WO2010017652A1 - Proceso y sistema para la separación, reciclado y estabilización ambiental sustentable de efluentes ácidos con arsénico (as) y/o metales pesados que forman sulfuros insolubles - Google Patents

Proceso y sistema para la separación, reciclado y estabilización ambiental sustentable de efluentes ácidos con arsénico (as) y/o metales pesados que forman sulfuros insolubles Download PDF

Info

Publication number
WO2010017652A1
WO2010017652A1 PCT/CL2009/000010 CL2009000010W WO2010017652A1 WO 2010017652 A1 WO2010017652 A1 WO 2010017652A1 CL 2009000010 W CL2009000010 W CL 2009000010W WO 2010017652 A1 WO2010017652 A1 WO 2010017652A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulphides
arsenic
hydrogen sulfide
process according
filter
Prior art date
Application number
PCT/CL2009/000010
Other languages
English (en)
French (fr)
Inventor
José Octavio HERNÁNDEZ PAVÉZ
Albert Leandro Herrera Zeppelin
Original Assignee
Hernandez Pavez Jose Octavio
Herrera Zeppelin Albert Leandr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hernandez Pavez Jose Octavio, Herrera Zeppelin Albert Leandr filed Critical Hernandez Pavez Jose Octavio
Publication of WO2010017652A1 publication Critical patent/WO2010017652A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/24Sulfates of ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/24Sulfates of ammonium
    • C01C1/244Preparation by double decomposition of ammonium salts with sulfates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the present invention discloses a process and system for the recycled separation and sustainable environmental stabilization of acid effluents with arsenic (As) and / or heavy metals that form insoluble sulphides such as aluminum (Al), copper (Cu), zinc (Zn) , lead (Pb), antimony (Sb), silicon (Si), iron (Fe), bismuth (Bi), selenium (Se) and / or mercury (Hg) from residual acids with high As contents (preferably between 50 a 50,000 mg As / L), mainly those residual acids resulting from the washing of gases from smelters of non-ferrous metals, more preferably still, residual acids that come from the washing of gases from smelters of copper sulphide ores (Cu); zinc (Zn); lead (Pb); and / or nickel (Ni), among others, specifically followed by the environmental stabilization of the resulting arsenic compounds, the recycling to the smelting process of the heavy metal sulphides contained in the residual acids and the simultaneous production of
  • This invention is in the field of separation, recycling and sustainable environmental stabilization of arsenic in an effluent to be treated, consisting of an acid solution of heavy metals (its atomic weights exceed that of sodium) that form insoluble sulphides such as aluminum (Al) , copper (Cu), zinc (Zn), lead (Pb), antimony (Sb), silicon (Si), iron (Fe), bismuth (Bi), selenium (Se) and / or mercury (Hg) and non- toxic metals, mainly arsenic (As), from residual acids with high As content (preferably between 50 to 50,000 mg As / L), mainly those residual acids from the washing of smelting gases of non-ferrous metals, in particular, of the washing of smelting gases of sulphured copper minerals (Cu); zinc (Zn); lead (Pb); and / or nickel (Ni), among others, more particularly of the washing of copper smelter gases.
  • heavy metals such as aluminum (Al) , copper (
  • Environmental stabilization means that the solids resulting from the process are not considered hazardous solid waste, according to the standard of the US EPA TCLP 1311 and sustainable means that the complete operation generates an economic benefit, particularly in the form of metals and ammonium sulfate, composed useful in agriculture.
  • arsenopyrites Fluorescence-Activated S (FeAsS), realgar (AsS) and orpiment (As 2 S 3 ) (Smedley and Kinniburgh, 2002), minerals that are usually mixed with the copper species that are carried to mining processes in Chile.
  • As minerals mainly arsenopyrites.
  • As minerals mainly arsenopyrites.
  • These minerals when processed, produce copper concentrates with high As contents. When these concentrates melt, a large part of the As is volatilized and forms part of the gaseous emissions that, in the main, contain sulfur anhydrides.
  • Arsenic is also captured in powders separated by smelting fume filters.
  • the processes existing up to the present manage to eliminate the As from the wastewater (the effluent line) of the Acid Plants, but the solid compounds of As obtained are not stable and cannot be disposed of in an environmentally acceptable way, being necessary the development of processes that achieve this objective.
  • the current method of containment of arsenic is, in fact, a process of neutralization of sulfuric acid from the effluent line of the Acid Plant, because said acid is commercially useless due precisely to the fact that it contains arsenic and other metals; Thus, the current method discards sulfuric acid and metals that can have a good economic value, and leaves the arsenic in a non-stable state (dangerous solid).
  • This effluent line is usually also discarded through the irrigation of dumps, without evidence of the arsenic stability in the irrigated dumps.
  • US 4,824,650 N discusses a method of extraction liquid, low cost, and to reduce significantly As other heavy metals contained in phosphoric acid.
  • the method involves the sulfidization at elevated temperatures to form the sulphides of As and other heavy metals, and subsequently cooling the treated acid and then extracting with an extractant, preferably carbon disulfide, by stirring and sedimentation separating two phases: one of phosphoric acid and The other containing the sulfides of As and heavy metals to be removed.
  • the residual extractant contained in the phosphoric acid can be separated from said acid by oxidation, finally obtaining an acid practically free of As and heavy metals.
  • This patent does not explain the final destination of arsenic removed from phosphoric acid or from arsenic contaminated extractant.
  • Chilean patent 35.031 CL refers to a process for extracting arsenic from an aqueous acid solution by liquid-liquid extraction with an organophosphorus compound with high efficiency and without joint copper precipitation. The orientation of this process is similar to the one disclosed here but its chemical physicist is different.
  • Chilean patent 35.025 CL of 1985 refers to a procedure for the removal of arsenic from waste sulfuric acid, by precipitation of arsenic in the form of sulfide, with a sulfurizing agent and separation of arsenic with the concomitant use of auxiliary agents filtration, so that the acid free of danger is obtained for reuse.
  • the environmental status and final destination of arsenic are not specified.
  • Chilean Patent No. 43.540 (of the same authors) refers to the removal of As and heavy metals present in residual acids from smelters of copper and non-ferrous metals by adjusting the pH of said acids between 2 and 3 by bases and doing so react with hydrogen sulfide to precipitate As sulfides mainly from As (III) and heavy metals, filtration and recirculation of As and heavy metals free acid to the gas washing process, dissolution in alkaline medium of sulfides mainly from As (III) , catalytic oxidation by homogeneous metal catalysts based on Co (II), Ni (II) or Fe (II) of As (III) As (V), decrease in pH to 4 by inorganic acids and precipitation of As (V) with solutions of Fe (III) in relation to Fe: As superior to the stoichiometric one, obtaining by filtration a solid consisting of a Fe-As complex that is environmentally stable according to the TCLP 1311 test of the US EPA
  • Chilean patent application N 0 2455/2001 refers to a comprehensive treatment procedure to stabilize liquid effluents, solid wastes containing arsenic comprising slag leaching and catalytic oxidation.
  • the generated industrial liquid wastes are subjected to catalytic oxidation with air using as catalyst SO 2 , or solutions of compounds that generate said reagent.
  • the processes and physical and chemical bases of application 2455/2001 are totally different from those disclosed in this invention.
  • the Chilean patent application N 0 55/2007 (of the same authors) refers to the precipitation of As and / or heavy metals that form insoluble sulphides, of the same type of effluent of the present disclosure, that is, mainly those Acid effluents that come from the washing of smelting gases from sulphured copper (Cu) minerals.
  • hydrogen sulfide is used; but, precipitated sulphides are resuspended in water and coagulated at pH 7 with ferric chloride using vigorous mechanical agitation to produce a complex precipitate composed of sulphides and sulphides-surface ferric hydroxide, which are environmentally stable, that is, meet the requirements of the TCLP 1311 Test of the US EPA.
  • the treated liquid effluent must be discarded into the environment, so that no benefit is obtained for the metals (apart from the arsenic) that were in the effluent line of the Acid Plant and no benefit is obtained for the initial acidity , which is ultimately neutralized.
  • the process disclosed in this application is based on precipitation by hydrogen sulfide, preferably produced by processes of biological reduction of non-metallic sulfur or inorganic sulfur compounds (sulfate, sulphite, etc.) in a first stage without neutralizing the acidity with Io which only precipitate the sulphides of As (III) and As (V) 1 that are removed by sedimentation and filtration, and in a second stage modifying the pH between 4 and 5 with ammonia or ammonium hydroxide to precipitate the sulphides of the other metals present, which are removed by sedimentation and filtration, the resulting ammonium sulfate solutions being neutralized, evaporated and cooled to recover, by crystallization, ammonium sulfate.
  • non-metallic sulfur or inorganic sulfur compounds sulfate, sulphite, etc.
  • Filtration of both As sulfides and other metal sulphides can be performed using coagulant-flocculants such as aluminum sulfate, ferric sulfate or cationic polyelectrolytes as filtration aids.
  • coagulant-flocculants such as aluminum sulfate, ferric sulfate or cationic polyelectrolytes as filtration aids.
  • As sulfides are environmentally stable, that is, they meet the requirements of TCLP Test 1311 of the US EPA.
  • the problem that solves the present invention is to provide a process of selective removal of the As, for its environmental stabilization (that is, taking it to a non-hazardous solid according to TLCP 1311), separating the As from the rest of the heavy metals of the effluent to be treated, recovering both the economic value associated with the residual acid and the metals, separately from the As.
  • this process is carried out: 1) at a higher speed, 2) using two reaction steps (contact), Ia first without neutralizing the acidity of the residual acids (pH ⁇ 2) which produces a precipitate of As sulphide, 3) a second stage modifying the pH in the range 4 to 5 with ammonia or ammonium hydroxide which produces the precipitation of the rest of the heavy metal sulphides and 4) the resulting solution is neutralized with ammonia or ammonium hydroxide, and is then evaporated and cooled to produce the crystallization of ammonium sulfate onio, thus recovering the economic value of both the sulfate contained in the sulfuric acid of the effluent line of the Acid Plant, as well as the ammonia or ammonium hydroxide used as a neutralizer prior to the second reaction stage (contact) with acid sulfhydric and in the final neutralization.
  • This process is carried out by selectively separating As (III) and As (V) sulphide from the rest of the metal sulphides, which can be recycled to the smelting process, producing commercial ammonium sulfate, making such a task more efficient and economical and safer from the point of view of its environmental management. Best way to carry out the invention
  • This invention relates to a process and system for the selective removal and environmental stabilization of As from heavy metals, nonmetals and metalloids that form insoluble sulphides such as aluminum (Al), copper (Cu), zinc (Zn), lead ( Pb), antimony (Sb), silicon (Si), iron (Fe), bismuth (Bi), selenium (Se) and / or mercury (Hg) which are present in residual acids with high As content (preferably between around 50 to 50,000 mg / L), mainly those that come from acid solutions resulting from the washing of gases from sulfur smelter smelters of Cu, Zn, Pb, Ni, among others.
  • insoluble sulphides such as aluminum (Al), copper (Cu), zinc (Zn), lead ( Pb), antimony (Sb), silicon (Si), iron (Fe), bismuth (Bi), selenium (Se) and / or mercury (Hg) which are present in residual acids with high As content (preferably between around 50 to 50,000 mg / L),
  • the aforementioned residual acids, with pH less than 2 and temperatures between about 5 to 7O 0 C are treated with hydrogen sulfide gas (H 2 S).
  • a hermetic reaction system must be provided to prevent the leakage of hydrogen sulfide.
  • arsenic sulphides (III) and (V) (AS 2 S 3 and AS 2 S 5 ) are produced, insoluble at that pH.
  • the sulphides of As are separated by sedimentation, a suspension containing preferably about 0.5 to 5% solids being formed in the settler, and then the rest of the liquid is removed by draining (for example, in a filter of bands or press, etc.).
  • the precipitated solids are sedimented and filtered, obtaining a cake with a concentration between 30 and 70% which is returned to the smelting process and the aqueous phase is aerated to oxidize the remaining dissolved hydrogen sulfide acid.
  • the resulting solution is neutralized with ammonia or ammonium hydroxide, evaporated, cooled and crystallized to obtain crystals of ammonium sulfate.
  • the treated liquid can be disposed environmentally or recycled to the mining process.
  • the effluent to be treated (line 1 of the Diagram of Figure 1) is mixed with hydrogen sulfide (line 2) in a reactor (equipment I), where insoluble As sulphides are formed. Then, the separation of the sulfide of As from line 3 from the liquid phase takes place, in a solid-liquid separation equipment (equipment II), for example, a settler.
  • the sediment (line 4) contains sulphide As sulphides and the supernatant is a clear acid solution (line 7) that contains the rest of the heavy metals, nonmetals and metalloids.
  • the sludge, with a dry matter content between about 1 to 10% (line 4) is separated (equipment III), for example in a filter press, obtaining a dry solid with a content of 30 to 70% solid (line 5) That it is not dangerous according to TCLP1311.
  • the clear acid solution resulting from the separation (line 6) is combined with the overflow of the settler (line 7).
  • the resulting residual acid (line 7) is subjected to an adjustment to pH 4 to 5 and in a reaction equipment (equipment IV) (for example a stirred tank reactor) by means of the addition of ammonia or ammonium hydroxide (line 8) .
  • the clear solution from the filtration (line 15) is mixed with the clear solution of the overflow of the separator (line 16) obtaining a solution that contains some parts per million of dissolved hydrogen sulfide (line 17) which is taken to an equipment of aeration (equipment VIII) (for example, a stirred reactor) where it is mixed with air (line 18) to oxidize sulfate dissolved hydrogen sulfate, obtaining a solution that could still be acidic (line 19) to which the pH over 7 with ammonia (line 20) in a reaction equipment (equipment IX) (for example a stirred tank) resulting in a neutral pH solution, rich in ammonium sulfate (line 21).
  • equipment IX for example a stirred reactor
  • This last solution is conducted to an evaporation crystallization process (equipment X) obtaining crystallized ammonium sulfate (line 22), and water in the liquid form of the mother water and steam by the evaporation (line
  • the liquid effluent was treated by continuously bubbling hydrogen sulphide acid three times the stoichiometric requirement, to achieve precipitation of As sulphides, for about 5 minutes.
  • the resulting suspension was sedimented, at a rate of 15 m 3 / m 2 / day, and filtered.
  • a clear solution with 10.5 mg / L of As was obtained, evidencing a removal of about 99.9% of the As originally present in the example.
  • the precipitate obtained mainly containing As sulfide, was dried and subjected to the TCLP 1311 test of the US EPA, observing a leachate with a concentration lower than 2.5 mg / L of As, thus satisfying the requirements of the test, evidencing the environmental stability and his Approval as a non-hazardous solid.
  • the resulting clear solution was treated by bubbling ammonia (NH 3 ) until pH 4 was obtained, then gaseous hydrogen sulfide was bubbled, desolubilizing the rest of the heavy metals such as sulfides, which were separated by filtration.
  • the resulting clear solution was aerated to oxidize the remaining dissolved hydrogen sulfide. It was then treated with ammonia until a pH of 7.5 was obtained. After evaporation to dryness by heating, white crystals corresponding to ammonium sulfate were obtained.

Abstract

La invención de la presente solicitud divulga un proceso y un sistema para la separación, remoción y estabilización ambiental sustentable del arsénico (As), recuperando por separado otros metales y metaloides y producción de sulfato de amonio, a partir de una disolución acida de arsénico y metales pesados que forman sulfuros insolubles tales como aluminio (Al), cobre (Cu), zinc (Zn), plomo (Pb), antimonio (Sb), silicio (Si), hierro (Fe), bismuto (Bi), selenio (Se) y10 mercurio (Hg), presentes en efluentes liquidos industriales con alto contenido de As (preferentemente entre alrededor de 50 a 50.000 mg/L), principalmente aquellos que provienen de soluciones acidas, resultantes del lavado de gases de fundiciones de minerales sulfurados de cobre (Cu); de cinc (Zn); de plomo (Pb); y de níquel (Ni). Pueden también concurrir diversos otros metales, según sea la fuente y el proceso de donde provengan las aguas, que serán separados en la medida que forman sulfuros insolubles a pH menor que 5.

Description

TÍTULO
Proceso y Sistema para Ia separación, reciclado y estabilización ambiental sustentable de efluentes ácidos con arsénico (As) y/o metales pesados que forman sulfuras insolubles
Sector Técnico
La presente invención divulga un proceso y un sistema para Ia separación reciclado y estabilización ambiental sustentable de efluentes ácidos con arsénico (As) y/o metales pesados que forman sulfuras insolubles tales como aluminio (Al), cobre (Cu), zinc (Zn), plomo (Pb), antimonio (Sb), silicio (Si), hierro (Fe), bismuto (Bi), selenio (Se) y/o mercurio (Hg) desde ácidos residuales con altos contenidos de As (preferentemente entre 50 a 50.000 mg As/L), principalmente aquellos ácidos residuales resultantes del lavado de gases de fundiciones de metales no ferrosos, más preferentemente aún, ácidos residuales que provienen del lavado de gases de fundiciones de minerales sulfurados de cobre (Cu); de cinc (Zn); de plomo (Pb); y/o de níquel (Ni), entre otros, seguido específicamente de Ia estabilización ambiental de los compuestos de Arsénico resultantes, el reciclado al proceso de fundición de los sulfuras de los metales pesados contenidos en los ácidos residuales y Ia producción simultánea de sulfato de amonio a partir del ácido sulfúrico contenido en ellos, definiendo así un proceso económica y ambientalmente sustentable.
Técnica Anterior
Esta invención esta en el campo de Ia separación, reciclado y estabilización ambiental sustentable del arsénico en un efluente a tratar, consistente de una disolución acida de metales pesados (sus pesos atómicos exceden el del sodio) que forman sulfuras insolubles tales como aluminio (Al), cobre (Cu), zinc (Zn), plomo (Pb), antimonio (Sb), silicio (Si), hierro (Fe), bismuto (Bi), selenio (Se) y/o mercurio (Hg) y no-metales tóxicos, principalmente arsénico (As), desde ácidos residuales con alto contenido de As (preferentemente entre 50 a 50.000 mg As/L), principalmente aquellos ácidos residuales provenientes del lavado de gases de fundición de metales no ferrosos, en particular, del lavado de gases de fundición de minerales sulfurados de cobre (Cu); de cinc (Zn); de plomo (Pb); y/o de níquel (Ni), entre otros, más particularmente del lavado de gases de fundiciones de Cobre. Estabilización ambiental significa que los sólidos resultantes del proceso no sean considerados residuos sólidos peligrosos, de acuerdo al estándar de Ia U.S. EPA TCLP 1311 y sustentable significa que Ia operación completa genera un beneficio económico, particularmente en Ia forma de metales y sulfato de amonio, compuesto útil en Ia agricultura.
Uno de los mayores problemas ambientales que se presenta en Chile es Ia contaminación de las aguas con arsénico (As). La contaminación con As puede deberse a procesos naturales o a instalaciones industriales, principalmente mineras. Por ejemplo, en el norte de Chile, principalmente en Ia Il Región, existe una elevada contaminación con As de las aguas naturales, tanta que Ia expectativa de vida es menor que Ia media nacional, debido al cáncer a Ia piel, a problemas cardiovasculares y a enfermedades respiratorias asociadas a Ia presencia de dicho elemento.
La mayor parte del arsénico presente en minerales se encuentra como arsenopiritas (FeAsS), realgar (AsS) y orpiment (As2S3) (Smedley y Kinniburgh, 2002), minerales que se encuentran habitualmente mezclados con las especies de cobre que se llevan a procesos mineros en Chile. De esta manera, Ia principal fuente de contaminación con As proviene de las instalaciones de Ia industria cuprífera. En efecto, las principales instalaciones mineras procesan minerales de cobre con contenidos elevados de minerales de As (principalmente arsenopiritas). Estos minerales al ser procesados producen concentrados de cobre con contenidos elevados de As. Al fundir dichos concentrados, gran parte del As se volatiliza y forma parte de las emisiones gaseosas que, en Io principal, contienen anhídridos de azufre. Para mitigar Ia contaminación que produce el anhídrido de azufre y cumplir con Ia reglamentación ambiental, se suelen instalar plantas de captura y limpieza de humos de fundición; particularmente en Chile se han instalado varias plantas productoras de ácido sulfúrico a partir de los anhídridos de azufre de los humos de fundición. Estas plantas captan los humos de Ia fundición, compuestos principalmente del gas dióxido de azufre y en menor medida del gas trióxido de azufre, acompañados de hollines, cenizas, metales, arsénico, etc. Los humos se limpian y luego son oxidados para producir ácido sulfúrico. En el proceso de limpieza de emisiones a partir de minerales que contienen arsénico, se produce Ia formación de ácido sulfúrico con altos contenidos en As, mayoritariamente presente como As (III), en Ia salida de descarte de las Plantas de Ácido conocidas como Línea Efluente de Ia Planta de Ácido. También se captura arsénico en los polvos separados por los filtros de los humos de fundición. Los procesos existentes hasta el presente logran eliminar el As de las aguas residuales (Ia línea efluente) de las Plantas de Ácido, pero los compuestos sólidos de As obtenidos no son estables y no pueden ser dispuestos de una manera ambientalmente aceptable, siendo necesario el desarrollo de procesos que logren este objetivo. El método actual de contención del arsénico es, en realidad, un proceso de neutralización del ácido sulfúrico de Ia línea efluente de Ia Planta de Ácido, porque dicho ácido es inútil comercialmente debido, precisamente, a que contiene arsénico y otros metales; así, el método actual descarta ácido sulfúrico y metales que pueden tener un buen valor económico, y deja el arsénico en un estado no estable (sólido peligroso). Se suele también descartar esta línea efluente mediante Ia irrigación de botaderos, sin que exista evidencia de Ia estabilidad del arsénico en los botaderos irrigados.
Para estabilizar ambientalmente compuestos de As o residuos que contengan arsénico, los productos estables deben satisfacer los criterios establecidos en el Test TCLP 1311 de Ia EPA (especificado en, por ejemplo, http.V/www.epa.qov/epaoswer/hazwaste/test/pdfs/i 311.pdf) que consiste en un procedimiento estandarizado de lixiviación corrosiva por ácidos orgánicos, a una temperatura y tiempo dados en un equipamiento estandarizado. El límite de As lixiviado no debe exceder los 5 mg/L de As para considerar el producto como un residuo sólido no peligroso, es decir, ambientalmente estable. La mayoría de las patentes divulgadas y artículos científicos publicados se relacionan con Ia remoción de Arsénico y sólo en menor medida con Ia estabilización de los compuestos de arsénico removidos. No existen procesos que produzcan sulfato de amonio a Ia vez que estabilizan el impacto ambiental del arsénico y recuperan sulfuras de los otros metales del efluente de Planta de Ácido.
Los procesos más comunes para Ia remoción de arsénico corresponden a sistemas que requieren hidróxido y tener arsénico como As(V), es decir que requiere de una etapa de oxidación del As(III) (ver, por ejemplo, "The Disposal of Arsenic from Metallurgical Processes: ITS Status Regarding Ferric Arsenate," The Paul E. Queneau International Symposium, Extractive Metallurgy of Copper, Nickel and Cobalt, VoI, 1993, pp.1221-1237; Harper, T. R. and Kingham, N. W, y también "Removal of Arsenic from Wastewater Using Chemical Precipitation Methods, "Water Environmental Research (1992) 64 (3):200-203).; Ia utilización de hidróxidos puede aparecer como procesos de alcalinización (por ejemplo, en Ia patente chilena 35.046CL) y a menudo incorpora una coprecipitación de algún compuesto de arsénico y hierro (por ejemplo, patentes 35.227CL, 35.559CL, US 6.387.276, US 6.197.201 , US 5.820.966) En ciertos casos, se menciona explícitamente Ia intención de obtener minerales ambientalmente estables de As, como Ia escorodita, que es un compuesto de Arsénico, Hierro y Oxígeno (por ejemplo, en Ia solicitud de patente chilena 2620/2001).
Los ámbitos de aplicación de los procesos de remoción de As conocidos va desde Ia minería de cobre hasta las fuentes de agua potable. En el tratamiento de fuentes de agua potable destacan los procesos con reactivos inocuos para Ia salud humana, como Ia patente US 6.926.878 que utiliza hierro y azufre elemental (insoluble); o Ia patente US 5.603.838 que utiliza adsorción; o Ia patente US 6.093.328 que utiliza esponja de hierro, azufre elemental y un oxidante inocuo (peróxido de hidrógeno, por ejemplo); o Ia patente US 6.132.623 que utiliza hierro y arena; o también Ia publicación "Adsorption of Inorganic and Organoarsenicals on Hydrous Oxides," de Ghosh, M. M. and Yuan, J. R, en Environmental Progress (1987) 6 (3): 150 - 157. En Ia industria de producción de cobre es importante retirar el arsénico a fin de obtener cobre sin arsénico, pues de otro modo el valor económico del metal se reduce de manera importante. En Ia producción de cobre electrolítico se encuentran patentes como US 6.495.024 que utiliza un reacción con anhídrido sulfuroso elevando Ia temperatura de Ia solución; o como Ia US 4.146.447 que busca limpiar el electrolito mediante Ia interrupción o Ia inversión de Ia corriente durante Ia electrólisis. También se conocen procesos para otras industrias como Ia remoción de arsénico desde gas natural, en Ia patente US 5.245.106 en que el arsénico o el mercurio se eliminan con un sólido que contiene Cobre y Azufre y algo de sulfuro de cobre.
En cambio, las siguientes patentes y solicitudes de patentes dicen relación con Ia remoción de Arsénico desde aguas, soluciones acidas y ácidos residuales con procedimientos similares a los de esta innovación:
1. La patente US N0 4.824.650, trata sobre un método de extracción líquida, de bajo costo, para reducir significativamente As y otros metales pesados contenidos en ácido fosfórico. El método implica Ia sulfidización a temperaturas elevadas para formar los sulfuras de As y otros metales pesados, y posteriormente enfriar el ácido tratado y luego extraer con un extractante, preferentemente disulfuro de carbono, mediante agitación y sedimentación separar dos fases: una de ácido fosfórico y Ia otra conteniendo los sulfuras de As y metales pesados a remover. El extractante residual contenido en el ácido fosfórico puede ser separado de dicho ácido por oxidación, obteniéndose finalmente un ácido prácticamente libre de As y metales pesados. En esta patente no se explícita el destino final del arsénico retirado del ácido fosfórico ni del extractante contaminado con arsénico.
2. La patente chilena 35.031 CL se refiere a un procedimiento para extraer arsénico desde una solución acida acuosa por extracción líquido - líquido con un compuesto organofosfórico con una alta eficiencia y sin precipitación conjunta de cobre. La orientación de este proceso es similar al aquí divulgado pero su físico química es distinta.
3. La patente chilena 35.025 CL de 1985 se refiere a un procedimiento para Ia eliminación de arsénico desde ácido sulfúrico de desecho, por precipitación del arsénico en forma de sulfuro, con un agente de sulfuración y separación del arsénico con el empleo concomitante de agentes auxiliares de filtración, de tal modo que se obtiene el ácido exento de peligro para su reutilización. No se especifica el estado ambiental ni el destino final del arsénico.
4. La patente chilena N° 43.540 (de los mismo autores) se refiere a Ia remoción de As y metales pesados presentes en ácidos residuales de fundiciones de cobre y metales no ferrosos ajustando el pH de dichos ácidos entre 2 y 3 mediante bases y haciéndolo reaccionar con ácido sulfhídrico para precipitar sulfuros de As principalmente de As(III) y metales pesados, filtración y recirculación del ácido exento de As y metales pesados al proceso de lavado de gases, disolución en medio alcalino de los sulfuros principalmente de As(III), oxidación catalítica mediante catalizadores metálicos homogéneos a base de Co(II), Ni(II) o Fe(II) de As(III) As(V), disminución del pH a 4 mediante ácidos inorgánicos y precipitación del As(V) con soluciones de Fe(III) en relación Fe:As superior a Ia estequiométrica obteniéndose por filtración un sólido consistente en un complejo Fe-As que es estable ambientalmente según el test TCLP 1311 de Ia U.S. EPA. Esta patente se orienta al mismo problema que Ia aquí divulgada pero opera mediante un sistema físico químico totalmente distinto; además, el ácido debe ser recirculado a Ia Planta de Ácido (Ia recirculación tiene límites y eventualmente se requiere despiche que deberá ser neutralizado de un modo no especificado en Ia patente, seguramente mediante cal) en lugar de producir un reactivo de mercado.
5. La solicitud de patente chilena N0 2455/2001 se refiere a un procedimiento de tratamiento integral para estabilizar efluentes líquidos, residuos sólidos que contienen Arsénico que comprende lixiviación de escorias y oxidación catalítica. Los residuos industriales líquidos generados son sometidos a oxidación catalítica con aire utilizando como catalizador SO2, o soluciones de compuestos que generen dicho reactivo. Los procesos y las bases físicas y químicas de Ia solicitud 2455/2001 son totalmente distintos a los divulgados en esta invención.
6. La solicitud de patente chilena N0 55/2007 (de los mismos autores) se refiere a Ia precipitación de As y/o metales pesados que forman sulfuras insoluoles, del mismo tipo de efluente de Ia divulgación presente, es decir, principalmente aquellos efluentes ácidos que provienen del lavado de gases de fundición de minerales sulfurados de cobre (Cu). También en Ia solicitud 55/2007 se utiliza ácido sulfhídrico; pero, los sulfuras precipitados se resuspenden en agua y se coagulan a pH 7 con cloruro férrico utilizando agitación mecánica enérgica para producir un precipitado complejo compuesto por los sulfuras y sulfuros-hidróxido férrico superficial, los cuales son estables ambientalmente, es decir, satisfacen las exigencias del Test TCLP 1311 de Ia U.S. EPA. En Ia solicitud 55/2007 se debe descartar al ambiente el efluente líquido tratado, de modo que no se obtiene beneficio por los metales (aparte del arsénico) que estaban en Ia línea efluente de Ia Planta de Ácido ni se obtiene beneficio por Ia acidez inicial, que resulta neutralizada en definitiva.
Divulgación de Ia Invención
El procedimiento divulgado en Ia presente solicitud se basa en Ia precipitación mediante ácido sulfhídrico, producido preferentemente mediante procesos de reducción biológica de azufre no metálico o compuestos inorgánicos de azufre (sulfato, sulfito, etc.) en una primera etapa sin neutralizar Ia acidez con Io cual sólo precipitan los sulfuras de As(III) y As(V)1 que son retirados por sedimentación y filtración, y en una segunda etapa modificando el pH entre 4 y 5 con amoníaco o hidróxido de amonio para precipitar los sulfuras de los otros metales presentes, los cuales son retirados por sedimentación y filtración, siendo las soluciones de sulfato de amonio resultantes neutralizadas, evaporadas y enfriadas para recuperar, por cristalización, sulfato de amonio. La filtración tanto de los sulfuros de As y del resto de los sulfuros metálicos se puede realizar utilizando coagulantes-floculantes tales como sulfato de aluminio, sulfato férrico o polielectrolitos catiónicos como ayudantes de filtración. Los sulfuros de As son estables ambientalmente, es decir, satisfacen las exigencias del Test TCLP 1311 de Ia U.S. EPA.
Por tanto, el problema que resuelve Ia presente invención es proporcionar un proceso de remoción selectiva del As, para su estabilización ambiental (es decir, llevándolo a un sólido no peligroso según TLCP 1311), separando el As del resto de los metales pesados del efluente a tratar, recuperando tanto el valor económico asociado al ácido residual como a los metales, separadamente del As. A diferencia de los métodos conocidos este proceso se realiza: 1) a mayor velocidad, 2) utilizando dos etapas de reacción (contactamiento), Ia primera sin neutralizar Ia acidez de los ácidos residuales (pH<2) Io cual produce un precipitado de sulfuro de As, 3) una segunda etapa modificando el pH en el rango 4 a 5 con amoníaco o hidróxido de amonio Io cual produce Ia precipitación del resto de los sulfuros de metales pesados y 4) Ia solución resultante es neutralizada con amoníaco o hidróxido de amonio, y es después evaporada y enfriada para producir Ia cristalización de sulfato de amonio, recuperándose de esta manera el valor económico tanto del sulfato contenido en el ácido sulfúrico de Ia línea efluente de Ia Planta de Ácido, como del amoníaco o del hidróxido de amonio utilizado como neutralizante previo a Ia segunda etapa de reacción (contactación) con ácido sulfhídrico y en Ia neutralización final. Este proceso se realiza separando selectivamente sulfuro de As(III) y de As(V), del resto de los sulfuros metálicos, los cuales pueden ser reciclados al proceso de fundición, produciendo sulfato de amonio comercial, haciendo tal tarea más eficiente y económica y más segura desde el punto de vista de su manejo ambiental. Mejor manera de realizar Ia invención
Esta invención se refiere a un proceso y un sistema para Ia remoción selectiva y estabilización ambiental de As de metales pesados, no metales y metaloides que forman sulfuras insolubles tales como aluminio (Al), cobre (Cu), zinc (Zn), plomo (Pb), antimonio (Sb), silicio (Si), hierro (Fe), bismuto (Bi), selenio (Se) y/o mercurio (Hg) los cuales están presentes en ácidos residuales con alto contenido de As (preferentemente entre alrededor de 50 a 50.000 mg/L), principalmente aquellos que provienen de soluciones acidas resultantes del lavado de gases de fundiciones de minerales sulfurados de Cu, Zn, Pb, Ni, entre otros. Los ácidos residuales citados, con pH menores de 2 y temperaturas entre alrededor de 5 a 7O0C son tratados con sulfuro de hidrógeno gaseoso (H2S). Debe proveerse un sistema de reacción hermético para impedir Ia fuga de ácido sulfhídrico. Al producirse Ia contactación referida, se producen sulfuras de arsénico (III) y (V) (AS2S3 y AS2S5), insolubles a ese pH. Los sulfuras de As son separados por sedimentación, formándose en el sedimentador una suspensión que contiene preferentemente alrededor de 0,5 a 5% de sólidos, y se procede, a continuación, a Ia eliminación del resto del líquido por desaguado (por ejemplo, en un filtro de bandas o prensa, etc.). Al ácido resultante, exento de As, con una remoción de As superior al 99%, se Ie ajusta el pH en el rango 4 a 5 mediante Ia dosificación de amoníaco o hidróxido de amonio y se Ia contacta nuevamente con ácido sulfhídrico, precipitando los sulfuras de los metales pesados, no metales y metaloides presentes; en un sistema sellado para evitar Ia emisión de ácido sulfhídrico. Los sólidos precipitados son sedimentados y filtrados obteniéndose un queque con una concentración entre 30 y 70% el cual es devuelto al proceso de fundición y Ia fase acuosa es aireada para oxidar el ácido sulfhídrico disuelto eventualmente remanente. La solución resultante es neutralizada con amoníaco o hidróxido de amonio, evaporada, enfriada y cristalizada para obtener cristales de sulfato de amonio. El líquido tratado se puede disponer ambientalmente o reciclar al proceso minero. Mediante el método divulgado en Ia presente invención Ia remoción de As excede el 99%, se recuperan los otros metales eventualmente presentes y el ácido sulfúrico es transformado a sulfato de amonio.
Lista de secuencias
Mediante Ia descripción de Ia figura 1 , se ilustrará más claramente el proceso divulgado.
El efluente a tratar (línea 1 del Diagrama de Ia Figura 1) se mezcla con ácido sulfhídrico (línea 2) en un reactor (equipo I), donde se forman sulfuras de As insolubles. Se produce luego Ia separación del sulfuro de As de Ia línea 3 desde Ia fase líquida, en un equipo de separación sólido-líquido (equipo II), por ejemplo, un sedimentador. El sedimento (línea 4) contiene sulfuras de As en forma de lodos y el sobrenadante es una solución acida clara (línea 7) que contiene el resto de los metales pesados, no metales y metaloides. El lodo, con un contenido de materia seca entre alrededor de 1 a 10% (línea 4) es separado (equipo III), por ejemplo en un filtro prensa, obteniéndose un sólido seco con un contenido de 30 a 70% de sólido (línea 5) que es no peligroso de acuerdo a TCLP1311. La solución acida clara resultante de Ia separación (línea 6) se combina con el rebalse del sedimentador (línea 7). El ácido residual resultante (línea 7) es sometido a un ajuste a pH 4 a 5 y en un equipo de reacción (equipo IV) (por ejemplo un reactor de tanque agitado) mediante Ia adición de amoníaco o hidróxido de amonio (línea 8). La solución resultante con un pH 4 a 5 (línea 9) es contactada en un sistema de contactación (equipo V), agitado, al que se dosifica ácido sulfhídrico (Línea 10) formándose especies insolubles constituidos por el resto de los sulfuras de metales pesados, no metales y metaloides siendo Ia corriente resultante (línea 11) conducida a un equipo de separación sólido-líquido (equipo Vl) (por ejemplo un sedimentador) donde se separan los sulfuras metálicos insolubles aludidos. A Ia suspensión resultante (línea 12), con alrededor de 0,5 a 10% de sólidos, se Ie remueve agua (equipo VII) (por ejemplo un filtro prensa o de bandas) con una ayuda filtrante (línea 13) (por ejemplo un polielectrolito tipo poliacrilamida), hasta obtener un sólido (línea 14) con un contenido entre alrededor de 30 a 80% de materia seca el cual es eventualmente devuelto al proceso de fundición. La solución clara proveniente de Ia filtración (línea 15) se mezcla con Ia solución clara del rebalse del separador (línea 16) obteniéndose una solución que contiene algunas partes por millón de ácido sulfhídrico disuelto (línea 17) Ia cual es llevada a un equipo de aireación (equipo VIII) (por ejemplo, un reactor agitado) donde se mezcla con aire (línea 18) para oxidar el ácido sulfhídrico disuelto a sulfato, obteniéndose una solución que podría ser aún acida (línea 19) a Ia cual se Ie ajusta el pH sobre 7 con amoníaco (línea 20) en un equipo de reacción (equipo IX) (por ejemplo un tanque agitado) resultando una solución de pH neutro, rica en sulfato de amonio (línea 21). Esta última solución es conducida a un proceso de cristalización por evaporación (equipo X) obteniéndose sulfato de amonio cristalizado (línea 22), y agua en Ia forma líquida del agua madre y vapor por Ia evaporación (línea 23).
La invención ahora se describe además haciendo referencia al siguiente ejemplo, que no limita de ningún modo el alcance de Ia invención.
Se procedió a tratar, mediante el proceso de Ia presente invención, una muestra de efluente líquido industrial, cuya composición particular era: ácido sulfúrico residual con pH 0,5 y que contenía (en g/L): 72 de sulfato; 13,12 de As; 0,1107 de Zn; 0,0033 de Pb; 0,008 de Sb; 0,160 de Bi; <0,00001 de Se; 0,131 de Cu y <0,00001 de Hg.
El efluente líquido fue tratado haciendo burbujear, en forma continua, ácido sulfhídrico en razón triple del requisito estequiométrico, para lograr Ia precipitación de los sulfuras de As, durante alrededor de 5 minutos. La suspensión resultante fue sedimentada, a una tasa de 15 m3/m2/día, y filtrada. Se obtuvo una solución clara con 10,5 mg/L de As, evidenciando una eliminación de alrededor de 99,9% del As originalmente presente en el ejemplo.
El precipitado obtenido, conteniendo principalmente sulfuro de As, fue secado y sometido al test TCLP 1311 de Ia U.S. EPA observándose un lixiviado con una concentración inferior a 2,5 mg/L de As, satisfaciendo así las exigencias del test, evidenciando Ia estabilidad ambiental y su homologación como sólido no peligroso. La solución clara resultante fue tratada haciendo burbujear amoníaco (NH3) hasta obtener un pH 4, luego se hizo burbujear ácido sulfhídrico gaseoso, desolubilisando el resto de los metales pesados como sulfuros, que fueron separados por filtración. La solución clara resultante fue aireada para oxidar el ácido sulfhídrico disuelto remanente. Fue luego tratada con amoníaco hasta obtener un pH de 7,5. Luego de evaporación a sequedad mediante calentamiento, se obtuvieron cristales blancos correspondientes a sulfato de amonio.

Claims

REIVINDICACIONES
1. Un proceso para Ia remoción y estabilización de arsénico y/o metales pesados que forman sulfuras insoluoles tales como aluminio (Al), cobre (Cu), zinc (Zn), plomo (Pb), antimonio (Sb), silicio (Si), hierro (Fe), bismuto (Bi), selenio (Se) o mercurio (Hg), desde ácidos residuales con alto contenido de Arsénico, , CARACTERIZADO porque se realizan las siguientes etapas:
a) una primera contactación del efluente a tratar con ácido sulfhídrico para formar sulfuras de arsénico insolubles a pH ácido;
b) sedimentar los sulfuras de As (III) y As (V), formados como resultado de Ia etapa a);
c) filtrar y desaguar los sulfuras precipitados de Ia etapa b);
d) ajustar, a Ia solución clara resultante de Ia sedimentación y filtración de las etapas b) y c), el pH a un rango entre 4 y 5 mediante burbujeo de amoníaco o dosificación de hidróxido de amonio;
e) una segunda contactación con ácido sulfhídrico, esta vez con Ia solución clara de pH ajustado de Ia etapa d);
f) sedimentar los sulfuras metálicos insolubles de Cu, Zn, Pb, Bi, Se, Hg y Fe producidos en Ia etapa e);
g) filtrar y separar los sulfuras metálicos insolubles de Cu, Zn, Pb, Bi, Se, Hg y Fe contenidos en los lodos sedimentados producidos en Ia etapa f);
h) oxidar el ácido sulfhídrico de Ia solución clara de sedimentación y de filtración mediante aireación, peróxido u ozono; i) Ajustar el pH de Ia solución resultante de Ia etapa h) a pH sobre 7, mediante burbujeo con amoníaco o dosificación con hidróxido de amonio;
j) una cristalización de sulfato de amonio por evaporación de Ia solución resultante.
2. Un proceso de acuerdo con Ia reivindicación 1 , CARACTERIZADO porque Ia etapa a) comprende contactar efluentes líquidos ácidos con un contenido de Arsénico entre alrededor de 50 a 50.000 mg/L con ácido sulfhídrico.
3. Un proceso de acuerdo con Ia reivindicación 1 ó 2, CARACTERIZADO porque Ia etapa a) comprende contactar dichos efluentes líquidos con ácido sulfhídrico producido in situ.
4. Un proceso de acuerdo con cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque Ia etapa a) comprende contactar dicho efluente líquido con ácido sulfhídrico obtenido mediante procesos de reducción biológica de azufre o compuestos inorgánicos de azufre.
5. Un proceso de acuerdo con cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque Ia etapa a) comprende contactar dichos efluentes líquidos con ácido sulfhídrico en un reactor que contiene dicho efluente líquido haciendo burbujear en forma continua el ácido sulfhídrico al interior del reactor.
6. Un proceso de acuerdo con cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque Ia etapa a) comprende contactar dicho efluente líquido con ácido sulfhídrico durante alrededor de 5 a 30 minutos.
7. Un proceso de acuerdo con Ia reivindicación 1 , CARACTERIZADO porque Ia separación de los sulfuras de As generados en Ia etapa a) , se realiza en un sedimentador, formándose una suspensión con alrededor de 0,5 a 5% de sólidos y un efluente clarificado.
8. Un proceso de acuerdo con Ia reivindicación 1 ó 7, CARACTERIZADO porque Ia etapa de filtración de los sulfuras de As se realiza en un filtro prensa o de bandas
9. Un proceso de acuerdo con Ia reivindicación 1 , CARACTERIZADO porque Ia etapa de filtración se realiza hasta obtener un sólido con un contenido de agua entre alrededor de 5 a 30 %.
10. Un proceso de acuerdo con Ia reivindicación 1 ó 7, CARACTERIZADO porque Ia sedimentación se realiza a una tasa comprendida entre alrededor de 10 a 20 m2/m3/día.
11. Un proceso de acuerdo a Ia reivindicación 1 y 8, CARACTERIZADO porque se utiliza como ayuda filtrante un polielectrolito tipo poliacrilamida en dosis de 0,1 a 10 ppm.
12. Un proceso de acuerdo a Ia reivindicación 1 , CARACTERIZADO porque en Ia etapa a) el ácido sulfhídrico se contacta con dicho efluente líquido a una temperatura entre alrededor 2 y 7O0C y pH menores de 2 cuando dicho efluente proviene de soluciones acidas resultantes del lavado de gases de fundición de metales no ferrosos con altos contenidos de ácido sulfúrico.
13. Sistema para Ia remoción y estabilización de arsénico y/o metales pesados que forman sulfuras insolubles tales como aluminio (Al), cobre (Cu)1 zinc (Zn), plomo (Pb), antimonio (Sb), silicio (Si), hierro (Fe), bismuto (Bi), selenio (Se) o mercurio (Hg), desde efluentes industriales con alto contenido de Arsénico, principalmente efluentes líquidos provenientes del lavado de gases de fundición de metales no ferrosos con altos contenidos de ácido sulfúrico, más preferentemente aún, efluentes líquidos que provienen de soluciones acidas, resultantes del lavado de gases de fundiciones minerales sulfurados de cobre (Cu); cinc (Zn); plomo (Pb); y/o níquel (Ni), entre otros, CARACTERIZADO porque comprende: a. un primer reactor para contactar en forma continua dicho efluente líquido con ácido sulfhídrico;
b. un sedimentador para Ia separación de un sedimento que contiene sulfuras de As (III) y As (V) en forma de lodo y un líquido claro, formado en el medio a);
c. un medio para filtrar el sedimento recibido del primer medio para Ia separación sulfuras de As(III) y As(V);
d. un medio con agitación para el ajuste a pH 4 con amoníaco de las soluciones claras provenientes del rebalse del medio b) y del medio c)
e. un medio para contactar Ia solución de pH 4 con ácido sulfhídrico
f. un medio para Ia separación que recibe un sedimento que contiene sulfuras de Cu, Zn, Pb, Bi, Se, Hg, Fe y/o cualquier otro sulfuro insoluble, proveniente del medio e)
g. un segundo medio para filtrar que recibe el sedimento que contiene sulfuras de Cu, Zn, Pb, Bi, Se, Hg, Fe y/o cualquier otro sulfuro insoluble, en forma de lodo del medio para Ia separación f)
h. un medio para aireación que recibe soluciones claras desde el medio f) y g)
i. un medio con agitación para ajuste de pH con amoníaco
j. un medio para evaporar Ia solución clara y obtener cristales de sulfato de amonio
14. El sistema de Ia reivindicación 13, CARACTERIZADO porque el medio para contactar en forma continua dicho efluente líquido con ácido sulfhídrico es un reactor sellado.
15. El sistema de Ia reivindicación 13, CARACTERIZADO porque el reactor es un reactor seleccionado de reactores tipo multifase.
16. Ei sistema de Ia reivindicación 13, CARACTERIZADO porque los medios de separación en b) y f) son sedimentadores.
17. El sistema de Ia reivindicación 13, CARACTERIZADO porque los medios en c) y g) son un filtro.
18. El sistema de Ia reivindicación 17 CARACTERIZADO porque el filtro es un filtro de banda o filtro de prensa.
19. El sistema de Ia reivindicación 13 CARACTERIZADO porque los medios para contactar, airear y ajustar el pH son reactores agitados sellados.
PCT/CL2009/000010 2008-08-11 2009-08-11 Proceso y sistema para la separación, reciclado y estabilización ambiental sustentable de efluentes ácidos con arsénico (as) y/o metales pesados que forman sulfuros insolubles WO2010017652A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2008002358A CL2008002358A1 (es) 2008-08-11 2008-08-11 Proceso para remoción y estabilización de arsénico y metales pesados desde ácidos residuales con alto contenido de arsénico que comprende contactar el efluente a tratar con acido sulfhídrico y precipitar sulfuros de arsénico insolubles a ph menor de 2; y sistema para la remoción y estabilización de arsénico desde efluentes industriales ácidos, principalmente líquidos provenientes del lavado de gases de fundición de metales no ferrosos.
CL2358-2008 2008-08-11

Publications (1)

Publication Number Publication Date
WO2010017652A1 true WO2010017652A1 (es) 2010-02-18

Family

ID=41668625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2009/000010 WO2010017652A1 (es) 2008-08-11 2009-08-11 Proceso y sistema para la separación, reciclado y estabilización ambiental sustentable de efluentes ácidos con arsénico (as) y/o metales pesados que forman sulfuros insolubles

Country Status (2)

Country Link
CL (1) CL2008002358A1 (es)
WO (1) WO2010017652A1 (es)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153141A (zh) * 2010-12-30 2011-08-17 甘肃锦世化工有限责任公司 一种降低重铬酸钠、铬酸酐产品中微量元素铅的方法
CN102491477A (zh) * 2011-11-25 2012-06-13 中南大学 一种高浓度酸中脱汞的方法及装置
CN102897885A (zh) * 2012-10-26 2013-01-30 广西南宁东和新赢环保技术有限公司 硫酸工业双循环喷射式除砷的方法及设备
US8551340B2 (en) 2007-09-26 2013-10-08 Bioteq Environmental Technologies Inc. Method for selective sulphate removal by exclusive anion exchange from hard water waste streams
CN103880111A (zh) * 2014-03-28 2014-06-25 中国地质大学(武汉) 一种基于表面原位镀铁技术的除砷方法
CN104496000A (zh) * 2014-12-16 2015-04-08 浙江工业大学 一种铜粉置换去除并回收水体中砷、锑的方法
CN104591333A (zh) * 2014-12-16 2015-05-06 中国地质大学(武汉) 基于石英砂负载的原位氧化镀铁除砷工艺
US9085779B2 (en) 2008-02-12 2015-07-21 Bioteq Environmental Technologies Inc. Processes for producing h2s using sulphur-reducing bacteria
CN105621744A (zh) * 2016-03-07 2016-06-01 山东国信环境系统股份有限公司 铜矿酸性废水处理回收装置及其方法
CN107670486A (zh) * 2017-11-29 2018-02-09 洛阳市天誉环保工程有限公司 烧结机烟气的除砷装置及除砷工艺
WO2018064460A1 (en) 2016-09-30 2018-04-05 Mayo Foundation For Medical Education And Research Viral vectors for nuclear reprogramming
CN109019817A (zh) * 2018-08-16 2018-12-18 正坚建设有限公司 一种市政污水处理装置及其使用方法
CN109399832A (zh) * 2018-11-27 2019-03-01 中国恩菲工程技术有限公司 酸性重金属废水的处理方法
CN111620481A (zh) * 2020-07-29 2020-09-04 湖南大青生态科技有限公司 一种含氯砷工业废水的资源化处理方法
CN112062246A (zh) * 2020-09-09 2020-12-11 昆明理工大学 一种利用湿法冶炼锗产生的含铁、砷与多种重金属的废盐酸制备聚合氯化铝铁净水剂的方法
CN112312994A (zh) * 2018-04-18 2021-02-02 克莱恩有限公司 用于从离子液体中分离重金属和/或硫种类的方法
CN112897752A (zh) * 2021-01-26 2021-06-04 北京师范大学 生活饮用水的处理方法
CN114956369A (zh) * 2022-04-25 2022-08-30 金川集团股份有限公司 一种含铵废水去除重金属镍铜锌的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES8204697A1 (es) * 1980-03-05 1982-05-01 Boliden Ab Un metodo para purificar agua residual industrial en forma de una solucion acuosa acida que contiene metales pesados.
GB2116537A (en) * 1981-12-10 1983-09-28 Richard S Talbot Improved process for the removal of heavy metals from aqueous solution
ES2019009A6 (es) * 1989-12-29 1991-05-16 Espanoles Fertilizantes Procedimiento e instalacion para la eliminacion con sulfhidrico a presion, de arsenico y otros metales en aguas residuales procedentes de plantas industriales.
ES2142043T3 (es) * 1995-01-14 2000-04-01 Niels Ole Vesterager Metodo de tratamiento de una biomasa con el fin de eliminar metales pesados con sulfuro de hidrogeno.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES8204697A1 (es) * 1980-03-05 1982-05-01 Boliden Ab Un metodo para purificar agua residual industrial en forma de una solucion acuosa acida que contiene metales pesados.
GB2116537A (en) * 1981-12-10 1983-09-28 Richard S Talbot Improved process for the removal of heavy metals from aqueous solution
ES2019009A6 (es) * 1989-12-29 1991-05-16 Espanoles Fertilizantes Procedimiento e instalacion para la eliminacion con sulfhidrico a presion, de arsenico y otros metales en aguas residuales procedentes de plantas industriales.
ES2142043T3 (es) * 1995-01-14 2000-04-01 Niels Ole Vesterager Metodo de tratamiento de una biomasa con el fin de eliminar metales pesados con sulfuro de hidrogeno.

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551340B2 (en) 2007-09-26 2013-10-08 Bioteq Environmental Technologies Inc. Method for selective sulphate removal by exclusive anion exchange from hard water waste streams
US8840793B2 (en) 2007-09-26 2014-09-23 Bioteq Environmental Technologies Inc. Selective sulphate removal by exclusive anion exchange from hard water waste streams
US9085779B2 (en) 2008-02-12 2015-07-21 Bioteq Environmental Technologies Inc. Processes for producing h2s using sulphur-reducing bacteria
CN102153141A (zh) * 2010-12-30 2011-08-17 甘肃锦世化工有限责任公司 一种降低重铬酸钠、铬酸酐产品中微量元素铅的方法
CN102491477A (zh) * 2011-11-25 2012-06-13 中南大学 一种高浓度酸中脱汞的方法及装置
CN102897885A (zh) * 2012-10-26 2013-01-30 广西南宁东和新赢环保技术有限公司 硫酸工业双循环喷射式除砷的方法及设备
CN102897885B (zh) * 2012-10-26 2016-04-27 广西南宁东和新赢环保技术有限公司 硫酸工业双循环喷射式除砷的方法
CN103880111A (zh) * 2014-03-28 2014-06-25 中国地质大学(武汉) 一种基于表面原位镀铁技术的除砷方法
CN104496000A (zh) * 2014-12-16 2015-04-08 浙江工业大学 一种铜粉置换去除并回收水体中砷、锑的方法
CN104591333A (zh) * 2014-12-16 2015-05-06 中国地质大学(武汉) 基于石英砂负载的原位氧化镀铁除砷工艺
CN105621744A (zh) * 2016-03-07 2016-06-01 山东国信环境系统股份有限公司 铜矿酸性废水处理回收装置及其方法
WO2018064460A1 (en) 2016-09-30 2018-04-05 Mayo Foundation For Medical Education And Research Viral vectors for nuclear reprogramming
EP4056189A1 (en) 2016-09-30 2022-09-14 Mayo Foundation for Medical Education and Research Viral vectors for nuclear reprogramming
CN107670486A (zh) * 2017-11-29 2018-02-09 洛阳市天誉环保工程有限公司 烧结机烟气的除砷装置及除砷工艺
CN112312994A (zh) * 2018-04-18 2021-02-02 克莱恩有限公司 用于从离子液体中分离重金属和/或硫种类的方法
CN109019817A (zh) * 2018-08-16 2018-12-18 正坚建设有限公司 一种市政污水处理装置及其使用方法
CN109399832A (zh) * 2018-11-27 2019-03-01 中国恩菲工程技术有限公司 酸性重金属废水的处理方法
CN111620481A (zh) * 2020-07-29 2020-09-04 湖南大青生态科技有限公司 一种含氯砷工业废水的资源化处理方法
CN111620481B (zh) * 2020-07-29 2020-10-16 湖南大青生态科技有限公司 一种含氯砷工业废水的资源化处理方法
CN112062246A (zh) * 2020-09-09 2020-12-11 昆明理工大学 一种利用湿法冶炼锗产生的含铁、砷与多种重金属的废盐酸制备聚合氯化铝铁净水剂的方法
CN112897752A (zh) * 2021-01-26 2021-06-04 北京师范大学 生活饮用水的处理方法
CN114956369A (zh) * 2022-04-25 2022-08-30 金川集团股份有限公司 一种含铵废水去除重金属镍铜锌的方法
CN114956369B (zh) * 2022-04-25 2023-10-31 金川集团股份有限公司 一种含铵废水去除重金属镍铜锌的方法

Also Published As

Publication number Publication date
CL2008002358A1 (es) 2009-02-27

Similar Documents

Publication Publication Date Title
WO2010017652A1 (es) Proceso y sistema para la separación, reciclado y estabilización ambiental sustentable de efluentes ácidos con arsénico (as) y/o metales pesados que forman sulfuros insolubles
Nazari et al. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic
ES2401696T3 (es) Método para la recuperación de una solución de metales de valor y arsénico
US5908559A (en) Method for recovering and separating metals from waste streams
Balladares et al. Neutralization and co-precipitation of heavy metals by lime addition to effluent from acid plant in a copper smelter
CN107188361B (zh) 一种缓释硫化剂及其制备方法和缓释硫化剂用于净化酸性溶液中重金属和砷的方法
Riveros et al. Arsenic disposal practices in the metallurgical industry
Xue et al. Comprehensive recovery of arsenic and antimony from arsenic-rich copper smelter dust
AU775839B2 (en) Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
CN104445732A (zh) 一种含铊重金属废水中和混凝除铊工艺
ES2380995T3 (es) Método de tratamiento de intermediarios de fundición no ferrosos que contienen arsénico
CN102765831A (zh) 一种含重金属及砷的废水净化方法
US6270679B1 (en) Method for recovering and separating metals from waste streams
US20130341283A1 (en) Method for producing a poorly soluble calcium-arsenic compound
AU2015407367B2 (en) Method for removing arsenic from materials containing same
Habashi Metallurgical plants: how mercury pollution is abated
CA2858415C (en) Method for separating arsenic and heavy metals in an acidic washing solution
AU2017279746B2 (en) Beneficiation of Lead Sulphide Bearing Material
JP5062111B2 (ja) 脱銅スライムからの高純度亜砒酸水溶液の製造方法
BRPI0801716A2 (pt) processo quìmico para recuperação de metais contidos em resìduo industrial siderúrgico
FI104739B (fi) Menetelmä ei-rautametallien talteenottamiseksi sula- ja sulakalvosulfatoinnilla
CA2854778A1 (en) Recovery of zinc and manganese from pyrometalurgy sludge or residues
CN101613150B (zh) 一种低成本处理高含砷溶液的方法
CN110902792A (zh) 一种含五价砷废水的处理方法
JP3568569B2 (ja) 焼却灰または飛灰の無害化処理による重金属のリサイクル方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09806284

Country of ref document: EP

Kind code of ref document: A1