JP7350312B2 - 包装容器内のガス濃度測定方法 - Google Patents
包装容器内のガス濃度測定方法 Download PDFInfo
- Publication number
- JP7350312B2 JP7350312B2 JP2019229615A JP2019229615A JP7350312B2 JP 7350312 B2 JP7350312 B2 JP 7350312B2 JP 2019229615 A JP2019229615 A JP 2019229615A JP 2019229615 A JP2019229615 A JP 2019229615A JP 7350312 B2 JP7350312 B2 JP 7350312B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- laser
- packaging container
- gas concentration
- transmitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004806 packaging method and process Methods 0.000 title claims description 217
- 238000000034 method Methods 0.000 title claims description 47
- 238000000862 absorption spectrum Methods 0.000 claims description 12
- 239000000945 filler Substances 0.000 claims description 7
- 239000007789 gas Substances 0.000 description 164
- 238000012546 transfer Methods 0.000 description 17
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical group O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 14
- 229910001882 dioxygen Inorganic materials 0.000 description 14
- 238000002835 absorbance Methods 0.000 description 13
- 238000005259 measurement Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 238000002834 transmittance Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 8
- 239000012780 transparent material Substances 0.000 description 8
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 6
- 238000007689 inspection Methods 0.000 description 6
- 241000209094 Oryza Species 0.000 description 5
- 235000007164 Oryza sativa Nutrition 0.000 description 5
- 235000009566 rice Nutrition 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 238000000041 tunable diode laser absorption spectroscopy Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 235000013527 bean curd Nutrition 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 235000015094 jam Nutrition 0.000 description 3
- 235000015110 jellies Nutrition 0.000 description 3
- 239000008274 jelly Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 244000056139 Brassica cretica Species 0.000 description 2
- 235000003351 Brassica cretica Nutrition 0.000 description 2
- 235000003343 Brassica rupestris Nutrition 0.000 description 2
- 235000015429 Mirabilis expansa Nutrition 0.000 description 2
- 244000294411 Mirabilis expansa Species 0.000 description 2
- 244000195452 Wasabia japonica Species 0.000 description 2
- 235000000760 Wasabia japonica Nutrition 0.000 description 2
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 235000012489 doughnuts Nutrition 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000001285 laser absorption spectroscopy Methods 0.000 description 2
- 235000010746 mayonnaise Nutrition 0.000 description 2
- 239000008268 mayonnaise Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 235000013536 miso Nutrition 0.000 description 2
- 235000010460 mustard Nutrition 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000012056 semi-solid material Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 235000012970 cakes Nutrition 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 235000021110 pickles Nutrition 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 235000019685 rice crackers Nutrition 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
- G01N21/3518—Devices using gas filter correlation techniques; Devices using gas pressure modulation techniques
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
そして、ガス置換包装後の検査工程において、酸化原因ガス、特に酸素の濃度が既定値以下であるかどうか検査が行われている。
しかしながら、現在主流である酸素濃度の測定方法は、サンプルとして任意に選択した包装袋に注射針を刺し、包装袋内から吸引した少量のガスの組成を検査する抜き取り検査である。当該抜き取り検査では、注射痕が形成された包装袋は廃棄しなければならない。また、検査精度を上げるためにサンプル数を増やすと検査時間が長くなり、増加する廃棄量によって経済的、時間的損失が増大する不都合があった。
特開2010-107197に開示されている包装袋のガス濃度測定装置1は、図8に示すように、発信器を有するレーザー発生部2と、当該レーザー発生部2に連接し、レーザー光が射出される主ヘッド3、並びに受信器を有するレーザー受光部4と、当該レーザ受光部4に連接し、レーザー光が入射される副ヘッド5とからなる。相対的に接近及び離隔自在に設けられた主ヘッド3と副ヘッド5は、、一対のグリップ6,6に把持された検査対象の包装袋Bを挟んで、主ヘッド3に対して副ヘッド5が正対するように配置されている。これによって、主ヘッド3から副ヘッド5へ最短距離でレーザー光が包装袋を透過することができ、包装袋内に残留している酸素等の特定ガスの濃度を測定する際に、包装袋の全数について当該包装袋を一切損傷することなく迅速に測定することができるようになった。
一方、包装機には、包装袋用の機器のみならず、所定の包装容器を用いるものがあり、当該包装容器をコンベアで移送するものがある。当該包装容器の一類型として、たとえば、レトルト白飯、或いはゼリー、ジャム等のように、所定の容器またはビンを用いて、容器の縁際まで充填するものが知られている。このような食品のレトルトパック、又は瓶詰製品は、容器又はビンを煮沸消毒すると共に、充填物を充填した後、窒素ガス等の不活性ガスでガスパージして、酸化及び腐敗防止に関する処理が行われている。
上記のような、パック容器又はビンの場合、上記の包装機のようにグリップ対で包装袋を個別に把持するものではなく、包装容器が個別にコンベア上を移送されるように構成されている。そのため、当該包装容器用の包装機では、上記のガス濃度測定装置1のように検査対象の包装容器を位置決めすることが困難である。
前記レーザー光を受光するレーザー受光部を備えたレーザー式ガス濃度計を有し、
前記レーザー光をガス置換されて密封された包装容器に透過させて、前記包装容器の透過前後で変化する特定波長の吸収スペクトルに基づいて前記包装容器の内部に残留している特定ガスのガス濃度を測定する包装容器内のガス濃度測定方法であって、
前記包装容器の相対する側面部に、前記レーザー光が透過可能な、互いに対向する一対の透光部を設け、
前記包装容器に充填収納された充填物からなる被包装物上に、前記透光部の一方から他方にわたって溝部を形成し、
当該溝部に沿って、前記透光部を透過した前記レーザー光が透過可能な透光空間を形成して、
前記レーザー発生部から射出されたレーザー光が、一方の前記透光部から、前記透光空間、他方の前記透光部と透過して、前記レーザー受光部で受光されるようにしたことを特徴とする。
前記レーザー光を受光するレーザー受光部を備えたレーザー式ガス濃度計を有し、
前記レーザー光をガス置換されて密封された包装容器に透過させて、前記包装容器の透過前後で変化する特定波長の吸収スペクトルに基づいて前記包装容器の内部に残留している特定ガスのガス濃度を測定する包装容器内のガス濃度測定方法であって、
前記包装容器の上面部に前記レーザー光が透過可能な上面透光部を、前記包装容器の底面部に前記レーザー光が透過可能な底面透光部を、それぞれ設け、
前記包装容器に充填収納された充填物からなる被包装物に、前記上面透光部と前記底面透光部にわたって孔部を形成し、
当該孔部に沿って、前記上面透光部又は前記底面透光部を透過したレーザー光が透過可能な透光空間を形成して、
前記レーザー発生部から射出されたレーザー光が、前記上面透光部から、前記透光空間、前記底面透光部と透過し、又は前記底面透光部から、前記透光空間、前記上面透光部と透過して、前記レーザー受光部で受光されるようにしたことを特徴とする。
前記レーザー光を受光するレーザー受光部を備えたレーザー式ガス濃度計を有し、
前記レーザー光をガス置換されて密封された包装容器に透過させて、前記包装容器の透過前後で変化する特定波長の吸収スペクトルに基づいて前記包装容器の内部に残留している特定ガスのガス濃度を測定する包装容器内のガス濃度測定方法であって、
前記包装容器の上面部に前記レーザー光が透過可能な上面透光部を、前記包装容器の底面部に前記レーザー光が反射可能な底面反射部を設け、
前記包装容器に充填収納された充填物からなる被包装物に、前記上面透光部と前記底面反射部にわたって孔部を形成し、
当該孔部に沿って、前記上面透光部を透過し、前記底面反射部に向かってレーザー光が透過可能な透光空間を形成して、
前記レーザー発生部から射出されたレーザー光が、前記上面透光部から前記透光空間を透過し、前記底面反射部で反射して、前記透光空間から前記上面透光部を透過して、前記レーザー受光部で受光されるようにしたことを特徴とする。
前記レーザー光を受光するレーザー受光部を備えたレーザー式ガス濃度計を有し、
前記レーザー光をガス置換されて密封された包装容器に透過させて、前記包装容器の透過前後で変化する特定波長の吸収スペクトルに基づいて前記包装容器の内部に残留している特定ガスのガス濃度を測定する包装容器内のガス濃度測定方法であって、
前記包装容器の相対する側面部に、前記レーザー光が透過可能な、互いに対向する一対の透光部を設け、
前記包装容器に収納された複数個の被包装物を、一の被包装物群と他の被包装物群に分けて、当該両被包装物群の間に前記透光部を透過した前記レーザー光が透過可能な透光空間を形成し、
当該透光空間の一端が一方の前記透光部と連接し、前記透光空間の他端が他方の前記透光部と連接するようにして、
前記レーザー発生部から射出されたレーザー光が、一方の前記透光部から、前記透光空間、他方の前記透光部と透過して、前記レーザー受光部で受光されるようにしたことを特徴とする。
これによって、包装容器内の透光空間で、特定波長のレーザー光を特定ガスに吸収させることができるので、包装容器内に残留している特定ガスのガス濃度を測定することができる。
主ロータ15aは、所定の回転数で間欠的に動作するステッピングモータ17によって、移送ベルト16をコンベア11の主ロータ15aがある始端側から、従ロータ15bのある終端側に向って順方向へ送るように形成されている。本実施例に係るステッピングモータ17は、回動時間0.8秒、停止時間0.7秒の周期で間欠動作し、40rpmの回転数で順方向に回転するように形成されている。
従ロータ15bは、移送ベルト16を介して、主ロータ15aに従動するように形成されている。
移送ベルト16上には、包装容器Pが所定の向きで載置されている。移送ベルト16上に載置される複数個の包装容器Pは、所定の間隔で本実施例に係るガス濃度測定装置10外から供給される。移送ベルト16の長手方向に沿った中央近傍には、図1及び図2に示すように、当該移送ベルト16を挟んでレーザー式ガス濃度計12が配置されている。
コンベア11は、包装容器Pがレーザー式ガス濃度計12に挟まれた所定位置に到達したとき、ステッピングモータ17が移送ベルト16を停止させるように形成されている。当該停止時間内に包装容器Pに対してレーザー光を投射することによって、レーザー式ガス濃度計12は、包装容器P内のガス濃度を測定することができる。
特定波長のレーザー光が、包装容器P内に残留している測定対象の特定ガスによって吸収されたとき、副ヘッド21で受光したレーザー光の吸光度に基づいて、包装容器P内に残留している特定ガスのガス濃度を測定することができる。
レーザー光源23は、波長が可変可能なダイオードからなる半導体レーザー素子(図示略)を備え、近赤外領域のレーザー光を出力可能に形成されている。
制御部24は、半導体レーザー素子から出力されるレーザー光の波長を測定対象の特定ガス固有の特定波長に調整して、レーザー光が所定の入射光強度で射出されるように増幅する制御を行うように形成されている。
ここで、本実施例に係るレーザー式ガス濃度計12が測定する特定ガスは、酸素ガス(O2)である。当該酸素ガス固有の吸収波長帯は760nm帯であり、当該吸収波長帯に含まれる複数の吸収線のうち、一の吸収線に係る特定波長がレーザー光の出力波長として選択される。
また、主ヘッド20は、図2に示すように、コンベア11の幅方向に沿って移動可能に形成されている。これによって、包装容器Pの大きさに合わせてコンベアの幅方向端部から中央に向って移動するように形成することができる。
鏡胴25には、ガスバルブ(図示略)が設けられている。これによって、鏡胴25内の大気を真空化又は所定のガスへガスパージすることができ、鏡胴25内を真空で維持したり、或いは鏡胴25内の大気を窒素ガス、又は二酸化炭素或いはこれらに類する不活性ガス類へガス置換することができる。そのため、レーザー光は、レーザー光源23からレーザー出射口25aを通じて射出されるまでの間に、鏡胴25内で特定ガス、本実施例においては酸素ガスに吸収されることを防止することができるので、ガス濃度測定の精度を向上させることができる。
また、主ヘッド20は、図2に示すように、コンベア11の幅方向に沿って移動可能に形成したので、包装容器Pの側面部に対して、鏡胴25の先端部に設けたレーザー出射口25aを当接させることができる。これによって、レーザー出射口25aと包装容器Pとの間の大気の影響を極めて低くすることができるので、測定精度を向上させることができる。
受光センサ31は、包装容器Pを透過したレーザー光の透過光強度を電気的な透過光信号に変換する素子、たとえば、フォトダイオード(図示略)を有している。これによって、包装容器Pを透過したレーザー光の透過光強度を電気的に処理することができる。
測定部32は、透過光強度に係る透過光信号と、主ヘッド20から出力されたレーザー光の入射光強度に係る入射光信号に基づいて透過率を計算し、当該透過率に基づいてレーザー光の特定ガスによる吸光度を求め、当該吸光度に基づいて包装容器P内の特定ガスの濃度を測定するように形成されている。
また、副ヘッド21は、図2に示すように、コンベア11の幅方向に沿って移動可能に形成されている。これによって、包装容器Pの大きさに合わせてコンベアの幅方向端部から中央に向って移動するように形成することができる。
受光センサ31のケーシングにもまた、鏡胴25と同様に、ガスバルブ(図示略)が設けられている。これによって、受光センサ31内の大気を真空化又は所定のガスへガスパージすることができ、受光センサ31内を真空で維持したり、或いは受光センサ31内の大気を窒素ガス、又は二酸化炭素或いはこれらに類する不活性ガス類へガス置換することができる。そのため、レーザー光は、レーザー受光口31aからフォトダイオードで受光されるまでの間に、受光センサ31内で特定ガス、本実施例においては酸素ガスに吸収されることを防止することができるので、ガス濃度測定の精度を向上させることができる。
また、副ヘッド21は、図2に示すように、コンベア11の幅方向に沿って移動可能に形成したので、包装容器Pの側面部に対して、受光センサ31の先端部に設けたレーザー受光口31aを当接させることができる。これによって、レーザー受光口31aと包装容器Pとの間の大気の影響を極めて低くすることができるので、測定精度を向上させることができる。
波長可変半導体レーザー吸収分光法(Tunable Diode Laser Absorption Spectroscopy:TDLAS)とは、図3に示すように、レーザー光源の半導体レーザー素子から出力されたレーザー光に係る所定の入射光強度と、測定対象となる特定ガスを含んだ気体を封じたセルを透過して、当該特定ガスに吸収された透過後のレーザー光に係る透過光強度とから透過率を求めて、透過率に基づくレーザー光の吸光度からガス濃度を測定する方法である。
本実施例に沿っていえば、図1又は図2に示すように、主ヘッド20のレーザー発生部21に設けたレーザー光源23から出力したレーザー光を、酸素ガスが混入したおそれのある窒素ガスで満たされた包装容器Pを透過させて、酸素ガスに吸収された透過後のレーザー光を副ヘッド21のレーザー受光部30に設けた受光センサ31で受光し、透過光強度から透過率を求めて、当該透過率に基づくレーザー光の吸光度からガス濃度を測定する方法である。
ここで、酸素ガスは包装容器Pに密封されているから、ガス濃度Cを定量測定する場合、入射光に対する透過光の透過率T又は吸収スペクトルの吸光度Aが大きく変化するように、すなわち、吸光度Aに比例する光路長Lを長くするとガス濃度の検知感度を向上させることができる。
すなわち、図1に示した本実施例に係るレーザー式ガス濃度計12は、副ヘッド21のレーザー受光口31aを主ヘッド20から射出されるレーザー光の光軸上に配置したが、これに限定されず、たとえば、反射鏡を設けて、主ヘッド20と副ヘッド21間でレーザー光を複数回反射させたり、また、レーザー光線が包装容器Pを斜めに横断するようにレーザー光を通過させて、光路長Lを長く確保するようにしても良い。
このように検知感度を向上させることによって、たとえば数ppmレベルのガス濃度まで検知できるように検知可能範囲を広げた場合、数%レベルのガス濃度の測定は容易に行うことができ、その測定精度を大きく向上させることができる。
なお、本実施例に係る透光部44で示した窓に限定されず、たとえば、側面部43全体若しくは、容器本体41全体を透明な素材から形成しても良く、また側面部43又は容器本体41が着色されていた場合であっても、少なくとも透光部44が、レーザー式ガス濃度計12の近赤外領域のレーザー光が透過可能である色、又は半透明な素材であれば良い。
容器本体41に収納される被包装物40は、容器本体41に充填可能な流動性の小さいものであることが好ましく、たとえば、ご飯のような互いに粘着性のある粒体のもの、又は味噌、ジャム、ワサビ、カラシ、マヨネーズのようなペースト状のもの等が有り、そして、溝部45が形成可能であれば、たとえば、ゼリーのような半固体又は豆腐のような固体のものでも良く、さらには、煮豆、佃煮、漬物のような細かなものであっても良い。すなわち、一の透光部44から他の透光部44へレーザー光を透過させなければならないガス濃度測定時に、溝部45の形状を維持してレーザー光が被包装物40に触れないようにすることが出来れば充分であって、その後、時間がたつにつれて又は包装容器Pを運搬している際に被包装物40が均されて溝部45が消滅しても良いからである。そのため、充填物40の充填前に予め溝部45を形成してから包装容器Pへ充填しても良く、又は包装容器Pへ被包装物40を充填してから、棒体を被包装物40表面に押し当てて溝部45を形成するようにしても良い。
なお、本実施例に係る包装容器Pは、略矩形状の平たい合成樹脂製の容器本体41にレトルト白飯を充填したものであるが、これに限定されるものではなく、包装容器Pは、たとえば、ガラス瓶、プラスチックケース、チューブ等、レーザー光が透過可能な透光性を有する容器であっても良い。
溝部45を備えた被包装物40が充填された容器本体41は、容器内が窒素ガス等の不活性ガスにガス置換され、蓋部42でシールされて密封される。密封された包装容器Pは、ガス濃度測定装置10のコンベア11上に載置される。コンベア11は、始端側から終端側に向って複数個の包装容器Pを間欠動作で順次移送する。
そして、この停止時間内に、レーザー式ガス濃度計12は包装容器Pにレーザー光を照射して、包装容器P内に残留している酸素ガスのガス濃度を測定する。
主ヘッド20に設けたレーザー発生部22から射出されたレーザー光は、包装容器Pの側面部43に設けられた一の透光部44から入射し、溝45に沿って被包装物40上を透過し、他の透光部44を透過して、副ヘッド21に設けたレーザー受光部30で受光される。受光されたレーザー光の透過光強度と入射光強度を比較して、吸光度を求め、当該吸光度に基づいて、包装容器P内のガス濃度が測定される。
このとき、主ヘッド20又は副ヘッド21が包装容器Pに向って互いに接近し、主ヘッド20のレーザー発生部22が有する鏡胴25先端に設けたレーザー出射口25a、及び副ヘッド21のレーザー受光部30が有する受光センサ31先端に設けたレーザー受光口31aがそれぞれ包装容器Pの透光部44,44に当接するようにしても良い。これによって、レーザー出射口25a又はレーザー受光口31aと包装容器Pとの間の大気の影響を極力排除することができるので、包装容器P内の測定精度を高めることができる。
レーザー光が照射された包装容器Pは、コンベア11の下流側に流され、当該コンベア11の終端側から、たとえば、出荷工程へ移動するように形成されている。ここで、レーザー式ガス濃度計12で測定した結果、ガス濃度が所定の濃度よりも高く、検査に不合格となった包装容器Pは、当該出荷工程へは移動せず排除される。
レーザー式ガス濃度計12Aは、第1実施例と主ヘッド20Aと副ヘッド21Aの取り付け角度が相違している。レーザー発生部22とレーザー受光部30の構成は第1実施例と同じであるから説明を省略する。
主ヘッド20Aと副ヘッド21Aは、図6に示すように、互いにコンベア11Aに対して所定の角度で傾けて取り付けられている。当該所定角度は、レーザー発生部22の鏡胴25のレーザー出射口25aから出射したレーザー光が、コンベア11Aの移送ベルト16A表面で反射して、レーザー受光部30の受光センサ31のレーザー受光口31aで受光可能な角度である。このように、レーザー光を反射可能とすることによって、図6に示すように、被包装物50に挟まれた比較的狭い透光空間であっても、ガス濃度の測定に十分な光路長を確保することができる。
なお、レーザー光を反射可能に構成するのであれば、たとえば、移送ベルト16A自体に金属箔を蒸着させるようにしても良い。
容器本体51は、図5に示すように平面視したとき、略矩形状に形成されており、容器本体51の底面には、所定位置にレーザー光が透過可能な底面透光部51aが形成されている。
蓋部52は、容器本体51の底面透光部と対向する所定の位置に上面透光部52aが形成されている。これによって、図6に示すように、上面透光部52aに対してレーザー光が投射されたとき、当該レーザー光は、底面透光部52aを透過して、移送ベルト16Aで反射し、再度、上面透光部52aを透過させることができる。
また、容器本体51又は蓋部52が着色されていた場合であっても、少なくとも上面透光部52a及び底面透光部51aが、レーザー式ガス濃度計12の近赤外領域のレーザー光が透過可能である色、又は半透明な素材であれば良い。
そして、孔部55に沿って、上面透光部52aから、底面透光部51aに向って、透光空間55aが形成される。これによって、上面透光部52aに入射されたレーザー光は、被包装物50に遮られまた散乱することなく底面透光部51aを透過して、移送ベルト16Aで反射し、再度底面透光部51a、透光空間55a、上面透光部52aを透過することができる。
容器本体51に収納される被包装物50は、容器本体51に充填可能な流動性が小さく、粘性が高いものであることが好ましく、たとえば、つきたての餅、又は味噌、ジャム、ワサビ、カラシ、マヨネーズのようなペースト状のもの等が有り、そして、孔部55が形成可能であれば、たとえば、ゼリーのような半固体又は豆腐のような固体のものでも良い。すなわち、上面透光部52aから底面透光部51a間でレーザー光を反射、透過させなければならないガス濃度測定時に、孔部55の形状を維持してレーザー光が被包装物50に触れないようにすることが出来れば充分であって、その後、時間がたつにつれて又は包装容器P2を運搬している際に被包装物50が均されて孔部55が消滅しても良いからである。そのため、被包装物50の充填前に予め孔部55を形成してから包装容器P2へ充填しても良く、又は包装容器P2へ被包装物50を充填してから、棒体を被包装物50表面に押し当てて孔部55を形成するようにしても良い。
なお、本実施例に係る包装容器P2は、略矩形状の平たい合成樹脂製の容器本体51に餅を4つ充填したものであるが、これに限定されるものではなく、包装容器P2は、たとえば、ガラス瓶、プラスチックケース、チューブ等、レーザー光が透過可能な透光性を有する容器であっても良い。
孔部55を備えた被包装物50が充填された容器本体51は、容器内が窒素ガス等の不活性ガスにガス置換され、蓋部52でシールされて密封される。密封された包装容器P2は、ガス濃度測定装置10Aのコンベア11上に載置される。コンベア11は、始端側から終端側に向って複数個の包装容器P2を間欠動作で順次移送する。
そして、この停止時間内に、レーザー式ガス濃度計12Aは包装容器P2にレーザー光を照射して、包装容器P2内に残留している酸素ガスのガス濃度を測定する。
主ヘッド20Aに設けたレーザー発生部22から射出されたレーザー光は、図6に示すように、包装容器P2の上面透光部52aから入射し、孔部55の透光空間55aに沿って充填物50間を透過し、底面透光部51aを透過して、移送ベルト16A上で反射して、再度底面透光部51a、透光空間55a、上面透光部52aを透過して、副ヘッド21Aに設けたレーザー受光部30で受光される。受光されたレーザー光の透過光強度と入射光強度を比較して、吸光度を求め、当該吸光度に基づいて、包装容器P2内のガス濃度が測定される。
なお、容器本体51の底面部に底面反射部を設けた場合においても、上記と同様にレーザー光を反射させることができ、同様に、包装容器P2内のガス濃度を測定することができる。
このとき、第1実施例と同様に、主ヘッド20A又は副ヘッド21Aが包装容器P2に向って互いに接近し、主ヘッド20Aのレーザー発生部22が有する鏡胴25先端に設けたレーザー出射口25a、及び副ヘッド21Aのレーザー受光部30が有する受光センサ31先端に設けたレーザー受光口31aがそれぞれ包装容器P2の上面透光部52aに当接するようにしても良い。これによって、レーザー出射口25a又はレーザー受光口31aと包装容器P2との間の大気の影響を極力排除することができるので、包装容器P2内の測定精度を高めることができる。
レーザー光が照射された包装容器P2は、コンベア11Aの下流側に流され、当該コンベア11Aの終端側から、たとえば、出荷工程へ移動するように形成されている。ここで、レーザー式ガス濃度計12Aで測定した結果、ガス濃度が所定の濃度よりも高く、検査に不合格となった包装容器Pは、当該出荷工程へは移動せず排除される。
なお、本実施例に係る透光部64で示した窓に限定されず、たとえば、側面部63全体若しくは、容器本体61全体を透明な素材から形成しても良く、また側面部63又は容器本体61が着色されていた場合であっても、少なくとも透光部64が、レーザー式ガス濃度計12の近赤外領域のレーザー光が透過可能である色、又は半透明な素材であれば良い。
容器本体61に収納される被包装物60は、容器本体61に複数個収納されるものであることが好ましく、たとえば、ドーナツ、せんべい、まんじゅう等が有り、そして、被包装物60を被包装物群60a,60bの二つに分けて収納して透光空間65が形成可能であれば、たとえば、豆腐、ケーキのようなものでも良い。すなわち、一の透光部64から他の透光部64へレーザー光を透過させなければならないガス濃度測定時に、被包装物群60a,60b間に透光空間65が維持され、レーザー光が被包装物60に触れないようにすることが出来れば充分である。
なお、本実施例に係る包装容器P3は、略矩形状の平たい合成樹脂製の容器本体61に小さなドーナツを複数個収納したものであるが、これに限定されるものではなく、包装容器P3は、たとえば、ガラス瓶、プラスチックケース、チューブ等、レーザー光が透過可能な透光性を有する容器であっても良い。
なお、上記各実施例に記載の包装容器P,P2,P3に収納した被包装物40,50,60に限定されるものではなく、上記の説明中に言及したように、レーザー光が透過可能な素材からなるガラス瓶、プラスチックケース、チューブその他種々の容器に収納した被包装物の間に、上記各実施例に示したような透光空間を確保することができれば、包装容器のガス濃度測定方法を適用することができる。
11…コンベア、12,12A…レーザー式ガス濃度計、
15a…主ロータ、15b…従ロータ、16,16A…移送ベルト、17…ステッピングモータ、
20…主ヘッド、21…副ヘッド、
22…レーザー発生部、23…レーザー光源、24…制御部、25…鏡胴、25a…レーザー出射口、
30…レーザー受光部、31…受光センサ、31a…レーザー受光口、32…測定部、
40,50,60…被包装物、41,51,61…容器本体、42,52,62…蓋部、43,63…側面部、44,64…透光部、45…溝部、
51a…底面透光部、52a…上面透光部、55…孔部、
60a,60b…被包装物群、
1…従来のガス濃度測定装置、2…従来のレーザー発生部、3…従来の主ヘッド、4…従来のレーザー受光部、5…従来の副ヘッド、6…グリップ、B…包装袋。
Claims (4)
- 特定波長のレーザー光を射出するレーザー発生部と、
前記レーザー光を受光するレーザー受光部を備えたレーザー式ガス濃度計を有し、
前記レーザー光をガス置換されて密封された包装容器に透過させて、前記包装容器の透過前後で変化する特定波長の吸収スペクトルに基づいて前記包装容器の内部に残留している特定ガスのガス濃度を測定する包装容器内のガス濃度測定方法であって、
前記包装容器の相対する側面部に、前記レーザー光が透過可能な、互いに対向する一対の透光部を設け、
前記包装容器に充填収納された充填物からなる被包装物上に、前記透光部の一方から他方にわたって溝部を形成し、
当該溝部に沿って、前記透光部を透過した前記レーザー光が透過可能な透光空間を形成して、
前記レーザー発生部から射出されたレーザー光が、一方の前記透光部から、前記透光空間、他方の前記透光部と透過して、前記レーザー受光部で受光されるようにしたことを特徴とする包装容器内のガス濃測定方法。 - 特定波長のレーザー光を射出するレーザー発生部と、
前記レーザー光を受光するレーザー受光部を備えたレーザー式ガス濃度計を有し、
前記レーザー光をガス置換されて密封された包装容器に透過させて、前記包装容器の透過前後で変化する特定波長の吸収スペクトルに基づいて前記包装容器の内部に残留している特定ガスのガス濃度を測定する包装容器内のガス濃度測定方法であって、
前記包装容器の上面部に前記レーザー光が透過可能な上面透光部を、前記包装容器の底面部に前記レーザー光が透過可能な底面透光部を、それぞれ設け、
前記包装容器に充填収納された充填物からなる被包装物に、前記上面透光部と前記底面透光部にわたって孔部を形成し、
当該孔部に沿って、前記上面透光部又は前記底面透光部を透過したレーザー光が透過可能な透光空間を形成して、
前記レーザー発生部から射出されたレーザー光が、前記上面透光部から、前記透光空間、前記底面透光部と透過し、又は前記底面透光部から、前記透光空間、前記上面透光部と透過して、前記レーザー受光部で受光されるようにしたことを特徴とする包装容器内のガス濃度測定方法。 - 特定波長のレーザー光を射出するレーザー発生部と、
前記レーザー光を受光するレーザー受光部を備えたレーザー式ガス濃度計を有し、
前記レーザー光をガス置換されて密封された包装容器に透過させて、前記包装容器の透過前後で変化する特定波長の吸収スペクトルに基づいて前記包装容器の内部に残留している特定ガスのガス濃度を測定する包装容器内のガス濃度測定方法であって、
前記包装容器の上面部に前記レーザー光が透過可能な上面透光部を、前記包装容器の底面部に前記レーザー光が反射可能な底面反射部を設け、
前記包装容器に充填収納された充填物からなる被包装物に、前記上面透光部と前記底面反射部にわたって孔部を形成し、
当該孔部に沿って、前記上面透光部を透過し、前記底面反射部に向かってレーザー光が透過可能な透光空間を形成して、
前記レーザー発生部から射出されたレーザー光が、前記上面透光部から前記透光空間を透過し、前記底面反射部で反射して、前記透光空間から前記上面透光部を透過して、前記レーザー受光部で受光されるようにしたことを特徴とする包装容器内のガス濃度測定方法。 - 特定波長のレーザー光を射出するレーザー発生部と、
前記レーザー光を受光するレーザー受光部を備えたレーザー式ガス濃度計を有し、
前記レーザー光をガス置換されて密封された包装容器に透過させて、前記包装容器の透過前後で変化する特定波長の吸収スペクトルに基づいて前記包装容器の内部に残留している特定ガスのガス濃度を測定する包装容器内のガス濃度測定方法であって、
前記包装容器の相対する側面部に、前記レーザー光が透過可能な、互いに対向する一対の透光部を設け、
前記包装容器に収納された複数個の被包装物を、一の被包装物群と他の被包装物群に分けて、当該両被包装物群の間に前記透光部を透過した前記レーザー光が透過可能な透光空間を形成し、
当該透光空間の一端が一方の前記透光部と連接し、前記透光空間の他端が他方の前記透光部と連接するようにして、
前記レーザー発生部から射出されたレーザー光が、一方の前記透光部から、前記透光空間、他方の前記透光部と透過して、前記レーザー受光部で受光されるようにしたことを特徴とする包装容器内のガス濃度測定方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019229615A JP7350312B2 (ja) | 2019-12-19 | 2019-12-19 | 包装容器内のガス濃度測定方法 |
PCT/JP2020/041039 WO2021124711A1 (ja) | 2019-12-19 | 2020-11-02 | 包装容器内のガス濃度測定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019229615A JP7350312B2 (ja) | 2019-12-19 | 2019-12-19 | 包装容器内のガス濃度測定方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021096213A JP2021096213A (ja) | 2021-06-24 |
JP7350312B2 true JP7350312B2 (ja) | 2023-09-26 |
Family
ID=76431085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019229615A Active JP7350312B2 (ja) | 2019-12-19 | 2019-12-19 | 包装容器内のガス濃度測定方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7350312B2 (ja) |
WO (1) | WO2021124711A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009014589A (ja) | 2007-07-06 | 2009-01-22 | General Packer Co Ltd | 包装機におけるガス濃度測定方法 |
JP2010038846A (ja) | 2008-08-08 | 2010-02-18 | Hitachi Zosen Corp | 袋状容器内における酸素濃度の非破壊検査装置 |
JP2010107197A (ja) | 2008-10-28 | 2010-05-13 | General Packer Co Ltd | 包装袋のガス濃度測定装置 |
WO2019038444A2 (de) | 2017-08-24 | 2019-02-28 | Steinfurth Mess-Systeme GmbH | Verfahren zur untersuchung bei verpackungen |
US20190113465A1 (en) | 2016-04-20 | 2019-04-18 | Ft System S.R.L. | Non-destructive measurement unit of the gas concentration in sealed flexible containers and automatic filling and/or packaging line using such a unit |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6639678B1 (en) * | 2000-07-13 | 2003-10-28 | Lighthouse Instruments Llc | Apparatus and method for nondestructive monitoring of gases in sealed containers |
IT1399109B1 (it) * | 2010-03-31 | 2013-04-05 | Bonfiglioli Engineering S R L Ora Bonfiglioli Engineering S P A | Metodo di analisi di una componente gassosa presente in un contenitore sigillato ermeticamente |
-
2019
- 2019-12-19 JP JP2019229615A patent/JP7350312B2/ja active Active
-
2020
- 2020-11-02 WO PCT/JP2020/041039 patent/WO2021124711A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009014589A (ja) | 2007-07-06 | 2009-01-22 | General Packer Co Ltd | 包装機におけるガス濃度測定方法 |
JP2010038846A (ja) | 2008-08-08 | 2010-02-18 | Hitachi Zosen Corp | 袋状容器内における酸素濃度の非破壊検査装置 |
JP2010107197A (ja) | 2008-10-28 | 2010-05-13 | General Packer Co Ltd | 包装袋のガス濃度測定装置 |
US20190113465A1 (en) | 2016-04-20 | 2019-04-18 | Ft System S.R.L. | Non-destructive measurement unit of the gas concentration in sealed flexible containers and automatic filling and/or packaging line using such a unit |
WO2019038444A2 (de) | 2017-08-24 | 2019-02-28 | Steinfurth Mess-Systeme GmbH | Verfahren zur untersuchung bei verpackungen |
Also Published As
Publication number | Publication date |
---|---|
WO2021124711A1 (ja) | 2021-06-24 |
JP2021096213A (ja) | 2021-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2752286C2 (ru) | Способ и устройство для измерения концентрации газа | |
US8379209B2 (en) | Non-destructive inspection device for oxygen concentration in bag-shaped container | |
JP7321453B2 (ja) | レーザー式ガス濃度計 | |
JP5686662B2 (ja) | 袋状容器内における酸素濃度の非破壊検査装置 | |
JP2021067634A (ja) | 包装袋内のガス濃度測定装置 | |
KR20190112742A (ko) | 가스 농도 측정 방법 | |
ITMI20120493A1 (it) | Apparecchiatura per il controllo non distruttivo dell'integrita' e/o idoneita' di confezioni sigillate | |
US20170268996A1 (en) | Method and device for measuring the gas content of materials packaged in plastic films, glass or other light-permeable materials and sensitive to a gas to be measured | |
JP7357918B2 (ja) | 包装袋内のガス濃度測定装置 | |
JP7350312B2 (ja) | 包装容器内のガス濃度測定方法 | |
JP7505732B2 (ja) | 包装袋用ガス濃度測定装置 | |
JP7343169B2 (ja) | 密封包装容器のガス濃度測定方法およびガス濃度測定装置 | |
JP7355381B2 (ja) | 密封包装容器 | |
JP7339662B2 (ja) | 密封包装容器のガス濃度測定方法およびそれに用いるガス濃度測定装置 | |
JP7339663B2 (ja) | 密封包装容器のガス濃度測定方法およびそれに用いるガス濃度測定装置 | |
JP2021067631A (ja) | 包装袋内のガス濃度測定方法 | |
JP5555923B2 (ja) | 包装機におけるガス濃度測定方法 | |
JP2021067633A (ja) | 包装袋内のガス濃度測定方法 | |
US20240328940A1 (en) | System and method for measuring a property of a gas in a container | |
WO2022244647A1 (ja) | 包装袋のガス濃度測定装置および包装袋のガス濃度測定方法 | |
JP2023012103A (ja) | レーザー式ガス濃度測定装置 | |
RU2020143262A (ru) | Установка для обнаружения газа в свободном пространстве над содержимым в контейнере | |
Cocola et al. | TDLAS OXYGEN SENSOR FOR MEASUREMENT ON FLOW-PACKED PRODUCTS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230620 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7350312 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |