WO2010016495A1 - ベルト支持ローラモニタリングシステム - Google Patents

ベルト支持ローラモニタリングシステム Download PDF

Info

Publication number
WO2010016495A1
WO2010016495A1 PCT/JP2009/063814 JP2009063814W WO2010016495A1 WO 2010016495 A1 WO2010016495 A1 WO 2010016495A1 JP 2009063814 W JP2009063814 W JP 2009063814W WO 2010016495 A1 WO2010016495 A1 WO 2010016495A1
Authority
WO
WIPO (PCT)
Prior art keywords
support roller
belt support
sensor
belt
monitoring system
Prior art date
Application number
PCT/JP2009/063814
Other languages
English (en)
French (fr)
Inventor
年規 坂口
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008201636A external-priority patent/JP5456999B2/ja
Priority claimed from JP2009037031A external-priority patent/JP5318611B2/ja
Priority claimed from JP2009037014A external-priority patent/JP5318610B2/ja
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP09804978A priority Critical patent/EP2316759A4/en
Priority to US13/057,423 priority patent/US20110137613A1/en
Priority to AU2009278355A priority patent/AU2009278355A1/en
Publication of WO2010016495A1 publication Critical patent/WO2010016495A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/08Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration the load-carrying surface being formed by a concave or tubular belt, e.g. a belt forming a trough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/02Control devices, e.g. for safety, warning or fault-correcting detecting dangerous physical condition of load carriers, e.g. for interrupting the drive in the event of overheating

Definitions

  • the present invention relates to a belt support roller monitoring system for monitoring an abnormality of a belt support roller which is disposed at intervals in the length direction of the conveyor belt and rotatably supports the conveyor belt, and more particularly to efficiently detect the abnormality. It relates to what can be monitored.
  • Conveyor belts used for transporting coal and ore are very long to convey long distances, and are therefore configured to support multiple locations with a large number of spaced belt support rollers. ing.
  • Such a belt support roller bears the vertical load of the conveyor belt, but a rotatable roller supported at both ends by bearings such as roller bearings is driven by the traveling conveyor belt to rotate and rotate. It is comprised so that driving
  • working of a belt may not be inhibited.
  • the bearing becomes hard and the rollers cannot be driven, which may lead to failure of the conveyor belt.
  • each belt support roller is provided with a sensor for detecting a failure and a transmission means for transmitting information on the failure (for example, see Patent Document 1.)
  • the present invention has been made in view of such problems, and an object thereof is to provide a belt support roller monitoring system that is simple and can greatly reduce the cost.
  • ⁇ 1> is a belt support roller monitoring system that is arranged at intervals in the length direction of the conveyor belt and monitors the abnormality of the belt support roller that rotatably supports the conveyor belt.
  • This sensor unit stores a sensor that detects a physical quantity received from the belt support roller, a determination unit that determines abnormality of the belt support roller based on a measurement value obtained from the sensor, and data including a determination result.
  • a memory and a transmission means for transmitting data stored in the memory by radio waves to the outside of the conveyor belt, and a receiving station for receiving the data transmitted from the transmission means are provided outside the conveyor belt. This is a belt support roller monitoring system.
  • ⁇ 2> means that only the data of the belt support roller that is determined to be abnormal is not transmitted from the transmission unit, and the data of the belt support roller that is determined not to be abnormal by the determination unit in ⁇ 1>.
  • ⁇ 3> is that the data of the belt support roller determined not to be abnormal by the determination unit in ⁇ 2> is not stored in the memory, and only the data of the belt support roller determined to be abnormal is stored in the memory.
  • a belt support roller monitoring system wherein the belt support roller monitoring system is stored in a memory.
  • ⁇ 4> is abnormal in ⁇ 3>, in which counter means for detecting the order of each belt support roller for detecting the physical quantity along the length direction of the conveyor belt and an initiator for clearing the counter are provided.
  • the belt support roller monitoring system stores only the order of the belt support roller determined to be in the memory.
  • ⁇ 5> is any one of ⁇ 1> to ⁇ 4>, wherein the sensor is configured to detect the physical quantity continuously while the conveyor belt is running, and as the physical quantity, the sensor includes a belt support roller.
  • the counter means determines that the sensor has passed one of the belt support rollers and sets the counter to 1 when the measured value from the sensor exceeds a predetermined first threshold value.
  • the determination means is a belt support roller monitoring system configured to determine that the belt support roller is abnormal when the measured value exceeds a predetermined second threshold value. .
  • ⁇ 6> is a belt support roller monitoring system according to any one of ⁇ 1> to ⁇ 5>, in which a CPU is provided in the sensor unit, and the determination unit and the counter unit are configured by the CPU.
  • ⁇ 7> is the belt support roller monitoring in ⁇ 6>, wherein the counter means is configured to detect the order of each belt support roller along the length of the conveyor belt based on a signal from the sensor. System.
  • ⁇ 8> includes a second sensor that detects whether or not a conveyor belt has passed through each belt support roller as the sensor other than the first sensor in ⁇ 6>,
  • the counter means is a belt support roller monitoring system configured to detect the order of each belt support roller along the length of the conveyor belt based on a signal from the second sensor.
  • ⁇ 9> is a belt support roller monitoring system according to ⁇ 8>, wherein the second sensor is a non-contact type sensor that detects the belt support roller in a non-contact state.
  • ⁇ 10> is a belt support roller monitoring system which is a metal detection sensor in which the non-contact type sensor detects the presence or absence of metal in ⁇ 9>.
  • ⁇ 11> is that in ⁇ 8>, the second sensor is disposed on the belt support roller side from the bottom surface of the conveyor belt and on the base side of the protrusion, and the compression force in the protrusion direction of the protrusion is
  • a belt support roller monitoring system comprising a protrusion switch including a switch that switches from an OFF state to an ON state, or from an ON state to an OFF state when acted.
  • ⁇ 12> is the belt according to ⁇ 11>, wherein the protrusion includes a tapered portion formed so that a protruding height is lowered on a conveying direction side of the conveyor belt. Support roller monitoring system.
  • ⁇ 13> is any one of ⁇ 8> to ⁇ 12>, wherein at least one of the first sensor and the second sensor is housed in an exterior material attached to the belt support roller side of the conveyor belt. It is a belt support roller monitoring system characterized by this.
  • ⁇ 14> is configured such that, in ⁇ 6>, the receiving station periodically transmits a data transmission command, and the CPU transmits data to the receiving station when the data transmission command is received.
  • a belt support roller monitoring system for operating a transmission means for operating a transmission means.
  • ⁇ 15> includes a start signal transmission station that transmits a signal for instructing clearing of data including counter data as the initiator in ⁇ 14>, and the CPU transmits the signal from the start signal transmission station to the signal.
  • a belt support roller monitoring system configured to clear at least the counter value when receiving.
  • the sensor unit provided on the conveyor belt detects a physical quantity received from the belt support roller, and a determination unit that determines abnormality of the belt support roller based on a measurement value obtained from the sensor. And a memory for storing data including the determination result, and a transmission means for transmitting the data stored in the memory by radio waves to the outside of the conveyor belt, and transmitted from the transmission means to the outside of the conveyor belt Since a receiving station for receiving data is provided, information on which belt supporting roller is broken in the sensor unit is held in the sensor unit without providing a sensor or transmitting means for each belt supporting roller, and the information is received by the receiving station. It is possible to monitor belt support roller failures with a simple and low-cost system. .
  • the data of the belt support roller determined not to be abnormal by the determination unit is not transmitted from the transmission unit, and only the data of the belt support roller determined to be abnormal is transmitted to the transmission unit. Therefore, the necessary information can be transmitted by transmitting a small amount of data to the receiving station, and the reliability of communication can be improved by shortening the communication time.
  • the belt support roller data determined not to be abnormal by the determination means is not stored in the memory, but only the data of the belt support roller determined to be abnormal is stored in the memory. Therefore, the capacity of the memory can be kept small, and the reliability of communication can be further improved by shortening the data input / output time for the memory.
  • ⁇ 4> it is determined that there is an abnormality by providing counter means for detecting the order of each belt support roller for detecting the physical quantity along the length direction of the conveyor belt and an initiator for clearing the counter. Since only the order of the belt support rollers is stored in the memory, information indicating which belt support roller has failed can be expressed with the least amount of data.
  • the sensor is configured to detect the physical quantity continuously while the conveyor belt is running, and the physical quantity selected when the sensor passes the belt support roller is selected.
  • the counter means advances the counter by one because the sensor has passed one of the belt support rollers when the measured value from the sensor exceeds a predetermined first threshold, and the determination means Since the belt support roller is determined to be abnormal when the value exceeds a predetermined second threshold value, the belt support roller can be identified only by measuring the physical quantity with a sensor. Thus, it is possible to determine whether or not the specified belt support roller is faulty, and it is possible to collect information on which belt support roller is faulty very easily.
  • the sensor unit can be configured in a compact manner.
  • the counter means is configured to detect the order of the belt support rollers along the length of the conveyor belt based on a signal from the sensor.
  • the conveyor belt can be simplified without the need for a separate sensor for detecting.
  • a second sensor for detecting whether or not a conveyor belt has passed each belt support roller is provided, and the counter means receives a signal from the second sensor.
  • the belt support rollers can be reliably ordered, and the order of the rotation failure rollers can be reliably identified.
  • the second sensor is a non-contact type sensor that detects the belt support roller in a non-contact state, ⁇ 8> can be easily realized.
  • ⁇ 10> since the non-contact sensor is a metal detection sensor that detects the presence or absence of metal, ⁇ 9> can be realized at low cost.
  • the projection switch includes a switch that switches from the OFF state to the ON state or from the ON state to the OFF state.
  • ⁇ 12> since the protrusion has a tapered portion formed so that the protrusion height becomes lower in the conveying direction of the conveyor belt, the resistance when the protrusion gets over the belt support roller is reduced. can do.
  • the receiving station is configured to periodically transmit a data transmission command, and when the CPU receives the data transmission command, the transmission means transmits the data to the receiving station. Since the sensor unit is operated, the data is transmitted only when the sensor unit enters the range in which the command signal from the receiving station can be received, so that the data transmission can be minimized.
  • a start signal transmission station that transmits a signal instructing clearing of data including counter data is provided outside the conveyor belt, and the CPU receives at least the signal when the signal is received. Since the counter value is cleared, the initiator can be configured with a simple mechanism.
  • FIG. 1 is a conceptual diagram showing a belt support roller monitoring system according to this embodiment.
  • the belt support roller monitoring system 10 includes a sensor unit 2 embedded in an endless conveyor belt 1 and data transmitted from the sensor unit 2. And a receiving station 5 for receiving.
  • the conveyor belt 10 is also shown in FIG. 2 in a schematic cross-sectional view of the conveyor belt 1 and can be arranged at intervals along the length of the conveyor belt.
  • the belt support roller 3 supports the conveyor belt 1 to prevent a large tension from being applied due to the vertical load.
  • the sensor unit 2 continuously detects a physical quantity received by the conveyor belt, for example, a shear stress in the length direction applied to the surface of the conveyor belt, and based on the detected information, It has a function of judging abnormality and transmitting the result to the receiving station by radio waves. For this reason, the sensor unit 2 is provided corresponding to each row of belt support rollers 3 arranged along the conveyor belt width direction. In the case shown in FIG. 2, the belt support rollers 3 have three rows. Correspondingly, the sensor units 2 are arranged in three rows in the conveyor belt width direction.
  • Reference numeral 8 denotes a conveyed object.
  • FIG. 3 is a block diagram showing the configuration of the sensor unit 2.
  • the sensor unit 2 is based on the sensor 11 that detects the physical quantity received by the conveyor belt 1 and the physical quantity at a position corresponding to the belt support roller 3.
  • the determination means 13 for determining whether or not the belt support roller 3 is abnormal, the counter means 14 for counting the increase in the order of the belt support rollers, the memory 15 for storing the determination result, and the memory 15
  • the transmission means 16 is configured to transmit data to the receiving station 5 (also serving as an end signal transmitting station).
  • the determination unit 13 and the counter unit 14 are constituted by the CPU 12.
  • the belt support roller monitoring system 10 starts the sensor unit 2 from outside the conveyor belt and clears the count result by the counting means 14 to start counting.
  • a start signal transmitting station 10 for transmitting a start signal is provided, while the sensor unit 2 is provided with receiving means 17 for receiving the start signal.
  • an end signal transmitting station for transmitting an end signal for terminating the sensor unit 2 can be provided separately from the receiving station 5.
  • the receiving station 5 also serves as this end signal transmitting station. It may be.
  • the transmission means 16 and the reception means 17 forming part of the sensor unit 2 are configured by RFID, and the reception station 5 (also serving as an end signal transmission station) and the start signal transmission station 10 are transmitted with a data transmission command in a short cycle.
  • the signal (and the end signal) and the start signal are each transmitted, so that only when the sensor unit 2 is close to the respective station 5, 10 communication is performed between them. be able to.
  • a start signal can be automatically transmitted once a day at a predetermined time, or it can be manually operated.
  • the sensor unit 2 is configured so as to maintain the power saving mode as an initial state, but can be brought out of the power saving mode by a signal from the outside by radio waves.
  • the CPU 12 of the sensor unit 2 receives the signal when it approaches the start signal transmission station 4 that transmits the start signal in a short cycle and reaches within a range where radio waves can be detected therefrom. Based on the start signal input via the means 17, the power saving mode of the sensor unit 2 is canceled and the counter value held by the counter means 14 is cleared to zero. At this time, the CPU 12 may also clear the data held in the memory 15.
  • the sensor unit 2 exits the radio wave detection range of the start signal transmission station 4 as the conveyor belt 1 travels, and passes over the first belt support roller 3 (3A).
  • the sensor 11 when the sensor 11 is configured to detect the shear stress in the length direction of the conveyor belt on the surface of the conveyor belt, the sensor 11 outputs a signal having a continuous waveform as shown in FIGS. This signal is input to the determination means 13 and the counter means 14 constituting a part of the CPU 12.
  • FIG. 4 is a graph showing changes in the output signal from the sensor 11 with time on the horizontal axis and signal magnitude on the vertical axis.
  • the conveyor belt is shown.
  • a shearing force due to a slight slip with the belt support roller 3 acts, and a change in signal proportional to the shearing force appears as shown in the S part in the figure.
  • the output signal at this time is much smaller than the first threshold A at a portion far from the belt support roller 3 and exceeds the first threshold A only when the sensor 11 passes the belt support roller 2. It is possible to set the threshold value A. By setting in this way, it is possible to detect that the sensor 11 has passed the belt support roller 2.
  • the belt support rollers 3 can be ordered. That is, for example, the counter value until the sensor 11 reaches the roller 3B after passing the roller 3A is 1, and the counter value until the sensor 11 reaches the roller 3C after passing the roller 3B is 2. .
  • FIG. 5 is a graph showing the change in the output signal from the sensor 11 when the sensor 11 passes the belt support roller 3 (corresponding to the S portion in FIG. 4), and the solid line shows the change in the normal state.
  • the broken line represents the change in the abnormal case. If the belt support roller 3 fails and the bearing does not operate normally and does not follow the conveyor belt 1, a large frictional force is applied to the surface of the conveyor belt 1. Works. At this time, the output signal from the sensor 11 is smaller than the second threshold B when the belt support roller 3 is normal, and the threshold B is set so as to exceed the second threshold B for the first time when the belt support roller 3 becomes abnormal. Thus, the determination means 13 can determine whether or not the belt support roller 3 is operating abnormally.
  • the presence or absence of abnormality of the belt support roller is determined, and the order when this determination is performed is determined as the presence or absence of abnormality.
  • the number of the belt support roller as the determination target, it is possible to associate each belt support roller with the presence or absence of an abnormality with respect to the belt support roller.
  • the first belt support roller is normal and the second belt support roller is abnormal. It means that.
  • the calculation results by the determination means 13 and the counter means 14 of the CPU 12 are temporarily stored in the memory 15. After the sensor unit 11 further advances in the traveling direction of the conveyor belt 1 and enters the detection range of the data transmission command signal transmitted by the receiving station 5 in a short cycle, this signal is input to the CPU 12 via the receiving means 17. Then, the CPU 12 operates so as to transmit the data in the memory 15 via the transmission unit 16.
  • the receiving station 5 receives the signal from the sensor unit 2, and the data regarding the presence / absence of abnormality of the belt supporting roller 3 received by the receiving station 5 is finally processed by the computer 7 connected thereto. Made.
  • the normal belt support roller 3 is not stored in the memory as data, but only the order corresponding to the abnormality should be stored.
  • the memory capacity can be reduced.
  • the second, eighth, and eleventh belt support rollers 3 counted from the start signal transmission station 4 are abnormal, and other than that This means that the belt support roller 3 is normal.
  • the data stored in the memory 15 in this way has a small capacity, and the amount of data to be transmitted is extremely small even when data is transmitted to the receiving station 5, so that the communication time is extremely short and data transmission to the receiving station 5 is prevented. It can be done reliably.
  • the abnormal belt support roller 3 is determined.
  • the order of the belt support rollers 3 determined to be abnormal may be different from the actual order.
  • the detection probability of the abnormal belt support rollers is a predetermined value or more. If only this is determined to be abnormal, the determination reliability can be improved.
  • Table 1 shows the primary determination results indicating the order corresponding to the belt support rollers detected in the first, second, and third turns of the conveyor belt 1. Based on the primary determination result, the probability that each belt support roller is determined to be abnormal is calculated as shown in Table 2, and those having a probability of 50% or more are determined to be abnormal in the final determination. The results are as shown in Table 2.
  • the signal level higher than the first threshold A is adopted as the second threshold for determining the presence / absence of the abnormality in the belt support roller 3, but instead, the second threshold is set to the second threshold.
  • the second threshold C is set, and when the value C1 of the time T1 in the actual waveform is larger than the second threshold C, this is determined to be normal, and the value C2 of the time T1 in the actual waveform is smaller than the threshold C. Sometimes this can be determined to be abnormal.
  • a second threshold value D is set for the time T2 from the positive start point to the negative end point.
  • FIG. 8 is a conceptual diagram showing a first modification of the embodiment according to the present invention.
  • a belt support roller monitoring system 10A of this modification is different from the belt support roller monitoring system 10 of the embodiment described above.
  • the point is that the function of the reception station 5 and the function of the start signal transmission station 4 in the belt support roller monitoring system 10 are integrated and arranged as the external station 6, whereby the data stored in the memory 15 is stored.
  • the only difference is that the timing of transmission to the outside is delayed, and there is no difference in basic functions.
  • FIG. 9 is a conceptual diagram showing a second modification of the embodiment according to the present invention.
  • the belt support roller monitoring system 10B of this modification is different from the belt support roller monitoring system 10 of the embodiment described above. The only difference is that a series of belt support rollers are divided into a plurality of groups, and start signal transmission stations 4A, 4B, and 4C and reception stations 5A, 5B, and 5C are provided for each group. If the number of the belt support rollers 3 is large, there is a possibility that even if the sensor 11 passes through the belt support roller 2, it may not be detected by the first threshold A. In such a case, the actual belt support roller 3 and the detected order of the belt support rollers do not match.
  • the probability of inconsistencies occurring as a group is reduced by reducing the number of belt support rollers that are targeted when data is transferred to the receiving station. Can do.
  • the data received at the receiving stations 5A, 5B, and 5C may be processed individually by connecting computers to the receiving stations 5A, 5B, and 5C.
  • the receiving stations 5A, 5B, and 5C may be connected to only a memory (may be a hard disk) for storing data, and the memory may separately take out the data.
  • the senor 11 can be provided in the belt main body 21 of the belt 1 as shown in FIG. 10A, and the belt support roller of the belt main body 21 as shown in FIG. 10B.
  • the exterior material 22 may be attached to the surface 21 a on the side in contact with the sensor 11, and the sensor 11 may be provided in the exterior material 22.
  • the counter means 14 can be configured to detect the order of the belt support rollers 3 along the conveyor belt length direction based on the signal from the sensor 11.
  • This embodiment is referred to as the first embodiment, and as the second and third embodiments in place of this configuration, the sensor 11 is used as the first sensor, and the conveyor belt 1 is used as a sensor other than the sensor 11 so that the belt support rollers 3 are connected. It is also possible to provide a second sensor for detecting whether or not it has passed. In this case, the counter means 14 follows the length of the conveyor belt of each belt support roller 3 based on the signal from the second sensor. Detect the order. Such a second sensor is preferable because it can detect the belt support roller 3 even when the conveyor belt 1 is not in contact with the belt support roller 3 such as when the conveyor belt vibrates.
  • FIG. 11 shows a second embodiment using a non-contact type sensor that detects the belt support roller in a non-contact state as the second sensor, taking a metal detection sensor that is a kind of non-contact type sensor as an example.
  • FIG. 11A is a plan view of the conveyor belt 1 viewed from the belt support roller side
  • FIG. 11B is a sectional view taken along line XX.
  • the position of the belt support roller 3 is indicated by a two-dot chain line.
  • the first sensor 11 and the metal detection sensor 27 are provided in the exterior material 25 attached to the belt support roller side surface 21a of the belt body 21 of the conveyor belt 1, and the first sensor 11 and the metal detection sensor 27 One detection sensor 27 is provided at each position in the conveyor belt width direction corresponding to each of the three belt support rollers 3.
  • the first sensor 11 and the metal detection sensor 27 can also be provided in the belt main body 21 as shown in FIG.
  • FIG. 13 is a diagram illustrating a second embodiment using a protrusion switch as the second sensor
  • FIG. 13A is a plan view of the conveyor belt 1 viewed from the belt support roller side.
  • 13 (b) is a YY sectional view thereof.
  • the position of the belt support roller 3 is indicated by a two-dot chain line.
  • the protrusion switch 31 is disposed on the base side of the protrusion 33 that protrudes from the bottom surface 21a of the conveyor belt 1 to the belt support roller side. When the compressive force in the protrusion direction of the protrusion 33 is applied, the protrusion switch 31 is turned off. And a switch 34 for switching the state from the ON state to the OFF state.
  • the first sensor 11 and the switch 34 are provided in an exterior material 35 attached to the surface of the belt body 21 of the conveyor belt 1 on the belt support roller side. 11 and one switch 34 are provided one at a position in the conveyor belt width direction corresponding to each of the three belt support rollers 3.
  • the protrusion 33 can be one continuous in the width direction of the conveyor belt 1. Moreover, it is preferable that the protrusion 33 includes a tapered portion 32 formed so that the protrusion height becomes lower in the conveying direction of the conveyor belt, and the resistance when the protrusion 33 gets over the belt support roller 3 is reduced.
  • the protrusion switch 31 is used as the second sensor, in addition to the arrangement shown in FIG. 13, as shown in FIG. 14, the protrusion 33 is directly attached to the surface 21a of the belt main body 21 on the belt support roller side. 1
  • the sensor 11 and the switch 34 can also be provided in the belt main body 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Conveyors (AREA)

Abstract

 簡易で、コストを大幅に低減することのできるベルト支持ローラモニタリングシステムを提供する。  コンベヤベルト1にセンサユニット2を設け、このセンサユニット2を、ベルト支持ローラ3から受ける物理量を検知するセンサ11と、このセンサ11から得られた測定値に基づいてベルト支持ローラ3の異常を判定する判定手段13と、判定結果を含むデータを格納するメモリ15と、メモリ15に格納されたデータをコンベヤベルト1の外に電波で送信する送信手段16とで構成するともに、コンベヤベルト1の外に、前記送信手段16から送信されたデータを受信する受信ステーション5を設ける。

Description

ベルト支持ローラモニタリングシステム
 本発明は、コンベヤベルトの長さ方向に間隔をおいて配置されて、コンベヤベルトを、回転自在に支持するベルト支持ローラの異常をモニタリングするベルト支持ローラモニタリングシステムに関し、特に、効率的に異常をモニタリングできるものに関する。
 石炭や鉱石の運搬に用いられるコンベヤベルトは、長い距離を運ぶため、極めて長尺のものが用いられ、そのため、間隔を開けて配置された多数のベルト支持ローラで複数箇所を支持するよう構成されている。このような、ベルト支持ローラはコンベヤベルトの垂直荷重を負担してはいるが、両端をローラベアリング等の軸受けで支持された回転自在なローラが、走行するコンベヤベルトに駆動されて自転し、コンベヤベルトの走行を阻害しないように構成されている。しかしながら、これらは機械的に動くものであるため故障する可能性があり、特に、軸受けが固くなってローラが従動できなくなり、これがコンベヤベルトの故障につながることがあった。
 従来、このようなベルト支持ローラの回転不良に対しては、各ベルト支持ローラに、故障を検出するセンサと、故障したことの情報を発信する発信手段とを具えるものが提案されている(例えば、特許文献1参照。)。
特開2005-30588号公報
 しかしながら、従来技術にあっては、ベルト支持ローラの1個1個にセンサ等を設置する必要があり、コスト的にも膨大なものとなり、しかも、ベルト支持ローラが故障したことがわかったとしても、その情報を収集するシステムが不可欠であり、この点においても多大なコストが必要になる。
 本発明は、このような問題点に鑑みてなされたものであり、簡易で、コストを大幅に低減することのできるベルト支持ローラモニタリングシステムを提供することを目的とする。
 <1>は、コンベヤベルトの長さ方向に間隔をおいて配置されて、コンベヤベルトを、回転自在に支持するベルト支持ローラの異常をモニタリングするベルト支持ローラモニタリングシステムにおいて、コンベヤベルトにセンサユニットを設け、このセンサユニットを、ベルト支持ローラから受ける物理量を検知するセンサと、このセンサから得られた測定値に基づいてベルト支持ローラの異常を判定する判定手段と、判定結果を含むデータを格納するメモリと、メモリに格納されたデータをコンベヤベルトの外に電波で送信する送信手段とで構成するともに、コンベヤベルトの外に、前記送信手段から送信されたデータを受信する受信ステーションを設けてなるベルト支持ローラモニタリングシステムである。
 <2>は、<1>において、前記判定手段によって異常でないと判定されたベルト支持ローラのデータは、前記送信手段からは送信せず、異常であると判定されたベルト支持ローラのデータのみを前記送信手段から送信することを特徴とする請求項1に記載のベルト支持ローラモニタリングシステムである。
 <3>は、<2>において、前記判定手段によって異常でないと判定されたベルト支持ローラのデータは、前記メモリには格納せず、異常であると判定されたベルト支持ローラのデータのみを前記メモリに格納することを特徴とするベルト支持ローラモニタリングシステムである。
 <4>は、<3>において、前記物理量を検知する各ベルト支持ローラの、コンベヤベルトの長さ方向に沿った順番を検出するカウンタ手段と、カウンタをクリアするイニシエータとを設け、異常であると判定されたベルト支持ローラのデータとして、その順番だけをメモリに格納することを特徴とするベルト支持ローラモニタリングシステムである。
 <5>は、<1>~<4>のいずれかにおいて、前記センサを、コンベヤベルトの走行中連続して前記物理量を検出するよう構成するとともに、前記物理量として、このセンサがベルト支持ローラを通過する際に変化するものを選択し、前記カウンタ手段は、センサからの測定値が予め定められた第1の閾値を超えたとき、センサがベルト支持ローラの1つを通過したとしてカウンタを1つ進め、前記判定手段は、前記測定値が、予め定められた第2の閾値を超えたとき、このベルト支持ローラが異常であると判定するように構成されてなるベルト支持ローラモニタリングシステムである。
 <6>は、<1>~<5>のいずれかにおいて、前記センサユニットにCPUを設け、前記判定手段およびカウンタ手段をこのCPUで構成してなるベルト支持ローラモニタリングシステムである。
 <7>は、<6>において、前記カウンタ手段は、前記センサからの信号に基づいて、各ベルト支持ローラのコンベヤベルト長さ方向に沿った順番を検出するよう構成されているベルト支持ローラモニタリングシステムである。
 <8>は、<6>において、前記センサを第1センサとして、第1センサ以外のセンサとしてコンベアベルトが前記各ベルト支持ローラを通過したが否かを検知する第2センサが設けられ、前記カウンタ手段は、前記第2センサからの信号に基づいて、各ベルト支持ローラのコンベヤベルト長さ方向に沿った順番を検出するよう構成されたベルト支持ローラモニタリングシステムである。
 <9>は、<8>において、前記第2センサは、非接触状態において前記ベルト支持ローラを検知する非接触型センサであるベルト支持ローラモニタリングシステムである。
 <10>は、<9>において、前記非接触型センサが金属の有無を検知する金属検知センサであるベルト支持ローラモニタリングシステムである。
 <11>は、<8>において、前記第2センサは、コンベアベルトの底面からベルト支持ローラ側に突出する突起と、この突起の基部側に配置されて、前記突起の突出方向の圧縮力が作用したときにOFF状態からON状態、もしくは、ON状態からOFF状態に状態が切り替わるスイッチとを具えた突起スイッチであることを特徴とするベルト支持ローラモニタリングシステムである。
 <12>は、<11>において、前記突起は、突出高さがコンベアベルトの搬送方向側で低くなるように形成されたテーパ部を具えていることを特徴とする請求項11に記載のベルト支持ローラモニタリングシステムである。
 <13>は、<8>~<12>のいずれかにおいて、前記第1センサおよび第2のセンサの少なくとも一方が、コンベアベルトのベルト支持ローラ側に取り付けられる外装材内に収納されていることを特徴とするベルト支持ローラモニタリングシステムである。
 <14>は、<6>において、前記受信ステーションを、データ送信指令を周期的に発信するよう構成するとともに、前記CPUを、前記データ送信指令を受信したとき、データを受信ステーションに送信するよう送信手段を作動させるものとするベルト支持ローラモニタリングシステムである。
 <15>は、<14>において、前記イニシエータとして、カウンタデータを含むデータのクリアを指令する信号を発信する開始信号発信ステーションをコンベヤの外に設け、前記CPUは、開始信号発信ステーションから前記信号を受信したとき、少なくとも前記カウンタ値をクリアするよう構成されてなるベルト支持ローラモニタリングシステムである。
 <1>によれば、コンベヤベルトに設けられたセンサユニットを、ベルト支持ローラから受ける物理量を検知するセンサと、このセンサから得られた測定値に基づいてベルト支持ローラの異常を判定する判定手段と、判定結果を含むデータを格納するメモリと、メモリに格納されたデータをコンベヤベルトの外に電波で送信する送信手段とで構成するともに、コンベヤベルトの外に、前記送信手段から送信されたデータを受信する受信ステーションを設けたので、ベルト支持ローラの各々にセンサや送信手段を設けることなく、センサユニット内にどのベルト支持ローラが故障しているかの情報を保持し、その情報を受信ステーションに渡すことができ、簡易で低コストなシステムでベルト支持ローラの故障をモニタリングすることができる。
 <2>によれば、前記判定手段によって異常でないと判定されたベルト支持ローラのデータは、前記送信手段からは送信せず、異常であると判定されたベルト支持ローラのデータのみを前記送信手段から送信するので、必要な情報の伝達を、受信ステーションへの少ない量のデータの送信で済ませることができ、通信時間の短縮によって通信の確実性を向上させることができる。
 <3>によれば、前記判定手段によって異常でないと判定されたベルト支持ローラのデータは、前記メモリには格納せず、異常であると判定されたベルト支持ローラのデータのみを前記メモリに格納するので、メモリの容量を小さく抑えることができ、また、メモリに対するデータの入出力時間を短縮することによって通信の確実性をさらに向上させることができる。
 <4>によれば、前記物理量を検知する各ベルト支持ローラの、コンベヤベルトの長さ方向に沿った順番を検出するカウンタ手段と、カウンタをクリアするイニシエータとを設け、異常であると判定されたベルト支持ローラのデータとして、その順番だけをメモリに格納するので、どのベルト支持ローラが故障しているかという情報を、最も少ないデータで表すことができる。
 <5>によれば、前記センサを、コンベヤベルトの走行中連続して前記物理量を検出するよう構成するとともに、前記物理量として、このセンサがベルト支持ローラを通過する際に変化するものを選択し、前記カウンタ手段は、センサからの測定値が予め定められた第1の閾値を超えたとき、センサがベルト支持ローラの1つを通過したとしてカウンタを1つ進め、前記判定手段は、前記測定値が、予め定められた第2の閾値を超えたとき、このベルト支持ローラが異常であると判定するように構成されているので、前記物理量をセンサで測定するだけでベルト支持ローラの特定と、特定されたベルト支持ローラの故障の有無の判定とを行うことができ、どのベルト支持ローラが故障しているかの情報を極めて簡易に収集することができる。
 <6>によれば、前記センサユニットにCPUを設け、前記判定手段およびカウンタ手段をこのCPUで構成したので、センサユニットをコンパクトに構成することができる。
 <7>によれば、前記カウンタ手段は、前記センサからの信号に基づいて、各ベルト支持ローラのコンベヤベルト長さ方向に沿った順番を検出するよう構成されているので、ベルト支持ローラの順番を検出する別のセンサを必要とせず、コンベアベルトを簡素化することができる。
 <8>によれば、第1センサ以外のセンサとしてコンベアベルトが前記各ベルト支持ローラを通過したが否かを検知する第2センサが設けられ、前記カウンタ手段は、前記第2センサからの信号に基づいて、各ベルト支持ローラのコンベヤベルト長さ方向に沿った順番を検出するよう構成されているので、コンベアベルトの上下のうねりが大きい場合など、コンベアベルトがベルト支持ローラに接触しない場合でも、ベルト支持ローラを通過したが否かを検知することができ、ベルト支持ローラの順番付けを確実に行うことができ、回転不良ローラの順番を確実に特定することができる。
 <9>によれば、前記第2センサは、非接触状態において前記ベルト支持ローラを検知する非接触型センサとしたので、<8>を簡易に実現することができる。
 <10>によれば、前記非接触型センサが金属の有無を検知する金属検知センサであるとしたので、<9>を安価に実現することができる。
 <11>によれば、前記第2センサは、コンベアベルトの底面からベルト支持ローラ側に突出する突起と、この突起の基部側に配置されて、前記突起の突出方向の圧縮力が作用したときにOFF状態からON状態、もしくは、ON状態からOFF状態に状態が切り替わるスイッチとを具えた突起スイッチであるとしてので、この場合も、<8>を簡易に実現することができる。
 <12>によれば、前記突起は、突出高さがコンベアベルトの搬送方向側で低くなるように形成されたテーパ部を具えているので、突起がベルト支持ローラを乗り越えたときの抵抗を緩和することができる。
 <13>によれば、前記第1センサおよび第2のセンサの少なくとも一方が、コンベアベルトのベルト支持ローラ側に取り付けられる外装材内に収納されているので、これらの耐久性を向上させることができる。
 <14>によれば、前記受信ステーションを、データ送信指令を周期的に発信するよう構成するとともに、前記CPUを、前記データ送信指令を受信したとき、データを受信ステーションに送信するよう送信手段を作動させるので、センサユニットが、受信ステーションからの指令信号を受信できる範囲にはいったとき初めてデータを送るので、データの送信を最低限に抑えることができる。
 <15>によれば、前記イニシエータとして、カウンタデータを含むデータのクリアを指令する信号を発信する開始信号発信ステーションをコンベヤベルトの外に設け、前記CPUは、この信号を受信したとき、少なくとも前記カウンタ値をクリアするよう構成されているので、簡易なしくみでイニシエータを構成することができる。
本発明に係る実施形態のベルト支持ローラモニタリングシステムを示す概念図である。 コンベヤベルトを示す断面図である。 センサユニットの構成を示すブロック線図である。 センサの出力信号の変化を示すグラフである。 センサユニットベルト支持ローラを通過する際のセンサの出力信号の変化と第2の閾値とを示すグラフである。 センサユニットベルト支持ローラを通過する際のセンサの出力信号の変化と他の第2の閾値とを示すグラフである。 センサユニットベルト支持ローラを通過する際のセンサの出力信号の変化と他の第2の閾値とを示すグラフである。 実施形態のベルト支持ローラモニタリングシステムの第1の変形例を示す概念図である。 実施形態のベルト支持ローラモニタリングシステムの第2の変形例を示す概念図である。 実施形態のベルト支持ローラモニタリングシステムのセンサの取付態様を示す断面図である。 第2実施形態のベルト支持ローラモニタリングシステムのセンサの取付態様を示す平面図および断面図である。 第2実施形態のベルト支持ローラモニタリングシステムのセンサの他の取付態様を示す断面図である。 第3実施形態のベルト支持ローラモニタリングシステムのセンサの取付態様を示す平面図および断面図である。 第3実施形態のベルト支持ローラモニタリングシステムのセンサの他の取付態様を示す断面図である。
 本発明の実施形態のベルト支持ローラモニタリングシステムを図を参照して説明する。図1は、この実施形態のベルト支持ローラモニタリングシステムを示す概念図であり、ベルト支持ローラモニタリングシステム10は、無端のコンベヤベルト1に埋設されたセンサユニット2と、センサユニット2から送信されたデータを受信する受信ステーション5とを具えて構成される。コンベヤベルト10は、両端の駆動および従動のプーリ9によって支持される他、図2に、コンベヤベルト1の概略断面図で示すように、コンベヤベルトの長さ方向に間隔をおいて配置さえた多数のベルト支持ローラ3によって支持されていて、コンベヤベルト1に、垂直荷重に起因する大きなテンションが加わるのを抑えるようになっている。
 また、センサユニット2は、コンベヤベルトが受ける物理量、例えば、コンベヤベルト表面にかかる長さ方向の剪断応力を連続的に検出し、検出した情報をもとに、各ベルト支持ローラの動作の正常・異常を判定してその結果を電波で受信ステーションに送信する機能を有している。このため、センサユニット2は、ベルト支持ローラ3のコンベヤベルト幅方向に沿って並ぶ各列に対応して設けられていて、図2に示すものの場合、ベルト支持ローラ3は3列あるので、それに対応するように、センサユニット2は、コンベヤベルト幅方向に3列並んで配置される。なお、符号8は、被搬送物を示す。
 図3は、センサユニット2の構成を示すブロック線図であり、センサユニット2は、コンベヤベルト1が受ける物理量を検出するセンサ11、ベルト支持ローラ3に対応する位置での前記物理量をもとにそのベルト支持ローラ3が異常であるか否かを判定する判定手段13、ベルト支持ローラの順番の増加をカウントするカウンタ手段14、判定の結果を格納するメモリ15、および、メモリ15に格納されたデータを受信ステーション5(兼、終了信号発信ステーション)に送信する送信手段16を具えて構成される。ここで、判定手段13およびカウンタ手段14はCPU12によって構成されるのが好ましい。
 また、ベルト支持ローラモニタリングシステム10は、センサユニット2および受信ステーション5の他に、コンベヤベルトの外から、センサユニット2を始動させるとともにカウント手段14によるカウント結果をクリアしてカウントを開始させるための開始信号を発信する開始信号発信ステーション10を具え、一方、センサユニット2には、この開始信号を受信するための受信手段17が設けられる。
 さらに、センサユニット2を終了させる終了信号を発信する終了信号発信ステーションを受信ステーション5とは別に設けることもできるが、図3に示すように、受信ステーション5が、この終了信号発信ステーションを兼ねるようにしてもよい。
 そして、センサユニット2の一部をなす送信手段16および受信手段17を、RFIDで構成し、受信ステーション5(兼、終了信号発信ステーション)および開始信号発信ステーション10を、短い周期で、データ送信指令信号(および終了信号)ならびに開始信号をそれぞれ送信するように構成すると好ましく、このことによって、センサユニット2がそれぞれのステーション5、10に近接したときだけ、それらの間で通信が行われるようにすることができる。
 なお、開始信号発信ステーション4や受信ステーション5にそれぞれ対応する信号の発信を開始させ、もしくは、終了させるには、それらのステーション4、5に接続された遠隔操作手段(図示せず)あるいはコンピュータ7によって、例えば、自動的に1日1回決まった時間だけ開始信号を発信するようにすることもできるし、また、手動によってこれを操作できるようにすることもできる。
 以上のように構成されたベルト支持ローラモニタリングシステムを用いて、ベルト支持ローラの異常の有無をモニタリングする方法について以下に説明する。センサユニット2は初期状態として、省電力モードを保持するが電波による外部からの信号によって省電力モードからでることができるように構成されていて、コンベヤベルト1の走行に伴って、センサユニット2が、図1におけるFの向きに進み、開始信号を短い周期で発信している開始信号発信ステーション4に近づき、そこからの電波の検知が可能な範囲内に到達すると、センサユニット2のCPU12は受信手段17を介して入力した開始信号に基づいて、センサユニット2の省電力モードを解除させるとともにカウンタ手段14が保持するカウンタ値をクリアしてゼロにする。このとき、CPU12は、メモリ15に保持されたデータもクリアするようにしてもよい。
 このあと、センサユニット2は、コンベヤベルト1の走行に伴って開始信号発信ステーション4の電波検知範囲から出て、第1のベルト支持ローラ3(3A)上を通過する。センサ11を、例えば、コンベヤベルト表面の、コンベヤベルト長さ方向の剪断応力を検知するよう構成した場合には、センサ11からは、図4、図5に示すような連続的な波形の信号が出力され、この信号はCPU12の一部を構成する判定手段13およびカウンタ手段14に入力される。
 図4は、横軸に時間を、縦軸に信号の大きさをそれぞれとって、センサ11からの出力信号の変化を示すグラフであり、センサ11がベルト支持ローラ3上を通過すると、コンベヤベルト1の内側の表面には、ベルト支持ローラ3との間の僅かなスリップによる剪断力が作用し、図示のS部ような、剪断力に比例した信号の変化が現れる。このときの出力信号は、ベルト支持ローラ3から遠く離れた部分では第1の閾値Aよりずっと小さく、センサ11がベルト支持ローラ2を通過するときだけ第1の閾値Aを越えるように第1の閾値Aを設定することは可能であり、このように設定することによりセンサ11がベルト支持ローラ2を通過したことを検知することができる。
 そして、カウンタ手段14を、第1の閾値Aを越えたとき、カウンタを1だけ増加させるように構成することにより、各ベルト支持ローラ3を順番付けすることができる。すなわち、例えば、センサ11が、ローラ3Aを通過したあと、ローラ3Bにさしかかるまでのカウンタ値は1であり、ローラ3Bを通過したあと、ローラ3Cにさしかかるまでのカウンタ値は2を保持している。
 図5は、同様に、センサ11がベルト支持ローラ3を通過する際の、センサ11からの出力信号の変化を示すグラフ(図4のS部に対応)であり、実線は正常な場合の変化を表し、破線は異常な場合の変化を表すものとして、もし、ベルト支持ローラ3が、故障して軸受けが正常に作動せずコンベヤベルト1に従動しないときはコンベヤベルト1の表面に大きな摩擦力が作用する。このとき、センサ11からの出力信号は、ベルト支持ローラ3が正常なときには第2の閾値Bより小さく、ベルト支持ローラ3が異常となったとき初めて第2の閾値Bを越えるように閾値Bを設定することができ、このようにして、判定手段13はベルト支持ローラ3の作動の異常の有無を判定することができる。
 そして、例えば、第1の閾値Aを用いてベルト支持ローラ3の順番付けを行った直後に、ベルト支持ローラの異常の有無の判定を行い、この判定を行ったときの順番を、異常の有無の判定対象となったベルト支持ローラの番号とすることによって、各ベルト支持ローラとそのベルト支持ローラに対する異常の有無とを対応付けることができる。
 例えば、正常と判定したときの順番が1であり、異常と判定したときの順番が2である場合には、1番目のベルト支持ローラは正常であり、2番目のベルト支持ローラは異常であることを意味している。
 CPU12の判定手段13およびカウンタ手段14による演算結果はメモリ15に一旦格納される。センサユニット11がさらにコンベヤベルト1の進行方向に進んで受信ステーション5によって短い周期で発信されるデータ送信指令信号の検知範囲に入った後、この信号が受信手段17を介してCPU12に入力されると、CPU12は、メモリ15のデータを送信手段16を介して発信するように作動する。そして、受信ステーション5は、センサユニット2からの信号を受信し、受信ステーション5で受信された、ベルト支持ローラ3の異常の有無に関するデータはこれに接続されているコンピュータ7によって最終的な処理がなされる。
 ここで、メモリ15に格納するデータとしては、メモリ15の容量を節約するため、正常となるベルト支持ローラ3についてはデータとしてメモリには格納せず、異常に対応する順番だけを格納しておけばメモリの容量を小さく済ませることができる。例えば、メモリ15に、2、8、11というデータが格納されていた場合には、開始信号発信ステーション4から数えて2番目、8番目、11番目のベルト支持ローラ3が異常でありそれ以外のベルト支持ローラ3は正常であることを意味している。
 メモリ15にこのように格納されたデータは容量の小さく、受信ステーション5へのデータの送信に際しても送信データ量が極めて少なくなるため、通信時間が極めて短くなり、受信ステーション5へのデータの送信を確実に行わせることができる。
 なお、上記の説明においては、コンベヤベルト1が1回周回すると異常なベルト支持ローラ3の判定を行っているが、複数周回コンベヤベルト1を走行させてデータを収集したときには、検出のばらつき等により異常と判定されたベルト支持ローラ3の順番が、実際の順番と異なる可能性があり、このような場合、最終的な判定として、異常なベルト支持ローラの検出確率が所定の値以上である場合にのみこれを異常と判定するようにすれば、判定の信頼性を向上させることができる。
 以下にその例を示す。表1は、コンベヤベルト1の第1周目、第2周目、および、第3周目のそれぞれの周回において検出されたベルト支持ローラに対応する順番を示す1次判定結果を表している。この1次判定結果をもとに、各ベルト支持ローラについて、異常と判定された確率を算出したものが表2であり、この確率が50%以上のものを最終判定における異常と判定するものとすると、その結果は、表2に示す通りである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 先に説明したところにおいて、ベルト支持ローラ3の異常の有無を判定するための第2の閾値として、第1の閾値Aより大きい信号レベルを採用したが、これに代えて、第2の閾値を時間軸上の値とすることもでき、例えば、図6に、実線を正常な波形、破線を異常な波形の場合として示すように、プラス側のピークからマイナス側のピークまでの時間T1に対して第2の閾値Cを設定しておき、実際の波形における時間T1の値C1が第2の閾値Cより大きいときにはこれを正常と判定し実際の波形における時間T1の値C2が閾値Cより小さいときにはこれを異常と判定することもできる。
 また、時間軸に沿った閾値として、図7に同様にして示すように、プラス側の開始点からマイナス側の終了点までの時間T2に対して第2の閾値Dを設定しておき、実際の波形における時間T2の値D1が第2の閾値Dより大きいときにはこれを正常と判定し実際の波形における時間T2の値D2が閾値Dより小さいときにはこれを異常と判定することもできる。
 図8は、本発明に係る実施形態の第1の変形例を示す概念図を示し、この変形例のベルト支持ローラモニタリングシステム10Aが、先に説明した実施形態のベルト支持ローラモニタリングシステム10と異なる点は、外部ステーション6として、ベルト支持ローラモニタリングシステム10における受信ステーション5の機能と開始信号発信ステーション4の機能とを統合して配置した点であり、このことによって、メモリ15に格納したデータを外部に送信するタイミングが遅れる点だけが違っており基本的な機能に違いはない。
 図9は、本発明に係る実施形態の第2の変形例を示す概念図を示し、この変形例のベルト支持ローラモニタリングシステム10Bが、先に説明した実施形態のベルト支持ローラモニタリングシステム10とは、一連のベルト支持ローラを複数の群に区切ってそれぞれの群ごとに開始信号発信ステーション4A、4B、4Cと受信ステーション5A、5B、5Cとを設けた点だけが異なっている。ベルト支持ローラ3の数が多いと、センサ11がベルト支持ローラ2を通過しても、第1の閾値Aによって検出できないことが発生する可能性があり、このような場合、実際のベルト支持ローラ3の順番と、検出したベルト支持ローラの順番とが合わない不整合が生じる。
 そこで、この変形例のベルト支持ローラモニタリングシステム10Bのように、受信ステーションにデータを受け渡す際に対象となるベルト支持ローラの数を減らすことにより、群として不整合が発生する確率を低減することができる。この場合、受信ステーション5A、5B、5Cで受け取ったデータの処理は、各受信ステーション5A、5B、5Cにコンピュータを接続しておいて、それらのコンピュータで個別に処理してもよく、また、各受信ステーション5A、5B、5Cには、データを格納するメモリ(ハードディスクでもよい)だけを接続しておき、別途データをそれらのメモリが取り出すことをおこなってもよい。
 ここで、センサ11は、図10(a)に示すように、ベルト1のベルト本体21内に設けることもできるし、また、図10(b)に示すように、ベルト本体21のベルト支持ローラに接する側の面21aに外装材22を取付け、センサ11を外装材22内に設けてもよい。
 以上の実施形態で示したように、カウンタ手段14を、センサ11からの信号に基づいて、各ベルト支持ローラ3のコンベヤベルト長さ方向に沿った順番を検出するよう構成することができるが、この実施形態を第1実施形態として、この構成に代えた第2および第3の実施形態として、センサ11を第1センサとして、センサ11以外のセンサとしてコンベアベルト1が前記各ベルト支持ローラ3を通過したが否かを検知する第2センサを設けることもでき、この場合、カウンタ手段14は、この第2センサからの信号に基づいて、各ベルト支持ローラ3のコンベヤベルト長さ方向に沿った順番を検出する。このような第2センサは、コンベアベルトが振動しているような場合等、コンベアベルト1がベルト支持ローラ3に接触していなくても、ベルト支持ローラ3を検知することができ好ましい。
 図11は、この第2センサとして、非接触状態において前記ベルト支持ローラを検知する非接触型センサを用いた第2の実施形態を、非接触型センサの一種である金属探知センサを例にとって示す図であり、図11(a)は、コンベアベルト1をベルト支持ローラ側から見た平面図であり、図11(b)はそのX-X断面図である。なお、図10(a)において、ベルト支持ローラ3の位置を2点鎖線で示した。第1センサ11と、金属探知センサ27とが、コンベアベルト1のベルト本体21のベルト支持ローラ側の面21aに取り付けられた外装材25の内に設けられていて、第1センサ11と、金属探知センサ27とは、3個のベルト支持ローラ3の各々に対応するコンベアベルト幅方向位置に1個ずつ設けられている。
 図11に示した配置態様の他、第1センサ11と、金属探知センサ27とは、図12に示すように、ベルト本体21内に設けることもできる。
 図13は、第2センサとして、突起スイッチを用いた第2の実施形態を例示する図であり、図13(a)は、コンベアベルト1をベルト支持ローラ側から見た平面図であり、図13(b)はそのY-Y断面図である。なお、図13(a)において、ベルト支持ローラ3の位置を2点鎖線で示した。突起スイッチ31は、コンベアベルト1の底面21aからベルト支持ローラ側に突出する突起33と、この突起33の基部側に配置されて、突起33の突出方向の圧縮力が作用したときにOFF状態からON状態、もしくは、ON状態からOFF状態に状態が切り替わるスイッチ34とを具えている。そして、この図の場合、第1センサ11と、スイッチ34とが、コンベアベルト1のベルト本体21のベルト支持ローラ側の面に取り付けられた外装材35の内に設けられていて、第1センサ11と、スイッチ34とは、3個のベルト支持ローラ3の各々に対応するコンベアベルト幅方向位置に1個ずつ設けられている。
 ここで、突起33は、コンベアベルト1の幅方向に連続する1個とすることができる。また、突起33は、突出高さがコンベアベルトの搬送方向側で低くなるように形成されたテーパ部32を具えるのが好ましく、突起33がベルト支持ローラ3を乗り越える際の抵抗を緩和する。
 第2センサとして突起スイッチ31を用いた場合も、図13に示した配置態様の他、、図14に示すように、突起33をベルト本体21のベルト支持ローラ側の面21aに直接取付け、第1センサ11と、スイッチ34とを、ベルト本体21内に設けることもできる。
1 コンベヤベルト
2 センサユニット
3、3A、3B ベルト支持ローラ
4、4A、4B、4C 開始信号発信ステーション
5、5A、5B、5C 受信ステーション
6 外部ステーション
8 被搬送物
9 プーリ
7 コンピュータ
10、10A、10B ベルト支持ローラモニタリングシステム
11 センサ(第1センサ)
12 CPU
13 判定手段
14 カウンタ手段
15 メモリ
16 送信手段
17 受信手段
18 RFID
21 ベルト本体
21a ベルト本体のベルト支持ローラ側の面
25 外装材
27 金属探知センサ
31 突起スイッチ
32 テーパ面
33 突起
34 スイッチ

Claims (15)

  1.  コンベヤベルトの長さ方向に間隔をおいて配置されて、コンベヤベルトを、回転自在に支持するベルト支持ローラの異常をモニタリングするベルト支持ローラモニタリングシステムにおいて、
     コンベヤベルトにセンサユニットを設け、このセンサユニットを、ベルト支持ローラから受ける物理量を検知するセンサと、このセンサから得られた測定値に基づいてベルト支持ローラの異常を判定する判定手段と、判定結果を含むデータを格納するメモリと、メモリに格納されたデータをコンベヤベルトの外に電波で送信する送信手段とで構成するともに、コンベヤベルトの外に、前記送信手段から送信されたデータを受信する受信ステーションを設けてなるベルト支持ローラモニタリングシステム。
  2.  前記判定手段によって異常でないと判定されたベルト支持ローラのデータは、前記送信手段からは送信せず、異常であると判定されたベルト支持ローラのデータのみを前記送信手段から送信することを特徴とする請求項1に記載のベルト支持ローラモニタリングシステム。
  3.  前記判定手段によって異常でないと判定されたベルト支持ローラのデータは、前記メモリには格納せず、異常であると判定されたベルト支持ローラのデータのみを前記メモリに格納することを特徴とする請求項2に記載のベルト支持ローラモニタリングシステム。
  4.  前記物理量を検知する各ベルト支持ローラの、コンベヤベルトの長さ方向に沿った順番を検出するカウンタ手段と、カウンタをクリアするイニシエータとを設け、異常であると判定されたベルト支持ローラのデータとして、その順番だけをメモリに格納することを特徴とする請求項3に記載のベルト支持ローラモニタリングシステム。
  5.  前記センサを、コンベヤベルトの走行中連続して前記物理量を検出するよう構成するとともに、前記物理量として、このセンサがベルト支持ローラを通過する際に変化するものを選択し、前記カウンタ手段は、センサからの測定値が予め定められた第1の閾値を超えたとき、センサがベルト支持ローラの1つを通過したとしてカウンタを1つ進め、前記判定手段は、前記測定値が、予め定められた第2の閾値を超えたとき、このベルト支持ローラが異常であると判定するように構成されてなる請求項1~4のいずいれかに記載のベルト支持ローラモニタリングシステム。
  6.  前記センサユニットにCPUを設け、前記判定手段およびカウンタ手段をこのCPUで構成してなる請求項1~5のいずれかに記載のベルト支持ローラモニタリングシステム。
  7.  前記カウンタ手段は、前記センサからの信号に基づいて、各ベルト支持ローラのコンベヤベルト長さ方向に沿った順番を検出するよう構成された請求項6に記載のベルト支持ローラモニタリングシステム。
  8.  前記センサを第1センサとして、第1センサ以外のセンサとしてコンベアベルトが前記各ベルト支持ローラを通過したが否かを検知する第2センサが設けられ、前記カウンタ手段は、前記第2センサからの信号に基づいて、各ベルト支持ローラのコンベヤベルト長さ方向に沿った順番を検出するよう構成された請求項6に記載のベルト支持ローラモニタリングシステム。
  9.  前記第2センサは、非接触状態において前記ベルト支持ローラを検知する非接触型センサである請求項8に記載のベルト支持ローラモニタリングシステム。
  10.  前記非接触型センサが金属の有無を検知する金属検知センサである請求項9に記載のベルト支持ローラモニタリングシステム。
  11.  前記第2センサは、コンベアベルトの底面からベルト支持ローラ側に突出する突起と、この突起の基部側に配置されて、前記突起の突出方向の圧縮力が作用したときにOFF状態からON状態、もしくは、ON状態からOFF状態に状態が切り替わるスイッチとを具えた突起スイッチであることを特徴とする請求項8に記載のベルト支持ローラモニタリングシステム。
  12.  前記突起は、突出高さがコンベアベルトの搬送方向側で低くなるように形成されたテーパ部を具えていることを特徴とする請求項11に記載のベルト支持ローラモニタリングシステム。
  13.  前記第1センサおよび第2のセンサの少なくとも一方が、コンベアベルトのベルト支持ローラ側に取り付けられる外装材内に収納されていることを特徴とする請求項8~12のいずれかに記載のベルト支持ローラモニタリングシステム。
  14.  前記受信ステーションを、データ送信指令を周期的に発信するよう構成するとともに、前記CPUを、前記データ送信指令を受信したとき、データを受信ステーションに送信するよう送信手段を作動させるものとする請求項6に記載のベルト支持ローラモニタリングシステム。
  15.  前記イニシエータとして、カウンタデータを含むデータのクリアを指令する信号を発信する開始信号発信ステーションをコンベヤの外に設け、前記CPUは、開始信号発信ステーションから前記信号を受信したとき、少なくとも前記カウンタ値をクリアするよう構成されてなる請求項14に記載のベルト支持ローラモニタリングシステム。
PCT/JP2009/063814 2008-08-05 2009-08-04 ベルト支持ローラモニタリングシステム WO2010016495A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09804978A EP2316759A4 (en) 2008-08-05 2009-08-04 ROLL MONITORING SYSTEM BELT SUPPORT
US13/057,423 US20110137613A1 (en) 2008-08-05 2009-08-04 Monitoring system for belt support rollers
AU2009278355A AU2009278355A1 (en) 2008-08-05 2009-08-04 Belt support roller monitoring system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-201636 2008-08-05
JP2008201636A JP5456999B2 (ja) 2008-08-05 2008-08-05 ベルト支持ローラモニタリングシステム
JP2009-037031 2009-02-19
JP2009-037014 2009-02-19
JP2009037031A JP5318611B2 (ja) 2009-02-19 2009-02-19 コンベヤベルト及びガイドローラの不良判定システム
JP2009037014A JP5318610B2 (ja) 2009-02-19 2009-02-19 コンベヤベルト及びガイドローラの不良判定システム

Publications (1)

Publication Number Publication Date
WO2010016495A1 true WO2010016495A1 (ja) 2010-02-11

Family

ID=41663714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063814 WO2010016495A1 (ja) 2008-08-05 2009-08-04 ベルト支持ローラモニタリングシステム

Country Status (4)

Country Link
US (1) US20110137613A1 (ja)
EP (1) EP2316759A4 (ja)
AU (1) AU2009278355A1 (ja)
WO (1) WO2010016495A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117622810A (zh) * 2024-01-25 2024-03-01 山西戴德测控技术股份有限公司 一种传送带监控方法、装置、设备及计算机存储介质

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159137A (ja) * 2009-01-08 2010-07-22 Bridgestone Corp コンベヤベルト
ITMI20110949A1 (it) * 2011-05-26 2012-11-27 Gm Oil & Gas Machinery S R L Dispositivo per recuperare parte dell'energia cinetica di autoveicoli in movimento
WO2016135642A2 (en) * 2015-02-25 2016-09-01 Geoffrey Smith Fire prevention
EP3070031B1 (en) * 2015-03-19 2017-12-27 Cambridge International, Inc. Spiral conveyor belt system and method for determining overdrive of the same
CN106241195A (zh) * 2016-08-26 2016-12-21 芜湖悠派护理用品科技股份有限公司 一种物料输送设备
CN106335742A (zh) * 2016-08-26 2017-01-18 芜湖悠派护理用品科技股份有限公司 一种自动控制物料输送设备
US11305938B2 (en) 2019-08-29 2022-04-19 Cambridge International, Inc. Active direct drive spiral conveyor belt systems and methods
DE102019126060B4 (de) 2019-09-26 2022-05-05 Otto-Von-Guericke-Universität Magdeburg Verfahren und Messsystem zur Erkennnung und Lokalisation von Fehlstellungen von Tragrollen in Gurtförderanlagen
BE1027257B1 (de) * 2019-10-21 2020-12-01 Thyssenkrupp Ag Förderbandanlage mit im Förderband integrierter Datenübertragung
WO2021078702A1 (de) 2019-10-21 2021-04-29 Thyssenkrupp Industrial Solutions Ag Förderbandanlage mit im förderband integrierter datenübertragung
CN113418439A (zh) * 2021-05-10 2021-09-21 本钢板材股份有限公司 一种鞍座用钢卷中位检测系统及其检测方法
DE102021205158A1 (de) 2021-05-20 2022-11-24 Contitech Transportbandsysteme Gmbh Riemenanlage, vorzugsweise Förderbandanlage
WO2024028868A1 (en) * 2022-08-01 2024-02-08 Odysight.Ai Ltd. Monitoring a moving element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420823A (ja) * 1990-05-15 1992-01-24 Kyowa Electron Instr Co Ltd 軸部発熱温度計測装置
JPH07291425A (ja) * 1994-04-26 1995-11-07 Ishikawajima Harima Heavy Ind Co Ltd コンベヤベルトの亀裂検出方法
JP2005030588A (ja) 2004-05-10 2005-02-03 Ntn Corp コンベヤにおけるicタグ・センサ付き軸受の異常検査システム
JP2006052039A (ja) * 2004-08-10 2006-02-23 Bridgestone Corp コンベアベルトのモニタリングシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106111A (ja) * 1987-10-19 1989-04-24 Fuji Photo Film Co Ltd シーケンス監視方法
DE19911642B4 (de) * 1999-03-16 2006-08-31 Lausitzer Braunkohle Aktiengesellschaft (Laubag) Verfahren zur fortlaufenden Messung des Verschleißes aller Tragrollen in Gurtförderern
US6715602B1 (en) * 2002-11-15 2004-04-06 The Goodyear Tire & Rubber Company Sensor system for conveyor belt
DE102005021627A1 (de) * 2005-05-06 2006-11-16 Rwe Power Ag Verfahren zur Überwachung der Bandausrichtung und/oder des Bandlaufs einer Gurtbandfördereinrichtung sowie Gurtbandförderer
US7740128B2 (en) * 2005-11-08 2010-06-22 Veyance Technologies, Inc. Method for self-synchronizing a conveyor belt sensor system
US7740130B2 (en) * 2006-05-31 2010-06-22 Veyance Technologies, Inc. Digital processor sensor loop detector and method
US7494004B2 (en) * 2006-06-23 2009-02-24 Siemens Energy & Automation, Inc. Method and apparatus for monitoring conveyor belts
US7673739B2 (en) * 2008-02-04 2010-03-09 Honeywell International Inc. Apparatus and method for in-belt conveyor idler condition monitoring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420823A (ja) * 1990-05-15 1992-01-24 Kyowa Electron Instr Co Ltd 軸部発熱温度計測装置
JPH07291425A (ja) * 1994-04-26 1995-11-07 Ishikawajima Harima Heavy Ind Co Ltd コンベヤベルトの亀裂検出方法
JP2005030588A (ja) 2004-05-10 2005-02-03 Ntn Corp コンベヤにおけるicタグ・センサ付き軸受の異常検査システム
JP2006052039A (ja) * 2004-08-10 2006-02-23 Bridgestone Corp コンベアベルトのモニタリングシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117622810A (zh) * 2024-01-25 2024-03-01 山西戴德测控技术股份有限公司 一种传送带监控方法、装置、设备及计算机存储介质
CN117622810B (zh) * 2024-01-25 2024-04-19 山西戴德测控技术股份有限公司 一种传送带监控方法、装置、设备及计算机存储介质

Also Published As

Publication number Publication date
EP2316759A4 (en) 2012-08-29
US20110137613A1 (en) 2011-06-09
EP2316759A1 (en) 2011-05-04
AU2009278355A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
WO2010016495A1 (ja) ベルト支持ローラモニタリングシステム
US7673739B2 (en) Apparatus and method for in-belt conveyor idler condition monitoring
AU2012229882B2 (en) Vibration detection system, apparatus and method
WO2010033526A1 (en) Conveyor belt rip panels and belt rip monitoring
WO2016019431A1 (en) Conveyor roller monitoring apparatus, system and method
CN107636356A (zh) 皮带传动器和用于监测这种皮带传动器的方法
AU2006233215A1 (en) Method for self-synchronizing a conveyor belt sensor system
JP5318611B2 (ja) コンベヤベルト及びガイドローラの不良判定システム
CN113682744A (zh) 用于检测采矿系统中输送机张力的传感器系统和方法
CN108190709B (zh) 载人运输工具
JP6164182B2 (ja) ベルトコンベアの異常検知方法
JP2005030588A (ja) コンベヤにおけるicタグ・センサ付き軸受の異常検査システム
CN108190712B (zh) 载人运输工具的监测装置
CN114126993A (zh) 用于在输送系统运行时进行状态监控的系统和方法
JP5456999B2 (ja) ベルト支持ローラモニタリングシステム
JP5279406B2 (ja) コンベヤベルトのモニタリングシステム
JP5318610B2 (ja) コンベヤベルト及びガイドローラの不良判定システム
JP5679707B2 (ja) ベルトコンベア監視システム
CN107117446A (zh) 一种机械接触式皮带跑偏量检测装置及其测量方法
CN219729524U (zh) 应用于输送设备的检测装置
WO2014202395A1 (en) Splice monitoring system for conveyor belts in mining industry
CN220722545U (zh) 将传感器附接到输送带的装置,将传感器固定到输送带的装置及监控输送带的监控系统
CN117302897B (zh) 一种带式输送机智能监测防控方法及系统
KR200486224Y1 (ko) 컨베이어 벨트 풀리의 손상 감지 시스템
JP2024008384A (ja) センサの設置箇所を決定する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804978

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009278355

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13057423

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009804978

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009278355

Country of ref document: AU

Date of ref document: 20090804

Kind code of ref document: A