WO2010021407A1 - 塩素の製造方法および触媒 - Google Patents

塩素の製造方法および触媒 Download PDF

Info

Publication number
WO2010021407A1
WO2010021407A1 PCT/JP2009/064895 JP2009064895W WO2010021407A1 WO 2010021407 A1 WO2010021407 A1 WO 2010021407A1 JP 2009064895 W JP2009064895 W JP 2009064895W WO 2010021407 A1 WO2010021407 A1 WO 2010021407A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrogen chloride
reaction
ruthenium oxide
oxygen
Prior art date
Application number
PCT/JP2009/064895
Other languages
English (en)
French (fr)
Inventor
関航平
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US13/059,829 priority Critical patent/US9889431B2/en
Priority to CN200980132599.1A priority patent/CN102131731B/zh
Priority to BRPI0916916A priority patent/BRPI0916916A2/pt
Priority to EP09808340.5A priority patent/EP2336084B1/en
Publication of WO2010021407A1 publication Critical patent/WO2010021407A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride

Definitions

  • the present invention relates to a method for producing chlorine in which hydrogen chloride is oxidized with oxygen in the presence of a catalyst, and a catalyst suitable for this production method.
  • chlorine is useful as a raw material for vinyl chloride, phosgene and the like, and is obtained by oxidizing hydrogen chloride with oxygen in the presence of a catalyst.
  • the catalyst used for the oxidation reaction of hydrogen chloride with oxygen is, for example, a BET specific surface area of 1 to 250 m 2 / g, and a pore size distribution (pore distribution) measured by a mercury pressure porosity measurement method (mercury intrusion method).
  • the catalyst described in Patent Document 1 is designed to exhibit a relatively sharp pore distribution curve as can be seen from the fact that the upper limit of the half width of the peak of the pore distribution curve is defined.
  • a catalyst was considered advantageous.
  • the catalyst has excellent mechanical strength and was suitable for the oxidation reaction of hydrogen chloride in the fluidized bed reaction method, but when used for the oxidation reaction of hydrogen chloride in the fixed bed reaction method As the reaction time elapses, catalyst sintering (sintering) is likely to occur due to thermal history, making it difficult to maintain sufficient catalytic activity. As a result, the conversion rate of hydrogen chloride decreases with time. There was a problem that it would end up.
  • An object of the present invention is to provide a chlorine production method capable of preventing sintering during oxidation of hydrogen chloride with oxygen and exhibiting sufficient catalytic activity for a long time to maintain a good hydrogen chloride conversion. And a catalyst used therefor.
  • the present inventor has intensively studied to solve the above problems. As a result, the inventors have found that a catalyst designed to show a broad pore distribution curve to some extent is more effective than the conventional catalyst, and completed the present invention. That is, this invention consists of the following aspects.
  • a method for producing chlorine which is a method for producing chlorine by oxidizing hydrogen chloride with oxygen in the presence of a catalyst, wherein the catalyst is a catalyst satisfying the following (i) and (ii).
  • the BET specific surface area is 1 to 250 m 2 / g.
  • the value of H / D is 0.6 to 1.5 when the half width of the peak obtained from the pore distribution curve measured by the mercury intrusion method is H and the average pore diameter is D. thing.
  • a catalyst used for an oxidation reaction of hydrogen chloride with oxygen which contains ruthenium oxide and satisfies the following (i) and (ii).
  • the BET specific surface area is 1 to 250 m 2 / g.
  • the value of H / D is 0.6 to 1.5 when the half width of the peak obtained from the pore distribution curve measured by the mercury intrusion method is H and the average pore diameter is D. thing.
  • the catalyst according to the above (5) which is formed into a spherical granular shape or a cylindrical shape.
  • FIG. 2 is a graph showing pore distribution curves of catalysts used in Example 1 and Comparative Example 1.
  • FIG. 2 is a graph showing pore distribution curves of catalysts used in Example 1 and Comparative Example 1.
  • the chlorine production method of the present invention produces chlorine by oxidizing hydrogen chloride with oxygen in the presence of a specific catalyst (hereinafter referred to as “specific catalyst”) that satisfies the following (i) and (ii). is there.
  • specific catalyst a specific catalyst
  • the BET specific surface area is 1 to 250 m 2 / g.
  • the value of H / D is 0.6 to 1.5 when the half width of the peak obtained from the pore distribution curve measured by the mercury intrusion method is H and the average pore diameter is D. thing.
  • the specific catalyst has a BET specific surface area of 1 to 250 m 2 / g, preferably 5 to 100 m 2 / g, and more preferably 10 to 25 m 2 / g.
  • the BET specific surface area is smaller than the above range, it becomes difficult to exert sufficient catalytic activity.
  • the BET specific surface area is larger than the above range, the thermal stability of the catalyst is deteriorated, and the heat history is increased with the lapse of the reaction time. Since the degree of sintering (sintering) of the catalyst due to increases, the catalytic activity tends to decrease with time.
  • the BET specific surface area in this invention can be measured by the method mentioned later in an Example, for example.
  • the specific catalyst has an H / D value when the half width of the peak obtained from the pore distribution curve measured by the mercury intrusion method is H and the average pore diameter is D. It is 0.6 to 1.5, preferably 0.6 to 1.2, and more preferably 0.7 to 1.0. If the value of H / D is less than 0.6, the number of contacts between the substances constituting the catalyst increases too much, resulting in an increase in mechanical strength, but the thermal stability of the catalyst deteriorates, and the reaction time elapses. Since the degree of sintering (sintering) of the catalyst due to the thermal history increases, the catalytic activity tends to decrease with time.
  • the pore distribution curve measured by the mercury intrusion method is a mercury intrusion amount at each pressure P obtained by measuring the pore distribution by the mercury intrusion method based on the Washburn equation shown below.
  • the pore diameter d (nm) at each pressure P is plotted on the horizontal axis
  • the mercury intrusion amount (dV / dlogD [cm 3 / g]) at each pressure P is plotted on the vertical axis.
  • the half width H of the peak obtained from the pore distribution curve is the two points at which the mercury intrusion amount corresponds to 1 ⁇ 2 of the mercury intrusion amount at the peak apex. It means the difference in pore diameter d.
  • the average pore diameter D means a value calculated based on the following formula.
  • the cumulative pore volume and the cumulative pore surface area in the following formula correspond to the mercury intrusion amount at each pressure P obtained by measurement of pore distribution by the mercury intrusion method and the respective pressures P determined by the above-mentioned Washburn formula. It can be calculated from the pore diameter d.
  • Average pore diameter D (nm) 4 V / S
  • the specific catalyst preferably further has a pore volume determined by a mercury intrusion method of 0.05 to 1.0 cm 3 / g, more preferably 0.1 to 0.4 cm 3 / g. Good.
  • the specific catalyst may be composed of only a catalytically active component or may be a catalyst active component supported on a carrier.
  • the catalytically active component in the specific catalyst is not particularly limited, and a catalyst for producing chlorine (for example, a copper catalyst) containing a known catalytically active component used when producing chlorine by oxidizing hydrogen chloride with oxygen. , Chromium catalyst, ruthenium catalyst, etc.).
  • a catalyst obtained by adding various compounds as a third component to copper chloride and potassium chloride is used as a copper catalyst, and a chromium catalyst is disclosed in JP-A 61-136902. No. 1, JP-A-61-275104, JP-A-62-113701, JP-A-62-270405, and the like.
  • ruthenium oxide as disclosed in JP-A-9-67103, JP-A-10-338502, JP-A-2000-281314, JP-A-2002-79093, JP-A-2002-292279, etc.
  • JP-A 61-136902. No. 1, JP-A-61-275104, JP-A-62-113701, JP-A-62-270405, and the like
  • a ruthenium catalyst particularly a catalyst containing ruthenium oxide.
  • the catalyst containing ruthenium oxide may be, for example, substantially composed of ruthenium oxide, or may be supported ruthenium oxide in which ruthenium oxide is supported on a support, or ruthenium oxide and alumina. It may be a composite oxide composed of other oxides such as titania, silica, zirconia, niobium oxide, etc., but a catalyst composed of supported ruthenium oxide (supported oxidation) in that high activity can be obtained even with a small amount of ruthenium oxide. Ruthenium catalyst) is more preferred.
  • the ruthenium oxide number in ruthenium oxide is usually +4, and ruthenium oxide is generally ruthenium dioxide (RuO 2 ), but other ruthenium oxides or other forms of ruthenium oxide are included. May be.
  • the supported ruthenium oxide catalyst can be obtained, for example, by supporting a ruthenium compound on a carrier and then calcining it in an oxygen-containing gas atmosphere.
  • the carrier for example, one or more of oxides or composite oxides of elements selected from aluminum, silicon, titanium, zirconium, and niobium, and activated carbon can be used. Among these, alumina, silica, titanium oxide, and zirconium oxide are preferable, and titanium oxide having a rutile crystal structure is particularly preferable.
  • the weight ratio of ruthenium oxide / support in the supported ruthenium oxide catalyst is usually from 0.1 / 99.9 to 20/80, preferably from 0.5 / 99.5 to 15/85. What is necessary is just to adjust the use ratio of a ruthenium compound and a support
  • the shape of the specific catalyst is not particularly limited, and for example, a spherical granular shape, a cylindrical shape, a triangular prism shape, a quadrangular prism shape, a polygonal prism shape, a ring shape, a honeycomb shape, or an appropriate size obtained by pulverization and classification after molding. Although it can be used in the form of granules, it is preferably formed into a spherical granular shape or a cylindrical shape.
  • a cylindrical shape, a triangular prism shape, a quadrangular prism shape, a polygonal column shape, a ring shape, and the like are often extruded or tableted, but in the case of extrusion, an extrudate is appropriately used. It may be used after being crushed and / or cut to length, and for the purpose of reducing the amount of powder when using the catalyst, etc. Chamfering can also be performed using a rotating device or the like.
  • the size of the specific catalyst is not particularly limited, but if it is too large, sufficient activity may not be obtained and the reaction may not proceed sufficiently. Therefore, the diameter is usually preferably 5 mm or less. .
  • the diameter of the catalyst (molded body) here means the diameter of a sphere in the case of spherical particles, the diameter of a cross section in the case of a cylindrical shape, and the maximum diameter of the cross section in other shapes.
  • the catalyst of the present invention includes, in particular, ruthenium oxide and satisfies the above (i) and (ii), and preferably is formed into a spherical granular shape or a cylindrical shape. is there.
  • Such a catalyst of the present invention is particularly suitable as a catalyst used for the oxidation reaction of hydrogen chloride with oxygen, and is particularly useful for an oxidation reaction by a fixed bed reaction method described later.
  • a method for satisfying the above (i) and (ii), particularly a method for satisfying the above (ii) will be described, but the specific catalyst is limited to this. Needless to say, it may be prepared by any method as long as the above (i) and (ii) are satisfied.
  • the catalyst When the catalyst is usually composed only of a catalytically active component, it is formed by molding a catalyst raw material containing the catalytically active component, and when the catalytically active component is supported on a carrier, The catalyst raw material containing the catalytic active component and the carrier raw material are mixed and molded, or the carrier raw material is molded, and then the obtained molded body is impregnated with the catalytic active component.
  • a method for forming the catalyst raw material or the carrier raw material methods such as extrusion and tableting are generally employed.
  • An example of a method for satisfying the above (i) and (ii), particularly the above (ii) is a method of adding an appropriate pore-imparting agent to the raw material of the catalyst or the carrier material. It is done.
  • a pore-imparting agent for example, after a pore-imparting agent is mixed with a powdery catalyst raw material or carrier raw material, the mixture is kneaded with water or the like, molded, fired, washed with water, and the like.
  • a pore imparting agent having a nonuniform particle size distribution.
  • the pore imparting agent include methylcellulose-based organic binders and water-soluble polymers, fibrous cellulose, inorganic salts such as ammonium chloride, sodium chloride and potassium chloride, carbon such as carbon black, activated carbon and carbon nanotubes.
  • pore-imparting agents Although only one kind of these pore-imparting agents may be used, in order to satisfy the above (ii), it is preferable to use two or more kinds in combination, and more preferably, two or more kinds having different particle diameters are selected. It is good.
  • the amount of pore-imparting agent used (the total amount when two or more types are used in combination) may be appropriately set so that the desired pores are formed, but is usually based on 100 parts by weight of catalyst raw material or carrier raw material. 0.1 to 30 parts by weight, preferably 0.5 to 20 parts by weight. If the amount of the pore imparting agent is too small, the H / D value is less than 0.6. Conversely, if the amount is too large, the value tends to exceed 1.5.
  • Another example of the method for satisfying the above (ii) is a method using a powder having a moderately uniform particle size distribution as a catalyst raw material or a carrier raw material used for molding.
  • a powdery catalyst raw material or carrier raw material having different average particle diameters is prepared, and these are mixed at an appropriate mixing ratio and then molded (hereinafter referred to as “mixing method”), a catalyst A method in which a precipitant is dropped into a solution containing a raw material or a carrier raw material, precipitation is caused by an action such as hydrolysis, and the precipitate obtained by performing filtration, drying, etc., if necessary, is fired and then molded (hereinafter referred to as a method) (Referred to as “precipitation method”).
  • the mixing method when preparing a powdery catalyst raw material or carrier raw material having different average particle diameters, for example, a plurality of commercially available powders having different average particle diameters may be mixed, or predetermined average particles may be mixed. You may make it grind
  • the conditions resulting from the particle size of the powder obtained by the precipitation method include, in addition to the dropping time of the precipitating agent, for example, pH control during hydrolysis, addition of an aggregation inhibitor such as ammonium sulfate, aging time, and generation of precipitated particles.
  • the precipitation method it is more preferable to mix a plurality of precipitates prepared under different conditions in order to obtain a powder having a non-uniform particle size distribution.
  • the type of precipitating agent to be used, the dropping time of the precipitating agent, and the like may be appropriately set according to the type and concentration of the catalyst raw material or the carrier raw material in the solution.
  • the method for satisfying the above (ii) there is a method for shortening the kneading time usually performed when the catalyst raw material or the carrier raw material is formed.
  • the method for producing chlorine according to the present invention is not particularly limited except that the reaction is carried out in the presence of the specific catalyst, and a technique and conditions in a conventionally known hydrogen chloride oxidation reaction with oxygen may be appropriately employed. However, it is preferable to carry out the reaction in a fixed bed reaction method in which the thermal stability of the catalyst is particularly required.
  • a fixed bed reaction system for example, hydrogen chloride gas and oxygen-containing gas are passed through a catalyst packed bed filled with the specific catalyst to oxidize hydrogen chloride.
  • the catalyst packed bed is, for example, a reaction tube provided with a temperature control means, only the specific catalyst, and, if necessary, an inert substance (alumina balls, etc.) and / or a carrier inert to the oxidation reaction of hydrogen chloride. It is formed by filling the contents formed by mixing with the filler formed by molding.
  • a raw material gas (a gas containing hydrogen chloride and a gas containing oxygen) may be circulated through one catalyst packed bed, but at least filled with different contents. It is also possible to use two or more catalyst packed beds that are either controlled or controlled at different temperatures, and sequentially feed the raw material gas through them. In any case, two or more kinds of the specific catalyst can be filled in one catalyst packed bed.
  • the content filled in one catalyst packed bed consists of only one type of the specific catalyst. Good.
  • the contents filled in each catalyst packed layer have the same or similar composition, for example, only the inert substance and / or the carrier is molded.
  • the ratio of these and the specific catalyst is preferably constant between the catalyst packing layers, and if two or more types of the specific catalyst are used in combination, the mixing ratio of each catalyst is It is preferable to make it constant between the filling layers.
  • a conventionally known apparatus may be used, and is not particularly limited.
  • it may be a single-tube gas-phase reaction apparatus provided with one reaction tube in the gas flow direction, or a multi-tube reaction apparatus provided with two or more reaction tubes in the gas flow direction.
  • Good In the case of using two or more catalyst packed beds, it may be a form provided with two or more temperature control means for controlling to different temperatures along the tube axis direction of one reaction tube, or two or more reactions Each pipe may be provided with a temperature control means.
  • the upper part and / or the lower part of the catalyst packed bed may be filled with an inert substance.
  • the inert substance can be provided as a partition between the two layers.
  • the gas containing hydrogen chloride is not particularly limited.
  • a gas generated by a reaction between hydrogen and chlorine a gas generated by heating hydrochloric acid, a pyrolysis reaction or a combustion reaction of a chlorine compound, or phosgene.
  • any gas containing hydrogen chloride such as carbonylation reaction of organic compounds, chlorination reaction of organic compounds with chlorine, various by-products generated by the production of chlorofluoroalkanes, and combustion exhaust gas generated from incinerators. be able to.
  • unreacted raw materials and reaction products in the reaction at the time of generating the gas may be included as impurities.
  • concentration of impurities is It is preferable that the concentration of hydrogen chloride is within a range described later.
  • water vapor or an inert gas can be added to the gas containing hydrogen chloride as long as the concentration of hydrogen chloride in the gas is within the range described below. In view of smoothing the temperature distribution, it is preferable to contain.
  • Specific examples of the various reactions described above in obtaining the gas containing hydrogen chloride include, for example, a reaction in which vinyl chloride is generated from 1,2-dichloroethane, a tetrachloromethane from tetrachloromethane as a thermal decomposition reaction of a chlorine compound.
  • Examples of the carbonylation reaction of organic compounds with phosgene include reactions that produce isocyanates from amines and reactions that produce carbonates from hydroxy compounds.
  • Chlorination of organic compounds with chlorine examples include a reaction in which allyl chloride is produced from propylene, a reaction in which ethyl chloride is produced from ethane, and a reaction in which chlorobenzene is produced from benzene.
  • chlorofluoroalkane examples include the production of dichlorodifluoromethane and trichloromonofluoromethane by the reaction of carbon tetrachloride and hydrogen fluoride, and dichlorodifluoromethane and trichloro by the reaction of methane, chlorine and hydrogen fluoride.
  • concentration of hydrogen chloride in the gas containing hydrogen chloride is usually 10% by volume or more, preferably 50% by volume or more, and more preferably 80% by volume or more. If the concentration of hydrogen chloride is too low, the production efficiency may be lowered, and in addition to the separation of generated chlorine and the recycling operation when unreacted oxygen is recycled, the recycling operation may be complicated.
  • the gas containing oxygen air or pure oxygen may be used. Pure oxygen can be obtained by ordinary industrial methods such as air pressure swing method or cryogenic separation.
  • the supply rate of gas containing hydrogen chloride is the supply rate of gas per liter of catalyst (L / h; 0 ° C., converted to 1 atm), that is, GHSV. In general, it is preferably about 10 to 20000 h ⁇ 1 .
  • the supply rate of the gas containing oxygen is preferably about 10 to 20000 h ⁇ 1 in terms of the supply rate of gas per liter of catalyst (L / h; 0 ° C., converted to 1 atm), that is, GHSV. .
  • the ratio of hydrogen chloride (a gas containing hydrogen chloride) to oxygen (a gas containing oxygen) is theoretically 1 mol of hydrogen chloride in order to completely oxidize hydrogen chloride to chlorine. Although it is necessary to make it 1 ⁇ 4 mole of oxygen, usually 0.1 to 10 times the theoretical amount of oxygen is used.
  • the reaction conditions and the like are not particularly limited.
  • the oxidation reaction of hydrogen chloride is an equilibrium reaction, and if performed at too high a temperature, the equilibrium conversion is reduced. Therefore, the reaction is preferably performed at a relatively low temperature.
  • the temperature is usually 100 to 500 ° C, preferably 200 to 450 ° C.
  • the reaction pressure is usually about 0.1 to 5 MPa.
  • This sample was set in a cell of a pore volume measuring device (“Autopore III9420” manufactured by MICROMERITICS), the inside of the cell system was reduced to 50 ⁇ mHg or less, then filled with mercury, and then the cell was charged from 0.007 MPa.
  • the pressure of mercury was gradually increased to 207 MPa, and the mercury intrusion amount at each pressure was measured by setting the mercury intrusion equilibrium waiting time to 10 seconds.
  • the pore volume (cm 3 / g) was determined by dividing the total mercury intrusion amount (cm 3 ) when pressure was applied from 0.007 MPa to 207 MPa by the sample weight (g).
  • the pore diameter d at each pressure P is calculated from the amount of mercury intrusion at each pressure P based on the above-mentioned Washburn equation. Further, the pore diameter at each pressure P is calculated.
  • the surface area Sr of pores at each pressure P is calculated from d and the amount of mercury injected at each pressure P, and the cumulative value of the surface area Sr of pores at each pressure P when pressure is applied from 0.007 MPa to 207 MPa (nm) 2 ) Cumulative pore surface area S (nm 2 / g) determined by dividing the sample weight (g), and cumulative value of pore volume at each pressure P when pressure is applied from 0.007 MPa to 207 MPa.
  • ⁇ Catalyst strength> A cylindrical catalyst having an axial length of 4.5 mm or more was used as a sample, and this was centered on the sample table of a digital kiyama hardness tester (“KHT20N” manufactured by Fujiwara Seisakusho). Were laid parallel to each other, and the hardness (N) of the catalyst was measured. This measurement was performed on 20 or more samples, and the average value (N / piece) was obtained by dividing the sum of the obtained measurement values by the number of measurements.
  • KHT20N digital kiyama hardness tester
  • organic binder YB-152A” manufactured by Yuken Industry Co., Ltd.
  • CSB titania sol
  • TiO 2 content 40 wt% 12.5 parts by weight and 24.8 parts by weight of pure water were added and kneaded.
  • the kneaded product was extruded into a cylindrical shape having a diameter of 3.0 mm ⁇ , dried, and then crushed to a length of about 4 to 6 mm.
  • the obtained molded body was fired in air at 800 ° C. for 3 hours to obtain a carrier made of a mixture of titanium oxide and ⁇ -alumina.
  • this carrier is impregnated with an aqueous solution of ruthenium chloride in an amount to give a predetermined loading rate, dried, and then fired in air at 250 ° C. for 2 hours, so that the ruthenium oxide has a loading rate of 2% by weight.
  • a blue-gray-supported ruthenium oxide catalyst (1) supported on a carrier was obtained.
  • Table 1 shows the physical properties of the obtained supported ruthenium oxide catalyst (1).
  • the pore distribution curve of the supported ruthenium oxide catalyst (1) was as shown by the solid line in FIG. (Oxidation reaction of hydrogen chloride (initial catalytic activity evaluation))
  • an oxidation reaction of hydrogen chloride with oxygen was performed in a fixed bed reaction system. That is, 1.0 g of the supported ruthenium oxide catalyst (1) was diluted with 12 g of ⁇ -alumina spheres having a diameter of 2 mm (“SSA995” manufactured by Nikkato Co., Ltd.) and charged into a nickel reaction tube (inner diameter 14 mm).
  • the same ⁇ -alumina sphere 12 g as above was filled as a preheating layer on the gas inlet side of the reaction tube.
  • hydrogen chloride gas hydrogen chloride concentration 99.999% by volume
  • oxygen gas pure oxygen
  • hydrogen chloride gas 0.214 mol / h (4.8 L / h in terms of 1 atm at 0 ° C.).
  • the oxygen gas was supplied at a rate of 0.107 mol / h (2.4 ° C / h in terms of 1 atm) at normal pressure, and the reaction tube (catalyst layer) was heated to 282 to 283 ° C. The reaction was performed.
  • the supported ruthenium oxide catalyst (1) obtained above was subjected to the following heat deterioration acceleration test. That is, 1.2 g of a supported ruthenium oxide catalyst was filled in a quartz reaction tube (inner diameter 21 mm), and hydrogen chloride gas (hydrogen chloride concentration 99.999% by volume) was added to 0.086 mol / h (0 ° C.) in the reaction tube. Oxygen gas (pure oxygen) at a rate of 1.9 L / h in terms of 1 atm) and 0.075 mol / h of oxygen gas (pure oxygen) at a rate of 1.7 L / h in terms of 1 atm.
  • hydrogen chloride gas hydrogen chloride concentration 99.999% by volume
  • Comparative Example 1 Instead of 4 parts by weight of the organic binder ("YB-152A” manufactured by Yuken Industry Co., Ltd.) used in (Preparation of catalyst) of Example 1, methyl cellulose ("Metrouse 65SH-4000" manufactured by Shin-Etsu Chemical Co., Ltd.) 2 A blue-gray-supported ruthenium oxide catalyst (C1) in which ruthenium oxide was supported on the carrier at a loading rate of 2% by weight was obtained in the same manner as in Example 1 except that parts by weight were used. Table 1 shows the physical properties of the obtained supported ruthenium oxide catalyst (C1). The pore distribution curve of the supported ruthenium oxide catalyst (C1) was as shown by a broken line in FIG.
  • Example 1 Except that the supported ruthenium oxide catalyst (C1) obtained above was used as a catalyst, the same method as the above-described hydrogen chloride oxidation reaction performed as (initial catalyst activity evaluation) in Example 1 was performed. Then, oxidation reaction of hydrogen chloride with oxygen was performed in a fixed bed reaction system, and the conversion rate (%) of hydrogen chloride was determined. The conversion rate (%) of this hydrogen chloride is shown in Table 1 as the initial catalytic activity of the supported ruthenium oxide catalyst (C1). Next, the supported ruthenium oxide catalyst (C1) obtained above was subjected to the same heat deterioration acceleration test as in Example 1.
  • Example 1 except that 1.0 g was fractionated out of 1.2 g of the supported ruthenium oxide catalyst (C1 ′) subjected to the heat deterioration acceleration test and used as a catalyst (initial catalyst activity)
  • the hydrogen chloride oxidation reaction with oxygen was carried out in a fixed bed reaction system in the same manner as the above-described hydrogen chloride oxidation reaction carried out as (evaluation), and the conversion rate (%) of hydrogen chloride was determined.
  • the conversion rate of hydrogen chloride is shown in Table 1 as the catalytic activity of the supported ruthenium oxide catalyst (C1 ′) after the heat deterioration acceleration test.
  • Chlorine can be selectively and efficiently produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

触媒存在下で酸素により塩化水素を酸化して塩素を製造する方法であって、当該触媒が、下記(i)お よび(ii)を満足する触媒である、塩素の製造方法を提供する。   (i)BET比表面積が1~250m2/gであること。   (ii)水銀圧入法により測定した細孔分布曲線から求められるピークの半値幅をHとし、平均細 孔直径をDとしたときに、H/Dの値が0.6~1.5であること

Description

塩素の製造方法および触媒
 本発明は、触媒存在下で酸素により塩化水素を酸化する塩素の製造方法、およびこの製造方法に適した触媒に関する。
 塩素は、塩化ビニルやホスゲンなどの原料として有用であり、触媒存在下で酸素により塩化水素を酸化することによって得られることが知られている。
 酸素による塩化水素の酸化反応に用いられる触媒としては、例えば、BET比表面積1~250m/gであり、水銀加圧多孔度測定法(水銀圧入法)により測定した気孔寸法分布(細孔分布)の半分の高さの幅(細孔分布曲線のピークの半値幅)が平均気孔直径(平均細孔直径)の0.6倍より小さく、さらに平均気孔直径値および該平均気孔直径に対する気孔容積の割合が特定範囲となるよう設計した触媒が提案されている(特許文献1)。
特開平09−117674号公報
しかしながら、上記特許文献1記載の触媒は、細孔分布曲線のピークの半値幅の上限が規定されていることからも分かるように比較的シャープな細孔分布曲線を示すよう設計されており、上記特許文献1の発明では、かかる触媒が有利であると考えられていた。当該触媒は、優れた機械的強度を有しており、流動床反応方式での塩化水素の酸化反応には適したものであったが、固定床反応方式における塩化水素の酸化反応に使用した場合、反応時間の経過に伴い熱履歴による触媒のシンタリング(焼結)が起こりやすく、充分な触媒活性を維持することが困難になり、その結果、経時的に塩化水素の転化率が低下してしまうという問題を生じることがあった。
 本発明の目的は、酸素により塩化水素を酸化するにあたり、シンタリングを防止して、長時間にわたり充分な触媒活性を発揮させて良好な塩化水素の転化率を維持することができる塩素の製造方法と、これに用いる触媒とを提供することにある。
 本発明者は、前記課題を解決するべく鋭意検討を行った。その結果従来の触媒と比べて、ある程度ブロード状の細孔分布曲線を示すよう設計した触媒の方が有効であることを見出し本発明を完成するに至った。 すなわち、本発明は以下の態様からなる。
 (1)触媒存在下で酸素により塩化水素を酸化して塩素を製造する方法であって、当該触媒が、下記(i)および(ii)を満足する触媒である、塩素の製造方法。
 (i)BET比表面積が1~250m/gであること。
 (ii)水銀圧入法により測定した細孔分布曲線から求められるピークの半値幅をHとし、平均細孔直径をDとしたときに、H/Dの値が0.6~1.5であること。
 (2)前記触媒が担持酸化ルテニウム触媒である前記(1)記載の塩素の製造方法。
 (3)前記触媒が球形粒状または円柱形状に成形されたものである前記(1)または(2)記載の塩素の製造方法。
 (4)固定床反応方式にて行なう前記(1)~(3)のいずれかに記載の塩素の製造方法。
 (5)酸素による塩化水素の酸化反応に用いる触媒であって、酸化ルテニウムを含むとともに、下記(i)および(ii)を満足する触媒。
 (i)BET比表面積が1~250m/gであること。
 (ii)水銀圧入法により測定した細孔分布曲線から求められるピークの半値幅をHとし、平均細孔直径をDとしたときに、H/Dの値が0.6~1.5であること。
 (6)球形粒状または円柱形状に成形されている前記(5)記載の触媒。
実施例1および比較例1において用いた触媒の細孔分布曲線を示すグラフである。
 本発明の塩素の製造方法は、下記(i)および(ii)を満たす特定の触媒(以下、「特定触媒」と称する)の存在下で酸素により塩化水素を酸化して塩素を製造するものである。前記特定触媒を用いることにより、酸素により塩化水素を酸化するにあたり、長時間にわたり充分な触媒活性を発揮させて良好な塩化水素の転化率を維持することができる。
 (i)BET比表面積が1~250m/gであること。
 (ii)水銀圧入法により測定した細孔分布曲線から求められるピークの半値幅をHとし、平均細孔直径をDとしたときに、H/Dの値が0.6~1.5であること。
 前記特定触媒は、上記(i)の通り、BET比表面積が1~250m/gであり、好ましくは5~100m/g、さらに好ましくは10~25m/gである。BET比表面積が前記範囲よりも小さいと、充分な触媒活性を発揮させることが困難になり、一方、前記範囲よりも大きいと、触媒の熱安定性が悪くなり、反応時間の経過に伴い熱履歴による触媒のシンタリング(焼結)の程度が大きくなるため、経時的に触媒活性が低下する傾向がある。
 なお、本発明におけるBET比表面積は、例えば、実施例で後述する方法によって測定することができる。
 前記特定触媒は、上記(ii)の通り、水銀圧入法により測定した細孔分布曲線から求められるピークの半値幅をHとし、平均細孔直径をDとしたときに、H/Dの値が0.6~1.5であり、好ましくは0.6~1.2、さらに好ましくは0.7~1.0である。
前記H/Dの値が0.6未満であると、触媒を構成する物質同士の接点が多くなりすぎる結果、機械強度は増すが、触媒の熱安定性は悪くなり、反応時間の経過に伴い熱履歴による触媒のシンタリング(焼結)の程度が大きくなるため、経時的に触媒活性が低下する傾向がある。一方、前記H/Dの値が1.5を超えると、物質同士の接点が減少し、触媒強度が低下する傾向がある。
 なお、本発明において、水銀圧入法により測定した細孔分布曲線とは、水銀圧入法による細孔分布の測定で得られた各圧力Pにおける水銀圧入量を、下記に示すWashburnの式に基づき算出した各圧力Pにおける細孔直径d(nm)を横軸に、各圧力Pにおける水銀圧入量(dV/dlogD[cm/g])を縦軸にとってプロットすることにより得られるものである。
 Washburnの式; 細孔直径d(nm)=(−4γcosθ/P)×10
       P:圧力(MPa)
       γ:水銀の表面張力(482×10−N/m)
       θ:水銀の接触角(140deg)
 また、本発明において、前記細孔分布曲線から求められるピークの半値幅Hとは、該曲線において、水銀圧入量が、ピーク頂点における水銀圧入量の1/2に相当する値となる二点の細孔直径dの差を意味する。他方、本発明において、前記平均細孔直径Dとは、下記式に基づき算出される値を意味する。なお、下記式における累積細孔容積および累積細孔表面積は、水銀圧入法による細孔分布の測定で得られる各圧力Pにおける水銀圧入量と、上記Washburnの式により求められる各圧力Pに相当する細孔直径dとから算出することができる。
 平均細孔直径D(nm)=4V/S
            V:累積細孔容積(nm/g)
            S:累積細孔表面積(nm/g)
 前記特定触媒は、さらに、水銀圧入法により求められる細孔容積が0.05~1.0cm/gであることが好ましく、さらに好ましくは0.1~0.4cm/gであるのがよい。細孔容積が前記範囲よりも小さいと、触媒活性が不充分となるおそれがあり、一方、前記範囲よりも大きいと、触媒の熱伝導性が悪くなる傾向があり、触媒の熱安定性が低下するおそれがある。
 前記特定触媒は、触媒活性成分のみからなるものであってもよいし、触媒活性成分が担体に担持されてなるものであってもよい。前記特定触媒における触媒活性成分は、特に制限されるものではなく、塩化水素を酸素で酸化して塩素を製造する際に使用される公知の触媒活性成分を含む塩素製造用触媒(例えば、銅触媒、クロム触媒、ルテニウム触媒など)を用いることができる。具体的には、銅触媒としては、一般にDeacon触媒と称される、塩化銅と塩化カリウムに第三成分として種々の化合物を添加してなる触媒が、クロム触媒としては、特開昭61−136902号公報、特開昭61−275104号公報、特開昭62−113701号公報、特開昭62−270405号公報等に示される如き、酸化クロムを含有する触媒が、ルテニウム触媒としては、特開平9−67103号公報、特開平10−338502号公報、特開2000−281314号公報、特開2002−79093号公報、特開2002−292279号公報等に示される如き、酸化ルテニウムを含有する触媒が、好ましく挙げられる。
 前記特定触媒としては、前述した触媒の中でも、ルテニウム触媒、特に酸化ルテニウムを含有する触媒を用いることが好ましい。酸化ルテニウムを含有する触媒は、例えば、実質的に酸化ルテニウムのみからなるものであってもよいし、酸化ルテニウムが担体に担持されてなる担持酸化ルテニウムであってもよいし、酸化ルテニウムと、アルミナ、チタニア、シリカ、ジルコニア、酸化ニオブなどの他の酸化物とからなる複合酸化物であってもよいが、少量の酸化ルテニウムでも高い活性を得られる点で、担持酸化ルテニウムからなる触媒(担持酸化ルテニウム触媒)がより好ましい。なお、酸化ルテニウムにおけるルテニウムの酸化数は、通常+4であり、酸化ルテニウムとしては二酸化ルテニウム(RuO)が一般的であるが、他の酸化数のルテニウムないし他の形態の酸化ルテニウムが含まれていてもよい。
 前記担持酸化ルテニウム触媒は、例えば、ルテニウム化合物を担体に担持させた後、酸素含有ガスの雰囲気下で焼成することにより得られる。担体としては、例えば、アルミニウム、ケイ素、チタン、ジルコニウム、ニオブから選ばれる元素の酸化物ないし複合酸化物や、活性炭などの1種もしくは2種以上を用いることができる。これらの中でも、アルミナ、シリカ、酸化チタン、酸化ジルコニウムが好ましく、特に、ルチル型の結晶構造を有する酸化チタンがより好ましい。
 前記担持酸化ルテニウム触媒における酸化ルテニウム/担体の重量比は、通常0.1/99.9~20/80、好ましくは0.5/99.5~15/85であり、この範囲になるようにルテニウム化合物と担体の使用割合を調整すればよい。酸化ルテニウムが前記割合よりも少ないと、触媒活性が不充分となる場合があり、一方、前記割合よりも多いと、触媒コストの高騰が懸念される。
 前記特定触媒の形状は、特に制限されるものではなく、例えば、球形粒状、円柱形状、三角柱形状、四角柱形状、多角柱形状、リング形状、ハニカム形状あるいは成形後に粉砕分級した適度の大きさの顆粒形状等で用いることができるが、好ましくは、球形粒状または円柱形状に成形されたものであるのがよい。なお、通常、円柱形状、三角柱形状、四角柱形状、多角柱形状、リング形状などの成形体は押出成形または打錠成形される場合が多いが、押出成形の場合には、押出し物を適当な長さに破砕および/または切断して使用すればよく、さらに、触媒使用時の紛化量を低減するなどの目的で、破砕および/または切断した成形体の破砕面や切断面の鋭角部分について回転機器等を用いて角取りすることもできる。
 また、前記特定触媒の大きさについては、特に制限されないが、大きすぎると、充分な活性が得られず、充分に反応が進行しない場合があるので、通常、直径が5mm以下であることが好ましい。一方、前記特定触媒が過度に小さくなると、充填層での圧力損失が大きくなるため、通常、その直径は1mm以上であることが好ましい。なお、ここでいう触媒(成形体)の直径とは、球形粒状の場合には球の直径、円柱形状の場合には断面の直径、その他の形状では断面の最大直径を意味する。
 本発明の触媒は、上述した特定触媒のうち、特に、酸化ルテニウムを含むとともに、上記(i)および(ii)を満足するものであり、好ましくは、球形粒状または円柱形状に成形されたものである。このような本発明の触媒は、酸素による塩化水素の酸化反応に用いる触媒として特に適しており、とりわけ後述する固定床反応方式による酸化反応に有用である。
 以下、前記特定触媒(本発明の触媒)を得るにあたり、上記(i)および(ii)を満足させる方法、特に上記(ii)を満足させる方法について述べるが、前記特定触媒はこれに限定されるものではなく、上記(i)および(ii)を満足する限りいかなる方法で調製されたものであってもよいことは言うまでもない。
 触媒は、通常、触媒活性成分のみからなるものである場合には、該触媒活性成分を含む触媒原料を成形することにより形成され、触媒活性成分が担体に担持されてなるものである場合には、触媒活性成分を含む触媒原料と担体原料とを混合して成形するか、担体原料を成形した後に、得られた成形体に触媒活性成分を含浸させることにより形成される。触媒原料もしくは担体原料の成形方法としては、一般に、押出成形や打錠成形などの方法が採用される。
 上記(i)および(ii)、特に上記(ii)を満足させる方法の一例としては、前記触媒原料もしくは担体原料を成形する際に、該原料に適当な細孔付与剤を添加する方法が挙げられる。具体的には、例えば、粉末状の触媒原料もしくは担体原料に細孔付与剤を混合した後、水等を用いて混練し、成形した後、焼成、水洗等を施すようにすればよい。特に上記(ii)を満足させるうえでは、粒径分布が均一でない細孔付与剤を用いることが好ましい。細孔付与剤としては、例えば、メチルセルロース系の有機バインダーや水溶性ポリマー、繊維状セルロース、塩化アンモニウム、塩化ナトリウム、塩化カリウム等の無機塩、カーボンブラック、活性炭、カーボンナノチューブ等の炭素などが挙げられる。これら細孔付与剤は1種のみを用いてもよいが、特に上記(ii)を満足させるうえでは、2種以上を併用することが好ましく、さらに好ましくは粒子径が異なる2種以上を選択するのがよい。細孔付与剤の使用量(2種以上を併用する場合は合計量)は、所望の細孔が形成されるよう適宜設定すればよいが、通常、100重量部の触媒原料もしくは担体原料に対して0.1~30重量部であり、好ましくは0.5~20重量部である。細孔付与剤の量が少なすぎると前記H/Dの値が0.6未満となり、逆に、多すぎると1.5を超える傾向がある。
 また、上記(ii)を満足させる方法の他の例として、成形に供する触媒原料もしくは担体原料として粒径分布が適度に不均一な粉末を用いる方法が挙げられる。具体的には、例えば、異なる平均粒径を有する粉末状の触媒原料もしくは担体原料を用意し、これらを適当な混合比で混合した後に成形する方法(以下「混合法」と称する)や、触媒原料もしくは担体原料を含む溶液に沈殿剤を滴下し、加水分解等の作用によって沈殿を生じさせ、必要に応じて濾過、乾燥等を施して得られた沈殿を焼成した後、成形する方法(以下「沈殿法」と称する)が挙げられる。
 前記混合法において、異なる平均粒径を有する粉末状の触媒原料もしくは担体原料を用意する際には、例えば、異なる平均粒径を有する複数の市販粉末を混合してもよいし、所定の平均粒径を有する粉末を破砕機などにより処理時間等を調整して適度に破砕するようにしてもよい。
 前記沈殿法で得られる粉末の粒子径に起因する条件としては、沈殿剤の滴下時間のほかに、例えば、加水分解時のpH制御や硫酸アンモニウムなどの凝集防止剤の添加、熟成時間、沈殿粒子生成時の攪拌条件、生じた沈殿を焼成する際の温度、時間、雰囲気などがあり、これらを適宜調整することも有効である。
また、前記沈殿法においては、異なる条件で調製した複数の沈殿を混合することが、不均一な粒度分布を持つ粉末を得るうえで、より好ましい。用いる沈殿剤の種類や沈殿剤の滴下時間等については、具体的には、溶液中の触媒原料もしくは担体原料の種類や濃度に応じて、適宜設定すればよい。
 また、上記(ii)を満足させる方法のさらに他の例として、前記触媒原料もしくは担体原料を成形する際に通常行われる混練の時間を短くする方法も挙げられる。
 本発明の塩素の製造方法は、前記特定触媒の存在下で反応を行うこと以外、特に制限されるものではなく、従来公知の酸素による塩化水素の酸化反応における手法や条件を適宜採用すればよいのであるが、触媒の熱安定性が特に求められる固定床反応方式で行うことが、好ましい。
 本発明の塩素の製造方法を固定床反応方式で行う場合、例えば、前記特定触媒を充填した触媒充填層に塩化水素を含むガスと酸素を含むガスとを流通させて、塩化水素を酸化する。
 前記触媒充填層は、例えば、温度制御手段を備えた反応管に、前記特定触媒と、必要に応じて、塩化水素の酸化反応に不活性な不活性物質(アルミナボールなど)および/または担体のみを成形した充填物とを混合してなる内容物を充填することで形成される。
 前記固定床反応方式で酸化反応を行う際には、一つの触媒充填層に原料ガス(塩化水素を含むガスと酸素を含むガス)を流通させてもよいが、少なくとも、互いに異なる内容物が充填されているか、もしくは異なる温度に制御されている二つ以上の触媒充填層を用いて、これらに順次原料ガスを流通させることもできる。いずれの場合も、一つの触媒充填層に前記特定触媒を2種以上充填することもできるが、好ましくは、一つの触媒充填層に充填する内容物は1種類の前記特定触媒のみからなるのがよい。また、二つ以上の触媒充填層を用いる場合には、各触媒充填層に充填する内容物はそれぞれ同一か近い組成であることが好ましく、例えば、前記不活性物質および/または担体のみを成形した充填物を併用するのであれば、これらと前記特定触媒との割合は各触媒充填層間で一定とすることが好ましく、2種以上の前記特定触媒を併用するのであれば、その混合比率は各触媒充填層間で一定とすることが好ましい。
 前記固定床反応方式で酸化反応を行う際の反応装置としては、従来公知のものを用いればよく、特に制限されない。例えば、ガス流通方向に1本の反応管を設けた単管式気相反応装置であってもよいし、ガス流通方向に2本以上の反応管を併設した多管式反応装置であってもよい。二つ以上の触媒充填層を用いる場合には、一つの反応管の管軸方向に沿って異なる温度に制御する二以上の温度制御手段を備えた形態であってもよいし、二以上の反応管にそれぞれ温度制御手段を備えた形態であってもよい。また、触媒充填層の上部および/または下部には、不活性物質を充填してもよく、例えば、二つの触媒充填層を一つの反応管の管軸方向に連続して形成する場合には、両層間に該不活性物質を仕切りとして設けることができる。ただし、隣り合う二つの触媒充填層は、必ずしも明確に仕切られている必要はなく、直接接している状態にあってもよい。
 前記塩化水素を含むガスとしては、特に制限はなく、例えば、水素と塩素との反応により生成するガスや、塩酸の加熱により発生するガスのほか、塩素化合物の熱分解反応や燃焼反応、ホスゲンによる有機化合物のカルボニル化反応、塩素による有機化合物の塩素化反応、クロロフルオロアルカンの製造等により発生する各種副生ガス、さらには焼却炉から発生する燃焼排ガスなど、塩化水素を含むあらゆるガスを使用することができる。これらの塩化水素を含むガス中には、それぞれガスを発生させる際の反応等における未反応原料や反応生成物が不純物として含まれてもよいが、その場合には、不純物の濃度は、ガス中の塩化水素の濃度が後述する範囲となる程度であることが好ましい。また、前記塩化水素を含むガスには、ガス中の塩化水素の濃度が後述する範囲となる程度であれば、水蒸気や不活性ガスなどを添加することもでき、特に水蒸気は、触媒充填層内の温度分布を平滑化しうる点で、含有させることが好ましい。
 前記塩化水素を含むガスを得る際の上述した各種反応については、具体的には、例えば、塩素化合物の熱分解反応として、1,2−ジクロロエタンから塩化ビニルが生成する反応、クロロジフルオロメタンからテトラフルオロエチレンが生成する反応などが挙げられ、ホスゲンによる有機化合物のカルボニル化反応として、アミンからイソシアネートが生成する反応、ヒドロキシ化合物から炭酸エステルが生成する反応などが挙げられ、塩素による有機化合物の塩素化反応として、プロピレンから塩化アリルが生成する反応、エタンから塩化エチルが生成する反応、ベンゼンからクロロベンゼンが生成する反応などが挙げられる。また、クロロフルオロアルカンの製造としては、例えば、四塩化炭素とフッ化水素との反応によるジクロロジフルオロメタンおよびトリクロロモノフルオロメタンの製造、メタンと塩素とフッ化水素との反応によるジクロロジフルオロメタンおよびトリクロロモノフルオロメタンの製造などが挙げられる。
 前記塩化水素を含むガス中の塩化水素の濃度は、通常10体積%以上、好ましくは50体積%以上、さらに好ましくは80体積%以上であるのがよい。塩化水素の濃度が低すぎると、生産効率が低くなることに加えて、生成した塩素の分離や未反応酸素をリサイクルする場合のリサイクル操作が煩雑になる場合がある。
 前記酸素を含むガスとしては、空気を使用してもよいし、純酸素を使用してもよい。純酸素は、空気の圧力スイング法や深冷分離などの通常の工業的な方法によって得ることができる。
 前記固定床反応方式で塩化水素の酸化反応を行う際には、塩化水素を含むガスの供給速度は、触媒1Lあたりのガスの供給速度(L/h;0℃、1気圧換算)、すなわちGHSVで表して、通常10~20000h−1程度とするのがよい。他方、酸素を含むガスの供給速度は、触媒1Lあたりのガスの供給速度(L/h;0℃、1気圧換算)、すなわちGHSVで表して、通常10~20000h−1程度とするのがよい。
 本発明の製造方法において、塩化水素(塩化水素を含むガス)と酸素(酸素を含むガス)との比率は、塩化水素を完全に塩素に酸化するためには理論上、塩化水素1モルに対し酸素1/4モルとする必要があるが、通常、この理論量の0.1~10倍の酸素が使用される。
 本発明の製造方法においては、反応条件等は特に制限されないが、塩化水素の酸化反応は平衡反応であり、あまり高温で行うと平衡転化率が下がるため、比較的低温で行うのが好ましく、反応温度は、通常100~500℃、好ましくは200~450℃である。また、反応圧力は、通常0.1~5MPa程度である。
 以下、実施例を挙げて本発明を説明するが、本発明はこれらに制限されるものではない。なお、以下の実施例および比較例においては、特に断りのない限り、「部」は「重量部」を、「%」は「重量%」を意味するものとする。
 実施例および比較例における各触媒の物性は、下記の方法で測定した。
 <細孔容積・平均細孔直径D・細孔分布曲線から求められるピークの半値幅H>
 測定に供する触媒を0.6~1.2g量り取り、乾燥機にて110℃で4時間乾燥し、乾燥後の重量を精秤して試料とした。この試料を、細孔容積測定装置(MICROMERITICS社製「オートポアIII9420」)のセル内にセットし、セル系内を50μmHg以下にした後、水銀を系内に満たし、次いで、セルに0.007MPaから207MPaまで段階的に圧力を加えていき、水銀の圧入平衡待ち時間を10秒として、各圧力における水銀圧入量を測定した。
 細孔容積(cm/g)は、0.007MPaから207MPaまで圧力を加えたときの総水銀圧入量(cm)を試料重量(g)で除することにより求めた。
 平均細孔直径D(nm)は、まず、上述したWashburnの式に基づき、各圧力Pにおける水銀圧入量から各圧力Pにおける細孔直径dを算出し、さらに、この各圧力Pにおける細孔直径dと各圧力Pにおける水銀圧入量とから各圧力Pにおける細孔の表面積Srを算出し、0.007MPaから207MPaまで圧力を加えたときの各圧力Pにおける細孔の表面積Srの累積値(nm)を試料重量(g)で除することにより求められる累積細孔表面積S(nm/g)と、0.007MPaから207MPaまで圧力を加えたときの各圧力Pにおける細孔容積の累積値(すなわち、0.007MPaから207MPaまで圧力を加えたときの総水銀圧入量)(nm)を試料重量(g)で除することにより求められる累積細孔容積V(nm/g)とを用いて、下記式に従い求めた。
 平均細孔直径D(nm)=4V/S
 半値幅H(nm)は、横軸に上述したWashburnの式に基づき算出した各圧力Pにおける細孔直径d(nm)をとり、縦軸に各圧力Pにおける水銀圧入量(dV/dlogD[cm/g])をとって、上記測定結果をプロットすることにより細孔分布曲線を得、該曲線において、水銀圧入量が、ピーク頂点における水銀圧入量の1/2に相当する値となるときの細孔直径dの値(二点)を読み取り、その差を算出することにより求めた。
 <BET比表面積>
 測定に供する触媒を1~2g量り取り、窒素雰囲気下110℃で1.5時間乾燥し、乾燥後の重量を精秤して試料とした。この試料について比表面積測定装置(柴田科学製「SA−1100」)を用いてBET一点法により比表面積(m/g)を求めた。
 <触媒強度>
 軸方向長さが4.5mm以上の円柱状の触媒を試料とし、これをデジタル木屋式硬度計(藤原製作所製「KHT20N」)の試料台の中心に、触媒の軸方向と試料台の面とが平行になるよう横たえた後、該触媒の硬度(N)を測定した。この測定を、20個以上の試料について行い、得られた測定値の和を測定個数で割ることにより、平均値(N/個)を求めた。
 実施例1
 触媒の調製
 酸化チタン(堺化学工業(株)製「STR−60R」;100%ルチル型)とα−アルミナ(住友化学(株)製「AES−12」)とを、酸化チタン:α−アルミナ=34:66(重量比)で混合し、次いで、有機バインダー(ユケン工業(株)製「YB−152A」)4重量部、チタニアゾル(堺化学工業(株)製「CSB」;TiO含有量40重量%)12.5重量部、および純水24.8重量部を加えて混練した。この混練物を直径3.0mmφの円柱状に押出成形し、乾燥した後、長さ4~6mm程度に破砕した。得られた成形体を、空気中800℃で3時間焼成し、酸化チタンとα−アルミナとの混合物からなる担体を得た。次に、この担体に、所定の担持率となる量の塩化ルテニウムの水溶液を含浸させ、乾燥した後、空気中250℃で2時間焼成することにより、酸化ルテニウムが2重量%の担持率で上記担体に担持されてなる青灰色の担持酸化ルテニウム触媒(1)を得た。
 得られた担持酸化ルテニウム触媒(1)の物性を表1に示す。なお、担持酸化ルテニウム触媒(1)の細孔分布曲線は、図1に実線で示す通りであった。
 (塩化水素の酸化反応(初期触媒活性評価))
 次に、上記で得られた担持酸化ルテニウム触媒(1)を用いて、固定床反応方式にて酸素による塩化水素の酸化反応を行なった。
 すなわち、担持酸化ルテニウム触媒(1)1.0gを、直径2mmのα−アルミナ球(ニッカトー(株)製「SSA995」)12gで希釈してニッケル製反応管(内径14mm)に充填し、さらに該反応管のガス入口側に上記と同じα−アルミナ球12gを予熱層として充填した。この反応管内に、塩化水素ガス(塩化水素濃度99.999体積%)と酸素ガス(純酸素)を、塩化水素ガスは0.214mol/h(0℃、1気圧換算で4.8L/h)の速度で、酸素ガスは0.107mol/h(0℃、1気圧換算で2.4L/h)の速度で、常圧下に供給し、反応管(触媒層)を282~283℃に加熱して反応を行った。
 反応開始から1.5時間後の時点で、反応管出口のガスを20分間、30%ヨウ化カリウム水溶液に流通させることによりサンプリングを行い、ヨウ素滴定法により塩素の生成量を測定して、塩素の生成速度(mol/h)を求めた。この塩素の生成速度と上記塩化水素の供給速度(mol/h)から、下式により塩化水素の転化率(%)を算出した。
 塩化水素の転化率(%)
=〔塩素の生成速度(mol/h)×2÷塩化水素の供給速度(mol/h)〕×100
 以上のようにして求めた塩化水素の転化率(%)を担持酸化ルテニウム触媒(1)の初期触媒活性として表1に示す。
 (触媒の加熱劣化促進試験)
 次に、上記で得られた担持酸化ルテニウム触媒(1)を、下記の加熱劣化促進試験に供した。
 すなわち、担持酸化ルテニウム触媒1.2gを、石英製反応管(内径21mm)に充填し、この反応管内に、塩化水素ガス(塩化水素濃度99.999体積%)を0.086mol/h(0℃、1気圧換算で1.9L/h)の速度で、酸素ガス(純酸素)を0.075mol/h(0℃、1気圧換算で1.7L/h)の速度で、塩素ガスを0.064mol/h(0℃、1気圧換算で1.4L/h)の速度で、水蒸気を0.064mol/h(0℃、1気圧換算で1.4L/h)の速度で、それぞれ常圧下で供給し、反応管(触媒層)を375~380℃に加熱した。加熱開始から50時間後の時点で、上記各ガスおよび水蒸気の供給と加熱を停止して、窒素ガスを0.214mol/h(0℃、1気圧換算で4.8L/h)の速度で供給しながら冷却した。
(塩化水素の酸化反応(加熱劣化促進試験後の触媒活性評価))
 次いで、上記加熱劣化促進試験に付した担持酸化ルテニウム触媒(1’)1.2gのうち、1.0gを分取し、これを触媒として用いたこと以外は、(初期触媒活性評価)として行った上述の塩化水素の酸化反応と同様の方法にて、固定床反応方式にて酸素による塩化水素の酸化反応を行ない、塩化水素の転化率(%)を求めた。この塩化水素の転化率を加熱劣化促進試験後の担持酸化ルテニウム触媒(1’)の触媒活性として表1に示す。
 比較例1
 実施例1の(触媒の調製)において用いた有機バインダー(ユケン工業(株)製「YB−152A」)4重量部に変えて、メチルセルロース(信越化学(株)製「メトローズ65SH−4000」)2重量部を用いたこと以外、実施例1と同様にして、酸化ルテニウムが2重量%の担持率で上記担体に担持されてなる青灰色の担持酸化ルテニウム触媒(C1)を得た。
 得られた担持酸化ルテニウム触媒(C1)の物性を表1に示す。なお、担持酸化ルテニウム触媒(C1)の細孔分布曲線は、図1に破線で示す通りであった。
 次に、上記で得られた担持酸化ルテニウム触媒(C1)を触媒として用いたこと以外は、実施例1において(初期触媒活性評価)として行った上述の塩化水素の酸化反応と同様の方法にて、固定床反応方式にて酸素による塩化水素の酸化反応を行ない、塩化水素の転化率(%)を求めた。この塩化水素の転化率(%)を担持酸化ルテニウム触媒(C1)の初期触媒活性として表1に示す。
 次に、上記で得られた担持酸化ルテニウム触媒(C1)を、実施例1と同様の加熱劣化促進試験に供した。そして、該加熱劣化促進試験に付した担持酸化ルテニウム触媒(C1’)1.2gのうち、1.0gを分取し、これを触媒として用いたこと以外は、実施例1において(初期触媒活性評価)として行った上述の塩化水素の酸化反応と同様の方法にて、固定床反応方式にて酸素による塩化水素の酸化反応を行ない、塩化水素の転化率(%)を求めた。この塩化水素の転化率を加熱劣化促進試験後の担持酸化ルテニウム触媒(C1’)の触媒活性として表1に示す。
Figure JPOXMLDOC01-appb-T000001
塩素を選択的に効率よく製造することができる。

Claims (6)

  1.  触媒存在下で酸素により塩化水素を酸化して塩素を製造する方法であって、当該触媒が、下記(i)および(ii)を満足する触媒である、塩素の製造方法。
     (i)BET比表面積が1~250m/gであること。
     (ii)水銀圧入法により測定した細孔分布曲線から求められるピークの半値幅をHとし、平均細孔直径をDとしたときに、H/Dの値が0.6~1.5であること。
  2.  前記触媒が担持酸化ルテニウム触媒である請求項1記載の塩素の製造方法。
  3.  前記触媒が球形粒状または円柱形状に成形されたものである請求項1または2記載の塩素の製造方法。
  4.  固定床反応方式にて行なう請求項1~3のいずれかに記載の塩素の製造方法。
  5.  酸素による塩化水素の酸化反応に用いる触媒であって、酸化ルテニウムを含むとともに、下記(i)および(ii)を満足する触媒。
     (i)BET比表面積が1~250m/gであること。
     (ii)水銀圧入法により測定した細孔分布曲線から求められるピークの半値幅をHとし、平均細孔直径をDとしたときに、H/Dの値が0.6~1.5であること。
  6.  球形粒状または円柱形状に成形されている請求項5記載の触媒。
PCT/JP2009/064895 2008-08-22 2009-08-20 塩素の製造方法および触媒 WO2010021407A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/059,829 US9889431B2 (en) 2008-08-22 2009-08-20 Method for producing chlorine and catalyst
CN200980132599.1A CN102131731B (zh) 2008-08-22 2009-08-20 氯的制备方法及催化剂
BRPI0916916A BRPI0916916A2 (pt) 2008-08-22 2009-08-20 método para reprodução de cloro, e catalisador
EP09808340.5A EP2336084B1 (en) 2008-08-22 2009-08-20 Method for producing chlorine and catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008214710A JP5143667B2 (ja) 2008-08-22 2008-08-22 塩素の製造方法および触媒
JP2008-214710 2008-08-22

Publications (1)

Publication Number Publication Date
WO2010021407A1 true WO2010021407A1 (ja) 2010-02-25

Family

ID=41707278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064895 WO2010021407A1 (ja) 2008-08-22 2009-08-20 塩素の製造方法および触媒

Country Status (7)

Country Link
US (1) US9889431B2 (ja)
EP (1) EP2336084B1 (ja)
JP (1) JP5143667B2 (ja)
CN (1) CN102131731B (ja)
BR (1) BRPI0916916A2 (ja)
HU (1) HUE035096T2 (ja)
WO (1) WO2010021407A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020081953A (ja) * 2018-11-22 2020-06-04 イビデン株式会社 ハニカム構造体
KR102262496B1 (ko) * 2018-12-21 2021-06-07 한화솔루션 주식회사 염소 제조용 산화루테늄 담지 촉매의 제조방법 및 이에 의해 제조된 촉매
KR102287846B1 (ko) * 2018-12-21 2021-08-06 한화솔루션 주식회사 염소 제조를 위한 염화수소 산화반응용 촉매 및 이의 제조방법

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136902A (ja) 1984-12-03 1986-06-24 Mitsui Toatsu Chem Inc 塩素の製造方法
JPS61275104A (ja) 1985-05-28 1986-12-05 Mitsui Toatsu Chem Inc 塩素の製造方法
JPS62113701A (ja) 1985-11-14 1987-05-25 Mitsui Toatsu Chem Inc 塩素の製造方法
JPS62270405A (ja) 1986-05-19 1987-11-24 Mitsui Toatsu Chem Inc 塩素の製造方法
JPH0967103A (ja) 1995-05-18 1997-03-11 Sumitomo Chem Co Ltd 塩素の製造方法
JPH09117674A (ja) 1995-09-12 1997-05-06 Basf Ag 単一モード又は多モードの触媒担体又は触媒、その製造方法及び塩素の製造方法
JPH10338502A (ja) 1996-10-31 1998-12-22 Sumitomo Chem Co Ltd 塩素の製造方法
JP2000281314A (ja) 1998-02-16 2000-10-10 Sumitomo Chem Co Ltd 塩素の製造方法
JP2002079093A (ja) 1999-08-05 2002-03-19 Sumitomo Chem Co Ltd 担持酸化ルテニウム触媒、担持ルテニウム触媒の製造方法及び塩素の製造方法
JP2002292279A (ja) 2001-01-29 2002-10-08 Sumitomo Chem Co Ltd 担持酸化ルテニウム触媒および塩素の製造方法
JP2006219325A (ja) * 2005-02-09 2006-08-24 Sumitomo Chemical Co Ltd 酸化アルミニウム−酸化チタン混合成形体の製造方法
JP2007297230A (ja) * 2006-04-28 2007-11-15 Sumitomo Chemical Co Ltd 酸化アルミニウム−酸化チタン混合成形焼成体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19533659A1 (de) * 1995-09-12 1997-03-13 Basf Ag Verfahren zur Herstellung von Chlor aus Chlorwasserstoff
DE19734412B4 (de) * 1996-08-08 2008-04-10 Sumitomo Chemical Co. Ltd. Verfahren zur Herstellung von Chlor
US6852667B2 (en) 1998-02-16 2005-02-08 Sumitomo Chemical Company Limited Process for producing chlorine
JP4839661B2 (ja) 2005-04-08 2011-12-21 住友化学株式会社 塩素の製造方法
EP1958693A4 (en) 2005-11-30 2011-08-17 Sumitomo Chemical Co PROCESS FOR PREPARING TRADITIONAL RUTHENIUM AND METHOD FOR PRODUCING CHLORINE
GB2457952A (en) * 2008-02-29 2009-09-02 Nanotecture Ltd Mesoporous particulate material

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136902A (ja) 1984-12-03 1986-06-24 Mitsui Toatsu Chem Inc 塩素の製造方法
JPS61275104A (ja) 1985-05-28 1986-12-05 Mitsui Toatsu Chem Inc 塩素の製造方法
JPS62113701A (ja) 1985-11-14 1987-05-25 Mitsui Toatsu Chem Inc 塩素の製造方法
JPS62270405A (ja) 1986-05-19 1987-11-24 Mitsui Toatsu Chem Inc 塩素の製造方法
JPH0967103A (ja) 1995-05-18 1997-03-11 Sumitomo Chem Co Ltd 塩素の製造方法
JPH09117674A (ja) 1995-09-12 1997-05-06 Basf Ag 単一モード又は多モードの触媒担体又は触媒、その製造方法及び塩素の製造方法
JPH10338502A (ja) 1996-10-31 1998-12-22 Sumitomo Chem Co Ltd 塩素の製造方法
JP2000281314A (ja) 1998-02-16 2000-10-10 Sumitomo Chem Co Ltd 塩素の製造方法
JP2002079093A (ja) 1999-08-05 2002-03-19 Sumitomo Chem Co Ltd 担持酸化ルテニウム触媒、担持ルテニウム触媒の製造方法及び塩素の製造方法
JP2002292279A (ja) 2001-01-29 2002-10-08 Sumitomo Chem Co Ltd 担持酸化ルテニウム触媒および塩素の製造方法
JP2006219325A (ja) * 2005-02-09 2006-08-24 Sumitomo Chemical Co Ltd 酸化アルミニウム−酸化チタン混合成形体の製造方法
JP2007297230A (ja) * 2006-04-28 2007-11-15 Sumitomo Chemical Co Ltd 酸化アルミニウム−酸化チタン混合成形焼成体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2336084A4

Also Published As

Publication number Publication date
US9889431B2 (en) 2018-02-13
CN102131731B (zh) 2014-11-12
JP5143667B2 (ja) 2013-02-13
EP2336084A4 (en) 2014-06-25
EP2336084A1 (en) 2011-06-22
JP2010047456A (ja) 2010-03-04
EP2336084B1 (en) 2017-04-26
CN102131731A (zh) 2011-07-20
BRPI0916916A2 (pt) 2015-11-24
HUE035096T2 (en) 2018-05-02
US20110150749A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP6595022B2 (ja) 気相酸化により塩素を製造するための触媒および方法
KR20120040701A (ko) 나노구조화된 루테늄 담체 촉매 상에서의 기상 산화에 의한 염소의 생성 방법
JP5189954B2 (ja) 塩素の製造方法
US9186652B2 (en) Process for producing supported ruthenium on silica modified titania and process for producing chlorine
JP5143667B2 (ja) 塩素の製造方法および触媒
JP7520124B2 (ja) 塩化水素酸化反応用成型触媒及びその製造方法
JP7152611B2 (ja) 塩素製造のための塩化水素酸化反応用触媒及びこれの製造方法
JP5130155B2 (ja) 塩素の製造方法
JP2019503853A (ja) 気相酸化による塩素製造のための触媒及び方法
JP2013146720A (ja) 担持酸化ルテニウムの製造方法及び塩素の製造方法
KR102709295B1 (ko) 염화수소 산화반응용 성형촉매 및 이의 제조방법
US11713244B2 (en) Method for producing bromine
JP5365540B2 (ja) 有機化合物の酸化方法
JP5333413B2 (ja) 担持酸化ルテニウムの製造方法及び塩素の製造方法
JP2011162382A (ja) 塩素の製造方法
JP2012091977A (ja) 塩素の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132599.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808340

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13059829

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009808340

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009808340

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0916916

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110222