WO2010016454A1 - 有機電界発光素子および表示装置 - Google Patents

有機電界発光素子および表示装置 Download PDF

Info

Publication number
WO2010016454A1
WO2010016454A1 PCT/JP2009/063729 JP2009063729W WO2010016454A1 WO 2010016454 A1 WO2010016454 A1 WO 2010016454A1 JP 2009063729 W JP2009063729 W JP 2009063729W WO 2010016454 A1 WO2010016454 A1 WO 2010016454A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
layer
organic electroluminescent
emitting layer
Prior art date
Application number
PCT/JP2009/063729
Other languages
English (en)
French (fr)
Inventor
禎彦 吉永
成行 松波
靖典 鬼島
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US13/056,269 priority Critical patent/US8569747B2/en
Priority to CN2009801302222A priority patent/CN102113146A/zh
Publication of WO2010016454A1 publication Critical patent/WO2010016454A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to an organic electroluminescent element and a display device, and more particularly to a red light emitting organic electroluminescent element and a display device using the same.
  • organic electroluminescent element As-called organic EL element, a display device using an organic electroluminescent element has been attracting attention as a lightweight and highly efficient flat panel display device.
  • An organic electroluminescent element constituting such a display device is provided on a transparent substrate made of glass or the like, for example, an anode made of ITO (Indium Tin Oxide: transparent electrode) in order from the substrate side, an organic layer, and A cathode is laminated.
  • the organic layer has a structure in which a hole injecting layer, a hole transporting layer, and an electron transporting light emitting layer are sequentially stacked in this order from the anode side.
  • the organic electroluminescence device configured as described above, electrons injected from the cathode and holes injected from the anode are recombined in the light emitting layer, and light generated during the recombination is transmitted through the anode to the substrate side. Is taken out of.
  • an organic electroluminescent element in addition to the above-described structure, a structure in which a cathode, an organic layer, and an anode are sequentially laminated in order from the substrate side, and an electrode positioned on the upper side (upper electrode as a cathode or an anode)
  • an electrode positioned on the upper side upper electrode as a cathode or an anode
  • top-emitting type in which light is extracted from the upper electrode side opposite to the substrate by forming a transparent material.
  • TFT thin film transistor
  • Top Emission structure in which a top emission organic electroluminescent element is provided on the substrate on which the TFT is formed. This is advantageous in improving the aperture ratio of the light emitting portion.
  • a configuration using a naphthacene derivative (including a rubrene derivative) as a dopant material is proposed as a new red light-emitting material that is replaced with a conventionally known pyran derivative typified by DCJTB (for example, see Patent Documents 1 and 2 below).
  • Patent Document 2 also proposes a configuration in which white light emission is obtained by laminating a second light-emitting layer containing a penylene derivative and an anthracene derivative on a first light-emitting layer using a rubrene derivative as a dopant material. Yes.
  • organic electroluminescent elements of three colors that emit light of three primary colors (red, green, and blue) are used in an array, or organic electroluminescent elements that emit white light and each color are used.
  • These color filters or color conversion layers are used in combination.
  • a configuration using an organic electroluminescent element that emits light of each color is advantageous.
  • the light emission of the red light emitting element using the naphthacene derivative (rubrene derivative) described above has a current efficiency of about 6.7 cd / A, and the light emission color is orange light emission rather than red light emission.
  • an object of the present invention is to provide a red light emitting organic electroluminescent element having sufficiently good luminous efficiency and color purity, and a display device using the same.
  • An organic electroluminescent element of the present invention for achieving such an object is a red light emitting organic electroluminescent element in which an organic layer having a light emitting layer is sandwiched between an anode and a cathode.
  • This light-emitting layer contains a host material made of a polycyclic aromatic hydrocarbon compound having a parent skeleton of 4 to 7 together with a red light-emitting guest material.
  • a photosensitizing layer containing a phosphorescent material made of an organic material is laminated adjacent to the light emitting layer.
  • the current efficiency is increased as compared with the configuration in which the photosensitizing layer is not provided, and the light containing the light emitting material is included. It was found that only red emitted light generated in the light emitting layer without being influenced by the sensitizing layer is extracted from the device.
  • the phosphorescent light emission energy in the photosensitized layer is absorbed by the light emitting layer and contributes to the light emission efficiency in the light emitting layer.
  • the phosphorescence emission of the phosphorescent material via the triplet exciton has higher emission efficiency than the fluorescence emission via the singlet exciton. Therefore, in principle, the use of a phosphorescent material having higher luminous efficiency than the fluorescent material as the photosensitizing layer can effectively increase the luminous efficiency from the light emitting layer.
  • the present invention is also a display device in which a plurality of organic electroluminescent elements having the above-described configuration are arranged on a substrate.
  • a display device using an organic electroluminescent element having high luminance and high color purity as a red light emitting element since a display device using an organic electroluminescent element having high luminance and high color purity as a red light emitting element is configured, it can be combined with other green light emitting elements and blue light emitting elements. This enables full color display with high color reproducibility.
  • the organic electroluminescent element of the present invention it is possible to effectively improve the luminous efficiency of red emitted light while maintaining the color purity.
  • a pixel is formed by combining a green light emitting element and a blue light emitting element together with an organic electroluminescent element that is a red light emitting element having high color purity and luminous efficiency. This enables full color display with high color reproducibility.
  • the organic electroluminescent element of embodiment it is a schematic diagram of the energy level of the luminescent guest material contained in a light emitting layer, and the phosphorescent luminescent material (luminescent guest material) contained in a photosensitizing layer. It is a figure which shows an example of the circuit structure of the display apparatus of embodiment. It is a figure which shows the 1st example of the cross-sectional structure of the principal part in the display apparatus of embodiment. It is a figure which shows the 2nd example of the cross-sectional structure of the principal part in the display apparatus of embodiment. It is a figure which shows the 3rd example of the cross-sectional structure of the principal part in the display apparatus of embodiment.
  • FIG. 1 is a perspective view showing a notebook personal computer to which the present invention is applied. It is a perspective view which shows the video camera to which this invention is applied.
  • FIG. 1 shows the portable terminal device to which this invention is applied, for example, a mobile telephone
  • A is the front view in the open state
  • B is the side view
  • C is the front view in the closed state
  • D is a left side view
  • E is a right side view
  • F is a top view
  • G is a bottom view.
  • FIG. 1 is a cross-sectional view schematically showing an organic electroluminescent element of the present invention.
  • the organic electroluminescent element 11 shown in this figure is formed by laminating an anode 13, an organic layer 14, and a cathode 15 in this order on a substrate 12.
  • the organic layer 14 is formed by laminating, for example, a hole injection layer 14a, a hole transport layer 14b, a light emitting layer 14c, a photosensitizing layer 14d, and an electron transport layer 14e in this order from the anode 13 side.
  • the present invention is characterized by the configuration of the light emitting layer 14c and the configuration in which the photosensitizing layer 14d is provided in contact therewith.
  • the organic electroluminescent element 11 having such a stacked configuration is configured as a top-emitting element that extracts light from the side opposite to the substrate 12, and details of each layer in this case are described from the substrate 12 side. These will be described in order.
  • the substrate 12 is a support on which the organic electroluminescent elements 11 are arranged and formed on one main surface side, and may be a known substrate, for example, a film or sheet made of quartz, glass, metal foil, or resin. Of these, quartz and glass are preferable.
  • methacrylic resin represented by polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), poly Examples thereof include polyesters such as butylene naphthalate (PBN), polycarbonate resins, and the like, but it is necessary to perform a laminated structure and surface treatment that suppress water permeability and gas permeability.
  • the anode 13 has a large work function from the vacuum level of the electrode material in order to inject holes efficiently, for example, aluminum (Al), chromium (Cr), molybdenum (Mo), tungsten (W), copper (Cu), silver (Ag), gold (Au) metals and alloys thereof, oxides of these metals and alloys, or alloys of tin oxide (SnO 2 ) and antimony (Sb), ITO (indium) Tin oxide), InZnO (indium zinc oxide), alloys of zinc oxide (ZnO) and aluminum (Al), and oxides of these metals and alloys are used alone or in a mixed state.
  • the anode 13 may have a laminated structure of a first layer having excellent light reflectivity and a second layer having a light transmittance and a large work function provided on the first layer.
  • the first layer is made of an alloy mainly composed of aluminum.
  • the subcomponent may include at least one element having a work function relatively smaller than that of aluminum as a main component.
  • a lanthanoid series element is preferable.
  • the work function of the lanthanoid series elements is not large, the inclusion of these elements improves the stability of the anode and also satisfies the hole injection property of the anode.
  • elements such as silicon (Si) and copper (Cu) may be included as subcomponents.
  • the content of subcomponents in the aluminum alloy layer constituting the first layer is preferably about 10 wt% or less in total for Nd, Ni, Ti, or the like that stabilizes aluminum.
  • the second layer can be exemplified by a layer made of at least one of an aluminum alloy oxide, a molybdenum oxide, a zirconium oxide, a chromium oxide, and a tantalum oxide.
  • the oxide of the lanthanoid element has a high transmittance, so that this is included.
  • the transmittance of the second layer is improved. For this reason, it is possible to maintain a high reflectance on the surface of the first layer.
  • the second layer may be a transparent conductive layer such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). These conductive layers can improve the electron injection characteristics of the anode 13.
  • the anode 13 may be provided with a conductive layer on the side in contact with the substrate 11 for improving the adhesion between the anode 13 and the substrate 12.
  • a conductive layer include transparent conductive layers such as ITO and IZO.
  • the driving method of the display device configured using the organic electroluminescent element 11 is an active matrix method
  • the anode 13 is patterned for each pixel and connected to a driving thin film transistor provided on the substrate 12. It is provided in the state that was done. Further, in this case, although not shown here, an insulating film is provided on the anode 13, and the surface of the anode 13 of each pixel is exposed from the opening of the insulating film.
  • the hole injection layer 14a is for increasing the efficiency of hole injection into the light emitting layer 14c.
  • Examples of the material for the hole injection layer 14a include benzine, styrylamine, triphenylamine, porphyrin, triphenylene, azatriphenylene, tetracyanoquinodimethane, triazole, imidazole, oxadiazole, polyarylalkane, and phenylene.
  • Diamine, arylamine, oxazole, anthracene, fluorenone, hydrazone, stilbene or their derivatives, or heterocyclic conjugated monomers, oligomers or polymers such as polysilane compounds, vinylcarbazole compounds, thiophene compounds or aniline compounds Can be used.
  • hole injection layer 14a specific materials for the hole injection layer 14a include ⁇ -naphthylphenylphenylenediamine, porphyrin, metal tetraphenylporphyrin, metal naphthalocyanine, hexacyanoazatriphenylene, 7,7,8,8-tetracyanoquino.
  • TCNQ 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane
  • F4-TCNQ tetracyano 4,4,4-tris (3-methylphenylphenylamino ) Triphenylamine, N, N, N ′, N′-tetrakis (p-tolyl) p-phenylenediamine, N, N, N ′, N′-tetraphenyl-4,4′-diaminobiphenyl, N-phenyl Carbazole, 4-di-p-tolylaminostilbene, poly (paraphenylenevinylene), poly (thiophene) Vinylene), poly (2,2'-thienylpyrrole), and including without being limited thereto.
  • the hole transport layer 14b is for increasing the efficiency of hole injection into the light emitting layer 14c, like the hole injection layer 14a.
  • Such a hole transport layer 14b is configured using a material selected from the same materials as the hole injection layer 14a described above.
  • the light emitting layer 14 c is a region where holes injected from the anode 13 side and electrons injected from the cathode 15 side are recombined when a voltage is applied to the anode 13 and the cathode 15.
  • the structure of the light emitting layer 14c is one feature. That is, the light emitting layer 14c uses a polycyclic aromatic hydrocarbon compound having 4 to 7 ring members as a host material as a host material, and the host material is doped with a red light emitting guest material. Red light emission is generated.
  • the host material constituting the light emitting layer 14c is a polycyclic aromatic hydrocarbon compound having a parent skeleton of 4 to 7 members, and pyrene, benzopyrene, chrysene, naphthacene, benzonaphthacene, dibenzonaphthacene, perylene. , Selected from coronen.
  • the host material constituting the light emitting layer 14c is a polycyclic aromatic hydrocarbon compound having a mother skeleton of 4 to 7 ring members, and pyrene, benzopyrene, chrysene, naphthacene, benzonaphthacene, dibenzonaphthacene, perylene, coronene. It shall be selected from.
  • a naphthacene derivative represented by the following general formula (1) is preferable to use as a host material.
  • R 1 to R 8 are each independently hydrogen, halogen, hydroxyl group, substituted or unsubstituted carbonyl group having 20 or less carbon atoms, substituted or unsubstituted carbon group having 20 or less carbon atoms.
  • Carbonyl ester group substituted or unsubstituted alkyl group having 20 or less carbon atoms, substituted or unsubstituted alkenyl group having 20 or less carbon atoms, substituted or unsubstituted alkoxyl group having 20 or less carbon atoms, cyano group, nitro group, carbon A substituted or unsubstituted silyl group having 30 or fewer carbon atoms, a substituted or unsubstituted aryl group having 30 or fewer carbon atoms, a substituted or unsubstituted heterocyclic group having 30 or fewer carbon atoms, or a substituted or unsubstituted carbon group having 30 or fewer carbon atoms An amino group is shown.
  • the aryl group represented by R 1 to R 8 in the general formula (1) is, for example, a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a fluorenyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 1-chrycenyl group, 6-chrycenyl group, 2-fluoranthenyl group, 3-fluoranthenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, o-tolyl Group,
  • the heterocyclic group represented by R 1 to R 8 is a 5- or 6-membered aromatic heterocyclic group containing O, N, or S as a hetero atom, or a condensed polycyclic aromatic heterocyclic group having 2 to 20 carbon atoms.
  • a cyclic group is mentioned.
  • the aromatic heterocyclic group and the condensed polycyclic aromatic heterocyclic group include thienyl group, furyl group, pyrrolyl group, pyridyl group, quinolyl group, quinoxalyl group, imidazopyridyl group, and benzothiazole group.
  • Representative examples include 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, pyrazinyl group, 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 1-indolyl group, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7-indolyl group, 1-isoindolyl group, 2-isoindolyl group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 2-furyl group, 3-furyl group, 2-benzofuranyl group, 3-benzofuranyl group, 4-benzofuranyl group, 5-benzofuranyl group, 6-benzofuranyl group, 7-benzofuranyl group, 1-isobenzofuranyl group
  • the amino group represented by R 1 to R 8 may be any of an alkylamino group, an arylamino group, an aralkylamino group, and the like. These preferably have an aliphatic group having 1 to 6 carbon atoms and / or an aromatic carbocyclic ring having 1 to 4 rings. Examples of such a group include a dimethylamino group, a diethylamino group, a dibutylamino group, a diphenylamino group, a ditolylamino group, a bisbiphenylylamino group, and a dinaphthylamino group.
  • two or more kinds of the above substituents may form a condensed ring, and may further have a substituent.
  • the naphthacene derivative represented by the general formula (1) is preferably a rubrene derivative represented by the following general formula (1a).
  • R 11 to R 15 , R 21 to R 25 , R 31 to R 35 , and R 41 to R 45 are each independently a hydrogen atom, aryl group, heterocyclic group, amino group, aryloxy A group, an alkyl group, or an alkenyl group; However, R 11 to R 15 , R 21 to R 25 , R 31 to R 35 , and R 41 to R 45 are preferably the same.
  • R 5 to R 8 are each independently a hydrogen atom, an aryl group which may have a substituent, or an alkyl group or alkenyl group which may have a substituent.
  • Preferred embodiments of the aryl group, heterocyclic group, and amino group in the general formula (1a) may be the same as R 1 to R 8 in the general formula (1).
  • R 11 to R 15 , R 21 to R 25 , R 31 to R 35 , and R 41 to R 45 are amino groups, they are alkylamino groups, arylamino groups, or aralkylamino groups. These preferably have an aliphatic having 1 to 6 carbon atoms in total or an aromatic carbocyclic ring having 1 to 4 rings.
  • Examples of such a group include a dimethylamino group, a diethylamino group, a dibutylamino group, a diphenylamino group, a ditolylamino group, and a bisbiphenylylamino group.
  • red light-emitting guest material constituting the light-emitting layer 14c examples include perylene derivatives represented by general formula (2), diketopyrrolopyrrole derivatives represented by general formula (3), and pyromethene complexes represented by general formula (4) described below.
  • a pyran derivative of the general formula (5), or a styryl derivative of the general formula (6) is used.
  • the details of the red luminescent guest material will be described.
  • red light-emitting guest material for example, a compound represented by the following general formula (2) (diindeno [1,2,3-cd] perylene derivative) is used.
  • X 1 to X 20 are each independently hydrogen, halogen, hydroxyl group, substituted or unsubstituted carbonyl group having 20 or less carbon atoms, substituted or unsubstituted carbon group having 20 or less carbon atoms.
  • Carbonyl ester group substituted or unsubstituted alkyl group having 20 or less carbon atoms, substituted or unsubstituted alkenyl group having 20 or less carbon atoms, substituted or unsubstituted alkoxyl group having 20 or less carbon atoms, cyano group, nitro group, carbon A substituted or unsubstituted silyl group having 30 or fewer carbon atoms, a substituted or unsubstituted aryl group having 30 or fewer carbon atoms, a substituted or unsubstituted heterocyclic group having 30 or fewer carbon atoms, or a substituted or unsubstituted carbon group having 30 or fewer carbon atoms An amino group is shown.
  • the aryl group represented by X 1 to X 20 in the general formula (2) is, for example, a phenyl group, 1-naphthyl group, 2-naphthyl group, fluorenyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 1-chrycenyl group, 6-chrycenyl group, 2-fluoranthenyl group, 3-fluoranthenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, o-tolyl Group, m-tolyl group, p-
  • the heterocyclic group represented by X 1 to X 20 is a 5-membered or 6-membered aromatic heterocyclic group containing O, N, or S as a hetero atom, or a condensed polycyclic aromatic heterocyclic ring having 2 to 20 carbon atoms.
  • Groups. Examples of these aromatic heterocyclic groups and condensed polycyclic aromatic heterocyclic groups include thienyl group, furyl group, pyrrolyl group, pyridyl group, quinolyl group, quinoxalyl group, imidazopyridyl group, and benzothiazole group.
  • Representative examples include 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, pyrazinyl group, 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 1-indolyl group, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7-indolyl group, 1-isoindolyl group, 2-isoindolyl group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 2-furyl group, 3-furyl group, 2-benzofuranyl group, 3-benzofuranyl group, 4-benzofuranyl group, 5-benzofuranyl group, 6-benzofuranyl group, 7-benzofuranyl group, 1-isobenzofuranyl group
  • the amino group represented by X 1 to X 20 may be any of an alkylamino group, an arylamino group, an aralkylamino group, and the like. These preferably have an aliphatic group having 1 to 6 carbon atoms and / or an aromatic carbocyclic ring having 1 to 4 rings. Examples of such a group include a dimethylamino group, a diethylamino group, a dibutylamino group, a diphenylamino group, a ditolylamino group, a bisbiphenylylamino group, and a dinaphthylamino group.
  • two or more of the above substituents may form a condensed ring, and may further have a substituent.
  • diindeno [1,2,3-cd] perylene derivative suitably used as a red light-emitting guest material in the light-emitting layer 14c include the following compounds (2) -1 to (2) -8. .
  • the present invention is not limited to these.
  • -Diketopyrrolopyrrole derivatives As the red light emitting guest material, for example, a compound (diketopyrrolopyrrole derivative) represented by the following general formula (3) is used.
  • Y ⁇ 1 > and Y ⁇ 2 > represent an oxygen atom or a substituted or unsubstituted imino group each independently.
  • Y 3 to Y 8 are each independently hydrogen, halogen, a substituted or unsubstituted alkyl group having 20 or less carbon atoms, a substituted or unsubstituted alkenyl group having 20 or less carbon atoms, a substituted or unsubstituted group having 30 or less carbon atoms.
  • a substituted aryl group, a substituted or unsubstituted heterocyclic group having 30 or less carbon atoms, or a substituted or unsubstituted amino group having 30 or less carbon atoms is shown.
  • Ar 1 and Ar 2 represent a divalent group selected from a substituted or unsubstituted aromatic hydrocarbon group and a substituted or unsubstituted aromatic heterocyclic group.
  • Y 3 substituted or unsubstituted aryl group represented by ⁇ Y 8 heterocyclic group represented by Y 3 ⁇ Y 8, amino groups further shows that Y 3 ⁇ Y 8 have the general formula It is the same as the group shown for the perylene derivative of (2). Further, two or more of the above substituents may form a condensed ring, and it may also have a substituent.
  • diketopyrrolopyrrole derivative suitably used as the red light emitting guest material in the light emitting layer 14c include the following compounds (3) -1 to (3) -14.
  • the present invention is not limited to these.
  • red light emitting guest material for example, a compound (pyromethene complex) represented by the following general formula (4) is used.
  • Z 1 to Z 9 are each independently hydrogen, halogen, a substituted or unsubstituted alkyl group having 20 or less carbon atoms, a substituted or unsubstituted alkenyl group having 20 or less carbon atoms, A substituted or unsubstituted alkoxyl group having 20 or less carbon atoms, a cyano group, a nitro group, a substituted or unsubstituted silyl group having 30 or less carbon atoms, a substituted or unsubstituted aryl group having 30 or less carbon atoms, a 30 or less carbon atoms A substituted or unsubstituted heterocyclic group, or a substituted or unsubstituted amino group having 30 or less carbon atoms is shown.
  • Z 1 substituted or unsubstituted aryl group represented by ⁇ Z 9 amino group represented by Z 1 ⁇ Z 9 is a heterocyclic group represented, and Z 1 ⁇ Z 9, the general formula ( This is the same as the group shown for the perylene derivative in 2). Further, two or more of the above substituents may form a condensed ring, and it may also have a substituent.
  • red light-emitting guest material for example, a compound (pyran derivative) represented by the following general formula (5) is used.
  • L 1 to L 6 are each independently hydrogen, a substituted or unsubstituted alkyl group having 20 or less carbon atoms, a substituted or unsubstituted alkenyl group having 20 or less carbon atoms, or a carbon number 20 or less substituted or unsubstituted alkoxyl group, cyano group, nitro group, substituted or unsubstituted silyl group having 30 or less carbon atoms, substituted or unsubstituted aryl group having 30 or less carbon atoms, substituted or unsubstituted 30 carbon atoms or less An unsubstituted heterocyclic group, or a substituted or unsubstituted amino group having 30 or less carbon atoms is shown.
  • L 1 and L 4 or L 2 and L 3 may take a cyclic structure through hydrocarbon.
  • L 1 ⁇ substituted or unsubstituted aryl group L 6 is shown, L 1 heterocyclic group represented by ⁇ L 6, and the amino group of L 1 ⁇ L 6 represents the general formula ( This is the same as the group shown for the perylene derivative in 2).
  • L 1 and L 4 or L 2 and L 3 may have a cyclic structure through hydrocarbon, and two or more of the above substituents may form a condensed ring and may further have a substituent. .
  • the following compounds (5) -1 to (5) -7 are exemplified as specific examples of the pyran derivative suitably used as the red light emitting guest material in the light emitting layer 14c.
  • the present invention is not limited to these.
  • red luminescent guest material for example, a compound (styryl derivative) represented by the following general formula (6) is used.
  • T 1 to T 3 represent a substituted or unsubstituted aryl group having 30 or less carbon atoms or a substituted or unsubstituted heterocyclic group having 30 or less carbon atoms.
  • T 4 represents a substituted or unsubstituted phenylene moiety that may have a cyclic structure with T 2 and T 3 .
  • a substituted or unsubstituted aryl group represented by T 1 ⁇ T 3 is the same as the group represented by the perylene derivative of the general formula (2) .
  • substituents may form a condensed ring and may further have a substituent.
  • group further substituted with T 1 to T 4 include, for example, hydrogen, halogen, hydroxyl group, a substituted or unsubstituted carbonyl group having 20 or less carbon atoms, and a substituted or unsubstituted group having 20 or less carbon atoms.
  • Carbonyl ester group substituted or unsubstituted alkyl group having 20 or less carbon atoms, substituted or unsubstituted alkenyl group having 20 or less carbon atoms, substituted or unsubstituted alkoxyl group having 20 or less carbon atoms, cyano group, nitro group, amino group Groups and the like.
  • the amino group may be any of an alkylamino group, an arylamino group, an aralkylamino group, and the like. These preferably have an aliphatic group having 1 to 6 carbon atoms and / or an aromatic carbocyclic ring having 1 to 4 rings.
  • Examples of such a group include a dimethylamino group, a diethylamino group, a dibutylamino group, a diphenylamino group, a ditolylamino group, a bisbiphenylylamino group, and a dinaphthylamino group.
  • the pyran derivative of the general formula (5) or the styryl derivative of the general formula (6) preferably has a molecular weight of 2000 or less, more preferably 1500 or less, and particularly preferably 1000 or less. This is because there is a concern that if the molecular weight is large, the vapor deposition property may be deteriorated when an element is formed by vapor deposition.
  • the photosensitizing layer 14d is a layer for transferring energy to the light emitting layer 14c and improving the light emission efficiency in the light emitting layer 14c.
  • one feature is that the photosensitizing layer 14d is formed using a phosphorescent material.
  • a phosphorescent material having a higher luminous efficiency than the fluorescent material is used as the photosensitizing layer, whereby the luminous efficiency from the light emitting layer 14c can be dramatically increased.
  • Such a photosensitizing layer 14d has a guest-host relationship in which a phosphorescent light emitting material is used as a light emitting guest material and this is doped into the host material.
  • the phosphorescent light emitting material (light emitting guest material) constituting the photosensitizing layer 14d emits phosphorescence having a shorter wavelength than the red light generated in the light emitting layer 14c containing the red light emitting guest material.
  • the phosphorescent light emitting material light emitting guest material
  • the photosensitizing layer 14d emits phosphorescence having a shorter wavelength than the red light generated in the light emitting layer 14c containing the red light emitting guest material.
  • FIG. 2 shows a schematic diagram of the energy levels of the luminescent guest material contained in the luminescent layer 14c and the phosphorescent luminescent material (luminescent guest material) contained in the photosensitized layer 14d.
  • the singlet excited state S1 (14c) and the ground state S0 (14c) are set in the luminescent guest material contained in the luminescent layer 14c.
  • the phosphorescent light emitting material (light emitting guest material) contained in the photosensitizing layer 14d the triplet excited state T1 (14d) and the ground state S0 (14d) are set. It is desirable that the energy difference between each excited state and the ground state has a relationship of
  • phosphorescent materials are selected from iridium complexes, platinum complexes, rhenium complexes, osmium complexes, ruthenium complexes, and gold complexes. Moreover, it is preferable to select and use a phosphorescent material having high luminous efficiency from these materials, and for example, it is selected from iridium complexes.
  • the host material that constitutes the photosensitizing layer 14d is an aromatic hydrocarbon derivative having 6 to 60 carbon atoms, or an organic material formed by linking them.
  • specific examples thereof include carbazole derivatives, indene derivatives, phenanthrene derivatives, pyrene derivatives, naphthacene derivatives, triphenylene derivatives, anthracene derivatives, perylene derivatives, picene derivatives, fluoranthene derivatives, acephenanthrylene derivatives, pentaphen derivatives, pentacene derivatives.
  • Coronene derivatives, butadiene derivatives, stilbene derivatives, tris (8-quinolinolato) aluminum complexes, bis (benzoquinolinolato) beryllium complexes, and the like can be used.
  • the host materials having the highest luminous efficiency are selected and used for each luminescent guest material.
  • a carbazole derivative is preferably used as such a host material.
  • the photosensitizing layer 14d having such a configuration is provided in contact with the light emitting layer 14c. For this reason, this photosensitizing layer 14d is provided between the light emitting layer 14c and the cathode 15, for example. However, since it is important that the photosensitizing layer 14d is provided in contact with the light emitting layer 14c, it may be provided between the light emitting layer 14c and the anode 13 in contact with the light emitting layer 14c. .
  • the electron transport layer 14e is for transporting electrons injected from the cathode 15 to the light emitting layer 14c.
  • Examples of the material for the electron transport layer 14e include quinoline, perylene, phenanthroline, bisstyryl, pyrazine, triazole, oxazole, oxadiazole, fluorenone, and derivatives or metal complexes thereof.
  • Alq3 8-hydroxyquinoline aluminum
  • anthracene naphthalene
  • phenanthrene pyrene
  • anthracene perylene
  • butadiene coumarin
  • acridine stilbene
  • 1,10-phenanthroline or derivatives or metal complexes thereof
  • the organic layer 14 is not limited to such a layer structure, and it is sufficient that at least the light emitting layer 14c and the photosensitizing layer 14d are provided in contact therewith, and other laminated structures as required. Can be selected.
  • the light emitting layer 14c may be provided in the organic electroluminescent element 11 as a hole transporting light emitting layer, an electron transporting light emitting layer, or a charge transporting light emitting layer.
  • each layer constituting the organic layer 14 described above, for example, the hole injection layer 14a, the hole transport layer 14b, the light emitting layer 14c, the photosensitizing layer 14d, and the electron transport layer 14e is a laminated structure including a plurality of layers. It may be.
  • the cathode 15 provided on the organic layer 14 having such a configuration has, for example, a two-layer structure in which a first layer 15a and a second layer 15b are stacked in this order from the organic layer 14 side.
  • the first layer 15a is made of a material having a small work function and good light transmittance.
  • a material having a small work function and good light transmittance examples include lithium oxide (Li 2 O) which is an oxide of lithium (Li), cesium carbonate (Cs 2 CO 3 ) which is a composite oxide of cesium (Cs), and further oxidation of these. Mixtures of oxides and composite oxides can be used. Further, the first layer 15a is not limited to such a material.
  • alkaline earth metals such as calcium (Ca) and barium (Ba)
  • alkali metals such as lithium and cesium, and indium ( In)
  • magnesium (Mg) magnesium
  • other metals having a low work function
  • oxides and composite oxides, fluorides, and the like of these metals, alone or these metals and oxides and composite oxides You may use it, improving stability as a mixture or an alloy.
  • the second layer 15b is made of a thin film using a light-transmitting layer such as MgAg.
  • the second layer 15b may be a mixed layer containing an organic light emitting material such as an aluminum quinoline complex, a styrylamine derivative, or a phthalocyanine derivative.
  • a layer having optical transparency such as MgAg may be additionally provided as the third layer.
  • the cathode 15 when the driving method of the display device configured using the organic electroluminescent element 11 is an active matrix method, the cathode 15 includes the organic layer 14 and the above-described illustration omitted here.
  • a solid film is formed on the substrate 12 while being insulated from the anode 13 by the insulating film, and is used as a common electrode of each pixel.
  • the cathode 15 is not limited to the laminated structure as described above, and an optimum combination and laminated structure may be taken according to the structure of the device to be manufactured.
  • the configuration of the cathode 15 of the above embodiment includes an inorganic layer (first layer 15a) that promotes functional separation of each electrode layer, that is, electron injection into the organic layer 14, and an inorganic layer (second layer 15b) that controls the electrode.
  • first layer 15a that promotes functional separation of each electrode layer
  • second layer 15b that controls the electrode.
  • the inorganic layer that promotes electron injection into the organic layer 14 may also serve as the inorganic layer that controls the electrode, and these layers may be configured as a single layer structure.
  • the current applied to the organic electroluminescent element 11 having the above-described configuration is usually a direct current, but a pulse current or an alternating current may be used.
  • the current value and the voltage value are not particularly limited as long as the element is not destroyed. However, considering the power consumption and life of the organic electroluminescent element, it is desirable to emit light efficiently with as little electrical energy as possible.
  • the cathode 15 is configured using a transflective material. Then, light emitted by multiple interference between the light reflecting surface on the anode 13 side and the light reflecting surface on the cathode 15 side is extracted from the cathode 15 side.
  • the optical distance between the light reflecting surface on the anode 13 side and the light reflecting surface on the cathode 15 side is defined by the wavelength of light to be extracted, and the film thickness of each layer is set so as to satisfy this optical distance.
  • the organic electroluminescent element 11 having such a configuration is covered with a protective layer (passivation layer) in order to prevent deterioration of the organic material due to moisture, oxygen, etc. in the atmosphere. It is preferable to use in.
  • the protective film includes silicon nitride (typically Si 3 N 4 ), silicon oxide (typically SiO 2 ) film, silicon nitride oxide (SiN x O y: composition ratio X> Y) film, silicon oxynitride ( A SiOxNy: composition ratio X> Y) film, a thin film mainly composed of carbon such as DLC (Diamond Like Carbon), a CN (Carbon Nanotube) film, or the like is used.
  • These films are preferably single-layered or laminated.
  • a protective layer made of nitride is preferably used because it has a dense film quality and has an extremely high blocking effect against moisture, oxygen, and other impurities that adversely affect the organic electroluminescent element 11.
  • the present invention has been described in detail by exemplifying a case where the organic electroluminescent element is a top emission type.
  • the organic electroluminescence device of the present invention is not limited to the application to the top emission type, and can be widely applied to a configuration in which an organic layer having at least a light emitting layer is sandwiched between an anode and a cathode. is there.
  • the cathode, the organic layer, and the anode are laminated in sequence, and the electrode located on the substrate side (lower electrode as the cathode or anode) is made of a transparent material and located on the opposite side of the substrate
  • the electrode (upper electrode as a cathode or anode) to be formed is made of a reflective material, so that the present invention can be applied to a bottom emission type organic electroluminescence device in which light is extracted only from the lower electrode side.
  • the organic electroluminescent element of the present invention may be an element formed by a pair of electrodes (anode and cathode) and an organic layer sandwiched between the electrodes. For this reason, it is not limited to what comprised only a pair of electrode and organic layer, and other components (for example, an inorganic compound layer and an inorganic component) coexist in the range which does not impair the effect of this invention. Is not to be excluded.
  • the current efficiency may be increased as compared with an element having no photosensitizing layer 14d. confirmed.
  • the photosensitizing layer 14d that emits green light is stacked on the red light emitting layer 14c, color mixing due to light emission from the photosensitizing layer 14d does not occur even when an electric field is applied. Luminescence can be obtained.
  • the photosensitizing layer 14d holes that have penetrated the red light emitting layer 14c and electrons injected through the electron transport layer 14e are recombined, but are released by the recombination. It is considered that this energy acts to excite electrons of the host material constituting the adjacent red light emitting layer 14c and contributes to light emission in the red light emitting layer 14c.
  • Such a phenomenon is caused by a phenomenon in which the target red light emitting layer hardly emits light when the photosensitizing layer 14d is composed only of the host material, as shown as a comparative example for the following examples. You can analogize.
  • the organic electroluminescent element 11 having the above-described configuration, it is possible to improve the luminous efficiency of red emitted light while maintaining the color purity.
  • the luminance life of the organic electroluminescent element 11 can be improved and the power consumption can be reduced by such a significant improvement in luminous efficiency.
  • FIG. 3A and 3B are diagrams illustrating an example of the display device 10 according to the embodiment.
  • FIG. 3A is a schematic configuration diagram
  • FIG. 3B is a configuration diagram of a pixel circuit.
  • an embodiment in which the present invention is applied to an active matrix display device 10 using an organic electroluminescent element 11 as a light emitting element will be described.
  • a display area 12a and a peripheral area 12b are set on the substrate 12 of the display device 10.
  • the display region 12a is configured as a pixel array section in which a plurality of scanning lines 21 and a plurality of signal lines 23 are wired vertically and horizontally, and one pixel a is provided corresponding to each intersection. Each of these pixels a is provided with one of the organic electroluminescent elements 11R (11), 11G, and 11B.
  • a scanning line driving circuit b that scans the scanning lines 21 and a signal line driving circuit c that supplies a video signal (that is, an input signal) corresponding to the luminance information to the signal lines 23 are arranged. Yes.
  • the pixel circuit provided in each pixel a includes, for example, one of the organic electroluminescent elements 11R (11), 11G, and 11B, a driving transistor Tr1, and a writing transistor (sampling transistor). It is composed of Tr2 and a holding capacitor Cs. Then, the video signal written from the signal line 23 via the write transistor Tr2 is held in the holding capacitor Cs by driving by the scanning line driving circuit b, and a current corresponding to the held signal amount is supplied to each organic electroluminescent element 11R. (11), 11G, and 11B are supplied, and the organic electroluminescent elements 11R (11), 11G, and 11B emit light with luminance according to the current value.
  • a capacitor element may be provided in the pixel circuit, or a plurality of transistors may be provided to configure the pixel circuit. Further, a necessary drive circuit is added to the peripheral region 12b according to the change of the pixel circuit.
  • FIG. 4 shows a first example of a cross-sectional configuration of the main part in the display area of the display device 10.
  • a driving transistor In the display region of the substrate 12 on which the organic electroluminescent elements 11R (11), 11G, and 11B are provided, although not shown here, a driving transistor, a writing transistor, a scanning line, And a signal line (see FIG. 3), and an insulating film is provided so as to cover them.
  • the organic electroluminescence elements 11R (11), 11G, and 11B are arranged on the substrate 12 covered with the insulating film.
  • Each of the organic electroluminescent elements 11R (11), 11G, and 11B is configured as a top-emitting element that extracts light from the side opposite to the substrate 12.
  • each organic electroluminescent element 11R (11), 11G, 11B is patterned for each element.
  • Each anode 13 is connected to a drive transistor of the pixel circuit through a connection hole formed in an insulating film covering the surface of the substrate 12.
  • each anode 13 is covered with an insulating film 30, and the central portion of the anode 13 is exposed at the opening provided in the insulating film 30.
  • the organic layer 14 is patterned so as to cover the exposed portion of the anode 13, and the cathode 15 is provided as a common layer covering each organic layer 14.
  • the red light emitting element 11R is configured as the organic electroluminescent element (11) of the embodiment described with reference to FIG.
  • the green light emitting element 11G and the blue light emitting element 11B may have a normal element configuration.
  • the organic layer 14 provided on the anode 13 uses, for example, the hole injection layer 14a, the hole transport layer 14b, and the naphthacene derivative as the host material in order from the anode 13 side.
  • a red light-emitting layer 14c-R (14c), a photosensitizing layer 14d obtained by doping a host material with a light-emitting guest material that emits light in the green region, and an electron transport layer 14e are stacked.
  • the organic layers in the green light emitting element 11G and the blue light emitting element 11B are, for example, in order from the anode 13 side, a hole injection layer 14a, a hole transport layer 14b, light emitting layers 14c-G and 14c-B for each color, and electron transport.
  • the layer 14e is laminated in this order.
  • the photosensitizing layer 14d in the red light emitting element 11R (11) is obtained by doping a green phosphorescent light emitting material as a light emitting guest material.
  • a green phosphorescent light emitting material for example, the same as the green light emitting layer 14c-G in the green light emitting element 11G. It may be a configuration (material) or another configuration.
  • each layer other than the light emitting layers 14c-R, 14c-G, 14c-B and the photosensitizing layer 14d includes the anode 13 and the cathode 15 in each organic electroluminescent element 11R, 11G, 11B. It may be comprised with the same material, and is comprised using each material demonstrated using FIG.
  • the plurality of organic electroluminescent elements 11R (11), 11G, and 11B provided as described above are covered with a protective film (not shown).
  • the protective film is provided so as to cover the entire display area where the organic electroluminescent elements 11R, 11G, and 11B are provided.
  • each layer from the anode 13 to the cathode 15 constituting the red light emitting element 11R (11), the green light emitting element 11G, and the blue light emitting element 11B is formed by a vacuum deposition method, an ion beam method (EB method), a molecular beam epitaxy method. (MBE method), sputtering method, Organic (Vapor Phase Deposition (OVPD) method and the like.
  • EB method ion beam method
  • MBE method molecular beam epitaxy method
  • sputtering method Organic (Vapor Phase Deposition (OVPD) method and the like.
  • the organic layer 14 patterned for each of the organic electroluminescent elements 11R (11), 11G, and 11B is formed by, for example, a vapor deposition method or a transfer method using a mask.
  • the organic layer 14c is applied by a laser transfer method, a spin coating method, a dipping method, a doctor blade method, a discharge coating method, a spray coating method, an inkjet method, an offset printing method, a relief printing method, Formation by wet processes such as intaglio printing, screen printing, and microgravure coating is also possible.
  • a dry process and a wet process may be used in combination. Absent.
  • the organic electroluminescent element (11) having the configuration of the present invention described with reference to FIG. 1 is used as the red light emitting element 11R.
  • the red light emitting element 11R (11) has high light emission efficiency while maintaining the red light emission color. Therefore, by combining the red light emitting element 11R (11) with the green light emitting element 11G and the blue light emitting element 11B, full color display with high color expression can be performed.
  • the use of the organic electroluminescent element (11) having high luminous efficiency can improve the luminance life and reduce the power consumption in the display device 10. Therefore, it can be suitably used as a flat panel display such as a wall-mounted TV or a flat light emitter, and can be applied to a light source such as a copying machine or a printer, a light source such as a liquid crystal display or an instrument, a display board, a marker lamp, etc. It becomes.
  • FIG. 5 shows a second example of the cross-sectional configuration of the main part in the display area of the display device 10.
  • the display device 10 of the second example shown in FIG. 5 is different from the first example shown in FIG. 4 in that the photosensitizing layer 14d (14c-G) of the red light emitting element 11R (11) and the green light emission.
  • the light emitting layer 14c-G of the element 11G is formed as a common continuous pattern.
  • the electron transport layer 14e is also formed as a continuous pattern of a common layer in all pixels.
  • the configuration may be the same as in the first example.
  • the same effect as that of the first example can be obtained.
  • the photosensitizing layer 14d (14c-G) and the light emitting layer 14c-G are formed in a continuous pattern as a common layer, and the electron transport layer 14e is simultaneously formed in all pixels. Since the film can be formed, the manufacturing process of the display device 10 can be simplified.
  • FIG. 6 shows a third example of the cross-sectional configuration of the main part in the display area of the display device 10.
  • layers other than the anode 13 and the light emitting layers 14c-R, 14c-G, and 14c-B are shared in the organic electroluminescent elements 11R (11), 11G, and 11B.
  • the other structure may be the same as that of the second example shown in FIG. That is, as compared with the second example of FIG. 5, the hole injection layer 14a and the hole transport layer 14b below the light emitting layer are also used as the common layer.
  • FIG. 7 shows a fourth example of the cross-sectional configuration of the main part in the display area of the display device 10.
  • the organic electroluminescent elements 11R, 11G, and 11B may have a common layer above the light emitting layers 14c-R and 14c-B.
  • the green light emitting layer 14c-G that also serves as the photosensitizing layer 14d, the electron transport layer 14e, and the cathode 15 are formed as a continuous pattern common to the entire display region, and the others are used as patterned layers. .
  • the green light emitting layer 14c-G serving as a common layer for all pixels is provided as the photosensitizing layer 14d in the red light emitting element 11R (11).
  • the green light emitting layer 14c-G is also laminated on the blue light emitting element 11B. Even in such a configuration, such a configuration is adopted when the film thickness of the blue light emitting layer 14c-B is sufficiently thick, or when the blue light emitting center is localized at the interface of the hole transport layer 14b. Even in such a case, it is sufficiently possible to obtain blue light emission with good chromaticity.
  • each of the organic electroluminescent elements 11R (11), 11G, and 11B only the blue emitted light is extracted from the blue light emitting element 11B by configuring the structure of the organic layer as a cavity structure that extracts the emitted light of each color. You may comprise.
  • the layers from the green light emitting layer 14c-G (photosensitized layer 14d) to the upper layer are collectively formed on the display region using a large-diameter area mask. be able to. Therefore, the manufacturing process of the display device 10 can be simplified.
  • the hole injection layer 14a and the hole transport layer 14b below the light emitting layer can also be used as a common layer (continuous pattern) in the entire display region. It is possible to simplify the manufacturing process of the device 10.
  • the display device of the present invention can be applied to a passive matrix display device, and the same effect can be obtained.
  • the display device according to the present invention described above includes a module-shaped one having a sealed configuration as disclosed in FIG.
  • the sealing portion 31 is provided so as to surround the display region 12a that is the pixel array portion, and the sealing portion 31 is used as an adhesive and is attached to a facing portion (sealing substrate 32) such as transparent glass.
  • a facing portion such as transparent glass.
  • the transparent sealing substrate 32 may be provided with a color filter, a protective film, a light shielding film, and the like.
  • the substrate 12 as a display module in which the display area 12a is formed may be provided with a flexible printed board 33 for inputting / outputting signals and the like from the outside to the display area 12a (pixel array portion).
  • the display device according to the present invention described above is input to various electronic devices shown in FIGS. 9 to 13 such as digital cameras, notebook personal computers, mobile terminal devices such as mobile phones, and video cameras.
  • the video signal generated or the video signal generated in the electronic device can be applied to a display device of an electronic device in any field for displaying as an image or a video.
  • An example of an electronic device to which the present invention is applied will be described below.
  • FIG. 9 is a perspective view showing a television to which the present invention is applied.
  • the television according to this application example includes a video display screen unit 101 including a front panel 102, a filter glass 103, and the like, and is created by using the display device according to the present invention as the video display screen unit 101.
  • FIG. 10A and 10B are diagrams showing a digital camera to which the present invention is applied, in which FIG. 10A is a perspective view seen from the front side, and FIG. 10B is a perspective view seen from the back side.
  • the digital camera according to this application example includes a light emitting unit 111 for flash, a display unit 112, a menu switch 113, a shutter button 114, and the like, and is manufactured by using the display device according to the present invention as the display unit 112.
  • FIG. 11 is a perspective view showing a notebook personal computer to which the present invention is applied.
  • a notebook personal computer according to this application example includes a main body 121 including a keyboard 122 that is operated when characters and the like are input, a display unit 123 that displays an image, and the like. It is produced by using.
  • FIG. 12 is a perspective view showing a video camera to which the present invention is applied.
  • the video camera according to this application example includes a main body 131, a lens 132 for shooting an object on a side facing forward, a start / stop switch 133 at the time of shooting, a display unit 134, and the like. It is manufactured by using such a display device.
  • FIG. 13 is a diagram showing a portable terminal device to which the present invention is applied, for example, a cellular phone, in which (A) is a front view in an opened state, (B) is a side view thereof, and (C) is in a closed state. (D) is a left side view, (E) is a right side view, (F) is a top view, and (G) is a bottom view.
  • the mobile phone according to this application example includes an upper housing 141, a lower housing 142, a connecting portion (here, a hinge portion) 143, a display 144, a sub display 145, a picture light 146, a camera 147, and the like. And the sub display 145 is manufactured by using the display device according to the present invention.
  • Examples 1 to 3 a top emission organic material in which an ITO transparent electrode with a film thickness of 12.5 nm is laminated on an Ag alloy (reflection layer) with a film thickness of 190 nm as an anode 13 on a substrate 12 made of a glass plate of 30 mm ⁇ 30 mm. A cell for an electroluminescent element was produced.
  • a film made of m-MTDATA represented by the following structural formula (101) is formed to a film thickness of 12 nm (deposition rate: 0.2 to 0.4 nm / sec).
  • m-MTDATA is 4,4 ′, 4 ′′ -tris (phenyl-m-tolylamino) triphenylamine.
  • ⁇ -NPD represented by the following structural formula (102) was formed with a film thickness of 12 nm (deposition rate: 0.2 to 0.4 nm / sec).
  • ⁇ -NPD is N, N′-bis (1-naphthyl) -N, N′-diphenyl [1,1′-biphenyl] -4,4′-diamine.
  • a light emitting layer 14c having a thickness of 30 nm was deposited on the hole transport layer 14b by vapor deposition.
  • rubrene was used as a host material
  • dibenzo [f, f ′] diindeno [1,2,3-cd: 1 ′, 2 ′, 3′-lm] perylene represented by the following structural formula (103) was used.
  • the derivative was doped as a red light emitting guest material at a relative film thickness ratio of 1%.
  • a photosensitizing layer 14d having a thickness of 25 nm was deposited on the light emitting layer 14c thus formed.
  • CBP 4,4′-bis (carbazol-9-yl) -biphenyl
  • Ir (ppy) represented by the following structural formula (105) was used.
  • 3 was doped as a luminescent guest material (phosphorescent material).
  • the luminescent guest material (phosphorescent material) was used in Examples 1 to 3 with 5%, 10%, and 15% doping amounts (relative film thickness ratio).
  • Alq3 (8-hydroxyquinoline aluminum) represented by the following structural formula (106) was deposited with a thickness of 10 nm.
  • the cathode 15 As the first layer 15a, a film made of LiF was formed with a film thickness of about 0.3 nm (deposition rate 0.01 nm / sec.) By a vacuum evaporation method. Finally, a 10 nm-thick MgAg film was formed as the second layer 15b of the cathode 15 on the first layer 15a by vacuum deposition.
  • organic electroluminescent elements of Examples 1 to 3 were produced.
  • Examples 4 and 5 In the formation of the photosensitizing layer 14d in the manufacturing procedure of the organic electroluminescent device described in Examples 1 to 3, the materials represented by the structural formula (107) and the structural formula (108) are used as the light-emitting guest material (phosphorescent material). Each was used. The doping amount of the luminescent guest material (phosphorescent material) was 10% in both Examples 4 and 5. Other than this, organic electroluminescent elements were fabricated in the same manner as in Examples 1 to 3.
  • Examples 6 and 7 In the formation of the photosensitizing layer 14d in the manufacturing procedure of the organic electroluminescence device described in Examples 1 to 3, the material represented by the structural formula (109) is used as the host material, and the structure as the light-emitting guest material (phosphorescent material). The materials shown in Formula (110) and Structural Formula (111) were used. The doping amount of the luminescent guest material was 10% in both Examples 6 and 7. Other than this, organic electroluminescent elements were fabricated in the same manner as in Examples 1 to 3.
  • the photosensitizing layer 14d doped with a green or blue phosphorescent light emitting material as a light emitting guest material in the host material was laminated on the red light emitting layer 14c. Nevertheless, red light emission with a color coordinate (0.64, 0.34) of the emitted light was observed, and there was no influence of color mixture derived from green light emission.
  • the color coordinates of the emitted light are (0.64, 0.34).
  • the red light emitted from the red light emitting layer 14c is extracted regardless of the light emitting guest material (phosphorescent light emitting material) of the photosensitizing layer 14d. It was done.
  • a material selected from known organic materials as a host material and a dopant material constituting the red light-emitting layer 14c is used, and is made adjacent to the light-emitting layer 14c.
  • the photosensitizing layer 14d containing various green or blue light emitting guest materials phosphorescent light emitting materials
  • a large luminous efficiency (current) is maintained while maintaining the red color purity. It was confirmed that it was possible to improve efficiency.
  • SYMBOLS 10 Display apparatus, 11 ... Organic electroluminescent element, 11R ... Red light emitting element, 11B ... Blue light emitting element (blue light emitting organic electroluminescent element), 11G ... Green light emitting element (green light emitting organic electroluminescent element), 12 ... Substrate, 13 ... anode, 14 ... organic layer, 14c ... light emitting layer, 14d ... photosensitized layer, 15 ... cathode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 陽極(13)と陰極(15)との間に発光層(14c)を備えた有機層(14)を挟持してなる赤色発光性の有機電界発光素子(11)において、発光層(14c)は、赤色の発光性ゲスト材料と共に、ホスト材料として母骨格が環員数4~7の多環式芳香族炭化水素化合物を含有している。また有機材料からなる燐光発光材料を含有する光増感層(14d)が、発光層(14c)に隣接して設けられている。これにより、発光効率および色純度が十分に良好な赤色発光の有機電界発光素子、およびこれを用いてなる表示装置を提供する。

Description

有機電界発光素子および表示装置
 有機電界発光素子および表示装置に関し、特には赤色発光の有機電界発光素子、およびこれを用いた表示装置に関する。
 近年、軽量で高効率のフラットパネル型表示装置として、有機電界発光素子(いわゆる有機EL素子)を用いた表示装置が注目されている。
 このような表示装置を構成する有機電界発光素子は、例えばガラス等からなる透明な基板上に設けられており、基板側から順にITO(Indium Tin Oxide:透明電極)からなる陽極、有機層、および陰極を積層してなる。有機層は、陽極側から順に、正孔注入層、正孔輸送層および電子輸送性の発光層を順次積層させた構成を有している。このように構成された有機電界発光素子では、陰極から注入された電子と陽極から注入された正孔とが発光層において再結合し、この再結合の際に生じる光が陽極を介して基板側から取り出される。
 有機電界発光素子としては、このような構成を有するものの他に、基板側から順に、陰極、有機層、陽極を順次積層した構成、さらには上方に位置する電極(陰極または陽極としての上部電極)を透明材料で構成することによって、基板と反対側の上部電極側から光を取り出すようにした、いわゆる上面発光型もある。特に、基板上に薄膜トランジスタ(Thin Film Transistor:TFT)を設けてなるアクティブマトリックス型の表示装置においては、TFTが形成された基板上に上面発光型の有機電界発光素子を設けた、いわゆるTop Emission構造とすることが、発光部の開口率を向上させる上で有利になる。
 ところで、有機ELディスプレイの実用化を考慮した場合、有機電界発光素子の開口を広げて光取り出しを高めることのほかに、有機電界発光素子の発光効率を向上させる必要性がある。そこで、発光効率を高める様々な材料および層構成の検討がなされてきた。
 例えば赤色発光素子であれば、従来から知られているDCJTBに代表されるピラン誘導体に変わる新たな赤色発光材料として、ナフタセン誘導体(ルブレン誘導体を含む)をドーパント材料として用いる構成が提案されている(例えば下記特許文献1,2参照)。
 また特許文献2には、ルブレン誘導体をドーパント材料として用いた第1の発光層に、ペニレン誘導体とアントラセン誘導体とを含む第2の発光層を積層させることにより、白色発光を得る構成も提案されている。
 さらに青色発光層に隣接された電子輸送層や正孔輸送層に、ルブレン誘導体をドープさせることにより、白色発光を得る構成も提案されている(下記特許文献3参照)。
2000-26334号公報 2003-55652号公報(特に第0353~0357段落、表11参照) 2004-134396号公報
 ところで、以上のような表示装置においてフルカラー表示を行う上では、三原色(赤色、緑色、青色)に発光する各色の有機電界発光素子を配列して用いるか、または白色発光の有機電界発光素子と各色のカラーフィルタまたは色変換層とを組み合わせて用いることになる。このうち、発光光の取り出し効率の観点からは、各色に発光する有機電界発光素子を用いる構成が有利である。
 しかしながら、上述したナフタセン誘導体(ルブレン誘導体)を用いた赤色発光素子の発光は、電流効率は6.7cd/A程度であり、発光色は赤色発光というよりはむしろ橙色発光であった。
 そこで本発明は、発光効率および色純度が十分に良好な赤色発光の有機電界発光素子、およびこれを用いてなる表示装置を提供することを目的とする。
 このような目的を達成するための本発明の有機電界発光素子は、陽極と陰極との間に発光層を備えた有機層を挟持してなる赤色発光性の有機電界発光素子である。この発光層は、赤色の発光性ゲスト材料と共に、母骨格が環員数4~7の多環式芳香族炭化水素化合物からなるホスト材料を含有している。また、有機層内においては、有機材料からなる燐光発光材料を含有した光増感層が、発光層に隣接して積層されている。
 このような構成の有機電界発光素子においては、以降の実施例で詳細に説明するように、光増感層を設けていない構成と比較して電流効率が上昇し、しかも発光材料を含有する光増感層に影響されずに発光層で発生した赤色の発光光のみが素子から取り出されることがわかった。
 これは、発光層に隣接して光増感層を設けたことにより、光増感層での燐光発光の発光エネルギーが発光層で吸収され、発光層においての発光効率に寄与するためである。この際、三重項励起子を経由した燐光発光材料での燐光発光は、一重項励起子を経由した蛍光発光と比較して発光効率が高い。したがって、原理的に蛍光材料よりも発光効率の高い燐光材料を光増感層として用いることで、発光層からの発光効率を効果的に高めることが出来る。
 また、本発明は、上述した構成の有機電界発光素子を基板上に複数配列して設けた表示装置でもある。
 このような表示装置では、上述したように、輝度および色純度が高い有機電界発光素子を赤色発光素子として用いた表示装置が構成されるため、他の緑色発光素子および青色発光素子と組み合わせることで、色再現性の高いフルカラー表示が可能になる。
 以上説明したように本発明の有機電界発光素子によれば、色純度を保ちつつ赤色の発光光の発光効率を効果的に向上させることが可能になる。
 そして、本発明の表示装置によれば、上述したように色純度および発光効率の高い赤色発光素子となる有機電界発光素子と共に、緑色発光素子および青色発光素子を1組にして画素を構成することにより、色再現性の高いフルカラー表示が可能になる。
実施形態の有機電界発光素子の断面図である。 実施形態の有機電界発光素子において、発光層に含有される発光性ゲスト材料、および光増感層に含有される燐光発光材料(発光性ゲスト材料)のエネルギーレベルの模式図である。 実施形態の表示装置の回路構成の一例を示す図である。 実施形態の表示装置における主要部の断面構成の第1の例を示す図である。 実施形態の表示装置における主要部の断面構成の第2の例を示す図である。 実施形態の表示装置における主要部の断面構成の第3の例を示す図である。 実施形態の表示装置における主要部の断面構成の第4の例を示す図である。 本発明が適用される封止された構成のモジュール形状の表示装置を示す構成図である。 本発明が適用されるテレビを示す斜視図である。 本発明が適用されるデジタルカメラを示す図であり、(A)は表側から見た斜視図、(B)は裏側から見た斜視図である。 本発明が適用されるノート型パーソナルコンピュータを示す斜視図である。 本発明が適用されるビデオカメラを示す斜視図である。 本発明が適用される携帯端末装置、例えば携帯電話機を示す図であり、(A)は開いた状態での正面図、(B)はその側面図、(C)は閉じた状態での正面図、(D)は左側面図、(E)は右側面図、(F)は上面図、(G)は下面図である。
 以下、本発明の実施の形態を、有機電界発光素子およびこれを用いた表示装置の順に図面に基づいて詳細に説明する。
≪有機電界発光素子≫
 図1は、本発明の有機電界発光素子を模式的に示す断面図である。この図に示す有機電界発光素子11は、基板12上に、陽極13、有機層14、および陰極15をこの順に積層してなる。このうち有機層14は、陽極13側から順に、例えば正孔注入層14a、正孔輸送層14b、発光層14c、光増感層14d、および電子輸送層14eを積層してなるものである。
 本発明においては、発光層14cの構成と、これに接して光増感層14dを設けた構成とに特徴がある。以下においては、このような積層構成の有機電界発光素子11が、基板12と反対側から光を取り出す上面発光型の素子として構成されていることとし、この場合の各層の詳細を基板12側から順に説明する。
<基板>
 基板12は、その一主面側に有機電界発光素子11が配列形成される支持体であって、公知のものであって良く、例えば、石英、ガラス、金属箔、もしくは樹脂製のフィルムやシートなどが用いられるこの中でも石英やガラスが好ましく、樹脂製の場合には、その材質としてポリメチルメタクリレート(PMMA)に代表されるメタクリル樹脂類、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)などのポリエステル類、もしくはポリカーボネート樹脂などが挙げられるが、透水性や透ガス性を抑える積層構造、表面処理を行うことが必要である。
<陽極>
 陽極13には、効率良く正孔を注入するために電極材料の真空準位からの仕事関数が大きいもの、例えばアルミニウム(Al)、クロム(Cr)、モリブテン(Mo)、タングステン(W)、銅(Cu)、銀(Ag)、金(Au)の金属およびその合金さらにはこれらの金属や合金の酸化物等、または、酸化スズ(SnO2)とアンチモン(Sb)との合金、ITO(インジウムチンオキシド)、InZnO(インジウ亜鉛オキシド)、酸化亜鉛(ZnO)とアルミニウム(Al)との合金、さらにはこれらの金属や合金の酸化物等が、単独または混在させた状態で用いられる。
 また、陽極13は、光反射性に優れた第1層と、この上部に設けられた光透過性を有すると共に仕事関数の大きい第2層との積層構造であっても良い。
 第1層は、アルミニウムを主成分とする合金からなる。その副成分は、主成分であるアルミニウムよりも相対的に仕事関数が小さい元素を少なくとも一つ含むものでも良い。このような副成分としては、ランタノイド系列元素が好ましい。ランタノイド系列元素の仕事関数は、大きくないが、これらの元素を含むことで陽極の安定性が向上し、かつ陽極のホール注入性も満足する。また副成分として、ランタノイド系列元素の他に、シリコン(Si)、銅(Cu)などの元素を含んでも良い。
 第1層を構成するアルミニウム合金層における副成分の含有量は、例えば、アルミニウムを安定化させるNdやNi、Ti等であれば、合計で約10wt%以下であることが好ましい。これにより、アルミニウム合金層においての反射率を維持しつつ、有機電界発光素子の製造プロセスにおいてアルミニウム合金層を安定的に保ち、さらに加工精度および化学的安定性も得ることができる。また、陽極13の導電性および基板12との密着性も改善することが出来る。
 また第2層は、アルミニウム合金の酸化物、モリブデンの酸化物、ジルコニウムの酸化物、クロムの酸化物、およびタンタルの酸化物の少なくとも一つからなる層を例示できる。ここで、例えば、第2層が副成分としてランタノイド系元素を含むアルミニウム合金の酸化物層(自然酸化膜を含む)である場合、ランタノイド系元素の酸化物の透過率が高いため、これを含む第2層の透過率が良好となる。このため、第1層の表面において、高反射率を維持することが可能である。さらに、第2層は、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの透明導電層であっても良い。これらの導電層は、陽極13の電子注入特性を改善することができる。
 また陽極13は、基板11と接する側に、陽極13と基板12との間の密着性を向上させるための導電層を設けて良い。このような導電層としては、ITOやIZOなどの透明導電層が挙げられる。
 そして、この有機電界発光素子11を用いて構成される表示装置の駆動方式がアクティブマトリックス方式である場合には、陽極13は画素毎にパターニングされ、基板12に設けられた駆動用の薄膜トランジスタに接続された状態で設けられている。またこの場合、陽極13の上には、ここでの図示を省略したが絶縁膜が設けられ、この絶縁膜の開口部から各画素の陽極13の表面が露出されるように構成されていることとする。
<正孔注入層>
 正孔注入層14aは、発光層14cへの正孔注入効率を高めるためのものである。このような正孔注入層14aの材料としては、例えば、ベンジン、スチリルアミン、トリフェニルアミン、ポルフィリン、トリフェニレン、アザトリフェニレン、テトラシアノキノジメタン、トリアゾール、イミダゾール、オキサジアゾール、ポリアリールアルカン、フェニレンジアミン、アリールアミン、オキザゾール、アントラセン、フルオレノン、ヒドラゾン、スチルベンあるいはこれらの誘導体、または、ポリシラン系化合物、ビニルカルバゾール系化合物、チオフェン系化合物あるいはアニリン系化合物等の複素環式共役系のモノマー、オリゴマーあるいはポリマーを用いることができる。
 また、上記正孔注入層14aのさらに具体的な材料としては、α-ナフチルフェニルフェニレンジアミン、ポルフィリン、金属テトラフェニルポルフィリン、金属ナフタロシアニン、ヘキサシアノアザトリフェニレン、7,7,8,8-テトラシアノキノジメタン(TCNQ)、7,7,8,8-テトラシアノ-2,3,5,6-テトラフルオロキノジメタン(F4-TCNQ)、テトラシアノ4、4、4-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン、N、N、N’、N’-テトラキス(p-トリル)p-フェニレンジアミン、N、N、N’、N’-テトラフェニル-4、4’-ジアミノビフェニル、N-フェニルカルバゾール、4-ジ-p-トリルアミノスチルベン、ポリ(パラフェニレンビニレン)、ポリ(チオフェンビニレン)、ポリ(2、2’-チエニルピロール)等が挙げられるが、これらに限定されるものではない。
<正孔輸送層>
 正孔輸送層14bは、正孔注入層14aと同様に発光層14cへの正孔注入効率を高めるためのものである。このような正孔輸送層14bは、上述した正孔注入層14aと同様の材料の中から選択した材料を用いて構成される。
<発光層>
 発光層14cは、陽極13と陰極15とに対する電圧印加時に、陽極13側から注入された正孔と、陰極15側から注入された電子とが再結合する領域である。本実施形態においては、この発光層14cの構成が一つの特徴である。つまり発光層14cは、母骨格が環員数4~7の多環式芳香族炭化水素化合物をホスト材料として用いたもので、このホスト材料に対して赤色の発光性ゲスト材料がドーピングされており、赤色の発光光を発生する。
 このうち、発光層14cを構成するホスト材料は、母骨格が環員数4~7の多環式芳香族炭化水素化合物であり、ピレン,ベンゾピレン,クリセン,ナフタセン,ベンゾナフタセン,ジベンゾナフタセン,ペリレン,コロネンから選択されることとする。
 また発光層14cを構成するホスト材料は、母骨格が環員数4~7の多環式芳香族炭化水素化合物であり、ピレン,ベンゾピレン,クリセン,ナフタセン,ベンゾナフタセン,ジベンゾナフタセン,ペリレン,コロネンから選択されることとする。
 なかでも、下記一般式(1)に示すナフタセン誘導体をホスト材料として用いることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 ただし、一般式(1)中において、R1~R8はそれぞれ独立に、水素、ハロゲン、ヒドロキシル基、炭素数20以下の置換あるいは無置換のカルボニル基、炭素数20以下の置換あるいは無置換のカルボニルエステル基、炭素数20以下の置換あるいは無置換のアルキル基、炭素数20以下の置換あるいは無置換のアルケニル基、炭素数20以下の置換あるいは無置換のアルコキシル基、シアノ基、ニトロ基、炭素数30以下の置換あるいは無置換のシリル基,炭素数30以下の置換あるいは無置換のアリール基、炭素数30以下の置換あるいは無置換の複素環基、もしくは炭素数30以下の置換あるいは無置換のアミノ基を示す。
 一般式(1)におけるR1~R8が示すアリール基は、例えば、フェニル基、1-ナフチル基、2-ナフチル基、フルオレニル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、1-クリセニル基,6-クリセニル基,2-フルオランテニル基,3-フルオランテニル基,2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基等が挙げられる。
 また,R1~R8が示す複素環基は、ヘテロ原子としてO、N、Sを含有する5員環または6員環の芳香族複素環基、炭素数2~20の縮合多環芳香複素環基が挙げられる。また、芳香族複素環基および縮合多環芳香複素環基としては、チエニル基、フリル基、ピロリル基、ピリジル基、キノリル基、キノキサリル基、イミダゾピリジル基、ベンゾチアゾール基が挙げられる。代表的なものとしては,1-ピロリル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、2-イソインドリル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基、1-フェナンスリジニル基、2-フェナンスリジニル基、3-フェナンスリジニル基、4-フェナンスリジニル基、6-フェナンスリジニル基、7-フェナンスリジニル基、8-フェナンスリジニル基、9-フェナンスリジニル基、10-フェナンスリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基、などが挙げられる。
 R1~R8が示すアミノ基は、アルキルアミノ基、アリールアミノ基、アラルキルアミノ基等のいずれでもよい。これらは、総炭素数1~6の脂肪族および/または1~4環の芳香族炭素環を有することが好ましい。このような基としては、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ビスビフェニリルアミノ基、ジナフチルアミノ基が挙げられる。
 尚、上記置換基の2種以上は縮合環を形成していても良く、さらに置換基を有していてもよい。
 また特に、上記一般式(1)で表されるナフタセン誘導体は、以下の一般式(1a)で表されるルブレン誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 一般式(1a)中、R11~R15、R21~R25、R31~R35、R41~R45は、それぞれ独立に水素原子、アリール基、複素環基、アミノ基、アリールオキシ基、アルキル基、またはアルケニル基を示す。ただし、R11~R15、R21~R25、R31~R35、R41~R45は、それぞれ同一であることが好ましい。
 また一般式(1a)中R5~R8は、それぞれ独立に水素原子、置換基を有していてもよいアリール基、または置換基を有していてもよいアルキル基またはアルケニル基であることとする。
 一般式(1a)におけるアリール基、複素環基、およびアミノ基の好ましい態様は、一般式(1)のR1~R8と同様であって良い。尚、R11~R15、R21~R25、R31~R35、R41~R45がアミノ基である場合、アルキルアミノ基、アリールアミノ基、またはアラルキルアミノ基であることとする。これらは、総炭素数1~6の脂肪族や1~4環の芳香族炭素環を有することが好ましい。このような基としては、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ビスビフェニリルアミノ基が挙げられる。
 発光層14cのホスト材料として好適に用いられるナフタセン誘導体のより具体的な他の例としては、一般式(1a)のルブレン誘導体の一つである下記化合物(1)-1のルブレンが挙げられるが、この他にも以下の化合物(1)-2~(1)-4が例示される。
Figure JPOXMLDOC01-appb-C000004
 また、発光層14cを構成する赤色の発光性ゲスト材料としては、次に説明する一般式(2)のペリレン誘導体、一般式(3)のジケトピロロピロール誘導体、一般式(4)のピロメテン錯体、一般式(5)のピラン誘導体、または一般式(6)のスチリル誘導体が用いられる。以下、赤色の発光性ゲスト材料の詳細を説明する。
-ペリレン誘導体-
 赤色の発光性ゲスト材料として、例えば下記一般式(2)に示す化合物(ジインデノ[1,2,3-cd]ペリレン誘導体)が用いられる。
Figure JPOXMLDOC01-appb-C000005
 ただし、一般式(2)中において、X1~X20はそれぞれ独立に、水素、ハロゲン、ヒドロキシル基、炭素数20以下の置換あるいは無置換のカルボニル基、炭素数20以下の置換あるいは無置換のカルボニルエステル基、炭素数20以下の置換あるいは無置換のアルキル基、炭素数20以下の置換あるいは無置換のアルケニル基、炭素数20以下の置換あるいは無置換のアルコキシル基、シアノ基、ニトロ基、炭素数30以下の置換あるいは無置換のシリル基,炭素数30以下の置換あるいは無置換のアリール基、炭素数30以下の置換あるいは無置換の複素環基、もしくは炭素数30以下の置換あるいは無置換のアミノ基を示す。
 一般式(2)におけるX1~X20が示すアリール基は、例えば,フェニル基、1-ナフチル基、2-ナフチル基、フルオレニル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、1-クリセニル基,6-クリセニル基,2-フルオランテニル基,3-フルオランテニル基,2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基等が挙げられる。
 またX1~X20が示す複素環基は、ヘテロ原子としてO、N、Sを含有する5員環または6員環の芳香族複素環基、炭素数2~20の縮合多環芳香複素環基が挙げられる。これらの芳香族複素環基および縮合多環芳香複素環基としては、チエニル基、フリル基、ピロリル基、ピリジル基、キノリル基、キノキサリル基、イミダゾピリジル基、ベンゾチアゾール基が挙げられる。代表的なものとしては,1-ピロリル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、2-イソインドリル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基、1-フェナンスリジニル基、2-フェナンスリジニル基、3-フェナンスリジニル基、4-フェナンスリジニル基、6-フェナンスリジニル基、7-フェナンスリジニル基、8-フェナンスリジニル基、9-フェナンスリジニル基、10-フェナンスリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基、などが挙げられる。
 X1~X20が示すアミノ基は、アルキルアミノ基、アリールアミノ基、アラルキルアミノ基等のいずれでもよい。これらは、総炭素数1~6の脂肪族および/または1~4環の芳香族炭素環を有することが好ましい。このような基としては、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ビスビフェニリルアミノ基、ジナフチルアミノ基が挙げられる。
 尚、上記置換基の2種以上は縮合環を形成していても良く、さらに置換基を有していても良い。
 発光層14cにおける赤色の発光性ゲスト材料として好適に用いられるジインデノ[1,2,3-cd]ペリレン誘導体の具体例として、以下の化合物(2)-1~(2)-8が例示される。
ただし本発明は、なんらこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000006
-ジケトピロロピロール誘導体-
 赤色の発光性ゲスト材料として、例えば下記一般式(3)に示す化合物(ジケトピロロピロール誘導体)が用いられる。
Figure JPOXMLDOC01-appb-C000007
 ただし、一般式(3)中において、Y1およびY2は、それぞれ独立に酸素原子、または置換もしくは未置換のイミノ基を表す。また、Y3~Y8は、それぞれ独立に水素、ハロゲン、炭素数20以下の置換あるいは無置換のアルキル基、炭素数20以下の置換あるいは無置換のアルケニル基、炭素数30以下の置換あるいは無置換のアリール基、炭素数30以下の置換あるいは無置換の複素環基、もしくは炭素数30以下の置換あるいは無置換のアミノ基を示す。
 また一般式(3)中において、Ar1およびAr2は、置換もしくは未置換の芳香族炭化水素基、置換もしくは未置換の芳香族複素環基より選ばれる2価の基を示す。
 尚、一般式(3)における、Y3~Y8が示す置換あるいは無置換のアリール基、Y3~Y8が示す複素環基、さらにはY3~Y8が示すアミノ基は、一般式(2)のペリレン誘導体で示した基と同様である。また、上記置換基の2種以上は縮合環を形成していても良く、さらに置換基を有していても良いことも同様である。
 発光層14cにおける赤色の発光性ゲスト材料として好適に用いられるジケトピロロピロール誘導体の具体例として、以下の化合物(3)-1~(3)-14が例示される。ただし本発明は、なんらこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
-ピロメテン錯体-
 赤色の発光性ゲスト材料として、例えば下記一般式(4)に示す化合物(ピロメテン錯体)が用いられる。
Figure JPOXMLDOC01-appb-C000010
 ただし、一般式(4)中において、Z1~Z9はそれぞれ独立に、水素、ハロゲン、炭素数20以下の置換あるいは無置換のアルキル基、炭素数20以下の置換あるいは無置換のアルケニル基、炭素数20以下の置換あるいは無置換のアルコキシル基、シアノ基、ニトロ基、炭素数30以下の置換あるいは無置換のシリル基,炭素数30以下の置換あるいは無置換のアリール基、炭素数30以下の置換あるいは無置換の複素環基、もしくは炭素数30以下の置換あるいは無置換のアミノ基を示す。
 尚、一般式(7)における、Z1~Z9が示す置換あるいは無置換のアリール基、Z1~Z9が示す複素環基、およびZ1~Z9が示すアミノ基は、一般式(2)のペリレン誘導体で示した基と同様である。また、上記置換基の2種以上は縮合環を形成していても良く、さらに置換基を有していても良いことも同様である。
 発光層14cにおける赤色の発光性ゲスト材料として好適に用いられるピロメテン錯体の具体例として、以下の化合物(4)-1~(4)-68が例示される。ただし本発明は、なんらこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
-ピラン誘導体-
 赤色の発光性ゲスト材料として、例えば下記一般式(5)に示す化合物(ピラン誘導体)が用いられる。
Figure JPOXMLDOC01-appb-C000021
 ただし、一般式(5)中において、L1~L6はそれぞれ独立に、水素、炭素数20以下の置換あるいは無置換のアルキル基、炭素数20以下の置換あるいは無置換のアルケニル基、炭素数20以下の置換あるいは無置換のアルコキシル基、シアノ基、ニトロ基、炭素数30以下の置換あるいは無置換のシリル基,炭素数30以下の置換あるいは無置換のアリール基、炭素数30以下の置換あるいは無置換の複素環基、もしくは炭素数30以下の置換あるいは無置換のアミノ基を示す。また,L1とL4またはL2とL3は炭化水素を通じて環状構造をとってもよい。
 尚、一般式(5)における、L1~L6が示す置換あるいは無置換のアリール基、L1~L6が示す複素環基、およびL1~L6が示すアミノ基は、一般式(2)のペリレン誘導体で示した基と同様である。L1とL4またはL2とL3は炭化水素を通じて環状構造をとっても良い他、上記置換基の2種以上は縮合環を形成していても良く、さらに置換基を有していても良い。
 発光層14cにおける赤色の発光性ゲスト材料として好適に用いられるピラン誘導体の具体例として、以下の化合物(5)-1~(5)-7が例示される。ただし本発明は、なんらこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000022
-スチリル誘導体-
 赤色の発光性ゲスト材料として、例えば下記一般式(6)に示す化合物(スチリル誘導体)が用いられる。
Figure JPOXMLDOC01-appb-C000023
 ただし、一般式(6)中において、T1~T3は炭素数30以下の置換あるいは無置換のアリール基もしくは炭素数30以下の置換あるいは無置換の複素環基を示す。また、T4は、T2およびT3と環状構造を有してもよい置換あるいは無置換のフェニレン部位を示す。
 一般式(6)における、T1~T3が示す置換あるいは無置換のアリール基、T1~T3が示す複素環基は、一般式(2)のペリレン誘導体で示した基と同様である。
 尚、上記置換基の2種以上は縮合環を形成していても良く、さらに置換基を有していても良い。この場合に、さらにT1~T4に置換される基としては、例えば、水素、ハロゲン、ヒドロキシル基、炭素数20以下の置換あるいは無置換のカルボニル基、炭素数20以下の置換あるいは無置換のカルボニルエステル基、炭素数20以下の置換あるいは無置換のアルキル基、炭素数20以下の置換あるいは無置換のアルケニル基、炭素数20以下の置換あるいは無置換のアルコキシル基、シアノ基、ニトロ基、アミノ基などが挙げられる。その他にも、アミノ基としては、アルキルアミノ基、アリールアミノ基、アラルキルアミノ基等のいずれでもよい。これらは、総炭素数1~6の脂肪族および/または1~4環の芳香族炭素環を有することが好ましい。このような基としては、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ビスビフェニリルアミノ基、ジナフチルアミノ基が挙げられる。
 発光層14cにおける赤色の発光性ゲスト材料として好適に用いられるスチリル誘導体の具体例として、以下の化合物(6)-1~(6)-35が例示される。ただし本発明は、なんらこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 尚、以上説明したような、発光層14cにおける赤色の発光性ゲスト材料として用いる一般式(2)のペリレン誘導体、一般式(3)のジケトピロロピロール誘導体、一般式(4)のピロメテン錯体、一般式(5)のピラン誘導体、または一般式(6)のスチリル誘導体は、分子量が2000以下のものが好ましく、1500以下がさらに好ましく、1000以下が特に好ましい。この理由として、分子量が大きいと、蒸着によって素子を作成しようとした場合の蒸着性が悪くなるといった懸念が考えられるためである。
<光増感層>
 光増感層14dは、発光層14cに対してエネルギーを移動させ、発光層14cにおける発光効率を向上させるための層である。本実施形態においては、燐光発光材料を用いて光増感層14dが構成されているところが1つの特徴である。これにより、原理的に蛍光材料よりも発光効率の高い燐光材料を光増感層として用いることで、発光層14cからの発光効率を飛躍的に高めることが出来る。
 このような光増感層14dは、燐光発光材料を発光性ゲスト材料とし、これをホスト材料中にドーピングしてなるゲスト-ホストの関係となっている。
 このうち、光増感層14dを構成する燐光発光材料(発光性ゲスト材料)は、赤色の発光性ゲスト材料を含有する発光層14cで発生する赤色光よりも短波長の燐光を発光するものが好適に用いられる。
 図2には、発光層14cに含有される発光性ゲスト材料、および光増感層14dに含有される燐光発光材料(発光性ゲスト材料)のエネルギーレベルの模式図を示す。この図に示すように、発光層14cに含有される発光性ゲスト材料において、一重項励起状態S1(14c)、基底状態S0(14c)とする。一方、光増感層14dに含有される燐光発光材料(発光性ゲスト材料)において、三重項励起状態T1(14d)、基底状態S0(14d)とする。そして、それぞれの励起状態と基底状態とのエネルギー差が、|T1(14d)-S0(14d)|>|S1(14c)-S0(14c)|の関係であることが望ましい。
これは、光増感層14dでの燐光発光の波長が、発光層14cでの発光光の波長よりも短波長であることを示している。この関係にあるとき、光増感層14dで生じたエネルギーは、効率的に発光層14cへ移動され、発光効率の向上を図ることが出来る。
 このような燐光発光材料の具体例としては、イリジウム錯体、白金錯体、レニウム錯体、オスミウム錯体、ルテニウム錯体、および金錯体から選択される。またこれらの材料の中から、発光効率が高い燐光材料を選択して用いることが好ましく、例えば、イリジウム錯体から選択される。
 一方、光増感層14dを構成するホスト材料は、炭素数6以上60以下の芳香族炭化水素の誘導体、もしくはその連結からなる有機材料である。その具体的な例としては、例えばカルバゾール誘導体、インデン誘導体、フェナントレン誘導体、ピレン誘導体、ナフタセン誘導体、トリフェニレン誘導体、アントラセン誘導体、ペリレン誘導体、ピセン誘導体、フルオランテン誘導体、アセフェナントリレン誘導体、ペンタフェン誘導体、ペンタセン誘導体、コロネン誘導体、ブタジエン誘導体、スチルベン誘導体、トリス(8-キノリノラト)アルミニウム錯体、ビス(ベンゾキノリノラト)ベリリウム錯体などを用いることができる。
 以上のホスト材料は、発光性ゲスト材料毎に最も発光効率が高くなるホスト材料が選択して用いられることとする。このようなホスト材料としては、カルバゾール誘導体が好ましく用いられる。
 また、このような構成の光増感層14dは、発光層14cに対して接して設けられていることが重要である。このため、この光増感層14dは、例えば発光層14cと陰極15との間に設けられる。しかしながら、光増感層14dは、発光層14cに対して接して設けられていることが重要であるため、発光層14cと陽極13との間において発光層14cに接して設けられていても良い。
<電子輸送層>
 電子輸送層14eは、陰極15から注入される電子を発光層14cに輸送するためのものである。電子輸送層14eの材料としては、例えば、キノリン、ペリレン、フェナントロリン、ビススチリル、ピラジン、トリアゾール、オキサゾール、オキサジアゾール、フルオレノン、またはこれらの誘導体や金属錯体が挙げられる。具体的には、トリス(8-ヒドロキシキノリン)アルミニウム(略称Alq3 )、アントラセン、ナフタレン、フェナントレン、ピレン、アントラセン、ペリレン、ブタジエン、クマリン、アクリジン、スチルベン、1,10-フェナントロリンまたはこれらの誘導体や金属錯体が挙げられる。
 尚、有機層14は、このような層構造に限定されることはなく、少なくとも発光層14cと、これに接して光増感層14dが設けられていれば良く、その他必要に応じた積層構造を選択することができる。
 また、発光層14cは、正孔輸送性の発光層、電子輸送性の発光層、あるいは両電荷輸送性の発光層として有機電界発光素子11に設けられていても良い。さらに、以上の有機層14を構成する各層、例えば正孔注入層14a、正孔輸送層14b、発光層14c、光増感層14d、および電子輸送層14eは、それぞれが複数層からなる積層構造であっても良い。
<陰極>
 次に、このような構成の有機層14上に設けられる陰極15は、例えば、有機層14側から順に第1層15a、第2層15bを積層させた2層構造で構成されている。
 第1層15aは、仕事関数が小さく、かつ光透過性の良好な材料を用いて構成される。このような材料としては、例えばリチウム(Li)の酸化物である酸化リチウム(Li2O)や、セシウム(Cs)の複合酸化物である炭酸セシウム(Cs2CO3)、さらにはこれらの酸化物および複合酸化物の混合物を用いることができる。また、第1層15aは、このような材料に限定されることはなく、例えば、カルシウム(Ca)、バリウム(Ba)等のアルカリ土類金属、リチウム、セシウム等のアルカリ金属、さらにはインジウム(In)、マグネシウム(Mg)等の仕事関数の小さい金属、さらにはこれらの金属の酸化物および複合酸化物、フッ化物等を、単体でまたはこれらの金属および酸化物および複合酸化物、フッ化の混合物や合金として安定性を高めて使用しても良い。
 第2層15bは、例えば、MgAgなどの光透過性を有する層を用いた薄膜により構成されている。この第2層15bは、さらに、アルミキノリン錯体、スチリルアミン誘導体、フタロシアニン誘導体等の有機発光材料を含有した混合層であっても良い。この場合には、さらに第3層としてMgAgのような光透過性を有する層を別途有していてもよい。
 以上のような陰極15は、この有機電界発光素子11を用いて構成される表示装置の駆動方式がアクティブマトリックス方式である場合、陰極15は、有機層14とここでの図示を省略した上述の絶縁膜とによって、陽極13と絶縁された状態で基板12上にベタ膜状に形成され、各画素の共通電極として用いられる。
 尚、陰極15は上記のような積層構造に限定されることはなく、作製されるデバイスの構造に応じて最適な組み合わせ、積層構造を取れば良いことは言うまでもない。例えば、上記実施形態の陰極15の構成は、電極各層の機能分離、すなわち有機層14への電子注入を促進させる無機層(第1層15a)と、電極を司る無機層(第2層15b)とを分離した積層構造である。しかしながら、有機層14への電子注入を促進させる無機層が、電極を司る無機層を兼ねても良く、これらの層を単層構造として構成しても良い。また、この単層構造上にITOなどの透明電極を形成した積層構造としても良い。
 そして上記した構成の有機電界発光素子11に印加する電流は、通常、直流であるが、パルス電流や交流を用いてもよい。電流値、電圧値は、素子が破壊されない範囲内であれば特に制限はないが、有機電界発光素子の消費電力や寿命を考慮すると、なるべく小さい電気エネルギーで効率良く発光させることが望ましい。
 また、この有機電界発光素子11が、キャビティ構造となっている場合、陰極15が半透過半反射材料を用いて構成される。そして、陽極13側の光反射面と、陰極15側の光反射面との間で多重干渉させた発光光が陰極15側から取り出される。この場合、陽極13側の光反射面と陰極15側の光反射面との間の光学的距離は、取り出したい光の波長によって規定され、この光学的距離を満たすように各層の膜厚が設定されていることとする。そして、このような上面発光型の有機電界発光素子においては、このキャビティ構造を積極的に用いることにより、外部への光取り出し効率の改善や発光スペクトルの制御を行うことが可能である。また、光増感層14dにおいての赤色発光よりの短波長の燐光発光が陰極15側から取り出されることを防止する効果もある。
 さらに、ここでの図示は省略したが、このような構成の有機電界発光素子11は、大気中の水分や酸素等による有機材料の劣化を防止するため保護層(パッシベーション層)で覆われた状態で用いることが好ましい。保護膜には、窒化珪素(代表的には、Si34)、酸化珪素(代表的には、SiO2)膜、窒化酸化珪素(SiNxOy:組成比X>Y)膜、酸化窒化珪素(SiOxNy:組成比X>Y)膜、またはDLC(Diamond like Carbon)のような炭素を主成分とする薄膜、CN(Carbon Nanotube)膜等が用いられる。これらの膜は、単層または積層させた構成とすることが好ましい。なかでも、窒化物からなる保護層は膜質が緻密であり、有機電界発光素子11に悪影響を及ぼす水分、酸素、その他不純物に対して極めて高いブロッキング効果を有するため好ましく用いられる。
 尚、以上の実施形態においては、有機電界発光素子が上面発光型である場合を例示して本発明を詳細に説明した。しかしながら、本発明の有機電界発光素子は、上面発光型への適用に限定されるものではなく、陽極と陰極との間に少なくとも発光層を有する有機層を挟持してなる構成に広く適用可能である。したがって、基板側から順に、陰極、有機層、陽極を順次積層した構成のものや、基板側に位置する電極(陰極または陽極としての下部電極)を透明材料で構成し、基板と反対側に位置する電極(陰極または陽極としての上部電極)を反射材料で構成することによって、下部電極側からのみ光を取り出すようにした、下面発光型の有機電界発光素子にも適用可能である。
 さらに、本発明の有機電界発光素子とは、一対の電極(陽極と陰極)、およびその電極間に有機層が挟持されることによって形成される素子であれば良い。このため、一対の電極および有機層のみで構成されたものに限定されることはなく、本発明の効果を損なわない範囲で他の構成要素(例えば、無機化合物層や無機成分)が共存することを排除するものではない。
 以上のように構成された有機電界発光素子11では、以降の実施例で詳細に説明するように、光増感層14dを設けていない構成の素子と比較して、電流効率が上昇することが確認された。
 しかも、赤色の発光層14cに対して、緑色に発光する光増感層14dを積層させた構造をとるものの、電界を印加しても光増感層14dからの発光による混色は生じず、赤色の発光を得ることができる。これは、光増感層14dにおいては、赤色の発光層14cを貫いてきた正孔と電子輸送層14eを介在して注入された電子とが再結合しているものの、その再結合によって放出されるエネルギーは、隣接する赤色の発光層14cを構成するホスト材料の電子を励起させるように作用し、赤色の発光層14cにおいての発光に寄与しているためであると考えられる。尚、このような現象は、以下の実施例に対する比較例として示すように、光増感層14dをホスト材料のみによって構成した場合には、目的である赤色の発光層が殆ど発光しなくなる現象から類推することが出来る。
 以上から、上述した構成の有機電界発光素子11によれば、色純度を保ちつつ赤色の発光光の発光効率の向上を図ることが可能である。
 また、このような発光効率の大幅な改善により、有機電界発光素子11の輝度寿命の向上と消費電力の低減を達成可能である。
≪表示装置の概略構成≫
 図3は、実施形態の表示装置10の一例を示す図であり、図3(A)は概略構成図、図3(B)は画素回路の構成図である。ここでは、発光素子として有機電界発光素子11を用いたアクティブマトリックス方式の表示装置10に本発明を適用した実施形態を説明する。
 図3(A)に示すように、この表示装置10の基板12上には、表示領域12aとその周辺領域12bとが設定されている。表示領域12aは、複数の走査線21と複数の信号線23とが縦横に配線されており、それぞれの交差部に対応して1つの画素aが設けられた画素アレイ部として構成されている。これらの各画素aに、有機電界発光素子11R(11),11G,11Bのうちの1つが設けられている。また周辺領域12bには、走査線21を走査駆動する走査線駆動回路bと、輝度情報に応じた映像信号(すなわち入力信号)を信号線23に供給する信号線駆動回路cとが配置されている。
 図3(B)に示すように、各画素aに設けられる画素回路は、例えば各有機電界発光素子11R(11),11G,11Bのうちの1つと、駆動トランジスタTr1、書き込みトランジスタ(サンプリングトランジスタ)Tr2、および保持容量Csで構成されている。そして、走査線駆動回路bによる駆動により、書き込みトランジスタTr2を介して信号線23から書き込まれた映像信号が保持容量Csに保持され、保持された信号量に応じた電流が各有機電界発光素子11R(11),11G,11Bに供給され、この電流値に応じた輝度で有機電界発光素子11R(11),11G,11Bが発光する。
 尚、以上のような画素回路の構成は、あくまでも一例であり、必要に応じて画素回路内に容量素子を設けたり、さらに複数のトランジスタを設けて画素回路を構成しても良い。また、周辺領域12bには、画素回路の変更に応じて必要な駆動回路が追加される。
≪表示装置の断面構成-1≫
 図4には、上記表示装置10の表示領域における主要部の断面構成の第1の例を示す。
 有機電界発光素子11R(11),11G,11Bが設けられる基板12の表示領域には、ここでの図示を省略したが、上述した画素回路を構成するように駆動トランジスタ、書き込みトランジスタ、走査線、および信号線が設けられ(図3参照)、これらを覆う状態で絶縁膜が設けられている。
 この絶縁膜で覆われた基板12上に、有機電界発光素子11R(11),11G,11Bが配列形成されている。各有機電界発光素子11R(11)、11G、11Bは、基板12と反対側から光を取り出す上面発光型の素子として構成される。
 各有機電界発光素子11R(11),11G,11Bの陽極13は、素子毎にパターン形成されている。各陽極13は、基板12の表面を覆う絶縁膜に形成された接続孔を介して画素回路の駆動トランジスタに接続されている。
 各陽極13は、その周縁部が絶縁膜30で覆われており、絶縁膜30に設けた開口部分に陽極13の中央部が露出された状態となっている。そして、陽極13の露出部分を覆う状態で、有機層14がパターン形成され、各有機層14を覆う共通層として陰極15が設けられた構成となっている。
 これらの有機電界発光素子11R(11),11G,11Bのうち、特に赤色発光素子11Rが上記図1を用いて説明した実施形態の有機電界発光素子(11)として構成されている。これに対して、緑色発光素子11Gおよび青色発光素子11Bは、通常の素子構成であって良い。
 つまり、赤色発光素子11R(11)において、陽極13上に設けられた有機層14は、例えば陽極13側から順に、正孔注入層14a、正孔輸送層14b、ホスト材料としてナフタセン誘導体を用いた赤色の発光層14c-R(14c)、緑色領域の発光を生じる発光性ゲスト材料をホスト材料にドーピングしてなる光増感層14d、および電子輸送層14eを積層させている。
 一方、緑色発光素子11Gおよび青色発光素子11Bにおける有機層は、例えば陽極13側から順に、正孔注入層14a、正孔輸送層14b、各色の発光層14c-G,14c-B、および電子輸送層14eをこの順に積層させている。
 尚、赤色発光素子11R(11)における光増感層14dは、緑色の燐光発光材料が発光性ゲスト材料としてドーピングされたものであり、例えば緑発光素子11Gにおける緑色の発光層14c-Gと同一構成(材料)であって良く、また別構成であっても良い。またこの他にも、発光層14c-R,14c-G,14c-B、および光増感層14d以外の各層は、陽極13および陰極15も含めて各有機電界発光素子11R,11G,11Bにおいて同一材料で構成されていて良く、図1を用いて説明した各材料を用いて構成される。
 そして、以上のように設けられた複数の有機電界発光素子11R(11),11G,11Bは、保護膜(図示省略)で覆われていることとする。尚、この保護膜は、有機電界発光素子11R,11G,11Bが設けられた表示領域の全体を覆って設けられていることとする。
 ここで、赤色発光素子11R(11)、緑色発光素子11G、および青色発光素子11Bを構成する陽極13~陰極15までの各層は、真空蒸着法、イオンビーム法(EB法)、分子線エピタキシー法(MBE法)、スパッタ法、Organic Vapor Phase Deposition(OVPD)法などのドライプロセスによって形成できる。
 また、以上のように各有機電界発光素子11R(11),11G,11B毎にパターン形成された有機層14は、例えばマスクを用いた蒸着法や転写法によって形成される。
 さらに有機層14cは、以上の方法に加えてレーザー転写法、スピンコート法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法などの塗布法、インクジェット法、オフセット印刷法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法などの印刷法などのウエットプロセスによる形成も可能であり、各有機層や各部材の性質に応じて、ドライプロセスとウエットプロセスを併用しても構わない。
 このように構成された第1の例の表示装置10では、赤色発光素子11Rとして、図1を用いて説明した本発明構成の有機電界発光素子(11)を用いている。この赤色発光素子11R(11)は、上述したように赤色の発光色を保ちつつも発光効率が高い。このため、この赤色発光素子11R(11)と共に、緑色発光素子11Gおよび青色発光素子11Bを組み合わせることで、色表現性の高いフルカラー表示を行うことが可能になる。
 また、発光効率の高い有機電界発光素子(11)を用いたことにより、表示装置10において輝度寿命を改善できるとともに消費電力を低減させる効果をもたらす。したがって、壁掛けテレビ等のフラットパネルディスプレイや平面発光体として好適に使用することができ、複写機やプリンター等の光源、液晶ディスプレイや計器類等の光源、表示板、標識灯等への応用が可能となる。
≪表示装置の断面構成-2≫
 図5には、表示装置10の表示領域における主要部の断面構成の第2の例を示す。
 図5に示す第2の例の表示装置10が、図4に示した第1の例と異なるところは、赤色発光素子11R(11)の光増感層14d(14c-G)と、緑色発光素子11Gの発光層14c-Gとを、共通の連続パターンとして形成したところにある。またさらに、電子輸送層14eも、全画素に共通層の連続パターンとして形成している。それ以外は、第1の例と同様の構成であって良い。
 このように構成された第2の例の表示装置10であっても、第1の例と同様の効果を得ることができる。さらに各有機電界発光素子11R(11),11Gにおいて光増感層14d(14c-G)と発光層14c-Gを共通層として連続パターンで形成し、さらに電子輸送層14eを全画素で同時に成膜させることが可能であるため、表示装置10の製造工程の簡略化を図ることが可能である。
≪表示装置の断面構成-3≫
 図6には、表示装置10の表示領域における主要部の断面構成の第3の例を示す。
 図6に示す第3の例の表示装置10では、各有機電界発光素子11R(11),11G,11Bにおいて、陽極13および発光層14c-R、14c-G、14c-B以外の層を共通層としており、他の構成は図5に示した第2の例と同様であって良い。つまり、図5の第2の例に対して、さらに発光層よりも下層の正孔注入層14a、正孔輸送層14bも共通層として用いているのである。
 このように構成された第3の例の表示装置10であっても、第2の例と同様の効果を得ることができ、第2の例よりもさらに製造工程の簡略化を図ることができる。
≪表示装置の断面構成-4≫
 図7には、表示装置10の表示領域における主要部の断面構成の第4の例を示す。
 この図に示すように、各有機電界発光素子11R,11G,11Bは、発光層14c-R、14c-Bよりも上方の層を共通層としても良い。この場合、光増感層14dを兼ねた緑色の発光層14c-G、電子輸送層14e、および陰極15を、全表示領域に共通の連続パターンとして形成し、それ以外はパターニングされた層として用いる。
 全画素の共通層となる緑色の発光層14c-Gは、赤色発光素子11R(11)においては光増感層14dとして設けられることになる。一方、青色発光素子11Bにも緑色の発光層14c-Gが積層されることになる。このような構成であっても、青色の発光層14c-Bの膜厚が充分に厚い場合、または青色発光中心が正孔輸送層14b界面に局在する場合には、この様な構成をとった場合でも色度の良い青色発光を得ることは充分に可能である。さらに、各有機電界発光素子11R(11),11G,11Bにおいては、有機層の構造を各色の発光光を取り出すキャビティ構造として構成することにより、青色発光素子11Bからは青色の発光光のみが取り出されるように構成しても良い。
 このような構成の表示装置10の製造においては、緑色の発光層14c-G(光増感層14d)から上層の各層は、大口径のエリアマスクを用いて表示領域に対して一括成膜することができる。したがって、表示装置10の製造工程の簡略化を図ることが可能である。
 尚、第4の例においても、発光層よりも下層の正孔注入層14aや正孔輸送層14bを全表示領域の共通層(連続的パターン)として用いることも可能であり、これによってさらなる表示装置10の製造工程の簡略化を図ることが可能である。
 また、以上の第1の例~第4の例においては、アクティブマトリックス型の表示装置に本発明を適用した実施形態を説明した。しかしながら、本発明の表示装置は、パッシブマトリックス型の表示装置への適用も可能であり、同様の効果を得ることができる。
 以上説明した本発明に係る表示装置は、図8に開示したような、封止された構成のモジュール形状のものをも含む。例えば、画素アレイ部である表示領域12aを囲むようにシーリング部31が設けられ、このシーリング部31を接着剤として、透明なガラス等の対向部(封止基板32)に貼り付けられ形成された表示モジュールが該当する。この透明な封止基板32には、カラーフィルタ、保護膜、遮光膜等が設けられてもよい。尚、表示領域12aが形成された表示モジュールとしての基板12には、外部から表示領域12a(画素アレイ部)への信号等を入出力するためのフレキシブルプリント基板33が設けられていても良い。
≪適用例≫
 また以上説明した本発明に係る表示装置は、図9~図13に示す様々な電子機器、例えば、デジタルカメラ、ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置、ビデオカメラなど、電子機器に入力された映像信号、若しくは、電子機器内で生成した映像信号を、画像若しくは映像として表示するあらゆる分野の電子機器の表示装置に適用することが可能である。以下に、本発明が適用される電子機器の一例について説明する。
 図9は、本発明が適用されるテレビを示す斜視図である。本適用例に係るテレビは、フロントパネル102やフィルターガラス103等から構成される映像表示画面部101を含み、その映像表示画面部101として本発明に係る表示装置を用いることにより作成される。
 図10は、本発明が適用されるデジタルカメラを示す図であり、(A)は表側から見た斜視図、(B)は裏側から見た斜視図である。本適用例に係るデジタルカメラは、フラッシュ用の発光部111、表示部112、メニュースイッチ113、シャッターボタン114等を含み、その表示部112として本発明に係る表示装置を用いることにより作製される。
 図11は、本発明が適用されるノート型パーソナルコンピュータを示す斜視図である。本適用例に係るノート型パーソナルコンピュータは、本体121に、文字等を入力するとき操作されるキーボード122、画像を表示する表示部123等を含み、その表示部123として本発明に係る表示装置を用いることにより作製される。 
 図12は、本発明が適用されるビデオカメラを示す斜視図である。本適用例に係るビデオカメラは、本体部131、前方を向いた側面に被写体撮影用のレンズ132、撮影時のスタート/ストップスイッチ133、表示部134等を含み、その表示部134として本発明に係る表示装置を用いることにより作製される。
 図13は、本発明が適用される携帯端末装置、例えば携帯電話機を示す図であり、(A)は開いた状態での正面図、(B)はその側面図、(C)は閉じた状態での正面図、(D)は左側面図、(E)は右側面図、(F)は上面図、(G)は下面図である。本適用例に係る携帯電話機は、上側筐体141、下側筐体142、連結部(ここではヒンジ部)143、ディスプレイ144、サブディスプレイ145、ピクチャーライト146、カメラ147等を含み、そのディスプレイ144やサブディスプレイ145として本発明に係る表示装置を用いることにより作製される。
 本発明の具体的な実施例および比較例の有機電界発光素子の製造手順を、図1を参照して説明し、次にこれらの評価結果を説明する。
<実施例1~3>
 先ず、30mm×30mmのガラス板からなる基板12上に、陽極13として、膜厚が190nmのAg合金(反射層)上に、膜厚12.5nmのITO透明電極を積層した上面発光用の有機電界発光素子用のセルを作製した。
 次に、真空蒸着法により、有機層14の正孔注入層14aとして、下記構造式(101)に示されるm-MTDATAよりなる膜を12nmの膜厚(蒸着速度0.2~0.4nm/sec)で形成した。ただし、m-MTDATAは、4、4'、4”-トリス(フェニル-m-トリルアミノ)トリフェニルアミンである。
Figure JPOXMLDOC01-appb-C000028
 次いで、正孔輸送層14bとして、下記構造式(102)に示されるα-NPDよりなる膜を12nmの膜厚(蒸着速度0.2~0.4nm/sec)で形成した。ただし、α-NPDは、N、N’-ビス(1-ナフチル)-N、N’-ジフェニル[1、1’-ビフェニル]-4、4’―ジアミンである。
Figure JPOXMLDOC01-appb-C000029
 次に、正孔輸送層14b上に、膜厚30nmの発光層14cを蒸着成膜した。この際、ルブレンをホスト材料として用い、これに下記構造式(103)に示されるジベンゾ[f,f']ジインデノ[1,2,3-cd:1',2',3'-lm]ペリレン誘導体を赤色の発光性ゲスト材料として相対膜厚比で1%ドーピングした。
Figure JPOXMLDOC01-appb-C000030
 このようにして形成された発光層14c上に、膜厚25nmの光増感層14dを蒸着成膜した。この際、下記構造式(104)に示される4,4'-ビス(カルバゾール-9-イル)-ビフェニル(CBP)をホスト材料として用い、これに下記構造式(105)に示されるIr(ppy)3を発光性ゲスト材料(燐光発光材料)としてドーピングした。発光性ゲスト材料(燐光発光材料)は、実施例1~3において5%、10%、15%の各ドーピング量(相対膜厚比)とした。
Figure JPOXMLDOC01-appb-C000031
 次いで、電子輸送層14eとして、下記構造式(106)に示すAlq3(8-ヒドロキシキノリンアルミニウム)を10nmの膜厚で蒸着した。
Figure JPOXMLDOC01-appb-C000032
 以上のようにして、正孔注入層14a、正孔輸送層14b、発光層14c、光増感層14d、および電子輸送層14eを順次積層してなる有機層14を形成した後、陰極15の第1層15aとして、LiFよりなる膜を真空蒸着法により約0.3nm(蒸着速度0.01nm/sec.)の膜厚で形成した。最後に、真空蒸着法により、第1層15a上に陰極15の第2層15bとして膜厚10nmのMgAg膜を形成した。
 以上のようにして、実施例1~3の有機電界発光素子を作製した。
<実施例4,5>
 実施例1~3で説明した有機電界発光素子の作製手順おける光増感層14dの形成で、発光性ゲスト材料(燐光発光材料)として構造式(107),構造式(108)に示す材料をそれぞれ用いた。発光性ゲスト材料(燐光発光材料)のドーピング量は、実施例4,5とも10%とした。これ以外は、実施例1~3と同様にして有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000033
<実施例6,7>
 実施例1~3で説明した有機電界発光素子の作製手順おける光増感層14dの形成で、ホスト材料として構造式(109)に示す材料を用い、発光性ゲスト材料(燐光発光材料)として構造式(110),構造式(111)に示す材料をそれぞれ用いた。発光性ゲスト材料のドーピング量は、実施例6,7とも10%とした。これ以外は、実施例1~3と同様にして有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000034
<比較例1>
 実施例1~3で説明した有機電界発光素子の作製手順における光増感層14dの形成を行わず、代わりにAlq3(8-ヒドロキシキノリンアルミニウム)からなる電子輸送層の膜厚を45nmに厚膜化した。これ以外は、実施例1~3と同様に行った。
<比較例2>
 実施例1~3で説明した有機電界発光素子の作製手順おける光増感層14dの形成で、発光性ゲスト材料(燐光発光材料)をドーパントせずにホスト材料のみで光増感層14dを形成した。これ以外は、実施例1~3と同様に行った。
<評価結果>
 以上の実施例1~7および比較例1,2で作製した各有機電界発光素子について、電流密度10mA/cm2での駆動時における駆動電圧(V)、電流効率(cd/A)、色座標(x、y)を測定した。この結果を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000035
 以上の表1に示すように、本発明を適用した実施例1~7の有機電界発光素子の何れにおいても、本発明の適用がない比較例1,2の有機電界発光素子よりも、同程度の駆動電圧で電流効率が2倍近い高い値を示した。このことは、ホスト材料に対して燐光発光材料を発光性ゲスト材料としてドーピングしてなる光増感層14dで再結合されたエネルギーが、発光層14cにおいての光増感(発光量増加)の効果をもたらすことを示している。
 また、実施例1~7の有機電界発光素子では、ホスト材料中に緑色または青色の燐光発光材料を発光性ゲスト材料としてドーパントした光増感層14dを、赤色の発光層14cに積層させたにもかかわらず、発光光の色座標は(0.64,0.34)の赤色の発光が観測され、緑色の発光に由来する混色の影響はなかった。特に、光増感層14dにドーパントする発光性ゲスト材料(燐光発光材料)の種類を変更した実施例4~7の何れの有機電界発光素子においても、発光光の色座標が(0.64,0.34)であった。このことからすれば、本発明の構成によれば、光増感層14dの発光性ゲスト材料(燐光発光材料)にかかわらず、赤色の発光層14cで発生した赤色の発光が取り出されることが確認された。
 以上説明した各実施例および比較例の評価結果から、赤色の発光層14cを構成するホスト材料およびドーパント材料として公知の有機材料の中から選択された材料を使用し、この発光層14cに隣接させて種々の緑色または青色の発光性ゲスト材料(燐光発光材料)を含有させた光増感層14dを設けた本発明の構成では、赤色の色純度を維持しつつも、大幅な発光効率(電流効率)の向上を図ることが可能であることが確認された。
 またこれは、この有機電界発光素子とともに、緑色発光素子および青色発光素子を1組にして画素を構成することにより、色再現性の高いフルカラー表示が可能になることを示している。
 10…表示装置、11…有機電界発光素子、11R…赤色発光素子、11B…青色発光素子(青色発光の有機電界発光素子)、11G…緑色発光素子(緑色発光の有機電界発光素子)、12…基板、13…陽極、14…有機層、14c…発光層、14d…光増感層、15…陰極

Claims (12)

  1.  陽極と、
     赤色の発光性ゲスト材料と共に、母骨格が環員数4~7の多環式芳香族炭化水素化合物からなるホスト材料を含有する発光層と、
     有機材料からなる燐光発光材料を含有し前記発光層に隣接して積層された光増感層と、
     前記陽極との間に前記発光層および前記光増感層を挟持する状態で設けられた陰極とを有する
     有機電界発光素子。
  2.  前記燐光発光材料は、前記赤色の発光性ゲスト材料よりも短波長の燐光を発光する
     請求項1に記載の有機電界発光素子。
  3.  前記燐光発光材料は、イリジウム錯体、白金錯体、レニウム錯体、オスミウム錯体、ルテニウム錯体、および金錯体から選択される
     請求項1または2に記載の有機電界発光素子。
  4.  前記光増感層は、前記発光層に隣接して当該発光層と前記陰極との間に設けられている
     請求項1~3のうちの何れか1項に記載の有機電界発光素子。
  5.  前記光増感層は、前記燐光発光材料を発光性ゲスト材料とし、炭素数6以上60以下の芳香族炭化水素の誘導体またはその連結からなる有機材料をホスト材料として含有している
     請求項1~4のうちの何れか1項に記載の有機電界発光素子。
  6.  前記発光層のホスト材料を構成する多環式芳香族炭化水素化合物の母骨格が、ピレン、ベンゾピレン、クリセン、ナフタセン、ベンゾナフタセン、ジベンゾナフタセン、ペリレン、コロネンから選択された
     請求項1~5のちの何れか1項に記載の有機電界発光素子。
  7.  前記発光層のホスト材料として、下記一般式(1)に示す化合物が用いられている
     請求項1~6のうちの何れか1項に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000001
     ただし、一般式(1)中において、R1~R8はそれぞれ独立に、水素、ハロゲン、ヒドロキシル基、炭素数20以下の置換あるいは無置換のカルボニル基、炭素数20以下の置換あるいは無置換のカルボニルエステル基、炭素数20以下の置換あるいは無置換のアルキル基、炭素数20以下の置換あるいは無置換のアルケニル基、炭素数20以下の置換あるいは無置換のアルコキシル基、シアノ基、ニトロ基、炭素数30以下の置換あるいは無置換のシリル基,炭素数30以下の置換あるいは無置換のアリール基、炭素数30以下の置換あるいは無置換の複素環基、もしくは炭素数30以下の置換あるいは無置換のアミノ基を示す。
  8.  前記発光層で発生した赤色の発光光が、前記陽極と陰極との間の何れかの層間において多重干渉して当該陽極または陰極の一方側から取り出される
     請求項1~7のうちの何れか1項に記載の有機電界発光素子。
  9.  陽極と、
     赤色の発光性ゲスト材料と共に、母骨格が環員数4~7の多環式芳香族炭化水素化合物からなるホスト材料を含有する発光層と、
     有機材料からなる燐光発光材料を含有し前記発光層に隣接して積層された光増感層と、
     前記陽極との間に前記発光層および前記光増感層を挟持する状態で設けられた陰極と、
     前記陰極と前記陽極との間に前記発光層と前記光増感層とを挟持してなる有機電界発光素子が配列される基板とを備えた
     表示装置。
  10.  前記有機電界発光素子が、赤色発光素子として複数の画素のうちの一部の画素に設けられている
     請求項9に記載の表示装置。
  11.  前記赤色発光素子として設けられた前記有機電界発光素子の光増感層は、前記基板上に設けられた当該赤色発光素子以外の有機電界発光素子における発光層として、複数の画素にわたる連続パターンの形状で設けられている
     請求項10に記載の表示装置。
  12.  前記基板上には、前記赤色発光素子と共に、青色発光性の有機電界発光素子および緑色発光性の有機電界発光素子が設けられている
     請求項10または11に記載の表示装置。
PCT/JP2009/063729 2008-08-05 2009-08-03 有機電界発光素子および表示装置 WO2010016454A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/056,269 US8569747B2 (en) 2008-08-05 2009-08-03 Organic electroluminescence element and display device
CN2009801302222A CN102113146A (zh) 2008-08-05 2009-08-03 有机电致发光元件及显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-201493 2008-08-05
JP2008201493A JP2010040735A (ja) 2008-08-05 2008-08-05 有機電界発光素子および表示装置

Publications (1)

Publication Number Publication Date
WO2010016454A1 true WO2010016454A1 (ja) 2010-02-11

Family

ID=41663671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063729 WO2010016454A1 (ja) 2008-08-05 2009-08-03 有機電界発光素子および表示装置

Country Status (5)

Country Link
US (1) US8569747B2 (ja)
JP (1) JP2010040735A (ja)
KR (1) KR20110044213A (ja)
CN (1) CN102113146A (ja)
WO (1) WO2010016454A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085460A1 (ja) * 2019-10-28 2021-05-06 東レ株式会社 ピロメテンホウ素錯体を含む発光素子材料、発光素子、表示装置および照明装置

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9512137B2 (en) 2010-08-05 2016-12-06 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
CN102082230B (zh) * 2010-09-16 2012-09-26 昆山维信诺显示技术有限公司 一种红光有机电致发光器件
JP2012155953A (ja) * 2011-01-25 2012-08-16 Sony Corp 有機el表示装置及び電子機器
TWI440240B (zh) * 2011-04-08 2014-06-01 Chunghwa Picture Tubes Ltd 有機發光二極體裝置
KR20120120710A (ko) * 2011-04-25 2012-11-02 삼성디스플레이 주식회사 표시장치 및 그 제조방법
JP2013105665A (ja) * 2011-11-15 2013-05-30 Idemitsu Kosan Co Ltd 白色系有機エレクトロルミネッセンス素子
JP2014026902A (ja) * 2012-07-30 2014-02-06 Sony Corp 表示装置、表示装置の製造方法および電子機器
US9257665B2 (en) 2012-09-14 2016-02-09 Universal Display Corporation Lifetime OLED display
KR102046157B1 (ko) * 2012-12-21 2019-12-03 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
TWI567972B (zh) * 2013-06-12 2017-01-21 Joled Inc Organic EL display device
CN104447824A (zh) * 2013-09-25 2015-03-25 华东理工大学 氟硼二异吲哚类化合物及其制备方法
CN104752611B (zh) * 2013-12-25 2017-09-01 清华大学 有机发光二极管阵列
CN104752630B (zh) * 2013-12-25 2017-04-12 清华大学 有机发光二极管阵列的制备方法
CN104752457B (zh) * 2013-12-25 2018-01-19 清华大学 有机发光二极管阵列的制备方法
CN104752459B (zh) * 2013-12-25 2018-04-03 清华大学 有机发光二极管阵列
JP6398226B2 (ja) * 2014-02-28 2018-10-03 セイコーエプソン株式会社 発光素子、発光装置、認証装置および電子機器
CN105097866B (zh) * 2014-05-23 2018-03-13 群创光电股份有限公司 有机发光二极管显示面板
JP5833201B2 (ja) * 2014-08-21 2015-12-16 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子その製造方法、照明装置及び表示装置
JP6465350B2 (ja) * 2015-03-09 2019-02-06 公立大学法人首都大学東京 新規な有機化合物およびその利用
CN104966787A (zh) * 2015-07-17 2015-10-07 京东方科技集团股份有限公司 发光二极管、显示基板及其制造方法和显示装置
CN105085556A (zh) * 2015-07-28 2015-11-25 沈阳化工大学 一类并环结构的近红外光敏剂及其制备方法
WO2017018351A1 (ja) * 2015-07-30 2017-02-02 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物
KR102362839B1 (ko) * 2015-10-28 2022-02-15 삼성디스플레이 주식회사 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치
KR102463519B1 (ko) * 2015-12-17 2022-11-03 엘지디스플레이 주식회사 유기발광 표시장치
KR102081481B1 (ko) 2016-03-08 2020-02-25 주식회사 엘지화학 화합물 및 이를 포함하는 색변환 필름
JP2017182892A (ja) * 2016-03-28 2017-10-05 セイコーエプソン株式会社 発光素子、発光装置、及び電子機器
CN105702877B (zh) * 2016-04-05 2018-11-06 深圳市华星光电技术有限公司 Oled显示面板及其制备方法
JP2017220528A (ja) * 2016-06-06 2017-12-14 株式会社Joled 有機el表示パネル
CN109791998B (zh) * 2016-09-30 2021-02-05 夏普株式会社 显示装置及其制造方法
JP2018181492A (ja) 2017-04-06 2018-11-15 株式会社ジャパンディスプレイ 表示装置及びその製造方法
TWI826522B (zh) * 2018-09-12 2023-12-21 德商麥克專利有限公司 電致發光裝置
TW202030902A (zh) * 2018-09-12 2020-08-16 德商麥克專利有限公司 電致發光裝置
CN109180715B (zh) * 2018-10-12 2020-12-11 东北师范大学 一种硼-二吡咯亚甲基衍生物、纳米粒子、制备方法及应用
JPWO2022260163A1 (ja) * 2021-06-10 2022-12-15
CN114702516A (zh) * 2022-04-20 2022-07-05 东南大学 基于氟硼二吡咯的红色荧光材料、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145719A1 (en) * 2006-06-05 2007-12-21 The Trustees Of Princeton University Organic light-emitting device with a phosphor-sensitized fluorescent emission layer
JP2008159779A (ja) * 2006-12-22 2008-07-10 Sony Corp 有機電界発光素子および表示装置
JP2008177146A (ja) * 2006-12-22 2008-07-31 Sony Corp 有機電界発光素子および表示装置
JP2008177145A (ja) * 2006-12-22 2008-07-31 Sony Corp 有機電界発光素子および表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788012B2 (ja) 1998-05-01 2011-10-05 Tdk株式会社 有機el素子用化合物および有機el素子
JP4036682B2 (ja) 2001-06-06 2008-01-23 三洋電機株式会社 有機エレクトロルミネッセンス素子および発光材料
US20040058193A1 (en) 2002-09-16 2004-03-25 Eastman Kodak Company White organic light-emitting devices with improved performance
US20080164809A1 (en) 2006-12-22 2008-07-10 Sony Corporation Organic electroluminescent device and display apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145719A1 (en) * 2006-06-05 2007-12-21 The Trustees Of Princeton University Organic light-emitting device with a phosphor-sensitized fluorescent emission layer
JP2008159779A (ja) * 2006-12-22 2008-07-10 Sony Corp 有機電界発光素子および表示装置
JP2008177146A (ja) * 2006-12-22 2008-07-31 Sony Corp 有機電界発光素子および表示装置
JP2008177145A (ja) * 2006-12-22 2008-07-31 Sony Corp 有機電界発光素子および表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085460A1 (ja) * 2019-10-28 2021-05-06 東レ株式会社 ピロメテンホウ素錯体を含む発光素子材料、発光素子、表示装置および照明装置

Also Published As

Publication number Publication date
US8569747B2 (en) 2013-10-29
CN102113146A (zh) 2011-06-29
US20110303903A1 (en) 2011-12-15
JP2010040735A (ja) 2010-02-18
KR20110044213A (ko) 2011-04-28

Similar Documents

Publication Publication Date Title
WO2010016454A1 (ja) 有機電界発光素子および表示装置
JP4254856B2 (ja) 有機電界発光素子および表示装置
JP4484081B2 (ja) 有機電界発光素子および表示装置
JP5593621B2 (ja) 有機電界発光素子および表示装置
JP2008300503A (ja) 有機電界発光素子および表示装置
JP2009010364A (ja) 有機電界発光素子および表示装置
JP5825773B2 (ja) 有機el表示装置およびその製造方法
JP2012204164A (ja) 有機el表示装置およびその製造方法
TWI407613B (zh) 有機電致發光裝置及顯示元件
KR101549249B1 (ko) 전사용 기판 및 유기 전계 발광 소자의 제조 방법
JP2010244868A (ja) 有機電界発光素子および表示装置
WO2010041605A1 (ja) 有機電界発光素子および表示装置
JP2009076817A (ja) 有機電界発光素子および表示装置
JP5604775B2 (ja) 有機電界発光素子および表示装置
JP2012204793A (ja) 有機電界発光素子および表示装置
JP4254886B2 (ja) 有機電界発光素子および表示装置
JP5023689B2 (ja) 有機電界発光素子および表示装置
WO2014199745A1 (ja) 有機el表示装置
JP2009027091A (ja) 有機電界発光素子および表示装置
JP2008273861A (ja) アントラセン誘導体、有機電界発光素子、および表示装置
JP2008159775A (ja) 有機電界発光素子および表示装置
JP2008159777A (ja) 有機電界発光素子および表示装置
JP2012216681A (ja) 有機電界発光素子および表示装置
JP2008159776A (ja) 有機電界発光素子および表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130222.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117002302

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13056269

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09804937

Country of ref document: EP

Kind code of ref document: A1