WO2010016184A1 - 袋状容器内における酸素濃度の非破壊検査装置 - Google Patents

袋状容器内における酸素濃度の非破壊検査装置 Download PDF

Info

Publication number
WO2010016184A1
WO2010016184A1 PCT/JP2009/002881 JP2009002881W WO2010016184A1 WO 2010016184 A1 WO2010016184 A1 WO 2010016184A1 JP 2009002881 W JP2009002881 W JP 2009002881W WO 2010016184 A1 WO2010016184 A1 WO 2010016184A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
bag
oxygen concentration
laser
inspection
Prior art date
Application number
PCT/JP2009/002881
Other languages
English (en)
French (fr)
Inventor
横林孝康
佐々木万晶
細川徹
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to US13/057,496 priority Critical patent/US8379209B2/en
Priority to CN2009801261129A priority patent/CN102112864B/zh
Publication of WO2010016184A1 publication Critical patent/WO2010016184A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0364Cuvette constructions flexible, compressible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source
    • G01N2021/399Diode laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes

Definitions

  • the present invention relates to a non-destructive inspection apparatus for oxygen concentration in a bag-like container provided in a liquid filling machine and filled with liquid.
  • Medical infusion is filled in a bag-like container, for example, an infusion bag, and transported and stored.
  • a bag-like container for example, an infusion bag
  • This type of inspection method is a destructive inspection in which an injection needle is inserted into a product bag as a sample and air is taken out to measure the oxygen concentration. After the inspection, the sample is discarded. Therefore, the inspection is not a 100% inspection, but a specimen inspection, and there is an uncertain aspect regarding the security for health and safety.
  • this method is a method in which laser light is transmitted through the upper gas phase portion in the vial and the amount of transmitted light is measured, that is, the degree of absorption is detected and the oxygen concentration is measured. is there.
  • the container in the case of a vial, the container is hard, and the transmission distance of laser light is constant regardless of which vial is used. It can be carried out.
  • a material made of a soft material such as an infusion bag is soft, and therefore the thickness changes for each bag to be transported, so that there is a problem that a nondestructive inspection using a laser beam cannot be performed with high accuracy. .
  • an object of the present invention is to provide a nondestructive inspection apparatus capable of accurately inspecting the oxygen concentration in a bag-shaped container filled with a liquid using laser light by nondestructive inspection.
  • a non-destructive inspection device for oxygen concentration in a bag-like container is held by a container holder provided in a carrier, and at least a liquid filling region, sealing
  • a bag-like container which is provided in a liquid filling machine for filling liquid into a bag-like container conveyed along a conveyance path having a region and an inspection area, and is filled with liquid in the inspection region of the conveyance path
  • a pair of left and right moving members that are arranged at the left and right positions of the inspection area of the transport path and are respectively movable toward and away from the bag-like container by the moving means, and one of these moving members is provided for measuring oxygen concentration
  • a laser transmitting unit that transmits the laser beam
  • a laser receiving unit that is provided on the other side and receives the laser beam
  • the nondestructive inspection device for oxygen concentration in the bag-like container according to claim 2 is the nondestructive inspection device according to claim 1, Outside the inspection region, two calibration containers filled with inert gases having different oxygen concentrations and formed of a translucent material are arranged in advance.
  • the pair of moving members having the laser transmitter and the laser receiver can be moved to a calibration position where the oxygen concentration in the calibration container can be measured.
  • a nondestructive inspection device for oxygen concentration in a bag-like container according to claim 3 is the non-destructive inspection device according to claim 1, wherein the carrier is stopped when the bag-like container is inspected, and a laser transmitting unit and A pair of moving members having a laser receiving section are configured to be movable with respect to the plurality of stopped bag-like containers.
  • the non-destructive inspection apparatus for oxygen concentration in a bag-like container according to claim 4 is the non-destructive inspection apparatus according to claim 1, wherein the container transport path is circular or oval.
  • the laser transmitter and the laser receiver With the tip face holding the gas phase part of the container from both sides to a certain thickness, and removing the air between the tip face of the laser transmitter and laser receiver part and the surface of the gas phase part of the bag-like container Since the oxygen concentration is measured by irradiating the laser beam, even if the container is like a soft bag, the oxygen concentration is measured accurately and the quality of the product (that is, the oxygen concentration) Pass / fail can be judged. In addition, if it is going to measure the oxygen concentration in a soft container such as a bag with high accuracy, it is necessary to collect the gas in the bag and only sample inspection can be performed. Can do.
  • FIG. 5 is a sectional view taken along line FF in FIG. 3.
  • FIG. 6 is a view taken along arrow GG in FIG. 4. It is principal part sectional drawing of the same nondestructive inspection apparatus. It is a principal part top view of the same nondestructive inspection device. It is principal part sectional drawing at the time of the test
  • This nondestructive inspection device is an example of an infusion bag (a bag-like container) made of a soft material (for example, soft plastic such as polyolefin is used) for medical infusion such as infusion (hereinafter referred to as liquid).
  • infusion bag a bag-like container
  • a soft material for example, soft plastic such as polyolefin is used
  • liquid for medical infusion such as infusion
  • which is included in a liquid filling machine that fills a container), and is used to inspect the oxygen concentration in the container filled with the liquid and sealed at the mouth.
  • whether the oxygen concentration is good or bad is determined by measuring the oxygen concentration in the container using a laser beam and determining based on the measured value (this measurement method is, for example, wavelength tunable semiconductor laser absorption spectroscopy). Called the law).
  • the liquid filling machine sequentially holds the container 1 as an infusion bag and transfers it to the empty container 1 with medical infusion while transporting it along the circular transport path 5.
  • the mouth 2 is sealed, and after checking the oxygen concentration in the infusion bag filled with the liquid, a protective film is attached to the mouth 2 and sent to the next process It is.
  • the transfer path 5 includes a receiving area 5A for receiving the container 1 (an area is also referred to as a station, hereinafter the same), a gas filling area 5B for filling an inert gas such as nitrogen gas into the container 1 from the mouth 2, and a mouth 2
  • the liquid filling area 5C for filling the container 1 with the liquid, the sealing area 5D for capping the mouth part 2 of the container 1 filled with the liquid, and the gas phase part K in the container 1 with the cap are inspected.
  • An inspection area 5E, a film attachment area 5F for attaching a protective film to the mouth portion 2, a defective product discharge area 5G for discharging defective products, and a delivery area 5H for delivering the container 1 to the next process are provided.
  • a container supply / discharge device capable of supplying and discharging the container is provided at a position facing the receiving area 5A and the delivery area 5H of the container 1.
  • three containers 1 are moved intermittently three by three, and the respective operations such as filling the three liquids are sequentially performed.
  • the liquid filling machine holds the containers 1 at predetermined intervals and conveys them along a circular conveyance path 5.
  • the liquid filling machine includes a rotary drive device 12 disposed on the gantry 11 and a vertical drive on the rotary drive device 12 side.
  • a rotary drive plate 14 connected to the rotary drive shaft 13 in the direction and made rotatable in a horizontal plane, and an annular plate (an inner plate portion and an outer plate portion) connected to the outer periphery of the rotary drive plate 14. 15) and a container holder 16 for holding the container 1 in a plurality of intervals arranged on the annular plate 15 at predetermined intervals.
  • the rotary drive device 12 is configured to intermittently rotate the rotary drive plate 14, that is, the annular plate 15.
  • the rotation driving device 12, the rotation driving shaft body 13, the rotation driving plate body 14, the annular plate body 15 and the like constitute a conveyance body.
  • Each of the container holders 16 includes a mounting plate 21 fixed to the annular plate 15, a cylindrical member 23 provided on the mounting plate 21, and a rotatable around the vertical axis in the cylindrical member 23.
  • Via a connecting arm 26 to rotate (rotate) the one rotary shaft body 24A within a predetermined angle range, for example, an open / close air cylinder 27, and lower ends of the rotary shaft bodies 24.
  • It comprises a pair of holding arms 28 (28A, 28B) which are attached to the part and can hold and open the mouth part 2 of the container 1 from both sides.
  • the opening / closing air cylinder 27 when the opening / closing air cylinder 27 is operated to rotate one rotating shaft body 24A, the other rotating shaft body 24B rotates in the opposite direction with the same amount of rotation through the pair of gears 25. Therefore, the mouth 2 of the container 1 can be held and released from both sides by the pair of holding arms 28. Needless to say, for example, a semicircular recess that can engage with the mouth 2 is formed on the front end side of both holding arms 28.
  • both shoulder portions 1 a of the container 1 held by the container holder 16 are arranged from the outside to the inside (to be precise, from the outside of the circular conveyance path).
  • a container presser 31 is provided to prevent the container 1 from shaking by being pressed inside.
  • the container presser 31 is provided on the annular plate 15 via a bearing 32 so as to be rotatable around a horizontal axis parallel to the width direction of the container 1 (that is, the tangential direction of the transport path).
  • a swinging air cylinder 36 that swings at a predetermined angle.
  • a total of eight rotary shaft bodies 33 are arranged according to the three container holders 16, in other words, according to each region, and a swinging air cylinder 36 is connected to each of both ends.
  • FIG. 3 shows only a pair of swinging air cylinders 36 that swing the rotating shaft 33 located in the inspection region 5E.
  • the swinging air cylinder 36 when the swinging air cylinder 36 is operated, the rotary shaft 33 is rotated within a predetermined angle range. That is, as shown in FIG. 4, the holding arm 34 is swung between a holding position (A) where the surface of the container 1 is pressed from the outside to the inside and an open position (B) released from the surface of the container 1. It is done.
  • the inspection area 5E of the transport path 5 is provided with a nondestructive inspection apparatus 6 according to the present invention.
  • the inspection region 5E has a length exceeding the three containers 1 held by the container holders 16 respectively.
  • a calibration container (described later) is disposed outside the three containers 1 in order to calibrate the inspection apparatus.
  • the inspection area 5E including the portion of the calibration container is referred to as an inspection / calibration area 5E ′.
  • the nondestructive inspection apparatus 6 includes a support frame 41 having a rectangular shape in plan view arranged at a lower position and over a predetermined length in an inspection region 5E having a predetermined length.
  • a pair of left and right guide members supported by a plurality of support members 42 erected on both left and right sides of the support frame 41, for example, guide rails 43, and these guide rails 43 are movable via guide wheels 44.
  • a moving air cylinder (moving means) 46 (46A, 46B) attached to the top of each moving plate 45, and a tip of the rod portion 46a of the moving air cylinder 46
  • a mounting plate (an example of a moving member) 47 (47A, 47B) attached to the laser beam and a laser transmitter 48A that is attached to the mounting plate 47 and transmits an inspection laser beam or an inspection laser beam.
  • a gas chamber which is attached to the mounting plate 47 at a position in front of the laser transmitter 48A and the laser receiver 48B and which is formed of a translucent material and filled (filled) with nitrogen gas.
  • a gas filling box 50 having an (inert gas chamber) and a moving device 51 for simultaneously moving the left and right moving plate bodies 45 in the inspection / calibration region 5E ′.
  • one of the left mounting plates 47A in FIG. 4, for example, is attached with a laser transmitting portion 48A, and the other, for example, the right mounting plate 47B is attached with a laser receiving portion 48B. It has been. Of course, the left and right positions of the laser transmitter 48A and the laser receiver 48B may be reversed.
  • the laser transmitter 48A and the laser receiver 48B are also referred to as an inspection tool 49.
  • the moving device 51 includes a ball screw screw shaft body (which is a guide portion) 53 supported by brackets 52 at intermediate portions of the left and right support members 42, and a ball shaft on the screw shaft body 53. And a follower attached to the end of each of the left and right screw shaft bodies 53, and a nut body (which is a guided part) 54 connected to the lower bent portion 45a of the movable plate 45.
  • the sprocket 55 includes a side sprocket 55 and an electric motor 58 that rotates a drive side sprocket 57 that engages with a conductive belt 56 wound around the driven side sprocket 55. In the middle of the conductive belt 56, a sprocket 59 for pressing the conductive belt and a sprocket 60 for tensioning the conductive belt are arranged.
  • the electric motor 58 when the electric motor 58 is driven to rotate the screw shaft bodies 53, the left and right moving plate bodies 45, in other words, the laser transmitting section 48A and the laser receiving section 48B are simultaneously stopped at the three container 1 positions, The first inspection position (A), the second inspection position (B), the third inspection position (C), and the positions of the two calibration containers 61 (61A, 61B) provided outside these three containers 1, that is, the first It will be moved to 1 calibration position (D) and 2nd calibration position (E).
  • the calibration container 61 is disposed at both ends of the support frame 41, that is, at the front and rear positions, and is formed in a box shape with a translucent material (for example, an acrylic plate is used). Each of them is filled with nitrogen gas as an inert gas having a predetermined oxygen concentration.
  • the oxygen concentration of one calibration container 61A is 5%
  • the oxygen concentration of the other calibration container 61B is 10%.
  • the nondestructive inspection apparatus 6 includes a calculation unit 62.
  • the calculation unit 62 includes a detection value from the laser receiving unit 48B, that is, a transmitted light amount of laser light.
  • a received light amount-oxygen concentration calculating unit 63 for obtaining an oxygen concentration by inputting a certain received light amount and a conversion set in the received light amount-oxygen concentration calculating unit 63 by inputting detected values of the oxygen concentration in the two calibration containers 61
  • a conversion coefficient calibration unit 64 for calibrating a coefficient (also referred to as a sensitivity coefficient) R is provided.
  • the received light amount-oxygen concentration calculation unit 63 is provided with a graph representing the relationship between the received light amount and the oxygen concentration, that is, the conversion coefficient R, and the conversion coefficient calibration unit 64 includes As shown in FIG. 12, the current graph, that is, the conversion coefficient R ′ is obtained based on the amount of received light when the two calibration containers 61 are inspected. Of course, this graph is obtained by measuring the amount of received light at 5% density and the amount of received light at 10% density. Note that the value of the oxygen concentration in the two calibration containers 61 can be appropriately changed according to the measurement range of the measurement target. For example, 10% concentration and 20% concentration are used.
  • the obtained graph that is, the new conversion coefficient R ′ is input to the received light amount-oxygen concentration calculation unit 63, and this new conversion coefficient R ′ is used thereafter.
  • the current conversion coefficient R is used.
  • the containers 1 are moved from the feeder to the receiving area 5A of the transport path 5 and are sequentially held three by three by the container holder 16 provided on the annular plate 15.
  • the three containers 1 are stopped (of course, since both the shoulder portions 1a of the container 1 are held inward by the container presser 31 at this time, the thickness at the gas phase portion K is reduced.
  • the three containers 1 are checked in order for quality.
  • the inspection tool 49 stopped at the first calibration position (D) is moved to the first inspection position (A).
  • the mounting plate 47 When moved to the first inspection position (A), as shown in FIGS. 8 and 9, the mounting plate 47 is projected to the container 1 side by the moving air cylinder 46. That is, the left and right gas filling boxes 50 are brought close to each other so that the central portion which is the gas phase portion K of the container 1 is sandwiched by a certain distance from both sides, and the gas filling box 50 and the gas phase portion K of the container 1 are The air layer existing between the two is excluded.
  • a laser beam is transmitted from the laser transmitter 48A, passes through the container 1, and is received by the laser receiver 48B.
  • the received light amount which is the transmitted light amount of the laser light detected by the laser receiving unit 48B, is input to the calculating unit 62, where the oxygen concentration is obtained based on the received light amount (also the dimming rate) of the laser light.
  • the quality of the oxygen concentration that is, the quality is judged.
  • a determination unit for determining whether the oxygen concentration is good or bad by comparing with a set value is provided.
  • the laser transmitter 48A and the laser receiver 48B are moved to the second inspection position (B) by the moving device 51, and similarly, the second container 1 The inspection is performed, and thereafter, the third container 1 is inspected by being moved to the third inspection position (C) by the moving device 51.
  • the oxygen concentration in the container 1 is defective, that is, when the oxygen concentration exceeds an allowable value, the quality is determined to be poor, and the protective film is not attached, but is directly transferred to the defective product discharge area 5G. Discharged outside.
  • the annular plate body 15 is rotated by the rotation driving device 12, the next three containers 1 are conveyed to the inspection region E, and the inspection is performed.
  • the inspection tool 49 is sequentially moved in the direction opposite to the previous inspection, and the three containers 1 are inspected.
  • the inspection result at the time of calibration is input to the conversion coefficient calibration unit 64, and a graph showing the relationship between the amount of received laser light and the oxygen concentration, that is, the conversion coefficient R is calibrated.
  • the tip of these laser transmitter and laser receiver presses the gas phase part of the container from both sides to make a certain thickness, and the tip surface and bag of the laser transmitter and laser receiver Since the oxygen concentration is measured by irradiating the laser beam after eliminating the air between the surface of the gas phase part of the cylindrical container, even if the container is like a soft bag, the accuracy By measuring the oxygen concentration well, it is possible to judge the quality of the oxygen concentration, that is, the quality of the product, and it is possible to inspect all products. For example, when trying to accurately measure the oxygen concentration in a soft container such as a bag, it is necessary to collect the gas in the container and only sample inspection can be performed. Can do.
  • the inspection tool since the inspection tool is moved to the calibration position during non-inspection, the inspection tool, that is, the laser transmitter and the laser receiver can be calibrated, so that accurate measurement is always performed. be able to.
  • the transport path 5 of the container may be oval, for example, as shown in FIG.
  • the same operation and effect as in the case of the above embodiment are provided, and the calibration positions (D) and (E) are also out of the conveyance path 5 of the container, for example, half It is arranged outside the circle.
  • the two calibration positions are arranged outside one semicircle portion.

Abstract

 検査領域の両側に配置されてシリンダにより袋状容器に対して接近離間自在に設けられた左右一対の取付板と、この一方の取付板に設けられて酸素濃度計測用のレーザ光を発信するレーザ発信部と、他方の取付板に設けられてレーザ光を受信するレーザ受信部とを具備し、これら発信部及び受信部の先端面に、透光性材料にて同一の奥行き方向での長さを有するガス室を有するガス充填箱を設けると共に、検査領域にて酸素濃度を計測する際に、左右一対の取付板を互いに接近させて袋状容器の気相部の表面に接触させて、気相部の厚さを一定に維持し且つレーザ光の発信部及び受信部の先端面と袋状容器表面との間の空気を排除させるようにしたもの。

Description

袋状容器内における酸素濃度の非破壊検査装置
 本発明は、液充填機に設けられるとともに液体が充填された袋状容器内における酸素濃度の非破壊検査装置に関するものである。
 医療用輸液は袋状容器、例えば輸液バッグに充填されて、輸送および保存が行われている。
 ところで、このような医療用輸液が充填されたバッグにおいては、輸液が酸化して劣化するのを防止するために窒素ガスが封入されるとともに、輸液の充填後に、酸素濃度を計測して不良品であるか否かの検査が行われる。すなわち、酸素は製造途中で入り込むもので、当然に、入り込む酸素は少ない方が好ましく、したがって酸素濃度が許容値より高い場合には、製品が不良品であると判断される。
 この種の検査方法は、サンプルとしての製品バッグに注射針を刺して空気を取り出して酸素濃度を計測するという破壊式検査であり、検査後、サンプルは廃棄されている。そのため、検査は全数検査ではなく、標本検査となっており、安全衛生に間する保障については不確かな面がある。
 これに対し、輸液バッグ製剤以外のバイアル瓶製剤などについては、製品製造過程で容器内に混入または存在する酸素をレーザ光を用いて検出する方法がある(例えば、特表2007-508567号公報参照)。
 この方法を、具体的に説明すれば、レーザ光をバイアル瓶内の上部の気相部に透過させてその透過光量を計測する、つまり、その吸収度合いを検出して酸素濃度を計測する方法である。
 ところで、上述したレーザ光を用いてバッグ内の酸素濃度を計測する場合、レーザ光の透過距離を一定にする必要がある。透過距離が異なると、当然に、計測する酸素濃度値が異なってしまうからである。
 このため、上述した公表公報に記載されているように、バイアル瓶の場合には、容器が硬く、どのバイアル瓶であってもレーザ光の透過距離は一定となるため、比較的精度良く計測を行うことができる。
 しかし、輸液バッグなどのように軟質材料で構成されたものは軟らかく、したがって搬送されるバッグごとに厚みが変化するため、レーザ光を用いた非破壊検査を精度良く行うことができないという問題がある。
 そこで、本発明は、レーザ光を用いて液体が充填された袋状容器内の酸素濃度を非破壊検査にて精度良く検査し得る非破壊検査装置を提供することを目的とする。
 上記課題を解決するため、本発明の請求項1に係る袋状容器内における酸素濃度の非破壊検査装置は、搬送体に設けられた容器保持具により保持されて少なくとも液体の充填領域、封止領域および検査領域を有する搬送経路に沿って搬送される袋状容器内に液体を充填するための液充填機に設けられるとともに、上記搬送経路の検査領域にて、液体が充填された袋状容器の気相部にレーザ光を照射し、その透過光量に基づき袋状容器内の酸素濃度を計測するための非破壊検査装置であって、
 搬送経路の検査領域の左右位置に配置されてそれぞれ移動手段により袋状容器に対して接近離間自在に設けられた左右一対の移動部材と、これら移動部材のうち一方に設けられて酸素濃度計測用のレーザ光を発信するレーザ発信部と、他方に設けられてレーザ光を受信するレーザ受信部とを具備し、
 上記各移動部材におけるレーザ発信部およびレーザ受信部の先端面に、透光性材料にて同一の奥行き方向での長さを有する不活性ガス室を形成するとともに、
 上記検査領域にて酸素濃度を計測する際に、左右一対の移動部材を互いに接近させてレーザ発信部およびレーザ受信部の先端面を袋状容器の気相部の表面に接触させることにより、当該気相部の厚さを一定に維持させるとともにレーザ発信部およびレーザ受信部の先端面と袋状容器の気相部の表面との間の空気を排除させるようにしたものである。
 また、請求項2に係る袋状容器内における酸素濃度の非破壊検査装置は、請求項1に記載の非破壊検査装置において、
 検査領域外に、予め、互いに異なる酸素濃度の不活性ガスが充填されるとともに透光性材料にて形成された2つの校正用容器を配置し、
 且つレーザ発信部およびレーザ受信部を有する一対の移動部材を、上記校正用容器内の酸素濃度を計測し得る校正位置に移動し得るようにしたものである。
 また、請求項3に係る袋状容器内における酸素濃度の非破壊検査装置は、請求項1に記載の非破壊検査装置において、袋状容器の検査時に搬送体を停止させるとともに、レーザ発信部およびレーザ受信部を有する一対の移動部材を、当該停止された複数の袋状容器に対して移動させ得るように構成したものである。
 さらに、請求項4に係る袋状容器内における酸素濃度の非破壊検査装置は、請求項1に記載の非破壊検査装置において、容器の搬送経路を、円形または長円形にしたものである。
 上記の構成によると、先端に不活性ガス室が設けられたレーザ発信部およびレーザ受信部の先端側の不活性ガス室内に窒素ガスを充満させた状態で、これらレーザ発信部およびレーザ受信部の先端面により容器の気相部を両面から押さえて一定の厚さにするとともにレーザ発信部およびレーザ受信部の先端面と袋状容器の気相部の表面との間の空気を排除した上で、レーザ光を照射して酸素濃度を計測するようにしたので、容器がたとえ軟らかいバッグのようなものであっても、精度良く酸素濃度を計測して製品としての品質(つまり、酸素濃度)の良否を判断することができる。なお、バッグなどの軟らかい容器内の酸素濃度を精度良く計測しようとすると、バッグ内の気体を採取する必要があり、標本検査しか行うことができないが、上記の構成によると、全品検査を行うことができる。
本発明の実施の形態に係る非破壊検査装置を具備する液充填機の概略構成を示す平面図である。 同非破壊検査装置の検査対象である袋状容器の外観図で、(a)は正面図、(b)は平面図である。 同非破壊検査装置の要部平面図である。 図3のF-F断面図である。 図4のG-G矢視図である。 同非破壊検査装置の要部断面図である。 同非破壊検査装置の要部平面図である。 同非破壊検査装置における検査時の要部断面図である。 同非破壊検査装置における検査時の要部平面図である。 同非破壊検査装置の演算部の概略構成を示すブロック図である。 同非破壊検査装置における検査に用いられるレーザ光の受光量と酸素濃度との関係を示すグラフである。 同非破壊検査装置における校正に用いられるレーザ光の受光量と酸素濃度との関係を示すグラフである。 本発明の実施の形態に係る非破壊検査装置を他の液充填機に適用した場合の要部概略構成を示す平面図である。
 以下、本発明の実施の形態に係る袋状容器内における酸素濃度の非破壊検査装置を図面に基づき説明する。
 この非破壊検査装置は、例えば点滴などの医療用輸液(以下、液体と言う)を軟質材料(例えば、ポリオレフィンなどの軟質プラスチックが用いられる)からなる輸液バッグ(袋状容器の一例であり、以下、容器と言う)に充填する液充填機に具備されるもので、液体が充填されるとともにその口部が封止された容器内の酸素濃度の良否を検査するためのものである。また、この酸素濃度の良否は、容器内の酸素濃度をレーザ光を用いて計測するとともに、この計測値に基づき判断するようにしたものである(この計測方法は、例えば波長可変半導体レーザ吸収分光法と呼ばれている)。
 まず、この液充填機の構成を簡単に説明しておく。
 この液充填機は、図1~図4に示すように、輸液バッグである容器1を順次保持するとともに、円形の搬送経路5に沿って搬送する間に、空の容器1に医療用輸液である液体を充填した後、その口部2のシールを施し、そして液体が充填された輸液バッグ内の酸素濃度の良否を検査した後、口部2に防護フィルムを取り付け、次の工程に送り出すものである。
 上記搬送経路5は、容器1を受け取る受取領域(領域をステーションとも言う、以下、同じ)5A、口部2から容器1内に不活性ガス例えば窒素ガスを充填するガス充填領域5B、口部2から容器1内に液体を充填する液充填領域5C、液体が充填された容器1の口部2にキャップを施す封止領域5D、キャップが施された容器1内の気相部Kを検査する検査領域5E、口部2に防護フィルムを取り付けるフィルム取付領域5Fおよび不良品を排出する不良品排出領域5G並びに次工程に容器1を受け渡す受渡領域5Hが具備されている。図示しないが、容器1の受取領域5Aおよび受渡領域5Hに対向する位置には、容器の供給および排出を行い得る容器の給排出機が具備されている。なお、本実施の形態においては、容器1は3個ずつ間欠的に移動されて、3個纏めて液体の充填などの各作業が順次行われるものである。
 この液充填機は、容器1を所定間隔置きに保持して、円形の搬送経路5に沿って搬送するもので、架台11に配置された回転駆動装置12と、この回転駆動装置12側の鉛直方向の回転駆動軸体13に連結されて水平面内で回転自在にされた回転駆動板体14と、この回転駆動板体14の外周に連結された環状板体(内側板部と外側板部とからなる)15と、この環状板体15に所定間隔置きに複数個配置されて容器1を保持するための容器保持具16とから構成されている。また、上記回転駆動装置12は、回転駆動板体14すなわち環状板体15を間欠的に回転させるように構成されている。なお、回転駆動装置12、回転駆動軸体13、回転駆動板体14、環状板体15などにより搬送体が構成される。
 上記各容器保持具16は、環状板体15に固定される取付板21と、この取付板21に設けられた筒状部材23と、この筒状部材23内に鉛直軸心回りで回転自在に保持された一対の回転軸体24(24A,24B)と、これらの回転軸体24に設けられて互いに噛合された一対の歯車25(25A,25B)と、上記一方の回転軸体24(24A)に連結アーム26を介して連結されて当該一方の回転軸体24Aを所定角度範囲でもって揺動(回動)させる回転駆動手段例えば開閉用エアシリンダ27と、これら各回転軸体24の下端部に取り付けられて容器1の口部2を両側から保持開放自在な一対の保持アーム28(28A,28B)とから構成されている。
 この構成において、開閉用エアシリンダ27を作動させて一方の回転軸体24Aを回転させると、一対の歯車25を介して、他方の回転軸体24Bが逆方向に同一回転量でもって回転することになるため、一対の保持アーム28にて容器1の口部2を両側から保持および開放することができる。勿論、両保持アーム28の先端側には、口部2に係合し得る例えば半円状の凹部が形成されている。
 さらに、上記容器保持具16側すなわち環状板体15には、当該容器保持具16により保持された容器1の両肩部1aを外側から内側に(正確に言えば、円形の搬送経路の外側から内側に)押さえることにより、容器1が揺れるのを防止するための容器押さえ具31が具備されている。
 この容器押さえ具31は、図5に示すように、環状板体15に軸受32を介して容器1の幅方向(つまり、搬送経路の接線方向)と平行な水平軸心回りで回転自在に設けられた回転軸体33と、この回転軸体33における容器1の両肩部1aに対応する位置で固定された左右一対の押さえ用アーム34と、上記回転軸体33を連結用レバー35を介して所定角度でもって揺動させる揺動用エアシリンダ36とから構成されている。なお、回転軸体33は3つの容器保持具16に応じて、言い換えれば、各領域に応じて、合計8本配置されているとともに、それぞれの両端部に揺動用エアシリンダ36が連結されている。図3においては、検査領域5Eに位置している回転軸体33を揺動させる一対の揺動用エアシリンダ36だけを示している。
 この構成において、揺動用エアシリンダ36を作動させると、回転軸体33が所定角度範囲でもって回転させられる。すなわち、図4に示すように、押さえ用アーム34が容器1の表面を外側から内側に押さえる押さえ位置(イ)と、容器1の表面から離脱した開放位置(ロ)との間で揺動させられる。
 そして、上記搬送経路5の検査領域5Eには、本発明に係る非破壊検査装置6が具備されている。
 この検査に際しては、容器1の搬送が停止されるとともに一回の停止動作において、3つの容器1に対して、それぞれ順番に検査を行うようにされている。したがって、検査領域5Eとしては、それぞれ容器保持具16により保持された3つの容器1を越える長さにされている。さらに、これら3つの容器1の外側位置には、検査装置の校正(キャリブレーション)を行うために、校正用容器(後述する)が配置されている。なお、検査領域5Eに校正用容器の部分を含めて検査・校正領域5E′と言う。
 以下、上記の事項を踏まえて、非破壊検査装置について説明する。
 この非破壊検査装置6は、図3~図9に示すように、所定長さの検査領域5Eにおいて、下方位置で且つ所定長さに亘って配置された平面視が長方形状の支持架台41と、この支持架台41の左右両側部にて立設された複数の支柱材42にて支持された左右一対のガイド部材例えばガイドレール43と、これら各ガイドレール43にガイド輪44を介して移動自在に設けられた移動板体45と、これら各移動板体45の上部に取り付けられた移動用エアシリンダ(移動手段)46(46A,46B)と、この移動用エアシリンダ46のロッド部46aの先端に取り付けられた取付板(移動部材の一例)47(47A,47B)と、この取付板47に取り付けられて検査用のレーザ光を発信するレーザ発信部48Aまたは検査用のレーザ光を受信するレーザ受信部48Bと、これらレーザ発信部48Aおよびレーザ受信部48Bの前方位置で且つ取付板47に取り付けられるとともに透光性材料で形成され内部に窒素ガスが充填(充満)されたガス室(不活性ガス室)を有するガス充填箱50と、上記左右の両移動板体45を同時に検査・校正領域5E′において移動させるための移動装置51とから構成されている。なお、左右の取付板47のうち、一方の例えば図4において左側の取付板47Aには、レーザ発信部48Aが取り付けられるとともに、他方の例えば右側の取付板47Bには、レーザ受信部48Bが取り付けられている。勿論、レーザ発信部48Aとレーザ受信部48Bとの左右位置が逆であってもよい。なお、レーザ発信部48Aとレーザ受信部48Bとを検査具49とも言う。
 そして、上記移動装置51は、左右における各支柱材42の中間部にそれぞれブラケット52を介して支持されたボールねじ用のねじ軸体(案内部である)53と、このねじ軸体53にボールを介して螺合されるとともに移動板体45の下端折曲部45aに連結されたナット体(被案内部である)54と、上記左右の各ねじ軸体53の端部に取り付けられた従動側スプロケット55と、これら従動側スプロケット55に巻回された伝導ベルト56に係合する駆動側スプロケット57を回転させる電動機58とから構成されている。伝導ベルト56の途中には、伝導ベルト押さえ用のスプロケット59および伝導ベルト緊張用のスプロケット60が配置されている。
 この構成において、電動機58を駆動して両ねじ軸体53を回転させると、左右の移動板体45が、言い換えれば、レーザ発信部48Aおよびレーザ受信部48Bが同時に3つの容器1の停止位置すなわち第1検査位置(A)、第2検査位置(B)、第3検査位置(C)およびこれら3つの容器1の外側に設けられた2つの校正用容器61(61A,61B)の位置すなわち第1校正位置(D)および第2校正位置(E)に移動されることになる。
 ところで、校正用容器61は、上述したように、支持架台41の両端部すなわち前後位置に配置されており、それぞれ透光性材料(例えば、アクリル板が用いられる)で箱型に形成されるとともに、それぞれには、所定の酸素濃度の不活性ガスとして窒素ガスが充填されている。例えば、一方の校正用容器61Aの酸素濃度は5%にされるとともに、他方の校正用容器61Bの酸素濃度は10%にされている。
 そして、図10に示すように、当該非破壊検査装置6には、演算部62が具備されており、この演算部62には、上記レーザ受信部48Bからの検出値すなわちレーザ光の透過光量である受光量を入力して酸素濃度を求める受光量-酸素濃度算出部63および2つの校正用容器61における酸素濃度の検出値を入力して受光量-酸素濃度算出部63に設定されている変換係数(感度係数とも言う)Rを校正するための変換係数校正部64が設けられている。
 例えば、受光量-酸素濃度算出部63には、図11に示すように、受光量と酸素濃度との関係を表すグラフすなわち変換係数Rが具備されており、また変換係数校正部64には、図12に示すように、2つの校正用容器61を検査した際の受光量に基づき、現時点でのグラフすなわち変換係数R′が求められる。勿論、このグラフは、5%濃度における受光量と10%濃度における受光量との計測により求められる。なお、2つの校正用容器61内の酸素濃度の値は、適宜、計測対象での計測範囲に応じて、適宜変更することができる。例えば、10%濃度および20%濃度のものが用いられる。
 この求められたグラフ、すなわち新しい変換係数R′が受光量-酸素濃度算出部63に入力されて、以後、この新しい変換係数R′が用いられる。勿論、変換係数が殆ど変化していない場合には、現在の変換係数Rが用いられる。
 上記構成において、容器1が給排出機から搬送経路5の受取領域5Aに移動されて環状板体15に設けられた容器保持具16により、順次、3つずつ保持される。
 そして、ガス充填領域5Bでは窒素ガスが口部2から容器1内に充填され、次の液充填領域5Cでは口部2から液体が充填された後、封止領域5Dに移動して口部2に栓が施され、さらにその後、検査領域5Eに移動されて酸素濃度の良否すなわち品質の検査が行われる。
 この検査領域5Eにおいては、3つの容器1が停止している状態(勿論、このとき容器押さえ具31により容器1の両肩部1aが内側に押さえられているため、気相部Kでの厚みが略一定になっている)であり、この3つの容器1の良否の検査が順番に行われる。
 すなわち、第1校正位置(D)に停止されている検査具49が第1検査位置(A)に移動される。
 この第1検査位置(A)に移動されると、図8および図9に示すように、移動用エアシリンダ46により、取付板47が容器1側に突出される。すなわち、左右のガス充填箱50が互いに接近されて容器1の気相部Kである中央部分を両側から一定距離でもって挟んだ状態になるとともにガス充填箱50と容器1の気相部Kとの間に存在する空気層が排除された状態となる。
 そして、この状態で、レーザ発信部48Aからレーザ光が発信され、容器1を透過し、レーザ受信部48Bにて受信される。
 このレーザ受信部48Bにて検出されたレーザ光の透過光量である受光量は演算部62に入力され、ここで、レーザ光の受光量(減光割合でもある)に基づき酸素濃度が求められて、酸素濃度の良否すなわち品質が判断される。勿論、図示していないが、設定値と比較することにより、酸素濃度の良否を判断する判断部が具備されている。
 この第1検査位置(A)での検査が済むと、レーザ発信部48Aおよびレーザ受信部48Bは移動装置51により第2検査位置(B)に移動されて、同様に、2番目の容器1の検査が行われ、さらにこの後、移動装置51により第3検査位置(C)に移動されて、3番目の容器1の検査が行われる。
 なお、容器1内の酸素濃度が不良であった場合、つまり酸素濃度が許容値を超えている場合には品質不良とされ、防護フィルムは取り付けられずに、そのまま不良品排出領域5Gに搬送されて外部に排出される。
 そして、3つの容器1の検査が済むと、回転駆動装置12により、環状板体15が回転されて、次の3つの容器1が検査領域Eに搬送され、そして検査が行われる。次の3つの検査を行う場合には、検査具49は、前回の検査とは逆方向に、順次、移動して3つの容器1の検査が行われる。
 ところで、検査具49が、いずれかの校正位置(DまたはE)に移動している際に、それぞれの位置で、容器1の場合と同様の検査が行われる。なお、この校正動作については、予め、設定された時に、例えば数時間おきに、またはその日の作業の開始時などに行われる。
 この校正時の検査結果は、変換係数校正部64に入力されて、レーザ光の受光量と酸素濃度との関係を示すグラフ、つまり変換係数Rの校正が行われる。
 上述したように、容器押さえ具にて容器の気相部に近い両肩部が押さえられ且つ先端に不活性ガス室が設けられたレーザ発信部およびレーザ受信部の先端側の不活性ガス室内に窒素ガスを充満させた状態で、これらレーザ発信部およびレーザ受信部の先端により、容器の気相部を両面から押さえて一定の厚さにするとともにレーザ発信部およびレーザ受信部の先端面と袋状容器の気相部の表面との間の空気を排除した上で、レーザ光を照射して酸素濃度を計測するようにしたので、容器がたとえ軟らかいバッグのようなものであっても、精度良く酸素濃度を計測して酸素濃度の良否、すなわち製品としての品質の良否を判断することができ、しかも全品検査を行うことができる。例えば、バッグなどの軟らかい容器内の酸素濃度を精度良く計測しようとすると、容器内の気体を採取する必要があり、標本検査しか行うことができないが、上記の構成によると、全品検査を行うことができる。
 また、非検査時にあっては、検査具は校正位置に移動されているため、ここで、検査具つまりレーザ発信部およびレーザ受信部の校正を行うことができるので、常に、正確な計測を行うことができる。
 ところで、上記実施の形態においては、容器の搬送経路5が、円形である場合について説明したが、例えば図13に示すように、搬送経路5が長円形状であってもよい。この場合も、当然ながら、上記実施の形態の場合と、同様の作用・効果を有しており、校正位置(D)および(E)についても、容器の搬送経路5から外れた位置、例えば半円部の外側に配置されている。この場合、2つの校正位置は、一方の半円部の外側に配置される。

Claims (4)

  1.  搬送体に設けられた容器保持具により保持されて少なくとも液体の充填領域、封止領域および検査領域を有する搬送経路に沿って搬送される袋状容器内に液体を充填するための液充填機に設けられるとともに、上記搬送経路の検査領域にて、液体が充填された袋状容器の気相部にレーザ光を照射し、その透過光量に基づき袋状容器内の酸素濃度を計測するための非破壊検査装置であって、
     搬送経路の検査領域の左右位置に配置されてそれぞれ移動手段により袋状容器に対して接近離間自在に設けられた左右一対の移動部材と、これら移動部材のうち一方に設けられて酸素濃度計測用のレーザ光を発信するレーザ発信部と、他方に設けられてレーザ光を受信するレーザ受信部とを具備し、
     上記各移動部材におけるレーザ発信部およびレーザ受信部の先端面に、透光性材料にて同一の奥行き方向での長さを有する不活性ガス室を形成するとともに、
     上記検査領域にて酸素濃度を計測する際に、左右一対の移動部材を互いに接近させてレーザ発信部およびレーザ受信部の先端面を袋状容器の気相部の表面に接触させることにより、当該気相部の厚さを一定に維持させるとともにレーザ発信部およびレーザ受信部の先端面と袋状容器の気相部の表面との間の空気を排除させるようにしたことを特徴とする袋状容器内における酸素濃度の非破壊検査装置。
  2.  検査領域外に、予め、互いに異なる酸素濃度の不活性ガスが充填されるとともに透光性材料にて形成された2つの校正用容器を配置し、
     且つレーザ発信部およびレーザ受信部を有する一対の移動部材を、上記校正用容器内の酸素濃度を計測し得る校正位置に移動し得るようにしたことを特徴とする請求項1に記載の袋状容器内における酸素濃度の非破壊検査装置。
  3.  袋状容器の検査時に搬送体を停止させるとともに、レーザ発信部およびレーザ受信部を有する一対の移動部材を、当該停止された複数の袋状容器に対して移動させ得るように構成したことを特徴とする請求項1に記載の袋状容器内における酸素濃度の非破壊検査装置。
  4.  搬送経路が、円形または長円形であることを特徴とする請求項1に記載の袋状容器内における酸素濃度の非破壊検査装置。
PCT/JP2009/002881 2008-08-08 2009-06-24 袋状容器内における酸素濃度の非破壊検査装置 WO2010016184A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/057,496 US8379209B2 (en) 2008-08-08 2009-06-24 Non-destructive inspection device for oxygen concentration in bag-shaped container
CN2009801261129A CN102112864B (zh) 2008-08-08 2009-06-24 袋状容器内的氧浓度的非破坏检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008204910A JP5137740B2 (ja) 2008-08-08 2008-08-08 袋状容器内における酸素濃度の非破壊検査装置
JP2008-204910 2008-08-08

Publications (1)

Publication Number Publication Date
WO2010016184A1 true WO2010016184A1 (ja) 2010-02-11

Family

ID=41663414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002881 WO2010016184A1 (ja) 2008-08-08 2009-06-24 袋状容器内における酸素濃度の非破壊検査装置

Country Status (4)

Country Link
US (1) US8379209B2 (ja)
JP (1) JP5137740B2 (ja)
CN (1) CN102112864B (ja)
WO (1) WO2010016184A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102575981A (zh) * 2009-05-11 2012-07-11 加斯珀洛克斯公司 用于包装内的气体的非侵入性评估的设备和方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2449356T3 (pl) * 2009-07-01 2013-11-29 Wilco Ag Sposób testowania nieszczelności zamkniętych pojemników co najmniej częściowo wypełnionych gazem
JP5686662B2 (ja) * 2011-04-28 2015-03-18 日立造船株式会社 袋状容器内における酸素濃度の非破壊検査装置
JP5791459B2 (ja) * 2011-10-17 2015-10-07 日立造船株式会社 電子線殺菌設備の遮蔽構造
ITMI20120493A1 (it) * 2012-03-27 2013-09-28 L Pro S R L Apparecchiatura per il controllo non distruttivo dell'integrita' e/o idoneita' di confezioni sigillate
EP3208585B1 (en) * 2013-05-27 2019-11-27 GasPorOx AB System and method for determining a concentration of a gas in a container
ITUA20162750A1 (it) 2016-04-20 2017-10-20 Ft System Srl Gruppo di misura non distruttiva della concentrazione di gas in contenitori flessibili chiusi e linea di riempimento e/o confezionamento automatico impiegante tale gruppo
KR20210018261A (ko) * 2018-06-07 2021-02-17 윌코아게 용기의 헤드 스페이스 내 가스를 검출하는 장치
IT201900006690A1 (it) * 2019-05-09 2020-11-09 G F S P A Metodo e apparato di ispezione di una sacca per fluidi
JP2021067562A (ja) * 2019-10-24 2021-04-30 ゼネラルパッカー株式会社 包装容器のガス濃度測定装置、それを備えた包装機および包装機におけるガス濃度測定方法
JP2021067563A (ja) * 2019-10-24 2021-04-30 ゼネラルパッカー株式会社 包装容器のガス濃度測定装置、それを備えた包装機および包装機におけるガス濃度測定方法
JP7321453B2 (ja) * 2019-10-28 2023-08-07 ゼネラルパッカー株式会社 レーザー式ガス濃度計
JP7357918B2 (ja) 2019-10-28 2023-10-10 ゼネラルパッカー株式会社 包装袋内のガス濃度測定装置
JP7343169B2 (ja) 2019-12-16 2023-09-12 ゼネラルパッカー株式会社 密封包装容器のガス濃度測定方法およびガス濃度測定装置
JP7339663B2 (ja) 2019-12-16 2023-09-06 ゼネラルパッカー株式会社 密封包装容器のガス濃度測定方法およびそれに用いるガス濃度測定装置
JP7339662B2 (ja) 2019-12-16 2023-09-06 ゼネラルパッカー株式会社 密封包装容器のガス濃度測定方法およびそれに用いるガス濃度測定装置
JP7350312B2 (ja) * 2019-12-19 2023-09-26 ゼネラルパッカー株式会社 包装容器内のガス濃度測定方法
US20230061661A1 (en) * 2020-01-28 2023-03-02 Daylight Solutions, Inc. Fluid analyzer with self-check, leak detection, and adjustable gain
JP2021156856A (ja) * 2020-03-30 2021-10-07 横河電機株式会社 検査システム、検査方法及びプログラム
CN113514412B (zh) * 2021-03-23 2023-03-28 南京信息工程大学 用于监测调配后输液袋中药物浓度的光电检测装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03505782A (ja) * 1988-07-07 1991-12-12 アルトップトロニック アクチボラゲット ガスの濃度を分光分析で測定する方法と装置
JPH08184554A (ja) * 1994-12-27 1996-07-16 Kanegafuchi Chem Ind Co Ltd 粉粒体の水分測定方法及びその装置、並びに水分測定用セル
JP3742042B2 (ja) * 2002-08-09 2006-02-01 ゼネラルパッカー株式会社 包装機における不活性ガス充填方法
JP2006250836A (ja) * 2005-03-14 2006-09-21 Shimadzu Corp 分光光度計
JP2007508567A (ja) * 2003-10-15 2007-04-05 ライトハウス インスツルメンツ, エルエルシー 自動ヘッドスペース分析のためのシステム及び方法
JP2009014589A (ja) * 2007-07-06 2009-01-22 General Packer Co Ltd 包装機におけるガス濃度測定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1633627A1 (de) * 2003-06-16 2006-03-15 Siemens Aktiengesellschaft Vorrichtung und verfahren zur berwachung der sauerstoffkonzentration in einem flugzeugtank
CN1256585C (zh) * 2004-04-15 2006-05-17 上海交通大学 空气中甲醛快速测定试纸
FI20041197A0 (fi) * 2004-09-15 2004-09-15 Vaisala Oyj Menetelmä optisen kaasunpitoisuuden mittauksen parantamiseksi
US7414727B2 (en) * 2006-04-28 2008-08-19 Ir Microsystems Sa Gas detection method and gas detection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03505782A (ja) * 1988-07-07 1991-12-12 アルトップトロニック アクチボラゲット ガスの濃度を分光分析で測定する方法と装置
JPH08184554A (ja) * 1994-12-27 1996-07-16 Kanegafuchi Chem Ind Co Ltd 粉粒体の水分測定方法及びその装置、並びに水分測定用セル
JP3742042B2 (ja) * 2002-08-09 2006-02-01 ゼネラルパッカー株式会社 包装機における不活性ガス充填方法
JP2007508567A (ja) * 2003-10-15 2007-04-05 ライトハウス インスツルメンツ, エルエルシー 自動ヘッドスペース分析のためのシステム及び方法
JP2006250836A (ja) * 2005-03-14 2006-09-21 Shimadzu Corp 分光光度計
JP2009014589A (ja) * 2007-07-06 2009-01-22 General Packer Co Ltd 包装機におけるガス濃度測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102575981A (zh) * 2009-05-11 2012-07-11 加斯珀洛克斯公司 用于包装内的气体的非侵入性评估的设备和方法

Also Published As

Publication number Publication date
CN102112864B (zh) 2012-11-28
US8379209B2 (en) 2013-02-19
US20110134431A1 (en) 2011-06-09
JP2010038846A (ja) 2010-02-18
CN102112864A (zh) 2011-06-29
JP5137740B2 (ja) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5137740B2 (ja) 袋状容器内における酸素濃度の非破壊検査装置
JP5686662B2 (ja) 袋状容器内における酸素濃度の非破壊検査装置
JP5124719B2 (ja) 包装機におけるガス濃度測定方法
EP1687593B1 (en) System and method for automated headspace analysis
EP1906164B1 (en) Integrity testing of vials for test sensors
KR20120086699A (ko) 캡슐 충전 및 밀폐 기계로서 형성된 포장 기계 또는 캡슐 제어 장치를 위한 센서 장치
KR101582797B1 (ko) 스파우트 캡 조립 장치 및 조립 방법
EP2372344B1 (en) Method for analysing a gaseous component present in a hermetically sealed container
US20170268996A1 (en) Method and device for measuring the gas content of materials packaged in plastic films, glass or other light-permeable materials and sensitive to a gas to be measured
JP4900849B2 (ja) シール部の密封性検査装置
EP3803352B1 (en) Apparatus for detecting a gas in a headspace of a container
JP5555923B2 (ja) 包装機におけるガス濃度測定方法
WO2021079994A1 (ja) 包装容器のガス濃度測定装置、それを備えた包装機および包装機におけるガス濃度測定方法
JP7350312B2 (ja) 包装容器内のガス濃度測定方法
US20240077394A1 (en) Apparatus, plant and method for inspecting flexible packages
JPH05281079A (ja) 流動物容器におけるシール部の検査方法および検査装置
WO2022244646A1 (ja) 包装袋のガス濃度測定装置およびそれを備えた包装機並びに包装袋のガス濃度測定方法
JP7343169B2 (ja) 密封包装容器のガス濃度測定方法およびガス濃度測定装置
JP2021096133A (ja) 包装袋用ガス濃度測定装置
JP2021096098A (ja) 密封包装容器のガス濃度測定方法およびそれに用いるガス濃度測定装置
JP2021067564A (ja) 包装容器のガス濃度測定装置、それを備えた包装機および包装機におけるガス濃度測定方法
JPH01195312A (ja) 有底筒体状容器の検査システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126112.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804671

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13057496

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804671

Country of ref document: EP

Kind code of ref document: A1