長時間電流を流しても同期モータが焼けない電流値である。従来のサーボモータにおいては、d軸電流指令idaは通常0に設定されるが、本実施形態では、一定の電流値に設定されることに特徴がある。
 ベクトル回転器・d-q座標/3相交流変換器19は、これらの電圧指令vda,vqa及び電気角θreに基づいて、3相電圧指令vu,vv,vwを出力する。電力変換器15は、これらの電圧指令に基づいて、出力電圧をPWM制御し、同期モータ20に流れる電流を制御する。
 図4は、d-q座標で表された同期モータの動作図である。図4(a)が位置検出器を用いた従来のフィードバック制御の動作図を示し、図4(b)が位置検出器を使用しない本実施形態のオープンループ制御の動作図を示す。従来のフィードバック制御においては、d軸電機子電流を0にし、q軸電機子電流を必要なトルクに合わせた値になるように制御していた。q軸電機子に電流を流すことで、トルクが発生し、同期モータ20の永久磁石23が回転していた((a1)→(a2)→(a3))。d軸の位置(磁極位置)は、位置検出器が検出した位置情報から算出されていた。
 これに対して、本実施形態のオープンループ制御においては、まず、位置指令から駆動させる永久磁石23の磁極位置指令22(d軸指令)を算出する。そして、d軸電機子に一定の電流を流し、q軸電機子に電流が流れないように、d軸電機子電流及びq軸電機子電流を制御する。そうすると、永久磁石23の磁極位置(d軸の位置)は、磁極位置指令22に引き付けられて磁極位置指令22の位置で止まる。図4(b)中(b1)→(b2)→(b3)と順番に磁極位置指令22を変化させると、永久磁石23が回転することになる。停止時には、同期モータ20に定格電流を流したときの保持力が発生する。
 本実施形態のオープンループ制御においては、q軸電機子に電流を流していないので、同期モータ20に発生するトルクが小さい。このため、同期モータ20に負荷がかかっているときは、電気角の変化に同期モータ20が追従しない恐れがある。しかし、同期モータ20に定格電流を流すことで、同期モータ20のトルクを大きくすることができる。また、電気角を+5度、+10度、+15度等徐々に大きくするにつれて、同期モータ20には徐々に大きなトルクが働くので(電気角を+90度にするときに、最も大きなトルクが働く)、電気角を大きくすることで同期モータを動作させることができる。同期モータが一旦動作したときは、後はその慣性によって同期モータが動作し続けるので、最終的に電気角に近づくことができる。
 [1.3 ドライバの構成]
 次に、本実施形態に係るドライバ3の構成について、図5を用いて説明する。ここで、図5は、第1実施形態に係るドライバ3の概要構成の一例を示すブロック図である。
 図5に示すように、ドライバ3は、位置指令を受ける位置制御器31と、リニア同期モータ6の電機子6aの移動速度を制御する速度制御器32と、電機子6aの位置及び移動速度を推定する位置速度推定器33と、q軸,d軸電機子電流を制御する電流制御手段としてのq軸電機子電流制御器34及びd軸電機子電流制御器35と、位置指令に応じた電気角を生成する位相生成手段としての位相検出器36と、q軸,d軸電機子電圧指令に応じて、同期モータに電力を供給する電圧形PWMインバータなどの電力変換器37と、3相交流/d-q座標変換手段としてのベクトル回転器・3相交流/d-q座標変換器39と、同期モータ20からの帰還電流を検出する電流検出手段としての電流検出器38と、ベクトル回転器・d-q座標/3相交流変換器40と、センサレスベクトル制御とオープンループ制御とを切替制御する選択手段としての制御切替器41と、を備えている。
 ここで、位置制御器31、速度制御器32、位置速度推定器33、q軸電機子電流制御器34、d軸電機子電流制御器35、位相検出器36、電力変換器37、電流検出器38、ベクトル回転器・3相交流/d-q座標変換器39及びベクトル回転器・d-q座標/3相交流変換器40は、センサレスベクトル制御手段を構成する。また、位置制御器31、q軸電機子電流制御器34、d軸電機子電流制御器35、位相検出器36、電力変換器37、電流検出器38、ベクトル回転器・3相交流/d-q座標変換器39及びベクトル回転器・d-q座標/3相交流変換器40は、オープンループ制御手段を構成する。
 位置制御器31は、制御切替器41からの制御指令に応じて、2通りの制御を行う。この制御指令には、センサレスベクトル制御指令とオープンループ制御指令とがある。位置制御器31は、制御指令がセンサレスベクトル制御指令である場合には、コンピュータなどの上位制御装置から出力された位置指令θrmと、位置速度推定器33から出力された推定位置θ^rmと、の偏差に基づいて速度指令ωrmを演算し、この速度指令ωrmを速度制御器32に出力する。一方、位置制御器31は、制御指令がオープンループ制御指令である場合には、上位制御装置から出力された位置指令θrmを位相検出器14に出力する。
 速度制御器32は、制御切替器41からの制御指令に応じて、2通りの制御を行う。位置制御器31は、制御指令がセンサレスベクトル制御指令である場合には、位置制御器31から出力された速度指令ωrmと、位置速度推定器33から出力された推定速度ω^rmと、の偏差に基づいて推力指令を演算し、更にq軸電流指令iqaを演算する。また、速度制御器32は、このq軸電流指令iqaをq軸電機子電流制御器34に出力するとともに、d軸電流指令idaを通常0に設定してd軸電機子電流制御器35に出力する。一方、速度制御器32は、制御指令がオープンループ制御指令である場合には、d軸電流指令idaを、例えば定格電流に設定してd軸電機子電流制御器35に出力するとともに、q軸電流指令iqaを0に設定してq軸電機子電流制御器34に出力する。
 位置速度推定器33は、制御切替器41からセンサレスベクトル制御指令が出力されたときに動作する。具体的に、位置速度推定器33は、ベクトル回転器・3相交流/d-q座標変換器39から出力されたd軸電機子電流ida及びq軸電機子電流iqaと、d軸電流制御器から出力されたd軸電機子電圧指令と、q軸電流制御器から出力されたq軸電機子電圧指令と、に基づいて、推定位置θ^rm及び推定速度ω^rmを演算する。推定位置及び推定速度の推定方法は、一般的なセンサレスベクトル制御に用いられる方法を適用することができる。また、電圧指令及び電機子電流の何れか一方のみに基づいて推定位置及び推定速度を演算してもよい。位置速度推定器33は、推定位置θ^rmを位置制御器31と位相検出器36とに出力するとともに、推定速度ω^rmを速度制御器と制御切替器41とに出力する。
 位相検出器36には、制御切替器41から位置制御器31及び位置速度推定器33に出力される制御指令に応じて、位置指令θrm又は推定位置θ^rmが供給される。制御指令がセンサレスベクトル制御指令である場合には、位相検出器36には、位置速度推定器33から推定位置θ^rmが供給される。一方、制御指令がオープンループ制御指令である場合には、位相検出器36には、位置指令θrmが供給される。そして、位相検出器36は、位置指令θrm又は推定位置θ^rmに対応した電気角θreを算出し、電気角θreをベクトル回転器・3相交流/d-q座標変換器39とベクトル回転器・d-q座標/3相交流変換器40に出力する。
 ベクトル回転器・3相交流/d-q座標変換器39は、電気角θreに基づいて、電流検出器38からの3相帰還電流値iu,iv,iwを、q軸電機子電流iqaとd軸電機子電流idaに変換する。
 q軸電機子電流制御器34は、q軸電機子電流指令とq軸電機子電流iqaとの偏差を取り、q軸電機子電圧の指令値vqaを演算し、この指令値vqaを位置速度推定器33とベクトル回転器・d-q座標/3相交流変換器40とに出力する。
 d軸電機子電流制御器35は、d軸電機子電流指令とd軸電機子電流idaとの偏差を取り、d軸電機子電圧の指令値vdaを演算し、この指令値vdaを位置速度推定器33とベクトル回転器・d-q座標/3相交流変換器40とに出力する。
 ベクトル回転器・d-q座標/3相交流変換器40は、q軸電機子電流制御器34及びd軸電機子電流制御器35からの電圧指令vda,vqa及び位相検出器36からの電気角θreに基づいて、3相電圧指令vu,vv,vwを出力する。電力変換器15は、これらの電圧指令に基づいて、出力電圧をPWM制御し、リニア同期モータ6の電機子6aに流れる電流を制御する。
 制御切替器41は、リニア同期モータ6の電機子6aの移動速度に基づいて、センサレスベクトル制御又はオープンループ制御の何れを行うかを決定し、その結果としての制御指令を位置制御器31、速度制御器32及び位置速度推定器33に出力する。
 基本的に、センサレスベクトル制御で電機子6aの移動を制御した方が、本実施形態に係るオープンループ制御で制御するよりも、電機子6aはスムーズに移動する。しかし、電機子6aに移動速度が低速になるとセンサレスベクトル制御による制御が効かなくなる。つまり、センサレスベクトル制御による位置の推定及び速度の推定は、例えば、電機子6aの移動速度に応じて電機子6aに発生する誘導起電力を、電機子6aへの印可電圧又は帰還電流に基づいて求めることにより行うのであるが、電機子6aが停止していたり、移動速度があまりにも低いと、誘導起電力を検知することができない。そうすると、電機子6aから発生する磁界を電機子6aの移動に同期させて移動させることができない。
 従って、制御切替器41は、予め設定された速度αで制御の切り替えを行う。この速度αは、電機子6aの移動をセンサレスベクトル制御によって電機子6aから発生する磁界の移動に同期して移動させることができる速度範囲内において、予め設定された速度であり、テストやシミュレーション等の結果に基づいて設定される。センサレスベクトル制御による制御域を増やしたい場合には、電機子6aの移動が制御可能な範囲で速度αを低めに設定する。
 図6は、電機子6aを、マグネットプレート6bの長手方向一端から他端まで移動させた場合における移動時間と移動速度との関係を示すグラフであり、同図において、横軸が移動時間であり、縦軸が移動速度である。
 図6に示すように、電機子6aは、移動時間=0の時点の停止した状態から移動を開始し、時間t2の時点まで加速していき、時間t2~t3の間は等速度で移動する。その後、電機子6aは減速し、時間teの時点で停止する。ここで、電機子6aが移動を開始してから移動速度が速度αに達する時間t1までの間は、オープンループ制御を行う。次いで、時間t1からt2及びt2からt3までの間は、センサレスベクトル制御を行う。そして、時間t3から移動速度が速度αに落ちる時間t4までの間は、引き続きセンサレスベクトル制御を行い。時間t4からteまでの間は、オープンループ制御を行う。
 つまり、制御切替器41は、電機子6aの移動速度が速度α以上である場合には、センサレスベクトル制御指令を出力し、電機子6aの移動速度が速度α未満である場合には、オープンループ制御指令を出力する。
 ここで、移動速度が速度α以上である場合には、位置速度推定器33により電機子6aの位置及び移動速度が推定することができるので、制御切替器41は、位置速度推定器33から出力された推定位置ω^rmに基づいて、どちらの制御を行うかを決定する。なお、推定位置ω^rmは、電機子6aの移動速度と等価である。
 一方、移動速度が速度α未満である場合には、位置速度推定器33により電機子6aの位置及び移動速度を正確に推定することができない可能性があるので、制御切替器41は、上位制御器からの位置指令θrmに基づいて、電機子6aの移動速度を算出する。本実施形態に係るオープンループ制御は、位置指令θrmに対応した電気角θreを生成し、連続的に供給される位置指令θrmに従って電気角θreが連続的に変化することによって、この電気角θreの変化と同期して電機子6aが移動するので、位置指令θrmから電機子6aの移動速度が求められる。
 なお、電機子6aの初期位置をドライバ3に認識させる方法としては、磁極センサを用いる方法がある。また、磁極センサを用いることなく、設定された位置に電機子6aを強制的に移動させ、これによって電機子6aの初期位置の認識に代えることもできる。これは、例えば、電機子6aのU相のコイルの中心を基準として、所定の電気角でドライバ3から電機子6aに直流電流を供給することによって行われる。このときの電気角は任意に設定可能である。直流電流によって電機子6aは励磁され、U相のコイルの中心から前記の電気角だけ離れた位置のマグネットプレート6bに対向する面にS極の磁極が現れる。このS極とマグネットプレート6bのN極とが引き合うことにより電機子6aが移動し、電機子6aに現れたS極の位置がマグネットプレート6bのN極の位置に一致したところで電機子6aは停止する。これによって電機子6aを大本の初期位置から設定された位置へ移動させるのである。このとき、電機子6aとマグネットプレート6bとの磁極の位相ずれは最大で±180°であるので、電機子6aは、最大でマグネットプレート6bの磁極ピッチの半分の距離を移動することになる。
 [1.4 ドライバの動作]
 次に、本実施形態に係るドライバ3の動作について、図7を用いて説明する。ここで、図7は、第1実施形態に係るドライバ3の制御切替器41の処理例を示すフローチャートである。
 図7に示すように、制御切替器41は、電機子6aの移動速度が速度α以上であるか否かを判定する(ステップS1)。このとき、制御切替器41は、移動速度が速度α以上である場合には(ステップS1:YES)、センサレスベクトル制御を行うと決定し(ステップS2)、ステップS1に移行する。
 ここで、制御切替器41は、センサレスベクトル制御指令を位置制御器31、速度制御器32及び位置速度推定器33に出力する。すると、位置速度推定器33は、推定位置θ^rm及び推定速度ω^rmを演算し、推定位置θ^rmを位置制御器31及び位相検出器36に出力するとともに、推定速度ω^rmを制御切替器41及び速度制御器32に出力する。位置制御器31は、位置指令θrmと推定位置θ^rmとに基づいて速度指令ωrmを速度制御器32に出力する一方、位相検出器36への位置指令θrmの出力は停止状態とさせる。速度制御器32は、速度指令ωrmと推定速度ω^rmとに基づいてq軸電流指令iqaを演算する。また、速度制御器32は、d軸電流指令iqaを0に設定する。位相検出器36は、推定位置θ^rmに対応した電気角θreを算出する。このように、ドライバ3は、センサレスベクトル制御を行うのである。
 一方、制御切替器41は、移動速度が速度α未満である場合には(ステップS1:NO)、オープンループ制御を行うと決定し(ステップS3)、ステップS1に移行する。
 ここで、制御切替器41は、オープンループ制御指令を位置制御器31、速度制御器32及び位置速度推定器33に出力する。すると、位置速度推定器33は、動作を停止させる。位置制御器31は、位置指令θrmを位相検出器36に出力する一方、速度指令ωrmの演算を停止させる。速度制御器32は、q軸電流指令iqaを0に設定するとともに、d軸電流指令iqaを定格電流に設定する。位相検出器36は、位置指令θrmに対応した電気角θreを算出する。このように、ドライバ3は、1.2項で説明したオープンループ制御を行うのである。このようにして、制御切替器41は、制御ループを繰り返す。
 以上説明したように、本実施形態によれば、切替制御部41が、電機子6aの移動速度が速度α以上である場合には、センサレスベクトル制御を行うように各部を制御し、電機子6aの移動速度が速度α未満である場合には、位相検出器36が、位置指令に対応したd軸の電気角を生成し、q軸電機子電流制御器34及びd軸電機子電流制御器35が、d軸電機子に電流が流れ、且つq軸電機子に電流が流れないように、d軸電機子電流及びq軸電機子電流を制御するように、各部を制御するので、電機子6aの移動速度が速度α以上における等速域ではセンサレスベクトル制御で電機子6aの移動を滑らかに移動させることができ、且つ、電機子6aの移動速度が速度α未満となる停止制御や低速域での制御も行うことができる。また、電機子6a停止状態からの復帰の制御も可能となる。
 これは、本実施形態に係るオープンループ制御では、マグネットプレート6bのN極が、位相検出器36が生成した電気角に対応したd軸電機子電流によって生じる磁極に相対的に引き付けられることによって電機子6aが移動するので、位置指令により電気角の回転速度が制御されることによって、停止制御、低速域での制御及び復帰時の制御も可能となるのである。そして、位置指令に対応した停止制御が行われるので、所望の位置に停止させることもできる。
 [2.第2実施形態]
 次に、第2実施形態について用いて説明する。
 [2.1 リニアモータシステムの構成]
 まず、第2実施形態に係るリニアモータシステム10の構成を、図8を用いて説明する。ここで、図8は、第2実施形態に係るリニアモータシステム10の概要構成を示す図であり、同図において、図1と同様の要素については同様の符号を付してある。
 図1に示すように、リニアモータシステム10は、アクチュエータ2と、位置情報切替装置9と、制御装置としてのドライバ30と、を備えている。そして、アクチュエータ2は、スライダ4と、スライダ4をスライド自在に支持するベース5と、スライダ4に取り付けられたリニアスケール7と、リニアスケール7を読み取りスライダ4(に取り付けられた電機子)の位置を検出する複数の位置センサ8と、を備えている。
 ここで、第1実施形態と異なる点は、リニアスケール7、位置センサ8及び位置情報切替装置9が追加されている点である。リニアスケール7はスライダ4の側面に取り付けられ、スリットや磁極などがベース5の長手方向に沿って一定間隔で配列されている。
 各位置センサ8は、光学的又は磁気的にリニアスケール7を読み取り、電機子6aの位置を示す位置情報をそれぞれエンコーダケーブル52を介して位置情報切替器9に出力する。本実施形態においては、スライダ4の移動可能な範囲のうち、事前に計画されている停止位置を含むその停止位置前後の位置決めするための領域(以下、「停止領域」という)のみリニアスケール7を読み取ることができるように位置センサ8が取り付けられる。図8に示す例では、スライダ4の移動可能な範囲の両端にそれぞれ位置センサ8が取り付けられているとともに、やや中央よりに1箇所位置センサ8が取り付けられている。つまり、アクチュエータ2においては、3箇所の停止領域が設けられている。
 停止領域以外の領域は、スライダ4が基本的に通過するだけの領域である(以下、「通過領域」という)。ただし、通過領域であっても、必要に応じてスライダ4を停止させることは可能である。ここで、やや中央よりに設けられた停止領域においては、スライダ4がその移動手順により、停止する場合と通過する場合とがある。
 第1実施形態においては、センサレスベクトル制御又はオープンループ制御により電機子6aに供給される電流が制御されていたが、本実施形態においては、スライダ4が停止領域内に位置しているときには、位置センサ8からの位置情報に基づいてベクトル制御を行う。そして、スライダ4が通過領域内に位置しているときに、センサレスベクトル制御又はオープンループ制御を行う。
 位置情報切替器9は、スライダ4が何れかの停止領域に入ると、ドライバ30から出力される制御信号により、その停止領域に取り付けられた位置センサ8から出力される位置情報をエンコーダケーブル53を介してドライバ30に出力する。
 [2.2 ドライバの構成]
 次に、本実施形態に係るドライバ30のについて、図9を用いて説明する。ここで、図9は、第2実施形態に係るドライバ30の概要構成の一例を示すブロック図であり、同図において、図5と同様の要素については同様の符号を付してある。
 図9に示すように、ドライバ30は、位置制御器31と、速度制御器32と、位置速度推定器33と、電流制御手段としてのq軸電機子電流制御器34及びd軸電機子電流制御器35と、位相生成手段としての位相検出器36と、電力変換器37と、電流検出手段としての電流検出器38と、3相交流/d-q座標変換手段としてのベクトル回転器・3相交流/d-q座標変換器39と、ベクトル回転器・d-q座標/3相交流変換器40と、センサレスベクトル制御、オープンループ制御及びベクトル制御を切替制御する選択手段としての制御切替器41と、位置検出器42と、速度検出器43と、を備えている。
 ここで、位置制御器31、速度制御器32、q軸電機子電流制御器34、d軸電機子電流制御器35、位相検出器36、電力変換器37、電流検出器38、ベクトル回転器・3相交流/d-q座標変換器39、ベクトル回転器・d-q座標/3相交流変換器40、位置検出器42及び速度検出器43は、フィードバック制御手段を構成する。
 第1実施形態と異なる点は、位置検出器42及び速度検出器43が追加されている点である。位置情報切替器9から出力された位置情報は位置検出器42及び速度検出器43に供給されるとともに、位相検出器36にも供給される。位置検出器42は、位置情報に基づいて電機子6aの位置を示す位置帰還値θrmを演算し、この位置帰還値θrmを、位置制御器31と制御切替器41とに出力する。位置検出器42は、位置情報に基づいて電機子6aの移動速度を示す速度帰還値ωrmを演算し、この位置帰還値ωrmを、速度制御器32と制御切替器41とに出力する。
 位置制御器31は、制御切替器41からの制御指令としてベクトル制御指令が供給された場合には、上位制御装置から出力された位置指令θrmと、速度検出器43から出力された位置帰還値θrmと、の偏差に基づいて速度指令ωrmを演算し、この速度指令ωrmを速度制御器32に出力する。
 速度制御器32は、制御切替器41からの制御指令としてベクトル制御指令が供給された場合には、位置制御器31から出力された速度指令ωrmと、位置検出器42から出力された速度帰還値ωrmと、の偏差に基づいて推力指令を演算し、更にq軸電流指令iqaを演算する。
 制御切替器41は、リニア同期モータ6の電機子6aの現在位置及び移動速度とに基づいて、センサレスベクトル制御、オープンループ制御又はベクトル制御の何れを行うかを決定し、その結果としての制御指令を位置制御器31、速度制御器32及び位置速度推定器33に出力する。この制御指令には、センサレスベクトル制御指令、オープンループ制御指令及びベクトル制御がある。
 本実施形態においては、電機子6aが停止領域に位置しているときにはベクトル制御を行うために、図示しないメモリに、停止領域の範囲と電機子6aの位置との関係(例えば、座標x1~x2が第1の停止領域、座標x3~x4が第2の停止領域等)を示す停止領域座標データが記憶されている。制御切替器41は、電機子6aの現在位置を停止領域座標データと比較することにより、電機子6aが停止領域に位置しているか否かを判定する。ここで、制御切替器41は、電機子6aの現在位置を、センサレスベクトル制御を行っているときには推定位置θ^rmから、オープンループ制御を行っているときには位置指令θrmから、ベクトル制御を行っているときには位置帰還値θrmから得るようになっている。また、制御切替器41は、ベクトル制御を行っているときには、電機子6aの移動速度を速度帰還値ωrmから得る。
 また、制御切替部41は、停止領域座標データに基づいて電機子6aの現在位置が何れかの停止領域に入っていると判断した場合には、複数の位置センサ8のうち電機子6aが位置している停止領域に取り付けられた位置センサ8からの位置情報を出力させるよう、位置情報切替器9を制御する。
 上記以外の各部の構成及び機能は、第1実施形態の場合と同様であるので、詳細な説明は省略する。
 [2.3 ドライバの動作]
 次に、本実施形態に係るドライバ30の動作について、図10を用いて説明する。図10は、第2実施形態に係るドライバ30の制御切替器41の処理例を示すフローチャートであり、同図において、図7と同様の要素については同様の符号を付してある。
 図10に示すように、制御切替器41は、電機子6aの現在位置が停止領域に入っているか否かを判定する(ステップS4)。このとき、制御切替器41は、電機子6aの現在位置が停止領域に入っている場合には(ステップS4:YES)、ベクトル制御を行うと決定し(ステップS5)、ステップS1に移行する。
 ここで、制御切替器41は、ベクトル制御指令を位置制御器31、速度制御器32及び位置速度推定器33に出力する。すると、位置速度推定器33は、動作を停止させる。位置制御器31は、位置指令θrmと位置帰還値θrmとに基づいて速度指令ωrmを速度制御器32に出力する一方、位相検出器36への位置指令θrmの出力は停止状態とさせる。速度制御器32は、速度指令ωrmと速度帰還値ωrmとに基づいてq軸電流指令iqaを演算する。また、速度制御器32は、d軸電流指令iqaを0に設定する。位相検出器36は、位置情報切替器9からの位置情報に対応した電気角θreを算出する。このように、ドライバ30は、ベクトル制御を行うのである。
 一方、制御切替器41は、電機子6aの現在位置が停止領域に入っていない場合、すなわち、電機子6aが通過領域に入っている場合には(ステップS4:NO)、電機子6aの移動速度が速度α以上であるか否かを判定する(ステップS1)。このとき、制御切替器41は、移動速度が速度α以上である場合には(ステップS1:YES)、センサレスベクトル制御を行うと決定し(ステップS2)、ステップS1に移行する。このときの各部の動作は、第1実施形態の場合と同様である。
 一方、制御切替器41は、移動速度が速度α未満である場合には(ステップS1:NO)、オープンループ制御を行うと決定し(ステップS3)、ステップS1に移行する。このときの各部の動作も、第1実施形態の場合と同様である。このようにして、制御切替器41は、制御ループを繰り返す。
 以上説明したように、本実施形態によれば、制御切替器41が、電機子6aの現在位置が停止領域に入っているときには、センサレスベクトル制御及びオープンループ制御に代えて、位置センサ8により検出された電機子6aの位置に基づいてベクトル制御を行うので、停止領域での電機子6aの停止精度を高めることができる。その一方で、通過領域を通過させるだけの場合にはセンサレスベクトル制御によって電機子6aを滑らかに移動させることができる一方で、通過領域で電機子6aを非常停止等させる場合でも所望の位置へ停止制御を行うことができる。また、非常停止等により電機子6aが通過領域内で一度停止しても、復帰させることができる。
 なお、本実施形態においては、電機子6aの現在位置が停止領域に入っているときには必ずベクトル制御を行うようにしていたが、例えば、電機子6aを停止領域内で停止させるときにのみベクトル制御を行うようにしてもよい。このとき、電機子6aを停止領域内で停止させない場合には、例えば電機子6aの移動速度に応じて、センサレスベクトル制御又はオープンループ制御を行えばよい。
 また、本実施形態においては、リニアスケール7をスライダ4に取り付けるとともに、位置センサ8をベース5に取り付けていたが、リニアスケール7をベース5の停止領域に取り付けるとともに、位置センサ8をスライダ4に取り付けてもよい。この場合であれば、位置センサ8は1個で済ますことができ、また、リニアスケール7を通過領域に取り付ける必要がない分、コストを削減することができる。
 また、上記各実施形態においては、電機子6aをスライダ4に取り付けるとともに、マグネットプレート6bをベース5に取り付けていたが、電機子6aをベース5に取り付けるとともに、マグネットプレート6bをスライダ4に取り付けてもよい。
 また、上記各実施形態においては、フラットタイプのリニア同期モータに本発明を適用していたが、ロッドタイプのリニア同期モータに適用してもよい。
 1、10 リニアモータシステム、 2  アクチュエータ、 3、30  ドライバ、 4  スライダ、 5  ベース、 6  リニア同期モータ、 6a  電機子、
 6b  マグネットプレート、 7  リニアスケール、 8  位置センサ、 9 位置情報切替器、 31  位置制御器、 32  速度制御器、 33  位置速度推定器、  34  q軸電流制御器、 35  d軸電流制御器、  36 位相検出器、 37  電力変換器、 38  電流検出器、 39 ベクトル回転器・3相交流/d-q座標変換器、 40  ベクトル回転器・d-q座標/3相交流変換器、 41 制御切替器、 42  位置検出器、 43  速度検出器

Claims (4)

  1.  電機子から発生する磁界の移動によって可動子が移動するリニア同期モータの当該電機子に流れる電流を制御するリニア同期モータ制御方法において、
     前記可動子の移動速度が、所定のセンサレスベクトル制御によって前記可動子を前記電機子から発生する磁界の移動に同期して移動させることができる範囲内の予め定められた所定速度より速い場合には、当該センサレスベクトル制御を用いて前記電機子に流れる電流を制御し、
     前記可動子の移動速度が前記所定速度よりも遅い場合には、界磁の作る磁束の方向をd軸とし、d軸に対してπ/2進んだ位相をq軸とするd-q座標において、位置指令に対応したd軸の電気角を生成し、d軸電機子に電流が流れ、且つq軸電機子に電流が流れないように、d軸電機子電流及びq軸電機子電流を制御することを特徴とするリニア同期モータ制御方法。
  2.  請求項1に記載のリニア同期モータ制御方法において、
     前記可動子の移動可能範囲のうち、リニアスケールを読み取り前記可動子の位置を検出する位置センサによって当該位置を検出することができる範囲を前記可動子が移動しているときに当該可動子を停止させる場合には、当該位置センサによって検出された前記可動子の位置に基づいて前記電機子に流れる電流を制御することを特徴とするリニア同期モータ制御方法。
  3.  電機子から発生する磁界の移動によって可動子が移動するリニア同期モータの当該電機子に流れる電流を制御する制御装置において、
     所定のセンサレスベクトル制御を用いて前記電機子に流れる電流を制御するセンサレスベクトル制御手段と、
     オープンループ制御を用いて前記電機子に流れる電流を制御するオープンループ制御手段と、
     前記電機子に流れる電流を制御させる制御手段を選択する選択手段と、
     を備え、
     前記オープンループ制御手段は、
     界磁の作る磁束の方向をd軸とし、d軸に対してπ/2進んだ位相をq軸とするd-q座標において、位置指令に対応したd軸の電気角を生成する位相生成手段と、
     位置指令に対応したd軸の電気角を生成する位相生成手段と、
     前記電機子に流れる3相交流電流を検出する電流検出手段と、
     前記位相生成手段が生成した前記電気角に基づいて、前記電流検出手段が検出した3相交流電流を、d軸電機子電流及びq軸電機子電流に座標変換する3相交流/d-q座標変換手段と、
     d軸電機子に電流が流れ、且つq軸電機子に電流が流れないように、d軸電機子電流及びq軸電機子電流を制御する電流制御手段と、
     を有し、
     前記選択手段は、
     前記可動子の移動速度が、前記センサレスベクトル制御によって前記可動子を前記電機子から発生する磁界の移動に同期して移動させることができる範囲内の予め定められた所定速度より速い場合には、前記センサレスベクトル制御手段を選択し、前記可動子の移動速度が前記所定速度よりも遅い場合には、前記オープンループ制御手段を選択することを特徴とする制御装置。
  4.  請求項3に記載の制御装置において、
     リニアスケールを読み取り前記可動子の位置を検出する位置センサによって検出された当該位置に基づいて、フィードバック制御を用いて前記電機子に流れる電流の制御を行うフィードバック制御手段を更に備え、
     前記選択手段は、
     前記可動子の移動可能範囲のうち、前記位置センサによって当該位置を検出することができる範囲を前記可動子が移動しているときに当該可動子を停止させる場合には、前記フィードバック制御手段を選択することを特徴とする制御装置。
PCT/JP2009/064617 2008-08-28 2009-08-21 リニア同期モータ制御方法及び制御装置 WO2010024190A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112009002086T DE112009002086T5 (de) 2008-08-28 2009-08-21 Verfahren und Steuervorrichtung zur Steuerung eines Linearsynchronmotors
JP2010526676A JP5487105B2 (ja) 2008-08-28 2009-08-21 リニア同期モータ制御方法及び制御装置
US13/060,952 US8310182B2 (en) 2008-08-28 2009-08-21 Linear synchronous motor control method and control apparatus
CN200980133824.3A CN102171923B (zh) 2008-08-28 2009-08-21 线性同步电机控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008220022 2008-08-28
JP2008-220022 2008-08-28

Publications (1)

Publication Number Publication Date
WO2010024190A1 true WO2010024190A1 (ja) 2010-03-04

Family

ID=41721358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064617 WO2010024190A1 (ja) 2008-08-28 2009-08-21 リニア同期モータ制御方法及び制御装置

Country Status (6)

Country Link
US (1) US8310182B2 (ja)
JP (1) JP5487105B2 (ja)
CN (1) CN102171923B (ja)
DE (1) DE112009002086T5 (ja)
TW (1) TWI458251B (ja)
WO (1) WO2010024190A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053370A1 (ja) * 2010-10-19 2012-04-26 Thk株式会社 測定装置及び測定方法
JP2018046593A (ja) * 2016-09-12 2018-03-22 コニカミノルタ株式会社 永久磁石同期電動機の制御装置、制御方法、および画像形成装置
JP2019022403A (ja) * 2017-07-21 2019-02-07 株式会社東芝 電動機用インバータ回路の評価装置および評価方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8264192B2 (en) 2009-08-10 2012-09-11 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
US8698433B2 (en) 2009-08-10 2014-04-15 Emerson Climate Technologies, Inc. Controller and method for minimizing phase advance current
US8493014B2 (en) 2009-08-10 2013-07-23 Emerson Climate Technologies, Inc. Controller and method for estimating, managing, and diagnosing motor parameters
US8508166B2 (en) 2009-08-10 2013-08-13 Emerson Climate Technologies, Inc. Power factor correction with variable bus voltage
US8264860B2 (en) * 2009-08-10 2012-09-11 Emerson Climate Technologies, Inc. System and method for power factor correction frequency tracking and reference generation
US8476873B2 (en) 2009-08-10 2013-07-02 Emerson Climate Technologies, Inc. System and method for current balancing
US8344706B2 (en) * 2009-08-10 2013-01-01 Emerson Climate Technologies, Inc. System and method for rejecting DC current in power factor correction systems
US8358098B2 (en) * 2009-08-10 2013-01-22 Emerson Climate Technologies, Inc. System and method for power factor correction
US8406021B2 (en) * 2009-08-10 2013-03-26 Emerson Climate Technologies, Inc. System and method for reducing line current distortion
JP5711493B2 (ja) * 2010-09-30 2015-04-30 Thk株式会社 リニアモータの制御装置、及びリニアモータ装置
ES2788513T3 (es) * 2012-01-12 2020-10-21 Mbda Uk Ltd Método y aparato para hacer funcionar un sistema de accionamiento eléctrico
US8786141B2 (en) * 2012-04-06 2014-07-22 National Instruments Corporation Magnetic linear actuator
US9634593B2 (en) 2012-04-26 2017-04-25 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control
US8901869B2 (en) * 2012-07-31 2014-12-02 Caterpillar Inc. Hybrid closed loop speed control using open look position for electrical machines controls
EP2883302B1 (en) 2012-08-10 2020-09-30 Emerson Climate Technologies, Inc. Motor drive control using pulse-width modulation pulse skipping
DE102012025323A1 (de) * 2012-12-22 2014-06-26 Festo Ag & Co. Kg Verfahren zum Betreiben einer Linearmotoranordnung und Linearmotoranordnung
US9897985B2 (en) * 2013-06-12 2018-02-20 David Zeltzer Energy exchange systems having actuators with multi-parametric control
JP6401495B2 (ja) * 2014-05-02 2018-10-10 キヤノン株式会社 モータ制御装置
CN108702122B (zh) 2015-10-29 2022-06-21 超级高铁技术公司 变频驱动系统
JP6737017B2 (ja) * 2016-07-06 2020-08-05 富士電機株式会社 制御装置、制御方法および制御プログラム
JP2018102022A (ja) * 2016-12-19 2018-06-28 コニカミノルタ株式会社 永久磁石同期電動機の制御装置、制御方法、および画像形成装置
DE102017208093A1 (de) 2017-05-15 2018-11-15 Audi Ag Verfahren zum Betreiben einer elektrischen Maschine sowie elektrische Maschine
CN107026588A (zh) * 2017-05-27 2017-08-08 北京无线电测量研究所 一种电机驱动器、消除速度波动的控制系统及其控制方法
US11165372B2 (en) * 2017-09-13 2021-11-02 Rockwell Automation Technologies, Inc. Method and apparatus to characterize loads in a linear synchronous motor system
JP6966344B2 (ja) * 2018-02-01 2021-11-17 株式会社日立産機システム 磁極位置推定方法及び制御装置
CN110690836B (zh) * 2018-07-04 2021-04-30 中车株洲电力机车研究所有限公司 一种直线同步电机参数的测量方法及系统
JP7070330B2 (ja) * 2018-10-26 2022-05-18 株式会社デンソー 回転電機の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290385A (ja) * 1986-06-09 1987-12-17 Hitachi Ltd チップマウンタ部品供給テーブル駆動用リニア直流モータの制御装置
JP2004023936A (ja) * 2002-06-19 2004-01-22 Yaskawa Electric Corp リニアモータの位置決め装置
JP2004329604A (ja) * 2003-05-08 2004-11-25 Toshiba Corp 洗濯機の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223587A (ja) 2001-01-24 2002-08-09 Mitsubishi Heavy Ind Ltd リニアモータの制御装置
JP3888082B2 (ja) * 2001-06-08 2007-02-28 株式会社豊田自動織機 モータ装置およびその制御方法
JP2007089248A (ja) * 2005-09-20 2007-04-05 Sanyo Electric Co Ltd 電動機の駆動装置
JP4566100B2 (ja) * 2005-09-20 2010-10-20 三洋電機株式会社 電動機の駆動装置
JP5167631B2 (ja) * 2006-11-30 2013-03-21 株式会社デンソー モータの制御方法及びそれを利用するモータ制御装置
US7564206B2 (en) * 2006-12-21 2009-07-21 Kabushiki Kaisha Toshiba Motor positioning unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290385A (ja) * 1986-06-09 1987-12-17 Hitachi Ltd チップマウンタ部品供給テーブル駆動用リニア直流モータの制御装置
JP2004023936A (ja) * 2002-06-19 2004-01-22 Yaskawa Electric Corp リニアモータの位置決め装置
JP2004329604A (ja) * 2003-05-08 2004-11-25 Toshiba Corp 洗濯機の制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053370A1 (ja) * 2010-10-19 2012-04-26 Thk株式会社 測定装置及び測定方法
JP2012108094A (ja) * 2010-10-19 2012-06-07 Thk Co Ltd 測定装置、及び測定方法
CN103154688A (zh) * 2010-10-19 2013-06-12 Thk株式会社 测量装置及测量方法
CN103154688B (zh) * 2010-10-19 2014-08-20 Thk株式会社 测量装置及测量方法
EP2631622A4 (en) * 2010-10-19 2017-07-12 THK Co., Ltd. Measurement device, and measurement method
JP2018046593A (ja) * 2016-09-12 2018-03-22 コニカミノルタ株式会社 永久磁石同期電動機の制御装置、制御方法、および画像形成装置
JP2019022403A (ja) * 2017-07-21 2019-02-07 株式会社東芝 電動機用インバータ回路の評価装置および評価方法

Also Published As

Publication number Publication date
JPWO2010024190A1 (ja) 2012-01-26
TW201018072A (en) 2010-05-01
JP5487105B2 (ja) 2014-05-07
US20110156619A1 (en) 2011-06-30
US8310182B2 (en) 2012-11-13
TWI458251B (zh) 2014-10-21
DE112009002086T5 (de) 2011-07-07
CN102171923A (zh) 2011-08-31
CN102171923B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5487105B2 (ja) リニア同期モータ制御方法及び制御装置
US8653766B2 (en) Linear motor driving system and linear motor control method
US9219432B2 (en) Control systems and methods for angle estimation of permanent magnet motors
JP5224372B2 (ja) 永久磁石同期モータの磁極位置検出方法
EP2238679B1 (en) Motor, apparatus for controlling motor, and method for starting motor
JP2008245411A (ja) 永久磁石同期モータ制御装置およびその方法
CN103918173B (zh) 同步电动机控制系统
JP4367279B2 (ja) 同期モータの制御装置
JP2002272175A (ja) モータの初期位相検出方式、検出方法、及び、制御器
JP4056237B2 (ja) 同期機の制御装置
JP3971978B2 (ja) 電動機の制御装置
JP5479094B2 (ja) 同期モータの制御方法及び制御装置
Leidhold et al. Sensorless position-control method based on magnetic saliencies for a Long-Stator Linear Synchronous-Motor
JP5426221B2 (ja) 可変電流路における電流検出装置及び可変磁束モータの制御方法
JP4894125B2 (ja) 永久磁石同期電動機の位置決め方法
JPH10323098A (ja) 同期電動機の初期励磁方法
JP7585845B2 (ja) モータ制御装置
JP7585846B2 (ja) モータ制御装置
JP2005124359A (ja) 同期電動機の電流制御方法および制御装置
WO2022172472A1 (ja) モータ制御装置
WO2022172473A1 (ja) モータ制御装置
JP2019161875A (ja) モータ制御装置
Shinnaka A new position‐sensorless position control method for high‐speed spindle systems
JP2024122514A (ja) 制御装置
JP2022143391A (ja) モータ制御装置、モータ制御方法、及びモータ駆動システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133824.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526676

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13060952

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09809841

Country of ref document: EP

Kind code of ref document: A1