WO2010018985A2 - 반도체 발광소자 - Google Patents

반도체 발광소자 Download PDF

Info

Publication number
WO2010018985A2
WO2010018985A2 PCT/KR2009/004487 KR2009004487W WO2010018985A2 WO 2010018985 A2 WO2010018985 A2 WO 2010018985A2 KR 2009004487 W KR2009004487 W KR 2009004487W WO 2010018985 A2 WO2010018985 A2 WO 2010018985A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thin film
gallium nitride
light emitting
indium
Prior art date
Application number
PCT/KR2009/004487
Other languages
English (en)
French (fr)
Other versions
WO2010018985A3 (ko
Inventor
장정태
구분회
안도열
박승환
Original Assignee
우리엘에스티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우리엘에스티 주식회사 filed Critical 우리엘에스티 주식회사
Priority to US13/058,595 priority Critical patent/US8415655B2/en
Publication of WO2010018985A2 publication Critical patent/WO2010018985A2/ko
Publication of WO2010018985A3 publication Critical patent/WO2010018985A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure

Definitions

  • the present disclosure relates to a semiconductor light emitting device, and more particularly, to a semiconductor light emitting device having improved light emission efficiency by reducing an internal electric field.
  • the semiconductor light emitting device refers to a semiconductor optical device that generates light through recombination of electrons and holes, for example, a group III nitride semiconductor light emitting device.
  • the group III nitride semiconductor consists of a compound of Al (x) Ga (y) In (1-x-y) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • GaAs type semiconductor light emitting elements used for red light emission, etc. are mentioned.
  • Group III-V nitride and group II-VI compounds constituting the semiconductor blue-violet and cyan light emitting devices
  • the semiconductor structure is group III-V having different light emission characteristics due to the piezoelectric field and spontaneous polarization due to the attractive force applied to the active layer, which is one of the essential characteristics. It is well known that it is significantly lower than a semiconductor [Park et al., Appl. Phys. Lett. 75, 1354 (1999).
  • the cladding layer is a four-layered film, and the composition ratio of Al is increased to increase the confinement effect of the transmitter to increase the luminous efficiency [Zhang et al., Appl. Phys. Lett. 77,2668 (2000), Lai et al., IEEE Photonics Technol Lett. 13, 559 (2001).
  • a light emitting layer comprising a barrier layer formed of a superlattice layer for reducing the sum of An N-type contact layer injecting electrons into the light emitting layer; And a P-type contact layer disposed opposite the N-type contact layer on the emission layer, and injecting holes into the light-emitting layer, wherein the active layer includes indium gallium nitride (InGaN), and the barrier layer is aluminum gallium nitride (AlGaN).
  • a semiconductor light emitting device characterized in that a thin film and an indium gallium nitride (InGaN) thin film are alternately stacked.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor light emitting device according to an exemplary embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the light emitting layer illustrated in FIG. 1;
  • FIG. 3 is a graph showing the optical gain of the conventional semiconductor light emitting device and the optical gain of the semiconductor light emitting device shown in FIG.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor light emitting device according to an exemplary embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing the light emitting layer shown in FIG. 1.
  • the semiconductor light emitting device 100 according to an exemplary embodiment of the present invention
  • the light emitting device 100 according to an exemplary embodiment of the present invention is an N-type contact layer 102, the light emitting layer 103 and a P-type contact layer 104.
  • the N-type contact layer 102 may be formed on the substrate 101.
  • a substrate 101 for example, a sapphire (Al 2 O 3) substrate or a silicon carbide substrate (SiC) may be used.
  • a buffer layer (not shown) may be further formed between the substrate 101 and the N-type contact layer 102.
  • the buffer layer is formed for high quality nitride crystal growth.
  • the N-type contact layer 102 may be formed of, for example, one or more nitride semiconductor layers.
  • the N-type contact layer 102 injects electrons into the light emitting layer 103.
  • the P-type contact layer 104 is disposed to face the N-type contact layer 102 with the light emitting layer 130 interposed therebetween.
  • the P-type contact layer 104 may also be formed of one or more nitride semiconductor layers.
  • the P-type contact layer 102 injects holes into the light emitting layer 103.
  • the N-type contact layer 102 injects electrons into the light emitting layer 103, and the P-type contact layer 102 to the light emitting layer 103.
  • the P-type contact layer 102 By injecting holes, electrons and holes are combined in the light emitting layer 130, and the energy at this time is converted into light energy.
  • the light emitting layer 103 includes an active layer 1031 and a barrier layer 1032.
  • the active layer 1031 includes indium gallium nitride (InGaN), and the barrier layer 1032 is formed of a superlattice layer in which an aluminum gallium nitride (AlGaN) thin film and an indium gallium nitride (InGaN) thin film are alternately stacked.
  • AlGaN aluminum gallium nitride
  • InGaN indium gallium nitride
  • the barrier layer 1032 formed of the superlattice layer reduces the electric field in the quantum well structure to improve light gain.
  • the strain applied to each layer can be mathematically analyzed.
  • 1, 2, .., n layers each having a thickness of d1, d2, ..., dn are sequentially stacked, Nakajima, J. Appl. Phys. 72, 5213 (1992)]
  • the strain applied to the i-th layer is expressed by the following equation (1).
  • Fi is the force per unit length
  • Mi is the moment
  • ai is the lattice constant
  • Ei is the Young's modulus
  • R is the curvature of the substrate.
  • Equation 2 the condition for maintaining the i-th layer and the (i + 1) -th layer in an equilibrium state is expressed by Equation 2 below.
  • l i is the effective lattice constant of the i-th layer considering thermal expansion
  • ⁇ i is the thermal expansion coefficient of i-layer
  • T is the temperature of the lattice
  • e i is the strain applied to the i-th layer.
  • Equation 3 the force Fi per unit length is expressed by Equation 4 below.
  • Equation 5 The curvature of the entire multilayer thin film is expressed by Equation 5 below.
  • ⁇ xxi is the value of equation (3) and C11, C12, C13 and C33 are stiffness constants.
  • the active layer 1031 has a thickness in the range of, for example, 2 nm to 3.5 nm.
  • the aluminum gallium nitride (AlGaN) thin film and the indium gallium nitride (InGaN) thin film forming the superlattice layer in the barrier layer 1032 preferably have a thickness in which electrons are not constrained to the superlattice layer.
  • the aluminum gallium nitride (AlGaN) thin film and the indium gallium nitride (InGaN) thin film each have a thickness of 2 nm or less.
  • an aluminum gallium nitride (AlGaN) thin film and an indium gallium nitride (InGaN) thin film each have a range of 1 nm to 2 nm, and are formed in a range of approximately 1.5 nm in this embodiment.
  • In and Ga composition ratios of the active layer 1031 are 0.15 to 0.85
  • Al and Ga composition ratios of the Al gallium nitride (AlGaN) thin film in the barrier layer 1032 are 0.2 to 0.8
  • indium gallium nitride in the barrier layer 1032 When the In and Ga composition ratio of InGaN) thin film is 0.2 to 0.8, the strain and electric field applied to the quantum well are calculated as shown in Table 1 below.
  • Table 1 Conventional GaN Barrier Layer AlGaN / InGaN superlattice barrier layer according to the present disclosure % Strain in Active Layer -1.607 -1.435 Polarization field (MV / cm) in active layer 2.432 2.346
  • the AlGaN / InGaN superlattice barrier layer 1032 according to the present invention reduces both the strain and the electric field in the active layer 1031 as compared with the conventional GaN barrier layer.
  • the electric field in the active layer 1031 is reduced, so that the probability that the electron and the hole pair are bonded to each other is increased, thereby improving the luminous efficiency.
  • the optical gain at this time is as shown in FIG.
  • optical gain spectrum is calculated using a non-Markovian gain model with multi-body effects (see SH Park, SL Chung, and D Ahn, "Interband relaxation time effects on non-Markovian gain with many-body effects and comparison with experiment ", Semicond. Sci. Technol., vol. 15 pp. 2003-2008).
  • Equation 8 An optical gain having a multibody effect including an anisotropy of valence versus dispersion is expressed by Equation 8 below.
  • is the angular velocity
  • ⁇ 0 is the permeability in vacuum
  • is the dielectric constant
  • U (or L) is the upper (or lower) block of the effective mass Hamiltonian
  • e is the charge of the electron.
  • m0 is the mass of free electrons
  • is the magnitude of the surface wave vector in the quantum well plane
  • Lw is the width of the well
  • 2 is the matrix component of the strained quantum well.
  • f l C and f M V are Fermi functions for the probability of electron occupancy in the conduction and valence bands, respectively, and the subscripts l and m represent the electron and hole states in the conduction band, respectively.
  • Equation 9 the re-standardized transition energy of electrons and constant space is represented by Equation 9 below.
  • Eg is the bandgap
  • ⁇ ESX and ⁇ ECH are the screened exchange and Coulomb-hole contribution to the bandgap renormalization, respectively (see WW Chow, M. Hagerott, A. Bimdt). , and SW Koch, "Threshold coditions for an ultraviolet wavelength GaN quantum-well laser", IEEE J. Select. Topics Quantum Electron., vol. 4, pp. 514-519, 1998).
  • , ⁇ ) is expressed by Equation 10 below.
  • Equation 11 Q (k
  • the line shape function is the simplest Gaussian of Non-Marcobian Quantum kinetics and is described by Equations 11 and 12 below.
  • the interband relaxation time? In and the correlation time? C are regarded as constants and are calculated to be 25fs and 10fs, respectively.
  • FIG. 3 is a graph showing the optical gain of the conventional semiconductor light emitting device and the optical gain of the semiconductor light emitting device shown in FIG.
  • the graphs in FIG. 3 are obtained through numerical calculations using Equation 8, respectively.
  • the maximum value of the light gain may be improved from 60.4 cm to 202.9 cm.
  • the semiconductor light emitting device according to the present invention having the AlGaN / InGaN superlattice barrier shows a blue shift phenomenon in which the wavelength is shifted toward the blue light.
  • each of the aluminum gallium nitride (AlGaN) thin film and the indium gallium nitride (InGaN) thin film is 1 nm to 2 nm.
  • each of the aluminum gallium nitride (AlGaN) thin film and the indium gallium nitride (InGaN) thin film is 1.5 nm.
  • AlGaN aluminum gallium nitride
  • InGaN indium gallium nitride
  • the thickness of the active layer is a semiconductor light emitting device in the range of 2nm to 3.5nm.
  • a semiconductor light emitting element in which the composition ratio of indium to gallium in the active layer is smaller than the composition ratio of indium to gallium in the indium gallium nitride (InGaN) thin film of the barrier layer.
  • the composition ratio of indium and gallium in the active layer is 0.15 to 0.85
  • the composition ratio of indium and gallium in the indium gallium nitride (InGaN) thin film of the barrier layer is 0.2 to 0.8
  • the aluminum gallium nitride (AlGaN) thin film of aluminum is the barrier layer.
  • a composition ratio of gallium is 0.2 to 0.8.
  • the luminous efficiency can be improved by minimizing an internal electric field caused by piezo and spontaneous polarization using a three-element superlattice barrier layer without forming a difficult growth four-layer barrier layer. have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)

Abstract

본 개시는 활성층 및 활성층의 상부 및 하부에 배치되어 활성층에 인가되는 응력을 완화시켜 활성층 내부의 자발분극에 의한 전계 및 피에조에 의한 전계의 합을 감소시키는 초격자층으로 형성된 장벽층을 포함하는 발광층; 발광층에 전자를 주입하는 N형 콘택층; 및 발광층을 경계로 N형 콘택층과 대향하게 배치되고, 발광층에 정공을 주입하는 P형 콘택층을 포함하며, 활성층은 질화인듐갈륨(InGaN)을 포함하고, 장벽층은 질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막이 교대로 적층된 것을 특징으로 하는 반도체 발광소자에 관한 것이다.

Description

반도체 발광소자
본 개시(Disclosure)는 반도체 발광소자에 관한 것으로, 보다 상세히 내부전계를 감소시켜 발광효율을 향상시킨 반도체 발광소자에 관한 것이다.
여기서, 반도체 발광소자는 전자와 정공의 재결합을 통해 빛을 생성하는 반도체 광소자를 의미하며, 3족 질화물 반도체 발광소자를 예로 들 수 있다. 3족 질화물 반도체는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물로 이루어진다. 이외에도 적색 발광에 사용되는 GaAs계 반도체 발광소자 등을 예로 들 수 있다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background informaton related to the present disclosure which is not necessarily prior art).
반도체 청자색 및 청록색 발광소자를 구성하는 III-V족 질화물 및 II-VI족 화합물 반도체 구조는 본질적인 특성 중의 하나인 활성층에 인가되는 인력에 의한피에조 전계와 자발 분극에 의해 발광특성이 다른 III-V족 반도체에 비해 현저하게 떨어진다는 점은 주지의 사실이다[Park et al., Appl. Phys. Lett. 75, 1354 (1999)].
특히 자발 분극을 없앨 수 있는 방법은 현재까지는 기판의 성장방향을 바꾸어 논폴라(non-polar) 또는 세미폴라(semi-polar) 기판을 사용하는 방법 이외에는 없는 것으로 알려져 있다[Park & Chuang, Phys. Rev. B59, 4725 (1999),Waltereit et al., Nature 406, 865 (2000)].
III-V 족 질화물 반도체의 본질적인 취약점인 피에조 및 자발 분극을 최소화시키려는 시도는 여러가지가 있어 왔다. 그 중 대표적인 방법으로,
1) Non-polar 또는 semi-polar 기판을 이용하여 자발 분극 및 피에조 효과를 최소화 시키는 방법 [Park et al., Phys Rev B 59, 4725 (1999) 및 Waltereit et al., Nature 406, 865 (2000)]
2) 클래드 층을 4원막으로 하고 이중 Al 의 조성비를 증가시켜 전송자의 구속효과를 높여 발광효율을 높이는 방법 [Zhang et al., Appl. Phys. Lett. 77,2668 (2000), Lai et al., IEEE Photonics Technol Lett. 13, 559 (2001)] 있다.
이 중 1)의 경우는 아직 이종결정성장 방향에 대한 성장기술의 성숙하지 않아 소자제작시 결함(Defects)이 많아 이론적인 예상만큼 소자 특성이 안나오는 것으로 알려져 있고 제작과정이 매우 까다롭다[K. Nishizuka et al., Appl. Phys.Lett. 87, 231901 (2005)].
2)의 경우는 자발분극 및 피에조 효과를 근본적으로 제거할 수 없기 때문에근본적인 해결책이 될 수 없다. 다만 최근의 연구결과[Ahn et al., IEEE J. Quantum Electron. 41, 1253 (2005)]에 따르면 4원막 배리어를 사용할 경우 양자우물의 전송자 구속 효과에 의한 광이득 개선 효과가 있는 것으로 나타났다.
3) 다른 방법으로는 4원막 배리어를 갖는 InGaN/InGaAlN 양자우물 구조에서 양자우물내의 인듐 조성비가 정해지면 피에조 및 자발 분극에 의한 내부전계가 소멸되는 4원막의 조성비를 발견할 수 있다는 이론적 연구를 토대로 양자우물 LED 및 LD 등 광소자의 발광특성을 현저하게 개선할 수 있는 방법이 제안되어 있다[S. H Park, D. Ahn, J. W. Kim, Applied Physics Letters 92, 171115 (2008)]. 그러나 이 방법은 4원막 배리어의 성장 조건이 극히 까다롭다는 단점을 갖고 있다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 활성층 및 활성층의 상부 및 하부에 배치되어 활성층에 인가되는 응력을 완화시켜 활성층 내부의 자발분극에 의한 전계 및 피에조에 의한 전계의 합을 감소시키는 초격자층으로 형성된 장벽층을 포함하는 발광층; 발광층에 전자를 주입하는 N형 콘택층; 및 발광층을 경계로 N형 콘택층과 대향하게 배치되고, 발광층에 정공을 주입하는 P형 콘택층을 포함하며, 활성층은 질화인듐갈륨(InGaN)을 포함하고, 장벽층은 질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막이 교대로 적층된 것을 특징으로 하는 반도체 발광소자가 제공된다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
도 1은 본 발명의 예시적인 일 실시예에 의한 반도체 발광소자의 개략적인 단면도,
도 2는 도 1에서 도시된 발광층을 도시한 단면도,
도 3은 종래 반도체 발광소자의 광학이득과 도 1에서 도시된 반도체 발광소자의 광학이득을 보여주는 그래프.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 1은 본 발명의 예시적인 일 실시예에 의한 반도체 발광소자의 개략적인 단면도이고, 도 2는 도 1에서 도시된 발광층을 도시한 단면도이다.
도 1 및 2를 참조하면, 본 발명의 예시적인 일 실시예에 의한 반도체 발광소자(100)는 본 발명의 예시적인 일 실시예에 의한 발광소자(100)는 N형 콘택층(102), 발광층(103) 및 P형 콘택층(104)을 포함한다.
N형 콘택층(102)은 기판(101) 상부에 형성될 수 있다. 기판(101)으로서, 예컨대 사파이어(Al2O3) 기판 또는 탄화 실리콘 기판(SiC)이 사용될 수 있다. 선택적으로, 기판(101)과 N형 콘택층(102) 사이에 버퍼층(도시안됨)이 더 형성될 수 있다. 버퍼층은 고품위의 질화물 결정성장을 위해서 형성된다.
N형 콘택층(102)은 예컨대, 하나 이상의 질화물 반도체층으로 형성될 수 있다. N형 콘택층(102)은 발광층(103)에 전자를 주입한다.
P형 콘택층(104)은 발광층(130)을 사이에 두고, N형 콘택층(102)과 대향하게 배치된다. P형 콘택층(104) 또한 하나 이상의 질화물 반도체층으로 형성될 수 있다. P형 콘택층(102)은 발광층(103)에 정공을 주입한다.
P형 전극(106)과 N형 전극(105)에 전위가 인가되면, N형 콘택층(102)은 발광층(103)에 전자를 주입하고, P형 콘택층(102)은 발광층(103)에 정공을 주입하여, 전자와 정공이 발광층(130) 내에서 결합하고, 이때의 에너지가 빛에너지로 변환된다.
발광층(103)은 활성층(1031) 및 장벽층(1032)을 포함한다. 활성층(1031)은 질화인듐갈륨(InGaN)을 포함하고, 장벽층(1032)은 질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막이 교대로 적층된 초격자층으로 형성된다.
초격자층으로 형성된 장벽층(1032)은 양자우물 구조내의 전계를 감소시켜 광이득을 개선시킨다.
이렇게 다층박막이 형성되는 경우, 각 층에 인가되는 스트레인은 수학적으로 해석이 가능하다. 각각 d1, d2, ..., dn의 두께를 갖는 1, 2, .., n개의 층이 순차적으로 적층된 경우, 나카지마[Nakajima, J. Appl. Phys. 72, 5213(1992)]가 제시한 수학적 방법을 이용하면, i번째 층에 인가되는 스트레인은 아래의 수학식 1로 표현된다.
수학식 1
Figure PCTKR2009004487-appb-M000001
이식에서, Fi는 단위길이당 힘(Force), Mi는 모멘트, ai는 격자상수, Ei는 영의 모듈러스(Young's modulus), R은 기판의 곡률(Curvature)을 나타낸다.
이때, i번째 층과 (i+1)번째 층이 평형상태를 유지하기 위한 조건은 아래의 수학식 2와 같다.
수학식 2
Figure PCTKR2009004487-appb-M000002
이식에서, li는 열팽창을 고려한 i번째 층의 유효격자상수, αi는 i층의 열팽창계수, T는 격자의 온도, ei는 i번째층에 인가되는 스트레인이다.
수학식1과 수학식 2를 조합하여 i번째 층에 인가되는 스트레인을 구하면, 아래의 수학식 3으로 표현된다.
수학식 3
Figure PCTKR2009004487-appb-M000003
수학식 3에서, 단위길이당 힘 Fi는 아래의 수학식 4로 표현된다.
수학식 4
Figure PCTKR2009004487-appb-M000004
한편 다층박막 전체의 곡률(Curvature)은 아래의 수학식 5로 표현된다.
수학식 5
Figure PCTKR2009004487-appb-M000005
이상과 같이 구한 스트레인에 의해서 각 층에 인가되는 피에조 및 자발분극은 아래의 수학식 6 및 수학식 7로 표현된다.
수학식 6
Figure PCTKR2009004487-appb-M000006
이식에서, εxxi는 수학식 3의 값이고, C11, C12, C13 및 C33은 스티프니스상수(stiffness constant)이다.
수학식 7
Figure PCTKR2009004487-appb-M000007
이러한 수학식들을 사용하여 계산된 바람직한 다층구조는 아래와 같다.
즉, 활성층(1031)은 예컨대, 2nm 내지 3.5nm의 범위의 두께를 갖는다.
장벽층(1032)에서의 초격자층을 형성하는 질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막은 전자가 초격자층에 구속이 안되는 두께를 갖는 것이 바람직하다.
즉, 질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막은 각각 2nm이하의 두께를 갖는다. 예컨대, 질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막은 각각 1nm 내지 2nm의 범위를 갖으며 본 실시예에서는 대략 1.5nm의 범위로 형성된다.
활성층(1031)의 In과 Ga 조성비가 0.15 대 0.85, 장벽층(1032)에서의 질화알루미늄갈륨(AlGaN) 박막의 Al과 Ga의 조성비는 0.2 대 0.8, 장벽층(1032)에서의 질화인듐갈륨(InGaN) 박막의 In과 Ga 조성비가 0.2 대 0.8인경우, 양자우물에 인가되는 스트레인과 전계는 다음의 표 1과 같이 계산된다.
표 1
종래 GaN 장벽층 본 개시에 의한 AlGaN/InGaN 초격자 장벽층
활성층에서의 스트레인(%) -1.607 -1.435
활성층에서의 전계(Polarization field, MV/cm) 2.432 2.346
표 1에서 보이는 것과 같이, 종래 GaN장벽층에 비해서, 본 발명에 의한 AlGaN/InGaN 초격자 장벽층(1032)은 스트레인 및 활성층(1031)에서의 전계 모두 감소함을 볼 수 있다.
활성층에 전계가 있는 경우, 전자와 정공이 서로 반대방향으로 힘을 받아 멀어지므로, 그만큼 결합하여 광자를 발생시킬 가능성이 줄어든다.
그런데, 본 발명에 의하면, 활성층(1031)에서의 전계가 감소하여, 전자 및 정공쌍이 서로 결합할 확률이 증가되어 발광효율이 향상된다.
이때의 광학이득은 도 3에서 도시된 바와같다.
한편, 다체효과를 갖는 논-마코비안 이득모델을 이용하여 광학이득 스펙트럼이 계산된다(참고, S. H. Park, S. L. Chung, and D Ahn, "Interband relaxation time effects on non-Markovian gain with many-body effects and comparison with experiment", Semicond. Sci. Technol., vol. 15 pp. 2003-2008).
가전자대 분산의 이방성의 효과를 포함하는 다체효과를 갖는 광학이득은 아래의 수학식 8로 표현된다.
수학식 8
Figure PCTKR2009004487-appb-M000008
윗식에서, ω는 각속도, μ0는 진공에서의 투자율(permeability), ε은 유전율(dielectric constant), σ=U(또는 L)은 유효질량 해밀토니안의 상부(또는 하부)블럭, e는 전자의 전하량, m0는 자유전자의 질량, k||는 양자우물평면에서 표면웨이브벡터의 크기, Lw는 우물의 폭, |Mlm|2은 스트레인드 양자우물(strained Quantum Well)의 매트릭스 성분이다. 또한 fl C와 fM V 는 각각 전도대와 가전자대에서 전자에 의한 점유확률을 위한 페르미 함수이며, 아래첨자의 l과 m은 각각 전도대에서의 전자상태와 정공상태를 나타낸다.
또한, 전자와 정공간의 재규격화된 전이 에너지는 아래의 수학식 9로 표현된다.
수학식 9
Figure PCTKR2009004487-appb-M000009
윗식에서, Eg는 밴드갭, ΔESX 및 ΔECH는 각각 밴드갭 재규격화에 대한 스크린된 교환(Screened exchange)과 쿨롱홀 기여(Coulomb-hole contribution)이다(참조, W.W. Chow, M. Hagerott, A. Bimdt, and S.W. Koch, "Threshold coditions for an ultraviolet wavelength GaN quantum-well laser", IEEE J. Select. Topics Quantum Electron., vol. 4, pp. 514-519, 1998).
가우스라인 형상 함수(Gaussian line shape function) L(ω, k||, φ)는 아래의 수학식 10으로 표현된다.
수학식 10
Figure PCTKR2009004487-appb-M000010
윗식에서 Q(k||,hω0)는 엑시토닉(exitonic) 또는 밴드간 전이의 쿨롱상승의 원인이 된다. 상기의 라인형상 함수는 논-마코비안 퀀텀 키네틱스(Non-Marcobian Quantum kinetics)의 가장 간단한 가우시안(Gaussian)이고, 아래의 수학식 11 및 수학식 12로 기술된다.
수학식 11
Figure PCTKR2009004487-appb-M000011
수학식 12
Figure PCTKR2009004487-appb-M000012
인터밴드 릴렉세이션 시간(interband relaxation time) τin과 코릴레이션시간(correlation time) τc는 상수로 간주되고, 각각 25fs 및 10fs로 계산된다.
도 3은 종래 반도체 발광소자의 광학이득과 도 1에서 도시된 반도체 발광소자의 광학이득을 보여주는 그래프이다. 도 3에서의 그래프들은 수학식 8을 이용하여 각각 수치계산을 통해서 얻어진 것이다.
도 3을 참조하면, 전계의 감소에 따라서, AlGaN/InGaN 초격자 배리어를 가진본 발명에 의한 반도체 발광소자의 경우, 광이득의 최대값이 60.4cm 에서 202.9cm로 개선됨을 볼 수 있다. 또한, 이러한 AlGaN/InGaN 초격자 배리어를 가진 본 발명에 의한 반도체 발광소자의 경우 파장이 청색광쪽으로 천이되는 블루쉬프트(Blue Shift)현상을 보여준다.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.
(1) 질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막 각각의 두께는 1nm 내지 2nm인 반도체 발광소자.
(3) 질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막 각각의 두께는 1.5nm인 반도체 발광소자.
(4) 질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막은 활성층을 기준으로 대칭적으로 형성된 반도체 발광소자.
(5) 활성층의 두께는 2nm 내지 3.5nm의 범위인 반도체 발광소자.
(6) 활성층에서 갈륨에 대한 인듐의 조성비는, 장벽층의 질화인듐갈륨(InGaN) 박막에서 갈륨에 대한 인듐의 조성비 보다 작은 반도체 발광소자.
(7) 활성층의 인듐과 갈륨의 조성비는 0.15 대 0.85이고, 장벽층의 질화인듐갈륨(InGaN) 박막에서 인듐과 갈륨의 조성비는 0.2 대 0.8이며, 장벽층의 질화알루미늄갈륨(AlGaN) 박막의 알루미늄과 갈륨의 조성비는 0.2 대 0.8인 반도체 발광소자.
본 개시에 따른 하나의 반도체 발광소자에 의하면, 성장이 까다로운 4원막 배리어층을 형성하지 않고, 3원막 초격자 배리어층을 이용하여 피에조 및 자발분극에 의한 내부전계를 최소화함으로써 발광효율을 향상시킬 수 있다.

Claims (13)

  1. 활성층 및 활성층의 상부 및 하부에 배치되어 활성층에 인가되는 응력을 완화시켜 활성층 내부의 자발분극에 의한 전계 및 피에조에 의한 전계의 합을 감소시키는 초격자층으로 형성된 장벽층을 포함하는 발광층;
    발광층에 전자를 주입하는 N형 콘택층; 및
    발광층을 경계로 N형 콘택층과 대향하게 배치되고, 발광층에 정공을 주입하는 P형 콘택층을 포함하며,
    활성층은 질화인듐갈륨(InGaN)을 포함하고,
    장벽층은 질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막이 교대로 적층된 것을 특징으로 하는 반도체 발광소자.
  2. 청구항 1에 있어서,
    질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막은 전자가 장벽층에 구속되는 것이 방지되는 두께로 구비되는 것을 특징으로 하는 반도체 발광소자.
  3. 청구항 1에 있어서,
    질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막 각각의 두께는 1nm 내지 2nm인 것을 특징으로 하는 반도체 발광소자.
  4. 청구항 1에 있어서,
    활성층에서 갈륨에 대한 인듐의 조성비는, 장벽층의 질화인듐갈륨(InGaN) 박막에서 갈륨에 대한 인듐의 조성비 보다 작은 것을 특징으로 하는 반도체 발광소자.
  5. 청구항 3에 있어서,
    활성층에서 갈륨에 대한 인듐의 조성비는, 장벽층의 질화인듐갈륨(InGaN) 박막에서 갈륨에 대한 인듐의 조성비 보다 작은 것을 특징으로 하는 반도체 발광소자.
  6. 청구항 1에 있어서,
    활성층의 두께는 2nm 내지 3.5nm의 범위인 것을 특징으로 하는 반도체 발광소자.
  7. 청구항 4에 있어서,
    활성층의 두께는 2nm 내지 3.5nm의 범위인 것을 특징으로 하는 반도체 발광소자.
  8. 청구항 5에 있어서,
    활성층의 두께는 2nm 내지 3.5nm의 범위인 것을 특징으로 하는 반도체 발광소자.
  9. 청구항 5에 있어서,
    활성층의 인듐과 갈륨의 조성비는 0.15 대 0.85이고, 장벽층의 질화인듐갈륨(InGaN) 박막에서 인듐과 갈륨의 조성비는 0.2 대 0.8인 것을 특징으로 하는 반도체 발광소자.
  10. 청구항 9에 있어서,
    장벽층의 질화알루미늄갈륨(AlGaN) 박막의 알루미늄과 갈륨의 조성비는 0.2 대 0.8인 것을 특징으로 하는 반도체 발광소자.
  11. 청구항 1에 있어서,
    질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막은 활성층을 기준으로 대칭적으로 형성된 것을 특징으로 하는 반도체 발광소자.
  12. 청구항 3에 있어서,
    질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막 각각의 두께는 1.5nm인 것을 특징으로 하는 반도체 발광소자.
  13. 청구항 1에 있어서,
    N형 콘택층과 P형 콘택층은 3족 질화물 반도체로 형성되며,
    질화알루미늄갈륨(AlGaN) 박막 및 질화인듐갈륨(InGaN) 박막은 활성층을 기준으로 대칭적으로 형성되고,
    활성층은 두께가 2nm 내지 3.5nm의 범위이며 인듐과 갈륨의 조성비가 0.15 대 0.85이고,
    장벽층의 질화인듐갈륨(InGaN) 박막은 두께가 1.5nm이며 인듐과 갈륨의 조성비가 0.2 대 0.8이고,
    장벽층의 질화알루미늄갈륨(AlGaN) 박막은 두께가 1.5nm이며 알루미늄과 갈륨의 조성비가 0.2 대 0.8 인 것을 특징으로 하는 반도체 발광소자.
PCT/KR2009/004487 2008-08-12 2009-08-12 반도체 발광소자 WO2010018985A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/058,595 US8415655B2 (en) 2008-08-12 2009-08-12 Semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080078838A KR100957750B1 (ko) 2008-08-12 2008-08-12 발광 소자
KR10-2008-0078838 2008-08-12

Publications (2)

Publication Number Publication Date
WO2010018985A2 true WO2010018985A2 (ko) 2010-02-18
WO2010018985A3 WO2010018985A3 (ko) 2010-06-17

Family

ID=41669477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004487 WO2010018985A2 (ko) 2008-08-12 2009-08-12 반도체 발광소자

Country Status (3)

Country Link
US (1) US8415655B2 (ko)
KR (1) KR100957750B1 (ko)
WO (1) WO2010018985A2 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412901B2 (en) 2010-01-08 2016-08-09 Sensor Electronic Technology, Inc. Superlattice structure
US8698127B2 (en) * 2010-01-08 2014-04-15 Sensor Electronic Technology, Inc. Superlattice structure and method for making the same
US8993996B2 (en) 2010-01-08 2015-03-31 Sensor Electronic Technology, Inc. Superlattice structure
US8895959B2 (en) 2010-01-08 2014-11-25 Sensor Electronic Technology, Inc. Superlattice structure and method for making the same
US9768349B2 (en) 2010-01-08 2017-09-19 Sensor Electronic Technology, Inc. Superlattice structure
WO2013138571A1 (en) * 2012-03-14 2013-09-19 Sensor Electronic Technology, Inc. Superlattice structure
KR101997020B1 (ko) * 2012-03-29 2019-07-08 서울바이오시스 주식회사 근자외선 발광 소자
US9312447B2 (en) 2012-03-29 2016-04-12 Seoul Viosys Co., Ltd. Near UV light emitting device
US9224913B2 (en) * 2012-03-29 2015-12-29 Seoul Viosys Co., Ltd. Near UV light emitting device
US10177273B2 (en) 2012-03-29 2019-01-08 Seoul Viosys Co., Ltd. UV light emitting device
US10164150B2 (en) 2012-03-29 2018-12-25 Seoul Viosys Co., Ltd. Near UV light emitting device
KR102038885B1 (ko) 2013-05-27 2019-10-31 삼성전자주식회사 반도체 발광소자
US20220077347A1 (en) * 2017-04-18 2022-03-10 Xiamen San'an Optoelectronics Co., Ltd. Multi-quantum well structure and led device including the same
CN107086258B (zh) * 2017-04-18 2019-05-14 安徽三安光电有限公司 一种多量子阱结构及其发光二极管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115610A (ja) * 2001-07-04 2003-04-18 Nichia Chem Ind Ltd 窒化物半導体素子
JP2007157766A (ja) * 2005-11-30 2007-06-21 Rohm Co Ltd 窒化ガリウム半導体発光素子
JP2008066555A (ja) * 2006-09-08 2008-03-21 Nippon Telegr & Teleph Corp <Ntt> 半導体装置と半導体装置の製造法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684309A (en) * 1996-07-11 1997-11-04 North Carolina State University Stacked quantum well aluminum indium gallium nitride light emitting diodes
JP3719047B2 (ja) * 1999-06-07 2005-11-24 日亜化学工業株式会社 窒化物半導体素子
DE19955747A1 (de) 1999-11-19 2001-05-23 Osram Opto Semiconductors Gmbh Optische Halbleitervorrichtung mit Mehrfach-Quantentopf-Struktur
US6586762B2 (en) * 2000-07-07 2003-07-01 Nichia Corporation Nitride semiconductor device with improved lifetime and high output power
US6906352B2 (en) * 2001-01-16 2005-06-14 Cree, Inc. Group III nitride LED with undoped cladding layer and multiple quantum well
US6872986B2 (en) * 2001-07-04 2005-03-29 Nichia Corporation Nitride semiconductor device
KR100643262B1 (ko) 2004-12-29 2006-11-10 나이트라이드 세마이컨덕터스 코포레이션, 리미티드 질화갈륨계 발광장치
JP2007214221A (ja) * 2006-02-08 2007-08-23 Sharp Corp 窒化物半導体レーザ素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115610A (ja) * 2001-07-04 2003-04-18 Nichia Chem Ind Ltd 窒化物半導体素子
JP2007157766A (ja) * 2005-11-30 2007-06-21 Rohm Co Ltd 窒化ガリウム半導体発光素子
JP2008066555A (ja) * 2006-09-08 2008-03-21 Nippon Telegr & Teleph Corp <Ntt> 半導体装置と半導体装置の製造法

Also Published As

Publication number Publication date
WO2010018985A3 (ko) 2010-06-17
US8415655B2 (en) 2013-04-09
KR100957750B1 (ko) 2010-05-13
US20110140079A1 (en) 2011-06-16
KR20100020165A (ko) 2010-02-22

Similar Documents

Publication Publication Date Title
WO2010018985A2 (ko) 반도체 발광소자
US9466761B2 (en) Light emitting diode having well and/or barrier layers with superlattice structure
EP1189289B1 (en) Nitride semiconductor device
EP1883121B1 (en) Nitride-based semiconductor light emitting device
WO2011046292A2 (ko) 다공성 질화물 반도체 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
KR100864609B1 (ko) 화합물 반도체를 이용한 발광소자
WO2011083940A2 (ko) 발광 다이오드 및 그것을 제조하는 방법
WO2010101335A1 (en) Light emitting device
WO2013018937A1 (ko) 반도체 발광소자
WO2011025266A2 (ko) 고전위 밀도의 중간층을 갖는 발광 다이오드 및 그것을 제조하는 방법
KR100920915B1 (ko) 초격자 구조의 장벽층을 갖는 발광 다이오드
JP2001119102A (ja) Iii族窒化物系化合物半導体レーザダイオード
WO2022240179A1 (ko) 복수 대역 발광 다이오드
WO2013129812A1 (en) Light emitting diode having gallium nitride substrate
KR101644156B1 (ko) 양자우물 구조의 활성 영역을 갖는 발광 소자
CN110047980B (zh) 一种紫外led外延结构及其制备方法
WO2015016507A1 (ko) 발광 소자 제조용 템플릿 및 자외선 발광 소자 제조 방법
CN114038958B (zh) 发光芯片外延片及其制作方法、发光芯片
KR101051327B1 (ko) 3족 질화물 반도체 발광소자
WO2010062119A2 (ko) 반도체 발광소자
WO2014007419A1 (ko) 질화물계 반도체 발광 소자 및 그의 제조 방법
WO2013147453A1 (ko) 질화갈륨계 발광 다이오드
KR20100089635A (ko) 질화물 반도체 소자
WO2011081474A2 (ko) 반도체 발광소자 및 이의 제조 방법
KR101248383B1 (ko) 반도체 발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806847

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13058595

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09806847

Country of ref document: EP

Kind code of ref document: A2