WO2010013704A1 - マイクロデバイス及びマイクロチップ装置並びにこれらを用いた分析方法 - Google Patents

マイクロデバイス及びマイクロチップ装置並びにこれらを用いた分析方法 Download PDF

Info

Publication number
WO2010013704A1
WO2010013704A1 PCT/JP2009/063413 JP2009063413W WO2010013704A1 WO 2010013704 A1 WO2010013704 A1 WO 2010013704A1 JP 2009063413 W JP2009063413 W JP 2009063413W WO 2010013704 A1 WO2010013704 A1 WO 2010013704A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction field
microdevice
substrate
microchip
liquid
Prior art date
Application number
PCT/JP2009/063413
Other languages
English (en)
French (fr)
Inventor
直美 浅野
裕一郎 清水
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/056,485 priority Critical patent/US9080993B2/en
Priority to JP2010522722A priority patent/JP5430569B2/ja
Publication of WO2010013704A1 publication Critical patent/WO2010013704A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • B01L2300/0806Standardised forms, e.g. compact disc [CD] format
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0672Swellable plugs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00148Test cards, e.g. Biomerieux or McDonnel multiwell test cards

Definitions

  • the present invention relates to an analysis microdevice for detecting a sample (for example, allergen, adiponectin, cytokine, etc.), which is a specific substance contained in a test solution, and an analysis method using the same.
  • a sample for example, allergen, adiponectin, cytokine, etc.
  • Immunoassay using antigen-antibody reaction is useful as an analysis / measurement method in the fields of medicine, biochemistry, and measurement fields such as allergens.
  • the conventional immunoassay has problems such as a long time required for analysis and complicated operation.
  • micro technology Micro-Electro-Mechanical System, MEMS
  • MEMS Micro-Electro-Mechanical System
  • ⁇ -TAS Micro Total Analytical System
  • Patent Document 1 a micro-order flow path (reaction field) is formed on a substrate, and an antibody or the like is immobilized on the micro flow path, thereby shortening the analysis time and simplifying the analysis operation.
  • Device technology has been proposed.
  • Patent Document 1 is a technique relating to a microdevice including a protein fixing part and an antibody fixed to the protein fixing part in a microchannel. According to this technology, the reaction field (protein immobilization part) can be reduced and the surface area of the reaction can be increased, so that the time required for the reaction can be greatly shortened with downsizing of the apparatus and simplification of the chip structure.
  • the reaction field protein immobilization part
  • FIG. 21 shows the structure of a microdevice according to this technique, and this technique will be described based on this figure.
  • a channel 101, an introduction part 102, a liquid storage part 103, and a discharge part 104 are formed on the surface of a substrate 100 made of a light-transmitting material such as glass or plastic.
  • a protein fixing part 105 is formed in the channel 101.
  • the protein immobilization part 105 has a nano unevenness 110 that is an uneven shape of a nanostructure as shown in FIG. 22 formed on the inner wall of the flow path.
  • the minute unevenness 110 has a structure in which the thickness is shorter than the wavelength of light irradiated to the protein immobilization part for detection of the detection target substance.
  • a protein that reacts specifically with the substance to be detected is immobilized on the protein immobilization section by a known immobilization method such as physical adsorption or immobilization using a covalent bond with an amino group of the protein.
  • a detection method using this device will be described with reference to FIG. First, a solution containing the substance to be detected 120 is mixed with a liquid containing a labeled antibody 123 in which an optically detectable labeling substance 121 is bound to an antibody 122 that binds to the substance to be detected, and reacted. An immune complex 124 (reaction conjugate between the labeled antibody and the substance to be detected) formed by reacting the substance 120 with the labeled antibody 123 is formed.
  • the liquid mixture containing the above immune complex 124 is injected from the introduction part 102 of FIG. 21 using an external pump, is circulated through the flow path, and is fixed to the protein fixing part 105 as shown in FIG.
  • a complex 126 comprising the antibody 125, the substance to be detected 120, and the labeled antibody 123 is formed in the protein fixing part 105.
  • washing solution is circulated through the flow path in order to remove unreacted immune complex 124 and labeled antibody 123.
  • the labeling substance 121 of the immune complex 124 bound to the protein immobilization part is used according to the type of the labeling substance using a predetermined analytical instrument such as ultraviolet-visible spectroscopic analysis, fluorescence analysis, chemiluminescence analysis, thermal lens analysis or the like. Then, light absorption, fluorescence, luminescence, etc. of the labeling substance are detected. Thereby, the quantity of the to-be-detected substance 120 in a test liquid can be known.
  • a predetermined analytical instrument such as ultraviolet-visible spectroscopic analysis, fluorescence analysis, chemiluminescence analysis, thermal lens analysis or the like.
  • the present inventor has conducted various studies on analytical devices using microchannels. As a result, I learned that there are the following problems.
  • a microdevice having a protein immobilization part having minute irregularities on the surface of a flow path can increase the reactive area, but the antibody immobilized on the flow path and the substance to be detected (or the substance to be detected)
  • the reaction with the labeled antibody complex) is greatly influenced by the magnitude of the distance between the antibody and the substance to be detected, that is, the diffusion distance necessary for the substance to be detected to react. That is, when the diffusion distance is large, the antibody fixed in the flow path can react only with the substance to be detected flowing in the vicinity of the antibody. As a result, the same result as that in the case where the substance to be detected having a concentration lower than the actual substance concentration to be detected is measured.
  • the detection sensitivity cannot be sufficiently improved, so that the microanalysis cannot be performed.
  • this method is technical because it requires a more precise processing technique. The difficulty increases and a complicated manufacturing process is required, resulting in a significant increase in manufacturing cost. Therefore, it is not practical.
  • An object of the present invention is to provide an analytical microdevice capable of performing a microanalysis with high sensitivity in a short time.
  • the present invention employs means for rotating the microdevice and reducing the diffusion distance by the generated centrifugal force.
  • a rotating device comprising: a rotating substrate; a reaction field provided on the rotating substrate; and an introduction unit for introducing a liquid into the reaction field.
  • the angle formed between the direction of the centrifugal force generated when rotating the tangential line and the tangent at the portion where the centrifugal force acts most on the wall surface of the reaction field is always 45 to 90 °.
  • the portion of the reaction wall where the centrifugal force acts is configured to always have an angle of 45 ° to 90 ° with the direction of the centrifugal force generated when the rotating substrate is rotated (centrifugal force direction).
  • centrifugal force direction the direction of the centrifugal force generated when the rotating substrate is rotated.
  • the reaction field is a place where the reaction is performed, for example, an immobilization reaction, an antigen-antibody reaction, an enzyme substrate reaction, or the like.
  • the direction of centrifugal force means the direction of centrifugal force generated by rotation, and is represented by an infinite number of half-line groups extending from the center of rotation of the rotating substrate to the reaction field direction (half lines filling up to 360 °). Direction.
  • the rotating substrate may have a shape in which a hole is provided in the central portion as shown in FIG.
  • the center of rotation is predetermined on the rotating substrate of the microdevice.
  • This center of rotation is generally located at the center of the rotating substrate, but as shown in FIG. 19 (c), it may be other than the center of the rotating substrate, and it may be rotated in the hole provided on the rotating substrate. There may be a virtual axis as a center.
  • the tangent in this invention is defined as follows.
  • a point where an arbitrary straight line of the innumerable half-line group intersects with the inner wall surface on the side far from the rotation center is defined as an intersection.
  • the shape of the inner wall surface at the intersection is an arc (curved)
  • the tangent is the straight line as shown in FIG.
  • the shape of the inner wall surface at the intersection is a shape where two straight lines intersect, as shown in FIG. 19B
  • the tangent is a straight line extending in the direction in which centrifugal force works most (centrifugal force direction) from the center of rotation.
  • FIG. 19 (c) in the case of a reaction field in which liquid can flow in the centrifugal force direction, the tangent is determined by the above method according to the shape of the wall surface intersecting with the straight line extending in the centrifugal force direction. .
  • the angle formed by the tangent is always 45 to 90 °” means that the tangent at the point (intersection) where an arbitrary straight line intersects the inner wall surface on the side far from the center of rotation in the infinite number of half-line groups, It means that the angle with an arbitrary straight line is 45 to 90 °.
  • the portion of the reaction field wall where the centrifugal force acts most exists on the “inner wall surface on the side far from the center of rotation”, and this inner wall surface has liquid when centrifugal force is applied. It is a wall surface along the moving direction.
  • At least a portion of the reaction field wall where the centrifugal force acts most can be configured such that the reactant is fixed.
  • the diffusion distance between the liquid containing the detected substance and the reactive substance can be reduced.
  • the reactants In order to use the reactants efficiently and to react the detected substance and the reactants efficiently, the reactants should be placed within a certain range around the reaction field wall where the centrifugal force acts most. It is preferable to fix. As the spread, when the reaction field is cut from the direction perpendicular to the flow direction and the total length of the inner cross-sectional line (contour line inside the reaction field) is 100, the range in which the reactant is fixed is the most centrifugal force. With the reaction field wall surface acting as the center, it is 75% or less of the inner cross-sectional line, preferably 5% to 40%, more preferably 10% to 30%.
  • the reactant is fixed only to the wall surface in the direction of centrifugal force of the reaction field, or fixed to three concave surfaces.
  • it may be fixed on the entire surface of the reaction field wall. Fixing to three concave surfaces and the entire reaction field wall surface has the demerit of increasing the amount of reactants used, but on the other hand, has the advantage of simplifying the immobilization work. is there. You may employ
  • the angle formed with the tangent at the portion where the centrifugal force acts most is preferably 60 to 90 °, more preferably 75 to 90 °, and still more preferably in order to use the centrifugal force more effectively. 80 to 90 °.
  • reactant known materials such as proteins (antibodies, etc.), peptides, amino acids, imprinted polymers, etc. can be used.
  • a configuration may further include a detection unit that detects the amount of the substance to be detected, and a connection flow path that connects the reaction field and the detection unit.
  • the detection field can be a different part from the reaction field, so the detection method can be diversified.
  • connection channel can be provided substantially perpendicular to the substrate surface of the rotating substrate.
  • the detection unit can be arranged in a place isolated from the reaction field where the reaction is performed, so that the detection efficiency is increased.
  • a connection block is provided with a damming unit, or the detection unit is in a direction opposite to the centrifugal force direction (rotation center side) from the reaction field. It is preferable to position it.
  • the detection unit may be positioned farther from the center of rotation than the reaction field.
  • the planar shape of the reaction field with respect to the rotating substrate is preferably an arc shape, a circumferential shape, or a linear shape around the rotation center from the viewpoint of more effectively applying a centrifugal force.
  • a liquid reservoir for storing a sample liquid (for example, a test liquid containing a substance to be detected) is provided between the introduction section and the reaction field, and when centrifugal force acts, the liquid is transferred from the liquid reservoir to the reaction field.
  • a flowing configuration is preferred. With this configuration, if the test liquid is injected before the rotation, the liquid flows into the reaction field when the rotation is performed, so that the working efficiency is good. In this configuration, it is more preferable to provide an open / close valve between the liquid reservoir and the reaction field. Moreover, you may provide the some liquid reservoir part which each stores the liquid containing a labeled detection substance, the liquid containing a substrate, etc.
  • the rotating substrate may be formed by superimposing a substrate group including a main substrate on which a reaction field groove is formed and a lid substrate on which an introduction portion is formed.
  • the rotating substrate includes a lid substrate on which the introduction portion is formed, a main substrate on which a reaction field groove and a connection channel through hole are formed, and a detection substrate on which a detection portion is formed. It can be formed by stacking a group of substrates.
  • the substrate group can further include a substrate other than those described above, for example, a substrate incorporating an IC chip used for detection. Further, the main substrate itself may be provided with a detection unit, a connection flow path, and the like.
  • a microchip apparatus comprising: a rotating disk; and a microchip that is positioned with respect to a rotation center of the rotating disk and is fixed to the rotating disk.
  • the microchip includes at least a reaction field and an introduction part for introducing a liquid into the reaction field, and the rotating disk is rotated in a state where the microchip is fixed to the rotating disk.
  • the angle formed by the direction of the centrifugal force generated sometimes and the tangent line at the portion where the centrifugal force acts most on the wall surface of the reaction field is always 45 to 90 °.
  • a microchip incorporating a reaction field structure and a rotating disk that applies centrifugal force to the microchip are separated, and the microchip is fixed by positioning the rotating chip at a predetermined position on the rotating disk.
  • the structure is different from the first invention.
  • the other elements are the same as in the first invention, and the same effects as in the first invention can be obtained in the second invention.
  • a large number of microchips can be simultaneously arranged by arranging a large number of microchips on the turntable, and the analysis can be efficiently performed by sequentially replacing the microchips. Is obtained.
  • the turntable may have a shape in which a hole is provided in the central portion as shown in FIG. 17 in the same manner as the turntable in the first invention.
  • the first invention and the second invention are clearly distinguished by using “microdevice” and “microchip” separately, in terms of the reaction field structure, the microchip in the second invention is distinguished.
  • the microdevice according to the first invention has commonality.
  • the rotation center of the rotating disk is the same as that of the rotating substrate in the first invention.
  • means for facilitating positioning and fixing means that do not vary due to centrifugal force.
  • Such means is not particularly limited, and known ones can be widely used. For example, a method of fitting a microchip on the base surface, or a method of attaching a mark to a fixed position, placing the microchip on the portion, and fixing it with a clip, a screw, a rubber band, or the like.
  • the microchip may further include a detection unit that detects the amount of the substance to be detected, and a connection channel that connects the reaction field and the detection unit.
  • a detection unit that detects the amount of the substance to be detected
  • a connection channel that connects the reaction field and the detection unit.
  • the planar shape of the reaction field with respect to the rotating disk surface is preferably linear.
  • a liquid reservoir part for temporarily storing a liquid containing the substance to be detected may be provided between the introduction part and the reaction field.
  • the wall of the reaction field may be water repellent.
  • the droplet can be easily moved (transported) by passing air, nitrogen gas, or the like through the reaction field.
  • the third invention according to the analysis method using the above-described various microdevices or microchip devices includes an introduction step of introducing a liquid containing a target substance into the microdevice or microchip from the introduction section, and the micro A rotation step of rotating the device, wherein an introduction amount of the liquid containing the target substance is made smaller than a volume of the reaction field.
  • the liquid containing the target substance is pressed against the wall in the centrifugal force direction of the reaction field by the centrifugal force.
  • the diffusion distance between the liquid containing the target substance and the wall surface where the centrifugal force acts most in the reaction field is reduced, so that the reaction speed and detection sensitivity are dramatically increased and the amount of liquid containing the target substance is small. Even if it exists, it can be made to react reliably. Therefore, microanalysis can be performed.
  • the introduction amount of the liquid containing the target substance is made smaller than the volume of the reaction field, but the introduction amount of the liquid containing the target substance is applied to the test solution wall by, for example, a rotational centrifugal force. Is preferably thin and sticking (for example, a thickness of 10 ⁇ m to 50 ⁇ m).
  • the reaction field when there is a desired amount of liquid in relation to the target substance, the reaction field, the size of the flow path and detection unit, and the amount of introduced liquid are adjusted according to the target substance.
  • the liquid when protein etc. are fixed to the reaction field wall surface, it is not necessary for the liquid to stick to the entire surface of the reaction field wall, and the liquid volume may be such that the liquid sticks thinly to a part of the reaction field wall surface.
  • the amount of liquid to be introduced is thin enough to stick to a part of the reaction field wall, or if the reactant is immobilized only on a part of the reaction field wall, It is preferable to use a liquid in which a substance to be detected and a labeled antibody are mixed in advance (a substance in which the substance to be detected and the labeled antibody react to form a complex). This is because, when the amount of the introduced solution and the reaction area are limited, if the target substance and the labeled antibody are introduced separately, the liquid containing the labeled antibody becomes a complex of the immobilized reactive substance and the target substance. This is because the body may not reach the site where the body exists, and the reaction may be insufficient.
  • a microchip having at least a reaction field and an introduction part for introducing a liquid containing a target substance into the reaction field is positioned with respect to the rotation center of the rotation disk.
  • An analysis method comprising: a fixing step of fixing; an introducing step of introducing a liquid containing a target substance from the introducing portion after the fixing step; and a rotating step of rotating the turntable after the introducing step.
  • the fixing step the angle formed between the direction of the centrifugal force generated when the turntable is rotated and the tangent at the portion of the reaction field wall where the centrifugal force acts most is always 45 to 90 °.
  • the analysis method is characterized in that the introduction amount of the liquid containing the target substance is made smaller than the volume of the reaction field.
  • This analysis method can provide the same effect as the third invention.
  • a microdevice that can be analyzed with a very small amount of liquid, has high detection sensitivity to a target substance, and can perform highly accurate analysis in a very short time, and such a device.
  • An apparatus can be provided.
  • FIG. 1A is a top view of the rotation substrate of the microdevice according to the embodiment 1-1
  • FIG. 1B is a top view of the detection substrate of the microdevice according to the embodiment 1-1.
  • FIG. 2A is a cross-sectional view of the micro device according to the embodiment 1-1 along the xx ′ plane
  • FIG. 2B is a diagram yy ′ of the micro device according to the embodiment 1-1
  • FIG. FIG. 3 is a top view illustrating an example of a change in the position of the introduction unit according to the embodiment 1-1
  • FIG. 4A is a top view of the rotating substrate of the microdevice according to the embodiment 1-2
  • FIG. 4B is a top view of the detection substrate of the microdevice according to the embodiment 1-2.
  • FIG. 5A is a cross-sectional view of the micro device according to the embodiment 1-2 along the xx ′ plane
  • FIG. 5B is a diagram yy ′ of the micro device according to the embodiment 1-2
  • FIG. 6A is a top view of the rotating substrate of the micro device according to the first to third embodiments
  • FIG. 6B is a top view of the detection substrate of the micro device according to the first to third embodiments.
  • FIG. 7A is a cross-sectional view of the micro device according to the first to third embodiments, taken along the line xx ′
  • FIG. 7B is a diagram yy ′ of the micro device according to the first to third embodiments.
  • FIG. 8A is a top view of the rotating substrate of the microdevice according to the embodiment 1-4
  • FIG. 8B is a top view of the detection substrate of the microdevice according to the embodiment 1-4. is there.
  • FIG. 9A is a cross-sectional view of the micro device according to the embodiment 1-4 along the xx ′ plane
  • FIG. 9B is a diagram yy ′ of the micro device according to the embodiment 1-4.
  • FIG. FIG. 10A is a top view of the rotation substrate of the microdevice according to the first to fifth embodiments
  • FIG. 10B is a top view of the detection substrate of the microdevice according to the first to fifth embodiments. is there.
  • FIG. 11A is a cross-sectional view of the micro device according to the embodiment 1-5 taken along the line xx ′
  • FIG. 11B is a diagram yy ′ of the micro device according to the embodiment 1-5
  • FIG. FIG. 12 is a diagram illustrating the microdevice according to the first to sixth embodiments, where (a) is a top view and (b) is a cross-sectional view along x-x ′ of (a).
  • FIG. 13 is a top view of the rotating substrate of the microdevice according to the second embodiment.
  • FIG. 14 is a cross-sectional view of the micro device according to the second embodiment, taken along the line xx ′.
  • FIG. 15 is a top view of the microdevice according to the third embodiment.
  • FIG. 12 is a diagram illustrating the microdevice according to the first to sixth embodiments, where (a) is a top view and (b) is a cross-sectional view along x-x ′ of (a).
  • FIG. 13 is
  • FIG. 16 is a top view of the microchip device according to the embodiment 4-1.
  • FIG. 17 is a diagram illustrating the microchip device according to the embodiment 4-2, where (a) is a top view and (b) is a cross-sectional view along x-x ′ of (a).
  • FIG. 18 is a schematic diagram illustrating the behavior of the liquid in the microdevice according to Embodiment 1-1. In this figure, the arrow indicates the direction of centrifugal force.
  • FIG. 19 is a diagram for explaining an angle formed with the tangent of the reaction field of the microdevice according to the present invention.
  • 20A is a top view of the microdevice according to the first embodiment
  • FIG. 20B is a cross-sectional view of the microdevice according to the xx ′ plane.
  • FIG. 21 is a top view showing a conventional microdevice.
  • FIG. 22 is an enlarged view of a reaction portion of a conventional microdevice.
  • FIG. 23 is a schematic view of
  • FIG. 1 is a top view showing a schematic structure of a microdevice according to the present embodiment
  • FIG. 2 is a schematic vertical cross-sectional view of the xx ′ plane and the yy ′ plane of the microdevice according to the present embodiment. It is.
  • This microdevice includes a main substrate 1 having a substantially circular shape in plan view as shown in FIG. 1A, a detection substrate 2 having a substantially rectangular shape in plan view as shown in FIG. 1B, and a detection substrate 2 shown in FIG. A substrate group consisting of the lid substrate 3 is overlapped as shown in FIG.
  • this microdevice includes a reaction field A in which a reaction substance (for example, antibody protein) that specifically binds to a substance to be detected is immobilized, a detection unit 4, a reaction field A, And a connection flow path B that connects the detection unit 4.
  • a reaction substance for example, antibody protein
  • a detection unit 4 for example, a reaction field A
  • a reaction field A for example, a reaction field A
  • a connection flow path B that connects the detection unit 4.
  • an introduction unit 5 for introducing a test solution or a buffer solution (for example, a phosphate buffer solution) into the device
  • a liquid storage unit 6 for storing a predetermined amount of the test solution
  • a reaction with the liquid storage unit 6 And a flow path C connecting the field A.
  • a discharge portion 7 for sending the test solution and the buffer solution to the outside of the device is formed at the downstream end portion of the detection portion 4.
  • the main substrate 1 is formed with grooves for the reaction field A, the connection channel B, the liquid reservoir 6 and the channel C.
  • the planar shape of the main substrate 1 is not particularly limited, but is preferably a circle or an ellipse.
  • the thickness of the main substrate 1 is preferably about 0.1 mm to 5 mm.
  • the main substrate 1, the detection substrate 2, and the lid substrate 3 constitute a rotating substrate.
  • the reaction field A has a width of about 1 ⁇ m to 1 mm and a depth of about 1 ⁇ m to 1 mm.
  • the cross-sectional shape of the reaction field A is not particularly limited, and a circular shape, an elliptical shape, a semicircular shape, a rectangular shape, or the like can be arbitrarily selected as long as a test solution, a buffer solution, or the like can flow therethrough.
  • the planar shape of the reaction field A is a circumferential shape centered on the rotation center O in the present embodiment. For this reason, the angle between the direction of the centrifugal force and the portion where the centrifugal force acts on the wall surface of the reaction field (the angle formed with the tangent to the portion where the centrifugal force acts) is always 90 °.
  • the connection flow path B is for connecting the reaction field A and the detection unit 4 and connects the bottom surface of the reaction field A and the lower surface of the main substrate 1 (perpendicular to the substrate surface of the main substrate). Further, a protrusion 8 is formed on the wall surface of the connection flow path B in the centrifugal force direction.
  • the protrusion 8 functions as a damming unit that prevents the test liquid from flowing out to the detection unit 4 through the wall surface of the connection flow path B by centrifugal force when the device is rotated. Even if the detection unit 4 is positioned in the direction of gravity relative to the reaction field A, the liquid does not flow to the detection unit 4 side when a centrifugal force exceeding the gravity is applied.
  • connection flow path B is not particularly limited, and a circular shape, an elliptical shape, a semicircular shape, a rectangular shape, or the like can be arbitrarily selected as long as the test solution, the buffer solution, or the like can flow therethrough.
  • the size is about 1 ⁇ m ⁇ or more.
  • the liquid reservoir 6 is for introducing a predetermined amount of a test solution or a buffer solution into the microdevice.
  • the planar shape of the liquid reservoir 6 is not particularly limited, and may be a circle, an ellipse, a polygon, or any other shape.
  • the flow path C is for connecting the liquid reservoir 6 and the reaction field A.
  • a micro open / close valve 9 that can be opened and closed is formed on the flow path C so that the test solution does not flow into the reaction field A before the reaction.
  • the cross-sectional shape of the flow path C is not particularly limited, and a circular shape, an elliptical shape, a semicircular shape, a rectangular shape, or the like can be arbitrarily selected as long as a test solution, a buffer solution, or the like can flow therethrough.
  • the size is about 1 ⁇ m or more.
  • micro open / close valve 9 Any type of micro open / close valve 9 may be used, but it is convenient to use a valve using an electrowetting technique.
  • the wall surface of the flow path C is made hydrophobic to the extent that the liquid does not flow due to centrifugal force due to rotation, and when the liquid is desired to flow, it is made hydrophilic by applying a voltage to release the flow block.
  • the detection substrate 2 is formed with a detection unit 4 and a discharge unit 7.
  • the shape of the detection substrate 2 is not particularly limited.
  • the thickness of the detection substrate 2 is preferably about 0.1 mm to 5 mm.
  • Detecting unit 4 is a place where detection is performed. For example, when detection is performed using an ultraviolet-visible spectrophotometer, a fluorophotometer, a thermal lens meter, or the like installed outside the device, it is not necessary to provide specific means in this portion. However, it is preferable not to form an object that prevents detection (for example, an object that blocks light). In addition, when electrochemical detection is performed, an electrode is provided in this portion.
  • the shape and size of the detection unit are not particularly limited.
  • the discharge part 7 is formed at the downstream end of the detection part 4.
  • the discharge unit 7 is for discharging the test solution, the buffer solution, and the like out of the microdevice, and is open on the lateral surface of the detection substrate 2.
  • the shape of the discharge unit 7 is not particularly limited, and may be a circle, an ellipse, a polygon, or any other shape.
  • the size is such that the cross-sectional width is about 1 ⁇ m or more.
  • the lid substrate 3 has an introduction portion 5 formed therein.
  • the shape of the lid substrate 3 is not particularly limited.
  • the thickness is preferably about 0.1 mm to 5 mm.
  • the introduction unit 5 is for introducing a test solution or a buffer solution into the microdevice.
  • the planar shape of the introduction part 5 is not particularly limited, and may be a circle, an ellipse, a polygon, or any other shape.
  • the size of the cross section is about 1 ⁇ m or more.
  • the reaction field A, the connection flow path B, the flow path C, the introduction part 5, the liquid reservoir part 6, and the discharge part 7 may be subjected to water repellent treatment. If water repellent treatment is not applied, the liquid will be stable when splashed on the reaction field or the wall surface of the flow path when rotation is stopped, but if water repellent treatment is applied, the reaction field or flow path will be stable.
  • the liquid splashed on the wall of the liquid is instantly collected into droplets, and if air or nitrogen gas is passed through the reaction field or flow path, the droplets are easily transported, which is preferable because the liquid transport time is shortened. .
  • glass, quartz, silica, ceramics, polymer material, or the like can be used as the material of the main substrate 1.
  • the material of the detection substrate 2 glass, quartz, silica, ceramics, polymer material, or the like can be used. When optical detection is performed, there is no fear of damage due to refraction or the like, and a material having transparency is preferable.
  • glass, quartz, silica, ceramics, a polymer material, or the like can be used as the material of the lid substrate 3.
  • each part such as a flow path on the main substrate 1, the detection substrate 2 and the lid substrate 3 is not particularly limited, and may be mechanically processed by a micro drill or the like, or formed by chemical treatment such as etching. Good.
  • a photothermosetting resin or a thermosetting resin may be poured into a mold in which a flow path pattern is formed and solidified to produce an integrated structure.
  • a substrate material made of a polyolefin-based resin, a polymethacrylic acid resin, a polycarbonate resin, or the like may be formed by a hot embossing method using a mold in which a flow path pattern is formed.
  • connection channel B, channel C, introduction part 5, reservoir part 6 and discharge part 7 When the surface of the reaction field A, connection channel B, channel C, introduction part 5, reservoir part 6 and discharge part 7 is subjected to water repellent treatment, it is coated with a hydrophobic polymer, or a toluene solution of octadodecyltrichlorosilane. Well-known methods such as chemical modification can be employed.
  • a material having water repellency for example, PTFE (polytetrafluoroethylene) may be used as the substrate.
  • reaction substances for example, proteins
  • an antibody that specifically reacts with the substance to be detected is immobilized.
  • Immobilization of proteins such as antibodies to the reaction field A involves physical adsorption, covalent bonding of functional groups on the surface of the reaction field A and amino groups of the protein, and protein uptake by a polymer material having a three-dimensional network structure. ) And the like can be employed.
  • the place where the protein that specifically reacts with the substance to be detected is immobilized is at least the wall in the direction of the centrifugal force (the inner wall farther from the center of rotation) of the reaction field. However, it is fixed to at least this wall surface, and is not intended to exclude fixing on all the wall surfaces of the reaction field.
  • a liquid containing a reactive substance for example, an antibody
  • the reactant is adsorbed and fixed on the wall surface.
  • it can fix to the whole surface of a groove
  • test liquid A liquid containing a substance to be detected (test liquid) is introduced from the introduction unit 5 into the microdevice.
  • the liquid is pushed out by an external pump connected to the introduction part 5 or is sucked by an external pump connected to the discharge part 7.
  • a tube or the like may be connected to the introduction unit 5 and a syringe pump may be used.
  • the test liquid introduced from the introduction part 5 is kept in the liquid storage part 6 by the micro open / close valve 8.
  • an albumin aqueous solution is flowed before introducing the test solution. (Non-specific adsorption-preventing membrane) is formed and then washed with a buffer solution.
  • a nonspecific adsorption preventing film is formed on the surface of the detection unit.
  • the detection substance contained in the test solution specifically reacts with the protein immobilized in the reaction field A, and an immobilized antibody-detection substance complex is formed.
  • the test solution introduced from the introduction unit 5 spreads thinly on the outer wall surface of the reaction field A due to the rotational centrifugal force, so that the diffusion distance of the detection substance to the immobilized antibody is shortened. , Reaction time is shortened.
  • test liquid will automatically collect and form droplets, which facilitates transportation by air, etc., and reduces the time required to discharge the liquid. It can be shortened.
  • the buffer solution is introduced into the microdevice and washed.
  • a solution containing the labeled antibody is introduced from the introduction part while rotating the microdevice.
  • the labeled antibody reacts specifically with the substance to be detected, and an immobilized antibody-target substance-labeled antibody complex is formed.
  • the solution containing the labeled antibody introduced from the introduction part 5 spreads thinly on the outer wall surface of the reaction field A (the wall surface on which the reactant is immobilized) by the centrifugal force of rotation. The diffusion distance to the substance to be detected is shortened and the reaction time is shortened.
  • the labeled antibody is obtained by binding a labeled substance suitable for the detection method to an antibody that specifically reacts with the substance to be detected.
  • a labeled substance for example, an enzyme or the like is used.
  • the antibody used as the labeled antibody may be a monoclonal antibody or a polyclonal antibody as long as it has an antigen recognition site different from the antibody immobilized on the reaction field A.
  • the solution containing the substance to be detected and the solution containing the labeled antibody may be mixed and reacted in advance and then introduced into the introduction part or separately as described above. If the antibody is immobilized on the whole or part of the reaction field and the amount of solution to be introduced is thin enough to stick to a part of the wall of the reaction field, or if the antibody is only on the wall in the direction of centrifugal force of the reaction field When immobilized, a complex of a substance to be detected and a labeled antibody is preferably used as a test solution to be introduced.
  • the liquid containing the labeled antibody may not spread well to the part where the complex of the antibody and the substance to be detected immobilized in the reaction field exists, This is because the reaction may be insufficient.
  • washing is performed by introducing a buffer solution.
  • the substrate solution of the labeled antibody enzyme is introduced from the introduction part while rotating the microdevice.
  • the substrate reacts with the enzyme to form a detectable substance.
  • the reaction time can be shortened by the same centrifugal force effect as described above.
  • the amount of the formed detectable substance is detected by a corresponding detection method.
  • the detection method include measurement of absorbance using an ultraviolet-visible spectrophotometer or a thermal lens, and electrochemical detection.
  • the position of the introduction part 5 may not be on the liquid reservoir part 6.
  • the introduction portion 5 may be provided in the direction of the rotation center (direction opposite to the centrifugal force direction) relative to the liquid reservoir portion 6.
  • FIG. 4 is a top view showing a schematic structure of the microdevice according to the present invention
  • FIG. 5 is a longitudinal sectional view of the microdevice according to the present embodiment along the xx ′ plane and the yy ′ plane.
  • the introduction portion 5 is provided not on the main substrate 1 but on the rotation center O, and the flow path D that connects the introduction portion 5 and the liquid reservoir portion 6 is provided. Same as 1.
  • the introduction part 5 since the introduction part 5 does not move by rotation and is always in the same place, it is easy to introduce the sample into the microdevice in a rotating state.
  • the shape of the flow path D is not particularly limited, and a circular shape, an elliptical shape, a semicircular shape, a rectangular shape, and the like can be arbitrarily selected as long as a test solution, a buffer solution, or the like can flow therethrough.
  • the size is about 1 ⁇ m ⁇ or more.
  • the material of the flow path D can select arbitrary materials.
  • the surface of the flow path D may be subjected to water repellent treatment.
  • water-repellent treatment When water-repellent treatment is applied, the liquid splashed on the wall surface of the flow path gathers instantaneously and becomes liquid droplets.
  • air or nitrogen gas is passed through the flow path, the liquid droplets are easily transported. It is preferable because time is shortened.
  • a test solution is introduced from the introduction part 5 of the microdevice shown in FIG. 4 (a) or FIG. 5 (a).
  • the test solution may be introduced into the rotating microdevice, but it need not be rotated in advance.
  • the liquid is pushed out by an external pump connected to the introduction part 5 or is sucked by an external pump connected to the discharge part 7.
  • a tube or the like may be connected to the introduction unit 5 and a syringe pump may be used.
  • the test liquid When the test liquid is introduced without rotation, the liquid may be introduced to the liquid reservoir 6 with an external pump or air and then rotated. Others are the same as in Embodiment 1-1.
  • FIG. 6 is a top view showing a schematic structure of the microdevice according to the present invention
  • FIG. 7 is a longitudinal sectional view of the microdevice according to Embodiment 1-3 along the xx ′ plane and the yy ′ plane.
  • the positional relationship between the reaction field A and the detection unit with respect to the direction of the rotation center is reversed from that in Embodiment 1-1.
  • the detection unit 4 and the discharge unit 7 are provided closer to the center of rotation than the reaction field A. There is no fear that the liquid is discharged from the discharge portion 7.
  • FIG. 8 is a top view showing a schematic structure of the microdevice according to the embodiment 1-4
  • FIG. 9 is a vertical cross section of the xx ′ plane and the yy ′ plane of the microdevice according to the embodiment 1-4.
  • FIG. The embodiment 1-4 is a combination of the embodiment 1-2 and the embodiment 1-3.
  • FIG. 10 is a top view showing a schematic structure of the microdevice according to the first to fifth embodiments
  • FIG. 11 is a longitudinal section through the xx ′ plane and the yy ′ plane of the microdevice according to the first to fifth embodiments.
  • FIG. The present embodiment 1-5 is the same as the above embodiment except that a flow path E serving as an introduction section and a flow path D connecting the flow path E and the liquid reservoir section 6 are provided inside the reaction field A.
  • the entire flow path E plays the role of the introduction part, so that the sample can be easily introduced into the rotating substrate.
  • the flow path E opens in the upper surface direction of the main substrate 1.
  • the shape of the flow path E is not particularly limited, and a circular shape, an elliptical shape, a semicircular shape, a rectangular shape, or the like can be arbitrarily selected as long as a test solution, a buffer solution, or the like can flow therethrough.
  • the size is about 1 ⁇ m ⁇ or more.
  • the channel D is for connecting the channel E and the liquid reservoir 6.
  • the shape of the flow path D is not particularly limited, and a circular shape, an elliptical shape, a semicircular shape, a rectangular shape, and the like can be arbitrarily selected as long as a test solution, a buffer solution, or the like can flow therethrough.
  • the size is about 1 ⁇ m or more.
  • the surface of the channel E or the channel D may be subjected to water repellent treatment.
  • water-repellent treatment When water-repellent treatment is applied, the liquid splashed on the wall surface of the flow path gathers instantaneously and becomes liquid droplets.
  • air or nitrogen gas is passed through the flow path, the liquid droplets are easily transported. It is preferable because time is shortened.
  • the test solution is introduced into the flow path E, which is the introduction portion shown in FIG. 10A, while rotating the microdevice.
  • the test solution may be introduced directly into the flow path E with a syringe or the like.
  • the introduced test solution is thinly attached to the side surface of the flow path C where the centrifugal force is applied by the rotational centrifugal force, but gradually moves to the liquid reservoir 6 through the flow path D.
  • the micro open / close valve is opened, and the liquid is moved to the reaction field A where the antibody and the like are immobilized by centrifugal force. Therefore, there is no need to connect an external pump or the like. Subsequent operations are the same as those in Embodiment 1-1.
  • the position of the detection unit 4 can be changed as in Embodiments 1-3 and 1-4.
  • the detection unit 4 is provided closer to the rotation center than the reaction field A, so that the liquid is discharged from the discharge unit 7 by the centrifugal force of rotation. There is no fear.
  • FIG. 12 is a diagram illustrating a schematic structure of the microdevice according to the first to sixth embodiments, in which FIG. 12 (a) is a top view, FIG. 12 (b) is a longitudinal sectional view along the yy ′ plane, and FIG. c) is a longitudinal sectional view of the xx ′ plane.
  • a hole H is provided at the center of the main substrate (a virtual axis serving as the rotation center is located in this hole H), and the planar shape of the reaction field A is polygonal. Except for being a quadrangular shape in the figure, it is the same as that of Embodiment 1-1 above. Even if the substrate configuration or the channel configuration of the microdevice is changed as in this configuration, the same effects as those of the embodiment 1-1 can be obtained.
  • FIG. 13 is a top view showing a schematic structure of the microdevice according to the second embodiment
  • FIG. 14 is a longitudinal sectional view of the microdevice according to the present embodiment.
  • the detection unit 4 is provided on the main substrate 1
  • the connection flow path B is substantially parallel to the centrifugal force direction
  • the micro opening / closing valve 10 and the micro opening / closing are on the connection flow path B and before the discharge part.
  • a valve 11 is formed.
  • the micro open / close valves 10 and 11 shown in FIG. 13 are composed of gold electrodes or the like.
  • the micro open / close valves 10 and 11 are previously made hydrophobic so that the liquid does not flow due to the centrifugal force caused by rotation, and are made hydrophilic by applying a voltage when it is desired to flow the liquid.
  • the test solution and the labeled antibody mixed in advance are introduced from the introduction unit 5 and moved to the liquid storage unit 6.
  • an electric current is passed through the micro open / close valve 9 to open the valve, and the test solution is sent to the reaction field A by the centrifugal force of rotation, and the centrifugal force of the reaction field A Apply the liquid thinly to the wall where it works most. Since a reactive substance such as an antibody is fixed at least on the wall surface, the target substance in the test solution reacts with the reactive substance. Thereafter, a current is passed through the micro open / close valve 10 to discharge the liquid from the discharge unit 7. The remaining items are the same as those in the embodiment 1-1.
  • micro open / close valve 10 is of a type that can be used only once, it is necessary to mix the test solution and the labeled antibody in advance, but if not, they can be introduced sequentially. .
  • the introduction part 5 is provided closer to the rotation center than the liquid reservoir part 6 as shown in FIG. 3, or the introduction part is provided on the rotation center as in the embodiment 1-2.
  • a flow path E serving as an introduction portion can be provided.
  • FIG. 15 is a top view showing a schematic structure of a microdevice according to the present invention. By adopting this structure, a plurality of measurements and reactions can be performed simultaneously.
  • This microdevice is provided with a plurality of introduction parts 5, a liquid reservoir part 6, a reaction field A, a connection flow path B, a flow path C, a detection part 4, a discharge part 7, and a plurality of micro open / close valves 9, 10 and 11, respectively. Yes.
  • This micro device is used in the same way as in the second embodiment, but has an advantage that a plurality of measurements and reactions can be performed at one time on one device.
  • the microchip device according to the embodiment 4-1 is characterized in that a microchip smaller than the rotating disk is placed on a rotatable rotating disk. That is, the microchip device according to Embodiment 4-1 includes a rotating disk for rotating the microchip, and a microchannel system including a flow path system having various elements such as a reaction field, an introduction unit, a liquid reservoir, and a reactant. The chip is divided, and one or two or more microchips are arranged and fixed at a predetermined position on the turntable.
  • the microchip that is the main component of this apparatus may be substantially the same as the microdevice described in the above embodiments 1-1 to 1-4, 2, and 3 except that the center of rotation is not provided.
  • the system structure may be exactly the same.
  • microchip apparatus having a structure in which a microchip having a turntable and a flow path system is divided, by arranging a large number of microchips on the turntable, a large number of reactions and measurements can be performed at once. There is an advantage that the analysis can be continuously performed by replacing the microchip on the turntable.
  • FIG. 16 is a top view showing a schematic structure of the microchip device according to the embodiment 4-1.
  • the microchip device shown in FIG. 16 (a) six recesses having an outer shape slightly smaller than the outer shape of the microchip are formed at equal positions on the turntable 12 having the rotation center Q. It is structured to fit a microchip.
  • the microchip fixing method is not limited to the fitting method described above.
  • a method that is easy to remove and is not damaged by rotation is preferable.
  • a method can be used in which a mark is attached to a fixed position, a microchip is placed on the portion, and the clip is fixed using an elastic member such as a clip, a screw, or a rubber band.
  • the number of microchips arranged on the turntable is not limited to six. It may be one or more.
  • the size, shape, and material of the turntable 12 are not particularly limited. What is necessary is just to set the rotation speed of the turntable 12 suitably.
  • this apparatus includes an introduction unit 5 for introducing a test solution and a buffer solution onto a microchip 100, a liquid reservoir unit 6 for measuring a predetermined amount of the test solution, Reaction field A in which a protein that specifically binds to the detection substance is immobilized, flow path C connecting the liquid reservoir 6 and the reaction field A, detection unit 4 for performing the detection, connecting flow connecting the reaction field A and the detection unit 4 A path B and a discharge unit 7 are provided.
  • the shape of the flow path substrate 100 is not particularly limited, and the thickness is preferably about 0.1 mm to 5 mm.
  • the reaction field A has a width of about 1 ⁇ m to 1 mm and a depth of about 1 ⁇ m to 1 mm.
  • the cross-sectional shape of the channel is not particularly limited, and a circular shape, an elliptical shape, a semicircular shape, a rectangular shape, or the like can be arbitrarily selected as long as a test solution, a buffer solution, or the like can flow therethrough.
  • the planar shape of the reaction field is a line segment, and when it is placed on the main substrate, the angle formed with the direction of the centrifugal force is designed to be within a specified range.
  • connection channel B connects the reaction field A and the detection unit 4.
  • the cross-sectional shape of the connection flow path B is not particularly limited, and a circular shape, an elliptical shape, a semicircular shape, a rectangular shape, or the like can be arbitrarily selected as long as the test solution, the buffer solution, or the like can flow therethrough.
  • the size is about 1 ⁇ m ⁇ or more.
  • the introduction unit 5 is a through-hole provided in the lid substrate that is superimposed on the flow path substrate, and is used for introducing a test solution or a buffer solution into the microchip.
  • the planar shape of the introduction part 5 is not particularly limited, and may be a circle, an ellipse, a polygon, or any other shape.
  • the size is such that the cross-sectional width is about 1 ⁇ m ⁇ or more.
  • the liquid reservoir 6 is for introducing a predetermined amount of a test solution, a buffer solution, or the like into the flow path of the microchip.
  • the planar shape of the liquid reservoir 6 is not particularly limited, and may be a circle, an ellipse, a polygon, or any other shape.
  • the flow path C connects the liquid reservoir 6 and the reaction field A.
  • the cross-sectional shape of the flow path C is not particularly limited, and a circular shape, an elliptical shape, a semicircular shape, a rectangular shape, or the like can be arbitrarily selected as long as a test solution, a buffer solution, or the like can flow therethrough.
  • the size is about 1 ⁇ m ⁇ or more.
  • Detecting unit 4 is a place where detection is performed. For example, when detection is performed using an ultraviolet-visible spectrophotometer, a fluorophotometer, a thermal lens meter, or the like installed outside the apparatus, it is not necessary to provide specific means in this portion. However, it is preferable not to form anything that hinders detection. In addition, when electrochemical detection is performed, an electrode is provided in this portion.
  • the shape and size of the detection unit are not particularly limited.
  • the discharge unit 7 is for discharging the test solution, the buffer solution, and the like out of the microchip, and is open on the lateral surface of the flow path substrate.
  • the shape of the discharge unit 7 is not particularly limited, and may be a circle, an ellipse, a polygon, or any other shape.
  • the size is such that the cross-sectional width is about 1 ⁇ m ⁇ or more.
  • the reaction field A, the connection flow path B, the flow path C, the introduction part 5, the liquid reservoir part 6, and the discharge part 7 may be subjected to water repellent treatment.
  • water repellent treatment When water repellent treatment is not applied, the liquid remains on the reaction field and the wall surface of the flow path when rotation is stopped, but when water repellent treatment is applied, the liquid splashes on the wall surface of the flow path.
  • the liquid gathers instantaneously to form a droplet and air or nitrogen gas is passed through the flow path, the droplet is easily transported, which is preferable because the transport time of the liquid is shortened.
  • the tip in order to fix to the wall surface in the direction of centrifugal force, for example, the tip is placed so that the wall surface is downward (in the direction of gravity), and a solution containing the antibody is introduced into the reaction field, whereby the antibody is attached to the wall surface. Adsorb and fix. Moreover, it is fixed to all the wall surfaces of the groove by filling and adsorbing the solution containing the antibody in the reaction field without attaching the lid substrate.
  • the test solution is introduced from the introduction unit 5 shown in FIG.
  • the liquid is pushed out by an external pump connected to the introduction part 5 or is sucked by an external pump connected to the discharge part 7.
  • a tube or the like may be connected to the introduction unit 5 and a syringe pump may be used.
  • the microchip is tilted so that the introduced test liquid is not discharged from the discharge port.
  • an albumin aqueous solution is flowed before introducing the test solution. (Non-specific adsorption-preventing membrane) is formed and then washed with a buffer solution. In particular, it is important to form a nonspecific adsorption preventing film on the surface of the detection unit.
  • the microchip into which the test solution is introduced is applied to the rotating disk 12, the direction of the centrifugal force generated when the rotating disk is rotated about the rotation center Q, and the reaction field wall surface. Positioning is such that the angle formed with the tangent at the portion where the centrifugal force acts most is always 45 to 90 ° (in this embodiment, the angle formed with the tangent is 90 ° in the center of the reaction field A). Install.
  • test solution introduced from the introduction unit 5 and collected in the liquid reservoir spreads thinly on the outer wall surface of the reaction field A by the rotational centrifugal force. The diffusion distance is shortened and the reaction time is shortened.
  • the subsequent method is the same as in Embodiment 1-1.
  • FIG. 17 shows a microchip device according to Embodiment 4-2.
  • the microchip device according to the embodiment 4-2 is the above except that a hole H is provided at the center of the rotatable turntable (a virtual axis serving as the rotation center is located in the hole H). This is the same as in Embodiment 4-1. With this configuration, the same effect as in the above embodiment 4-1 can be obtained.
  • Example 1 This example corresponds to the embodiment 1-1.
  • a reaction field A having a width of 400 ⁇ m, a depth of 50 ⁇ m, and a circumferential shape in plan view was formed on a planar circular substrate (main substrate) 1 having a diameter of 4 cm and a thickness of 1 mm.
  • the introduction part 5 and the discharge part 7 are formed on the acrylic plate (cover substrate 3) having a thickness of 0.5 mm at a position corresponding to the overlapping part with the reaction field A of the main substrate 1, and these are shown in FIG. )
  • cover substrate 3 having a thickness of 0.5 mm at a position corresponding to the overlapping part with the reaction field A of the main substrate 1, and these are shown in FIG.
  • the antibody is immobilized on three surfaces other than the top surface among the four wall surfaces constituting the reaction field. Further, since the planar shape of the reaction field is a circle centered on the rotation center O, the angle formed by the reaction field and the direction of centrifugal force is 90 °.
  • cryj-1 is an allergen contained in cedar pollen.
  • An albumin aqueous solution was allowed to flow through the microdevice to form an albumin film (non-specific adsorption preventing film) on the wall of the reaction field, and then washed with a buffer solution.
  • Cryj-1 was adjusted to a concentration of 100 ng / mL in a phosphate buffer solution adjusted to pH 7.4 and mixed with a FITC (fluorescein) labeled anti-cryj-1 antibody solution.
  • FITC fluorescein
  • the mixed solution was introduced into the device using a syringe pump to form an antibody-antigen-FITC labeled antibody complex on the surface of the reaction field A.
  • the rotation of the microdevice was stopped, and air was sent from the introduction unit 5 shown in FIG. 20, and the mixed solution of the test solution and the fluorescently labeled antibody was discharged from the discharge unit 7. Subsequently, the inside of the device was washed by flowing a buffer solution into the microdevice.
  • reaction field A of the microdevice was observed with a fluorescence microscope.
  • the fluorescence intensity of the reaction field A when the microdevice was rotated was about 5 times that when the microdevice was not rotated.
  • Example 2 This example corresponds to Embodiment 1-6.
  • a reaction field A having a width of 400 ⁇ m, a depth of 50 ⁇ m, and a rectangular shape in plan view was formed on the main substrate 1 having a diameter of 4 cm, a thickness of 1 mm, and a hole H provided in the central portion.
  • the introduction part 5 and the discharge part 7 were formed in the part which overlaps with the reaction field A of the main board
  • An albumin aqueous solution was allowed to flow through the microdevice to form an albumin film (non-specific adsorption preventing film) on the wall surface of the reaction field A, and then washed with a buffer solution and discharged from the discharge unit 7.
  • Cryj-1 was contained in a phosphate buffer solution at pH 7.4 at a concentration of 100 ng / ml, and FITC (fluorescein) -labeled anti-cryj-1 antibody was mixed therewith.
  • the mixed solution was introduced into the device using a syringe pump to form an antibody-antigen-FITC labeled antibody complex on the surface of the reaction field A.
  • the rotation of the microdevice was stopped, air was sent from the introduction unit 5, and the mixed solution of the test solution and the fluorescently labeled antibody was discharged from the discharge unit 7. Subsequently, the inside of the device was washed by flowing a buffer solution into the microdevice.
  • reaction field A of the microdevice was observed with a fluorescence microscope.
  • Example 3 This embodiment corresponds to Embodiment 4-2. As shown in FIG. 17A, four concave portions having a width of 1.9 cm and a length of 0.5 mm were formed on the rotating disk 12 having a diameter of 12 cm, a thickness of 1.2 mm, and a hole H provided in the central portion. .
  • a linear reaction field A having a width of 400 ⁇ m, a length of 1.5 cm, and a depth of 50 ⁇ m is formed on a substrate having a width of 2 cm, a length of 3 cm, and a thickness of 1 mm.
  • the flow path C which connects the reaction part A with the part 6 and the liquid reservoir part was formed, and the microchip was produced.
  • An anti-cryj-1 antibody was immobilized on the reaction field A of this microchip by a known method.
  • An albumin aqueous solution was allowed to flow through the microchip to form an albumin film (non-specific adsorption preventing film) on the wall surface of the reaction field A of the microchip, and then washed with a buffer solution.
  • Cryj-1 was contained in a phosphate buffer solution at pH 7.4 at a concentration of 100 ng / ml, and FITC (fluorescein) -labeled anti-cryj-1 antibody was mixed therewith.
  • the above mixed solution was introduced into the microchip using a syringe pump. Thereafter, as shown in FIG. 17A, the microchip is generated when the rotating disk 12 is rotated around the rotation center (which is a virtual axis located at the central portion of the hole H).
  • the angle formed between the direction of the centrifugal force and the tangent at the portion of the reaction field wall where the centrifugal force acts most is always 45 to 90 ° (in this embodiment, the angle formed between the tangent and the center of the reaction field A). was positioned so as to be 90 °.
  • the rotating disk was rotated to form an antibody-antigen-FITC labeled antibody complex on the reaction field A surface of the microchip.
  • the rotation of the rotating disk was stopped, air was sent from the introduction unit 5, and the mixed solution of the test solution and the fluorescently labeled antibody was discharged from the discharge unit 7. Subsequently, the inside of the device was washed by flowing a buffer solution into the microchip apparatus.
  • reaction field A of the microchip was observed with a fluorescence microscope.

Abstract

【課題】微量な試料液量でもって迅速かつ高感度に分析することのできるマイクロデバイスを提供する。 【解決手段】回転基板と、回転基板に設けられた反応場と、反応場に液を導入する導入部と、を備えるマイクロデバイスであって、回転基板を回転させたときに生じる遠心力方向と、反応場の壁面のうち最も遠心力が大きく作用する部分における接線とのなす角が、常に45~90°であることを特徴とする。

Description

マイクロデバイス及びマイクロチップ装置並びにこれらを用いた分析方法
 本発明は、被検液に含まれる特定の物質である検体(例えば、アレルゲン、アディポネクチン、サイトカインなど)を検出する分析用マイクロデバイス及びこれを用いた分析方法に関する。
 抗原抗体反応を用いた免疫分析法は、医療や生化学分野、アレルゲンなどの測定分野などにおける分析・計測方法として有用である。しかし、従来の免疫分析法は、分析に長時間を要すると共に操作が煩雑である、等の問題を有している。
 このような中、半導体の微細加工技術などを応用したマイクロ化技術(Micro Electro-Mechanical System,MEMS)が開発され、タンパク質、遺伝子などの生化学分野における分析においては、抗原抗体反応を用いるマイクロ化技術(Micro Total Analytical System,μ-TAS)が急速に発展している。
 例えば特許文献1には、基板にマイクロオーダーの流路(反応場)を形成し、このマイクロ流路に抗体等を固定化することにより、分析時間の短縮化や分析操作の簡略化を図るマイクロデバイス技術が提案されている。
特開2007-57378号公報
 特許文献1は、マイクロ流路内に、タンパク質固定部と、そのタンパク質固定部に固定された抗体と、を備えるマイクロデバイスに関する技術である。この技術によると、反応場(タンパク質固定部)を小さくでき、しかも反応表面積を大きくできるので、装置の小型化、チップ構造の簡便化とともに、反応に要する時間を大幅に短縮することができるとされる。
 この技術にかかるマイクロデバイスの構造を図21に示し、この図に基づいてこの技術を説明する。図21に示すように、このマイクロデバイスはガラスまたはプラスチックなどの透光性を有する材料からなる基板100表面に、流路101、導入部102、液溜め部103、排出部104が形成されている。さらに、流路101には、タンパク質固定部105が形成されている。
 タンパク質固定部105は、流路の内壁に、図22に示すようなナノ構造の凹凸形状である微小凹凸110が形成されている。この微小凹凸110は、被検出物質の検出のためにタンパク質固定部に照射される光の波長より短い厚み範囲内とした構造である。このタンパク質固定部に、被検出物質と特異的に反応するタンパク質を、物理吸着や、タンパク質が有するアミノ基との共有結合を用いた固定などの周知の固定方法で固定する。
 このデバイスを用いる検出方法を、図23を用いて説明する。まず、被検出物質120を含む溶液と、光学的に検出可能な標識物質121が被検出物質と結合する抗体122に結合された標識抗体123を含む液体と、を混合して反応させ、被検出物質120と標識抗体123とが反応した免疫複合体124(標識抗体と被検出物質との反応結合物)を形成させる。
 この後、上記の免疫複合体124を含む混合液を、図21の導入部102から外部ポンプを用いて注入し、流路に流通させて、図23に示すように、タンパク質固定部105に固定された抗体125と反応させ、タンパク質固定部105に、抗体125-被検出物質120-標識抗体123からなる複合体126を形成させる。
 この後、必要であれば未反応の免疫複合体124や標識抗体123の除去のために、洗浄液を流路に流通させる。
 この後、タンパク質固定部に結合した免疫複合体124の標識物質121を、標識物質の種類に応じて、紫外可視分光分析、蛍光分析、化学発光分析、熱レンズ分析などの所定の分析機器を用いて、標識物質の光吸収、蛍光、発光等を検出する。これにより、被検液中の被検出物質120の量を知ることができる。
 本発明者は、マイクロ流路を用いた分析用デバイスについて種々の検討を行った。その結果、次のような課題があることを知った。
 (1)流路表面に微小凹凸を持つタンパク質固定部を形成したマイクロデバイスは、反応可能面積を増大させることができるが、流路に固定された抗体と、被検出物質(または被検出物質と標識抗体の複合体)との反応は、抗体と被検出物質との距離の大きさ、すなわち被検出物質が反応するのに必要な拡散距離により大きく影響される。つまり、拡散距離が大きい場合には、流路に固定された抗体は、抗体の近傍を流れる被検出物質としか反応することができない。この結果、実際の被検出物質濃度よりも薄い濃度の被検出物質を測定している場合と同様の結果となる。それゆえに、上記従来技術にかかるマイクロデバイスにおいては、検出感度を十分に向上させることができないので微量分析をすることができない。この対策として、流路幅を狭くしたり、流路深さを浅くしたりすることにより、拡散距離を小さくすることが考えられるが、この方法は、さらに精密な加工技術必要とするため技術的困難性が増すとともに、煩雑な製造プロセスを必要とするため製造コストの大幅な上昇を招く。よって実用的ではない。
 (2)また、被検出物質が抗体の固定された部分に達した時に、液の流れを止めることにより、流路表面に固定された抗体と被検出物質(または被検出物質と標識抗体の複合体)との反応機会を増加させる方法が知られている。しかし、この方法においても、流路に固定された抗体と被検出物質との距離が大きくなると(例えば50nm程度以上になると)、被検出物質が抗体にたどり着くまでにまでに時間がかかるので、反応所要時間が大きくなるという問題がある。
 本発明は、以上のような問題点を解決するためになされたものである。本発明の課題は、短時間で高感度に微量分析が可能な分析用マイクロデバイスを提供することにある。
 上記課題を解決するために本発明は、マイクロデバイスを回転させ、発生する遠心力により拡散距離を小さくする手段を採用する。
 上記課題を解決するためのマイクロデバイスにかかる第1の発明は、回転基板と、前記回転基板に設けられた反応場と、前記反応場に液を導入する導入部と、を備え、前記回転基板を回転させたときに生じる遠心力方向と、前記反応場の壁面のうち最も遠心力が大きく作用する部分における接線とのなす角が常に45~90°であることを特徴とする。
 この構成では、反応場の壁面のうち最も遠心力が作用する部分は、回転基板を回転させたときに生じる遠心力の方向(遠心力方向)と常に45~90°の角度を持つように構成されている。したがって、上記マイクロデバイスの反応場に、目的物質を含むサンプル液を、反応場の体積よりも少ない量導入し、上記マイクロデバイスを回転させると、遠心力の作用により少なくとも反応場の壁面の最も遠心力が作用する部分にサンプル液が押し付けられる。これにより、当該壁面とサンプル液との距離(拡散距離)が小さくなる。したがって、反応速度や検出感度が飛躍的に高まると共に、使用するサンプル液の使用量を減らすことができる。すなわち、高感度微量分析が可能となる。
 反応場は、反応を行う場であって、例えば固定化反応、抗原抗体反応、酵素基質反応等が行われる。
 ここで、遠心力方向とは、回転により生じる遠心力の方向を意味し、回転基板の回転中心から反応場方向に伸ばした無数の半直線群(最大360°を埋める半直線となる)で表される方向である。
 なお、回転基板は、図12に示すように、中央部分に穴が設けられた形状であってもよい。
 また、回転中心は、マイクロデバイスの回転基板にあらかじめ定まっているものである。この回転中心は、おおむね回転基板の中心部分に位置するが、図19(c)に示すように、回転基板の中心以外にあってもよく、また、回転基板に設けられた穴部分に、回転中心となる仮想軸が存在してもよい。
 なお、本発明における接線とは、次のように定義される。
 上記無数の半直線群のうち任意の直線が回転中心から遠い側の内壁面と交わる点を交点とする。
 交点における内壁面の形状が、円弧状(曲線状)であるときは、数学的定義に従う。
 交点における内壁面の形状が、直線状であるときは、図19(a)に示すように、接線は当該直線とする。
 交点における内壁面の形状が、2つの直線が交わる形状であるときは、図19(b)に示すように、接線は、回転中心から最も遠心力が働く方向(遠心力方向)に伸ばした直線に垂直な直線とする。
 図19(c)に示すように、遠心力方向に液体が流れることが可能な反応場である場合、接線は、遠心力方向に伸ばした直線と交わる壁面の形状によって上記方法により定まるものである。
 ここで、「接線とのなす角が常に45~90°」とは、上記無数の半直線群のうち任意の直線が回転中心から遠い側の内壁面と交わる点(交点)における接線と、当該任意の直線との角度が45~90°であることを意味する。
 なお、上記“回転中心から遠い側の内壁面”に「反応場の壁面のうち最も遠心力が大きく作用する部分」が存在することになり、この内壁面は遠心力を作用させたとき液が移動する方向に沿った壁面である。
 上記構成において、少なくとも前記反応場の壁面のうち最も遠心力が大きく作用する部分には、反応物質が固定されている構成とすることができる。
 この構成によると、サンプル液として反応物質と特異的に反応する被検出物質を含む液を用いる場合に、被検出物質を含む液と反応物質との拡散距離を小さくできる。
 反応物質を効率よく用い、且つ、被検出物質と反応物質とを効率よく反応させるためには、最も遠心力が作用する反応場壁面部分を中心にして一定の広がりをもった範囲に反応物質を固定することが好ましい。この広がりとしては、流れ方向に垂直な方向から反応場を切断した場合における内側断面線(反応場内側の輪郭線)の全長を100とするとき、反応物質を固定する範囲を前記最も遠心力が作用する反応場壁面部分を中心にして、内側断面線の75%以下、好ましくは5%~40%、より好ましくは10%~30%とする。
 例えば反応場断面が矩形である場合、反応場の遠心力方向の壁面にのみ反応物質を固定するか、または凹の3面に固定する。ただし、反応場壁面の全面に固定化されていてもよいことは勿論である。凹の3面への固定や、反応場壁面の全面への固定は、これ以外に比べて反応物質の使用量が増大するというデメリットがあるが、半面、固定化作業を単純化できるというメリットがある。マイクロデバイスを回転させながら反応物質を含む液を流して、反応場の遠心力方向の壁面に固定する構成を採用してもよい。
 また、最も遠心力が大きく作用する部分における接線とのなす角としては、遠心力を一層効果的に利用するために、好ましくは60~90°とし、より好ましくは75~90°、さらに好ましくは、80~90°とする。
 また、上記反応物質としては、タンパク質(抗体等)、ペプチド、アミノ酸、インプリントポリマー等の公知の材料を用いることができる。
 上記構成において、被検出物質の量を検出する検出部と、反応場と検出部とをつなぐ接続流路と、をさらに備える構成とすることができる。
 この構成では、検出を行う場を反応場とは異なる部分とすることができるので、検出方法の多様化を図れる。
 また、上記構成において、接続流路は、回転基板の基板面に略垂直に設けられているとすることができる。
 この構成を採用すると、検出部を、反応を行う反応場とは隔離された場所に配置することができるので、検出の効率が高まる。
 上記の場合、遠心力によって検出部に液が流れることを防止するために、接続流路にせき止め部を設けたり、検出部を反応場よりも遠心力方向とは逆方向(回転中心側)に位置させたりすることが好ましい。
 また、検出部を、反応場よりも回転中心から遠い方に位置させてもよい。この場合、接続流路を遠心力方向に略平行に形成することが好ましく、遠心力によって検出部に液が流れることを制御するために、接続流路に開閉バルブを形成することが好ましい。また、検出部から流れ出ることを制御するために、検出部の出口に開閉バルブを形成することが好ましい。この構成では、開閉バルブと遠心力との作用により検出部に液を出し入れすることができる。よって、送液のための動力源を必要としないので、デバイス構成を簡略化できる。
 反応場の回転基板に対する平面形状は、より効果的に遠心力を作用させる観点から、回転中心を中心とした円弧状又は円周状、あるいは直線状であることが好ましい。
 さらに導入部と反応場との間に、サンプル液(例えば、被検出物質を含む被検液)を貯蔵する液溜め部を設け、遠心力が作用したときに液溜め部から反応場に液が流れる構成とすることが好ましい。この構成であると、回転前に被検液の注入を行っておけば、回転させたときに液が反応場に流れるので、作業効率がよい。この構成においては、液溜め部と反応場との間に、開閉バルブが設けることがより好ましい。また、標識付き検出物質を含む液、基質を含む液等をそれぞれ貯蔵する複数の液溜め部を設けてもよい。
 上記マイクロデバイスにおいては、回転基板が、反応場用の溝が形成された主基板と、導入部が形成された蓋基板と、を含む基板群が重ね合わされてなるものとすることができる。
 また、上記回転基板が、導入部が形成された蓋基板と、反応場用の溝及び接続流路用の貫通孔が形成された主基板と、検出部が形成された検出基板と、を含む基板群が重ね合わされてなるものとすることができる。
 これらの構成のマイクロデバイスは作製が容易である。
 なお、上記基板群には、上記で記載したもの以外の基板、例えば検出に用いるICチップを組み込んだ基板など、をさらに含めることができる。また、上記主基板自体に検出部、接続流路等を設けてもよい。
 上記課題を解決するためのマイクロチップ装置にかかる第2の発明は、回転盤と、前記回転盤の回転中心に対して位置決めされて前記回転盤に固定されたマイクロチップと、を備えるマイクロチップ装置であって、前記マイクロチップは、反応場と、前記反応場に液を導入する導入部と、を少なくとも備え、前記回転盤に前記マイクロチップが固定された状態で、前記回転盤を回転させたときに生じる遠心力の方向と、前記反応場の壁面のうち最も遠心力が大きく作用する部分における接線とのなす角が常に45~90°であることを特徴とする。
 第2の発明は、反応場構造を作り込んだマイクロチップと、マイクロチップに遠心力を与える回転盤とを分け、回転盤上の所定位置に回転中心に対して位置決めしてマイクロチップを固定させる構造である点において、上記第1の発明と異なる。これ以外の要素については、上記第1の発明と同様であり、第2の発明においても、上記第1の発明と同様の作用効果が得られる。更に第2の発明においては、回転盤上に多数のマイクロチップを配置することにより同時に多数の分析行うことができ、また順次マイクロチップを取り替えることにより、効率よく分析を遂行することができるという効果が得られる。
 なお、回転盤は、上記第1の発明における回転基板と同様に、図17に示すような中央部分に穴が設けられた形状であってもよい。
 なお、「マイクロデバイス」と「マイクロチップ」とを使い別けることにより、第1の発明と第2の発明とを明確に区別しているが、反応場構造の面では、第2の発明におけるマイクロチップと第1の発明にかかるマイクロデバイスは共通性を有する。
 また、回転盤の回転中心は、上記第1の発明における回転基板と同様である。
 上記第2の発明の構成においては、位置決めを容易にするための手段や遠心力により変動しない固定手段を設けるのがよい。このような手段は特に限定されるものではなく、公知のものを広く利用できる。例えば、基盤面にマイクロチップに嵌合させる方式や、固定位置にマークを付しておき、当該部分にマイクロチップを載置し、クリップ、ネジ、或いはゴムバンドなどで固定する方式としてもよい。
 上記第2の発明構成において、マイクロチップは、被検出物質の量を検出する検出部と、反応場と検出部とをつなぐ接続流路と、をさらに備えていてもよい。この構成による効果は、上記第1の発明と同様である。
 上記第2の発明構成においては、好ましくは反応場の回転盤面に対する平面形状を直線状とする。小型のマイクロチップを配置する第2の発明においては、反応場の平面形状を、回転中心を中心とする円弧状、円周状にすることが困難である場合があるが、直線状とするのは容易である。
 上記第2の発明においても、上記第1の発明と同様に、導入部と反応場との間に、被検出物質を含む液を一時的に貯蔵する液溜め部を備えていてもよい。開閉バルブについても同様である。
 上記第1又は第2の発明においては、反応場の壁面に、撥水処理が施されている構成とすることができる。
 反応場表面に撥水処理を施すと、反応場の壁面に飛散した滴が瞬時に集まり液滴となるので、好ましい。液滴は、反応場に空気や窒素ガスなどを通すことによって簡単に移動(輸送)させることができる。
 上記した各種のマイクロデバイスまたはマイクロチップ装置を用いる、分析方法にかかる第3の発明は、目的物質を含む液を、前記導入部からマイクロデバイス又はマイクロチップの内部に導入する導入工程と、前記マイクロデバイスを回転させる回転工程と、を備え、前記目的物質を含む液の導入量を、前記反応場の体積よりも小さくすることを特徴とする。
 上記分析方法によると、回転工程でマイクロデバイス又はマイクロチップを回転させると、遠心力により目的物質を含む液が反応場の遠心力方向の壁面に押し付けられる。これにより、目的物質を含む液と反応場の最も遠心力が作用する壁面との拡散距離が小さくなるので、反応速度や検出感度が飛躍的に高まると共に、目的物質を含む液量が少ない場合であっても確実に反応を行わせることができる。よって、微量分析が可能となる。
 この分析方法では、目的物質を含む液の導入量を、反応場の体積よりも小さくするが、目的物質を含む液の導入量としては、例えば回転遠心力により、反応場壁面に、被検液が薄くはりつく程度(例えば10μm~50μmの厚み)であることが好ましい。
 また、目的物質との関係において望ましい液量がある場合には、目的物質に応じて、反応場、流路や検出部の大きさ、導入液量を調節する。なお、反応場壁面にタンパク等が固定されている場合、反応場壁面の全面に液がはりつく必要はなく、当該反応場壁面の一部に液が薄くはりつく程度の液量であってもよいことは勿論である。
 導入する液量が反応場壁面の一部に薄くはりつく程度の量である場合や、反応物質が反応場壁面の一部のみに固定化されている場合には、導入する目的物質を含む液として、被検出物質と標識抗体とをあらかじめ混合した液(被検出物質と標識抗体とが反応して複合体となったもの)を用いるのが好ましい。なぜなら、導入液量や反応領域が限られている場合には、被検出物質と標識抗体とを別々に導入すると、標識抗体を含む液が、固定化された反応物質と被検出物質との複合体の存在する部位に行着かないことがあり、反応が不十分になる恐れがあるからである。
 分析方法にかかる第4の発明は、回転盤に、少なくとも反応場と前記反応場に目的物質を含む液を導入する導入部とを有するマイクロチップを、回転盤の回転中心に対して位置決めして固定する固定工程と、前記固定工程の後、前記導入部から目的物質を含む液を導入する導入工程と、前記導入工程の後、前記回転盤を回転させる回転工程と、を備える分析方法であって、前記固定工程は、前記回転盤を回転させたときに生じる遠心力の方向と、前記反応場の壁面のうち最も遠心力が大きく作用する部分における接線とのなす角が常に45~90°となるように配置して固定する工程であり、前記目的物質を含む液の導入量を、前記反応場の体積よりも小さくする、ことを特徴とする分析方法である。
 この分析方法により、上記第3の発明と同様の効果が得られる。
 上記に説明したように、本発明によれば、微量な液量でもって分析でき、目的物質に対する検出感度が高く、しかもごく短時間に高精度な分析を行うことができるマイクロデバイス及びこのような装置を提供することができる。
図1(a)は、実施の形態1-1にかかるマイクロデバイスの回転基板の上面図であり、図1(b)は、実施の形態1-1にかかるマイクロデバイスの検出基板の上面図である。 図2(a)は、実施の形態1-1にかかるマイクロデバイスのx-x’面断面図であり、図2(b)は、実施の形態1-1にかかるマイクロデバイスのy-y’面断面図である。 図3は、実施の形態1-1の導入部の位置の変更例を示す上面図である。 図4(a)は、実施の形態1-2にかかるマイクロデバイスの回転基板の上面図であり、図4(b)は、実施の形態1-2にかかるマイクロデバイスの検出基板の上面図である。 図5(a)は、実施の形態1-2にかかるマイクロデバイスのx-x’面断面図であり、図5(b)は、実施の形態1-2にかかるマイクロデバイスのy-y’面断面図である。 図6(a)は、実施の形態1-3にかかるマイクロデバイスの回転基板の上面図であり、図6(b)は、実施の形態1-3にかかるマイクロデバイスの検出基板の上面図である。 図7(a)は、実施の形態1-3にかかるマイクロデバイスのx-x’面断面図であり、図7(b)は、実施の形態1-3にかかるマイクロデバイスのy-y’面断面図である。 図8(a)は、実施の形態1-4にかかるマイクロデバイスの回転基板の上面図であり、図8(b)は、実施の形態1-4にかかるマイクロデバイスの検出基板の上面図である。 図9(a)は、実施の形態1-4にかかるマイクロデバイスのx-x’面断面図であり、図9(b)は、実施の形態1-4にかかるマイクロデバイスのy-y’面断面図である。 図10(a)は、実施の形態1-5にかかるマイクロデバイスの回転基板の上面図であり、図10(b)は、実施の形態1-5にかかるマイクロデバイスの検出基板の上面図である。 図11(a)は、実施の形態1-5にかかるマイクロデバイスのx-x’面断面図であり、図11(b)は、実施の形態1-5にかかるマイクロデバイスのy-y’面断面図である。 図12は、実施の形態1-6にかかるマイクロデバイスを示す図であって、(a)は上面図、(b)は(a)のx-x’断面図である。 図13は、実施の形態2にかかるマイクロデバイスの回転基板の上面図である。 図14は、実施の形態2にかかるマイクロデバイスのx-x'面断面図である。 図15は、実施の形態3にかかるマイクロデバイスの上面図である。 図16は、実施の形態4-1にかかるマイクロチップ装置の上面図である。 図17は、実施の形態4-2にかかるマイクロチップ装置を示す図であって、(a)は上面図、(b)は(a)のx-x’断面図である。 図18は、実施の形態1-1にかかるマイクロデバイスにおける液の挙動を示す概略図である。この図において、矢印は遠心力方向を示す。 図19は、本発明に係るマイクロデバイスの反応場の接線とのなす角を説明する図である。 図20(a)は、実施例1に係るマイクロデバイスにかかる上面図であり、図20(b)は、実施例に係るマイクロデバイスのx-x'面断面図である。 図21は、従来のマイクロデバイスを示す上面図である。 図22は、従来のマイクロデバイスの反応部分の拡大図である。 図23は、従来のマイクロデバイスの反応部分における反応の概略図である。
 以下、本発明にかかるマイクロデバイスの実施の形態について、図面を用いて詳細に説明する。
[実施の形態1-1] 
 図1は、本実施の形態にかかるマイクロデバイスの概略構造を示す上面図であり、図2は、本実施の形態にかかるマイクロデバイスのx-x’面およびy-y’面縦断面模式図である。
 このマイクロデバイスは、図1(a)に示すような平面視略円形の主基板1と、図1(b)に示すような平面視略矩形の検出基板2と、図2(a)に示すような蓋基板3と、からなる基板群が、図2(b)に示すように重ね合わされてなる。
 図1および図2に示すように、このマイクロデバイスは、被検出物質と特異的に結合する反応物質(例えば、抗体タンパク質)が固定された反応場Aと、検出部4と、反応場Aと検出部4とをつなぐ接続流路Bと、を備えている。また、被検液やバッファー液(例えば、リン酸緩衝液)をデバイス内に導入する導入部5と、被検液を一定量溜めておくための液溜め部6と、液溜め部6と反応場Aをつなぐ流路Cと、を備えている。さらに、被検液やバッファー液をデバイス外部に送り出す排出部7が、検出部4の下流側端部に形成されている。
 主基板1には、反応場A、接続流路B、液溜め部6、流路C用の溝が形成されている。主基板1の平面形状は、特に限定されないが、円形や楕円形などが好ましい。また、主基板1の厚みは、0.1mm~5mm程度が好適である。
 なお、主基板1と、検出基板2と、蓋基板3とで、回転基板が構成される。
 反応場Aは、幅を1μm~1mm程度、深さを1μm~1mm程度とする。また、反応場Aの断面形状は特に限定されず、被検液やバッファー液などが流通可能な形状であれば、円形や楕円形、半円形、矩形などを任意に選択できる。反応場Aの平面形状は、本実施の形態では、回転中心Oを中心とした円周状である。このため、遠心力の方向と反応場の壁面のうち最も遠心力が作用する部分とのなす角(遠心力が作用する部分の接線となす角)は、常に90°となる。
 接続流路Bは、反応場Aと検出部4とをつなぐためのものであり、反応場Aの底面と主基板1の下面とをつないでいる(主基板の基板面に垂直である)。また、接続流路Bの遠心力方向の壁面には、突起8が形成されている。この突起8は、デバイスを回転させた場合に遠心力によって、被検液が接続流路Bの壁面をつたって検出部4へ流れ出てしまうことを防止するせき止め部として機能する。なお、検出部4が反応場Aよりも重力方向に位置していたとしても、重力を上回る遠心力をかけた場合には、検出部4側に液が流れることは無い。接続流路Bの断面形状は特に限定されず、被検液やバッファー液などが流通可能な形状であれば、円形や楕円形、半円形、矩形などを任意に選択できる。大きさは1μmφ以上程度とする。
 液溜め部6は、被検液やバッファー液などを一定量マイクロデバイスに導入するためのものである。液溜め部6の平面形状は特に限定されず、円形、楕円形、多角形、その他任意の形であってもよい。
 流路Cは、液溜め部6と反応場Aとをつなぐためのものである。流路C上には、開閉可能なマイクロ開閉バルブ9が形成されており、反応させる前に被検液が反応場Aに流れ出ないようになっている。流路Cの断面形状は特に限定されず、被検液やバッファー液などが流通可能な形状であれば、円形や楕円形、半円形、矩形などを任意に選択できる。大きさは1μm以上程度とする。
 マイクロ開閉バルブ9は、どのようなものを用いてもよいが、エレクトロウエッティング技術を用いたバルブを使用することが簡便でよい。この場合、あらかじめ回転による遠心力で液が流れていかない程度に流路Cの壁面を疎水性にしておき、液を流したいときに電圧をかけて親水性にして、流れの遮断を開放する。
 図1(b)に示すように、検出基板2には検出部4および排出部7が形成されている。検出基板2の形状は特に限定されない。また、検出基板2の厚みは、0.1mm~5mm程度が好適である。
 検出部4は検出を行う場所である。例えば、デバイス外部に設置された紫外可視分光光度計、蛍光光度計、熱レンズ計などにより検出を行う場合には、この部分に特定の手段を設ける必要はない。しかし、検出を妨げるもの(たとえば、光を妨げるもの)は形成しないほうが好ましい。また、電気化学的に検出を行う場合には、この部分に電極を設ける。検出部の形状や大きさは特に限定されない。
 排出部7は、検出部4の下流側端部に形成されている。排出部7は、被検液やバッファー液などをマイクロデバイスの外に排出するためのものであり、検出基板2の横面に開口している。排出部7の形状は特に限定されず、円形、楕円形、多角形、その他任意の形であってもよい。大きさは、その断面幅が1μm以上程度とする。
 図2(a)に示すように、蓋基板3には、導入部5が形成されている。蓋基板3の形状は特に限定されない。また、厚みは、0.1mm~5mm程度が好適である。
 導入部5は、被検液やバッファー液などをマイクロデバイス内部に導入するためのものである。導入部5の平面形状は特に限定されず、円形、楕円形、多角形、その他任意の形状であってもよい。大きさはその断面幅が1μm以上程度とする。
 反応場A、接続流路B、流路C、導入部5、液溜め部6、排出部7は、その表面を撥水処理してもよい。撥水処理を施していない場合は、回転を止めた時に、反応場や流路の壁面に液が飛散した状態で安定となるが、撥水処理を施している場合は、反応場や流路の壁面に飛散した液が瞬時に集まって液滴となり、エアーや窒素ガスなどを反応場や流路に通すと液滴が簡単に輸送されるので、液の輸送時間が短縮されて好適である。
 主基板1の材料としては、ガラスや石英、シリカ、セラミックス、高分子材料などを用いることができる。
 検出基板2の材料としては、ガラスや石英、シリカ、セラミックス、高分子材料などを用いることができる。光学的な検出を行う場合には、屈折等による破損のおそれがなく、透明度を有する材料が好ましい。
 蓋基板3の材料としては、ガラスや石英、シリカ、セラミックス、高分子材料などを用いることができる。
 主基板1、検出基板2および蓋基板3に流路等の各部を形成する方法は特に限定されず、マイクロドリルなどで機械的に加工してもよく、エッチングなどの化学処理により形成してもよい。また、流路パターンを形成した型に光熱硬化性樹脂または熱硬化性樹脂を流し込んで固めて一体構造のものとして作製してもよい。また、例えば、ポリオレフィン系樹脂、ポリメタクリル酸樹脂、ポリカーボネイト樹脂などからなる基板材料を、流路パターンを形成した型を用いて、ホットエンボス法により形成してもよい。
 反応場A、接続流路B、流路C、導入部5、液溜め部6、排出部7の表面を撥水処理する場合は、疎水性ポリマーをコートしたり、オクタドデシルトリクロロシランのトルエン溶液で化学修飾したりするなどの周知の方法を採用することができる。また、撥水性のある材料(例えばPTFE(ポリテトラフルオロエチレン))を基板として用いてもよい。
 反応場Aには、様々な反応物質(例えばタンパク質)を固定することができるが、典型的には被検出物質と特異的に反応する抗体を固定する。反応場Aへの抗体などのタンパク質の固定は、物理吸着や、反応場Aの表面の官能基とタンパク質のアミノ基との共有結合、3次元網目構造を有する高分子材料によるタンパク質の取り込み(包括)など、周知の固定方法を採用することができる。
 また、被検出物質と特異的に反応するタンパク質を固定化する場所は、反応場の壁面のうち、少なくとも遠心力方向の壁面(回転中心より遠い方の内壁面)である。ただし、少なくともこの壁面に固定化するのであって、反応場の全ての壁面全面に固定化することを除外しようとするものではない。
 ここで、遠心力方向の壁面に反応物質を固定するためには、例えば反応場に反応物質(例えば抗体)を含む液を導入し、遠心力を作用させて、液を当該壁面にはりつくようにする。この状態を維持すると、反応物質が当該壁面に吸着されて固定される。また、蓋基板を取り付けない状態で反応場に抗体を含む液を満たし、吸着させることにより溝の全面に固定することができる。
 以下、このマイクロデバイスを用いる分析方法について説明する。
 マイクロデバイス内が、バッファー液などでみたされている場合は、ポンプなどで液を押し出すか、液を吸い出すかして、バッファー液を取り除く。
 (導入工程)
 導入部5から被検出物質を含む液(被検液)をマイクロデバイス内へ導入する。被検液の導入には、導入部5に接続した外部ポンプによって液を押し出すか、排出部7に接続した外部ポンプによって液を吸引する。例えば、導入部5にチューブ等を接続し、シリンジポンプを用いるなどすればよい。このとき、導入部5から導入された被検液は、マイクロ開閉バルブ8によって液溜め部6にとどめ置かれる。
 なお、好ましくは、反応場A、接続流路Bおよび流路C、検出部4の表面へのタンパク質の非特異的吸着を防ぐために、被検液の導入の前にアルブミン水溶液を流してアルブミン膜(非特異的吸着防止膜)を形成させ、その後バッファー液で洗浄しておくのがよい。特に検出部表面には非特異的吸着防止膜を形成することが好ましい。
 (回転工程)
 液溜め部6に被検液が満たされたら、マイクロデバイスを回転させる。このとき、マイクロ開閉バルブに電圧をかけて開閉部分を親水性にし液体が通れる状態にすると、遠心力により液溜め部6から反応場Aに被検液が送られる。
 これにより被検液に含まれる被検出物質が、反応場Aに固定化されたタンパク質と特異的に反応し、固定化抗体‐被検出物質複合体が形成される。図18に示すように、導入部5から導入された被検液は、回転の遠心力により反応場Aの外側の壁面に薄く広がるので、被検出物質の固定化抗体までの拡散距離が短くなり、反応時間が短縮される。
 次に、マイクロデバイスの回転を止め、導入部5からエアーまたは窒素などを送って被検液をデバイスの外へと排出する。この時、反応場や流路壁面に撥水処理が施されていると、被検液が自動的に集まって液滴となるので、エアー等による輸送が容易となり、液の排出に要する時間を短縮することができる。
 この後、マイクロデバイスにバッファー液を導入して洗浄を行う。
 次に、マイクロデバイスを回転させながら、標識抗体を含む溶液を導入部から導入する。標識抗体が、被検出物質と特異的に反応し、固定化抗体‐被検出物質‐標識抗体複合体が形成される。前述と同様に、導入部5から導入された標識抗体を含む溶液は、回転の遠心力により反応場Aの外側の壁面(反応物質が固定化されている壁面)に薄く広がるので、標識抗体の被検出物質までの拡散距離が短くなり、反応時間が短縮される。
 標識抗体は、検出方法に適した標識物質が、被検出物質と特異的に反応する抗体に結合されてなるものであり、標識物質としては、例えば酵素などが用いられる。標識抗体に用いられる抗体は、反応場Aに固定される抗体と異なる抗原認識部位を有するものであれば、モノクローナル抗体でもポリクローナル抗体でもよい。
 この後、マイクロデバイスの回転を止め、導入部5からエアーまたは窒素などを送って標識抗体溶液をデバイスの外へと排出する。
 なお、被検出物質を含む溶液と、標識抗体を含む溶液とは、あらかじめ混合して反応させてから、導入部に導入しても、上記のように別々に導入してもどちらでもよい。反応場の全面または一部に抗体が固定化されており、導入する液量が反応場の壁面の一部に薄くはりつく程度の量である場合や、抗体が反応場の遠心力方向壁面のみに固定化されている場合は、好ましくは導入する被検液として、被検出物質と標識抗体との複合体を用いる。なぜなら、被検出物質と標識抗体とを別々に導入すると、標識抗体を含む液が、反応場に固定化された抗体と被検出物質との複合体の存在する部分にうまく行き渡らないことがあり、反応が不十分になる恐れがあるからである。
 更に、バッファー液を導入して洗浄を行う。
 次いで、マイクロデバイスを回転させながら、標識抗体の酵素の基質溶液を導入部から導入する。基質が酵素によって反応し、検出可能な物質が形成される。前述と同様の遠心力の効果によって、反応時間を短縮することができる。
 次に、マイクロデバイスの回転を止め、導入部5からエアーまたは窒素などを送って、酵素基質反応後の溶液を検出部に送る。
 この後、形成された検出可能な物質の量を、対応する検出方法によって検出する。検出方法としては、紫外可視分光光度計または熱レンズによる吸光度の測定や、電気化学的検出などがある。
 なお、導入部5の位置は、液溜め部6の上ではなくてもよい。例えば、図3に示すように、液溜め部6よりも回転中心方向(遠心力方向とは逆の方向)に導入部5を設けてもよい。
 [実施の形態1-2]
 図4は、本発明にかかるマイクロデバイスの概略構造を示す上面図、図5は、本実施の形態にかかるマイクロデバイスのx-x’面およびy-y’面縦断面図である。本実施の形態は、導入部5を主基板1上ではなく回転中心O上に設け、導入部5と液溜め部6とをつなぐ流路Dを設置した点以外は、上記実施の形態1-1と同様である。この構造では、導入部5が回転によって動かず常に同じ場所にあるので、回転している状態でのマイクロデバイスへの試料導入が容易となる。
 流路Dの形状は特に限定されず、被検液やバッファー液などが流通可能な形状であれば、円形や楕円形、半円形、矩形などを任意に選択できる。大きさは1μmφ以上程度とする。また流路Dの材料は、任意の材質を選択できる。
 また流路Dの表面を撥水処理してもよい。撥水処理を施している場合は、流路の壁面に飛散した液が瞬時に集まり液滴となり、エアーや窒素ガスなどを流路に通すと液滴が簡単に輸送されるので、液の輸送時間が短縮されて好適である。
 このマイクロデバイスでは、図4(a)または図5(a)に示しているマイクロデバイスの導入部5から被検液を導入する。被検液は回転しているマイクロデバイスに対して導入してもよいが、必ずしもあらかじめ回転させておかなくてもよい。被検液の導入には、導入部5に接続した外部ポンプによって液を押し出すか、排出部7に接続した外部ポンプによって液を吸引する。例えば、導入部5にチューブ等を接続し、シリンジポンプを用いるなどすればよい。回転をかけずに被検液を導入する場合は、外部ポンプやエアーなどで液を液溜め部6まで導入した後、回転をかければよい。その他については実施の形態1-1と同様である。
 〔実施の形態1-3〕
 図6は、本発明にかかるマイクロデバイスの概略構造を示す上面図、図7は、実施の形態1-3にかかるマイクロデバイスのx-x'面およびy-y'面縦断面図である。実施の形態1-3は、回転中心の方向に対して、反応場Aと検出部との位置関係を、上記実施の形態1-1とは逆にしたものである。この構造においては、図7(b)に示すように、検出部4及び排出部7が反応場Aよりも回転中心側に設けられているので、せき止め部を設けなくとも、回転の遠心力で液が排出部7から排出される恐れはない。
 このマイクロデバイスを用いる分析方法は、実施の形態1-1と同様であるが、上記したようにこの構造であると、回転の遠心力によって液が排出されてしまう恐れがないので、せき止め部を設けなくともよいというメリットがある。
 〔実施の形態1-4〕
 図8は、実施の形態1-4にかかるマイクロデバイスの概略構造を示す上面図、図9は、実施の形態1-4にかかるマイクロデバイスのx-x’面およびy-y’面縦断面図である。実施の形態1-4は、実施の形態1-2および実施の形態1-3とを組み合わせたものである。この構造を採用することにより、回転している基板への試料導入が容易となり、且つ回転中に液が排出部7から排出される恐れがないというメリットを得られる。
 〔実施の形態1-5〕
 図10は、実施の形態1-5にかかるマイクロデバイスの概略構造を示す上面図、図11は、本実施の形態1-5にかかるマイクロデバイスのx-x’面およびy-y’面縦断面図である。本実施の形態1-5は、反応場Aの内側に導入部となる流路Eと、流路Eと液溜め部6とをつなぐ流路Dとを設けた点以外は、上記実施の形態1-1と同様である。この構造では、流路E全体が導入部の役割を果たしているため、回転している基板への試料導入が容易となる。
 図11(a)や(b)に示すように、流路Eは主基板1の上面方向に開口している。流路Eの形状は特に限定されず、被検液やバッファー液などが流通可能な形状であれば、円形や楕円形、半円形、矩形などを任意に選択できる。大きさは1μmφ以上程度とする。
 図10(a)に示すように、流路Dは流路Eと液溜め部6とをつなぐためのものである。流路Dの形状は特に限定されず、被検液やバッファー液などが流通可能な形状であれば、円形や楕円形、半円形、矩形などを任意に選択できる。大きさは1μm以上程度とする。
 また流路Eや流路Dの表面を撥水処理してもよい。撥水処理を施している場合は、流路の壁面に飛散した液が瞬時に集まり液滴となり、エアーや窒素ガスなどを流路に通すと液滴が簡単に輸送されるので、液の輸送時間が短縮されて好適である。
 このマイクロデバイスにおいては、マイクロデバイスを回転させながら、図10(a)に示している導入部である流路Eに被検液を導入する。被検液は、シリンジ等で直接流路Eへ導入すればよい。導入された被検液は回転の遠心力により流路Cの遠心力のかかる側面に薄くはりつくが、徐々に流路Dを通って液溜め部6へと移動する。液溜め部6が液で満たされたとき、マイクロ開閉バルブを開けて遠心力により抗体などが固定化されている反応場Aへ液を移動させる。よって、外部ポンプ等を接続する必要がない。その後の操作は上記実施の形態1-1と同様である。
 なお、実施の形態1-5についても、実施の形態1-3、1-4と同様に、検出部4の位置を変更できる。図10に示す構造は、実施の形態1-3と同様に、検出部4が反応場Aよりも回転中心側に設けられているので、回転の遠心力で液が排出部7から排出される恐れがない。
 〔実施の形態1-6〕
 図12は、実施の形態1-6にかかるマイクロデバイスの概略構造を示す図であり、図12(a)は上面図、図12(b)はy-y’面縦断面図、図12(c)はx-x’面縦断面図である。本実施の形態1-6は、主基板の中心部に穴Hが設けられている(この穴Hに、回転中心となる仮想軸が位置する)こと、及び反応場Aの平面形状が多角形(同図では4角形)であること以外は、上記実施の形態1-1と同様である。この構成のように、マイクロデバイスの基板構成や流路構成を変更しても、上記実施の形態1-1と同様の効果が得られる。
 [実施の形態2]
 図13は、実施の形態2にかかるマイクロデバイスの概略構造を示す上面図、図14は、本実施の形態にかかるマイクロデバイスの縦断面図である。実施の形態2は、主基板1に検出部4が設けられ、接続流路Bが遠心力方向と略並行であり、接続流路B上および排出部の手前に、マイクロ開閉バルブ10およびマイクロ開閉バルブ11を形成している。この構造を採用すると、上記実施の形態1のように主基板と検出基板とを分ける必要性がない。このため、主基板1と蓋基板3により、回転基板が構成される。
 図13に示しているマイクロ開閉バルブ10および11は、金電極等などで構成される。マイクロ開閉バルブ10および11はあらかじめ、回転による遠心力で液が流れていかない程度に疎水性にしておき、液を流したいときに電圧をかけて親水性にする。
 実施の形態2のマイクロデバイスでは、あらかじめ混合させておいた被検液と標識抗体とを導入部5から導入し、液溜め部6に移動させる。被検液が液溜め部6に満たされたら、マイクロ開閉バルブ9に電流を流して弁を開放し、回転による遠心力によって反応場Aに被検液を送り、かつ反応場Aの遠心力の最も作用する壁面に液を薄くはりつかせる。少なくとも当該壁面には抗体等の反応物質が固定されているので、被検液中の目的物質がこの反応物質と反応する。この後、マイクロ開閉バルブ10に電流を流して液を排出部7から排出させる。この余の事項については、上記実施の形態1-1と同様である。
 なお、マイクロ開閉バルブ10が1回しか使用できないタイプである場合には、被検液と標識抗体とをあらかじめ混合させておく必要があるが、そうでない場合には順次導入することも可能である。
 また、実施の形態2についても、図3のように導入部5を液溜め部6よりも回転中心側へ設けたり、実施の形態1-2のように回転中心上に導入部を設けたり、実施の形態1-3のように導入部となる流路Eを設けたりすることができる。これらの構造を採用することにより、実施の形態1-2や実施の形態1-3と同様の効果を得ることができる。
 〔実施の形態3〕
 図15は、本発明にかかるマイクロデバイスの概略構造を示す上面図である。この構造を採用することにより、複数の測定や反応を同時に行うことが可能である。
 このマイクロデバイスは、導入部5、液溜め部6、反応場A、接続流路B、流路C、検出部4、排出部7、マイクロ開閉バルブ9、10、11がそれぞれ複数個設けられている。
 このマイクロデバイスの使い方は、実施の形態2の使い方と同様であるが、1つのデバイス上で、一度に複数の測定や反応を行うことができるという利点がある。
 〔実施の形態4-1〕
 実施の形態4-1にかかるマイクロチップ装置は、回転可能な回転盤の上に、回転盤よりも小さいマイクロチップが載置された構造である点に特徴を有する。すなわち、実施の形態4-1のマイクロチップ装置は、マイクロチップを回転させるための回転盤と、反応場、導入部、液溜め部、反応物質などの各要素を有する流路系を備えたマイクロチップとが分かれており、回転盤上の所定位置に1又は2以上のマイクロチップを配置し固定する構造になっている。
 この装置の主要部品であるマイクロチップは、回転中心が設けられていない点を除き、上記実施の形態1-1~1-4,2,3で記載したマイクロデバイスと概ね同様でよく、流路系構造は全く同様でよい。
 回転盤と流路系を備えたマイクロチップを分けた構造の実施の形態4-1にかかるマイクロチップ装置によると、回転盤に多数のマイクロチップを配置することにより、一度に多数の反応や測定を行うことができ、また回転盤上のマイクロチップを取り替えることにより、連続的に分析を行うことができるというメリットがある。
 図16は、実施の形態4-1にかかるマイクロチップ装置の概略構造を示す上面図である。図16(a)に示すマイクロチップ装置では、回転中心Qを有する回転盤12上の均等な位置に、マイクロチップの外形よりも僅かに小さい外形の凹部が6つ形成されており、この凹部にマイクロチップをはめ込む構造になっている。
 ただし、マイクロチップの固定方式は上記した嵌合方式に限られるものではない。固定方式としては、取り外しが容易で、回転によっても固定が害されない方式が好ましい。例えば、固定位置にマークを付しておき、当該部分にマイクロチップを載置し、クリップ、ネジ、或いはゴムバンドなどの弾性部材を用いて固定する方式などを用いることができる。また、回転盤上に配置するマイクロチップの個数は6個に限られない。1個以上であればよい。また、回転盤12の大きさや形状、材料は特に限定されない。回転盤12の回転数は、適当に設定すればよい。
 実施の形態4-1のマイクロチップ装置について更に説明する。この装置は、図16(b)に示すように、マイクロチップ100上に、被検液やバッファー液を導入する導入部5、被検液を一定量測りとるための液溜め部6、被検出物質と特異的に結合するタンパク質が固定された反応場A、液溜め部6と反応場Aとをつなぐ流路C、検出を行う検出部4、反応場Aと検出部4をつなぐ接続流路B、排出部7とを備えている。流路基板100の形状は、特に限定されず、厚みは、0.1mm~5mm程度が好適である。
 反応場Aは、幅が1μm~1mm程度、深さが1μm~1mm程度とする。また、流路の断面形状は特に限定されず、被検液やバッファー液などが流通可能な形状であれば、円形や楕円形、半円形、矩形などを任意に選択できる。ここで、反応場の平面形状は線分状であり、主基板に載置した場合に、遠心力方向とのなす角が規定の範囲になるように設計されている。
 接続流路Bは、反応場Aと検出部4とをつなぐものである。接続流路Bの断面形状は特に限定されず、被検液やバッファー液などが流通可能な形状であれば、円形や楕円形、半円形、矩形などを任意に選択できる。大きさは1μmφ以上程度とする。
 導入部5は、流路基板に重ね合わせる蓋基板に設けられた貫通孔であり、被検液やバッファー液などをマイクロチップ内に導入するためのものである。導入部5の平面形状は特に限定されず、円形、楕円形、多角形、その他任意の形であってもよい。大きさは、その断面幅が1μmφ以上程度とする。
 液溜め部6は、被検液やバッファー液などを一定量だけマイクロチップの流路に導入するためのものである。液溜め部6の平面形状は特に限定されず、円形、楕円形、多角形、その他任意の形であってもよい。
 流路Cは、液溜め部6と反応場Aとをつなぐものである。流路Cの断面形状は特に限定されず、被検液やバッファー液などが流通可能な形状であれば、円形や楕円形、半円形、矩形などを任意に選択できる。大きさは1μmφ以上程度とする。
 検出部4は検出を行う場所である。例えば、装置外部に設置された紫外可視分光光度計、蛍光光度計、熱レンズ計などにより検出を行う場合には、この部分に特定の手段を設ける必要はない。しかし、検出を妨げるものは形成しないほうが好ましい。また、電気化学的に検出を行う場合には、この部分に電極を設ける。検出部の形状や大きさは特に限定されない。
 排出部7は、被検液やバッファー液などをマイクロチップの外に排出するためのものであり、流路基板の横面に開口している。排出部7の形状は特に限定されず、円形、楕円形、多角形、その他任意の形であってもよい。大きさは、その断面幅が1μmφ以上程度とする。
 反応場A、接続流路B、流路C、導入部5、液溜め部6、排出部7は、その表面を撥水処理してもよい。撥水処理を施していない場合は、回転を止めた時に、反応場や流路の壁面に液が飛散したままであるが、撥水処理を施している場合は、流路の壁面に飛散した液が瞬時に集まり液滴となり、エアーや窒素ガスなどを流路に通すと液滴が簡単に輸送されるので、液の輸送時間が短縮されて好適である。
 ここで、遠心力方向の壁面に固定するためには、例えばチップを当該壁面が下(重力方向)となるように立て、反応場に抗体を含む液を導入することにより、抗体を当該壁面に吸着させて固定する。また、蓋基板を取り付けない状態で反応場に抗体を含む液を満たし吸着させることにより溝の全ての壁面に固定する。
 以下、このマイクロチップ装置を用いた分析方法について述べる。
 図16(b)に示している導入部5から被検液を導入する。被検液の導入には、導入部5に接続した外部ポンプによって液を押し出すか、排出部7に接続した外部ポンプによって液を吸引する。例えば、導入部5にチューブ等を接続し、シリンジポンプを用いるなどすればよい。導入された被検液が排出口部から排出されないようにマイクロチップを傾けるなどしておく。
 なお、好ましくは、反応場A、接続流路Bおよび流路C、検出部3の表面へのタンパク質の非特異的吸着を防ぐために、被検液の導入の前にアルブミン水溶液を流してアルブミン膜(非特異的吸着防止膜)を形成させ、その後バッファー液で洗浄しておくのがよい。特に検出部表面への非特異的吸着防止膜の形成が重要である。
 被検液を導入したマイクロチップを、図16(a)に示すように回転盤12に、回転盤を回転中心Qを中心として回転させたときに生じる遠心力の方向と、反応場の壁面のうち最も遠心力が大きく作用する部分における接線とのなす角が常に45~90°(本実施の形態では、反応場Aの中央において、接線とのなす角が90°)となるように位置決めして設置する。
 この後、回転盤を回転させる。被検液に含まれる被検出物質が反応場Aに固定化されたタンパク質と特異的に反応し、固定化抗体‐被検出物質複合体が形成される。図18に示すように、導入部5から導入され、液溜め部に溜まった被検液は、回転の遠心力により反応場Aの外側の壁面に薄く広がるので、被検出物質の固定化抗体までの拡散距離が短くなり、反応時間が短縮される。
 その後の方法は、上記実施の形態1-1と同様である。
 〔実施の形態4-2〕
 図17に、実施の形態4-2にかかるマイクロチップ装置を示す。実施の形態4-2にかかるマイクロチップ装置は、回転可能な回転盤の中心部に穴Hが設けられている(この穴Hに、回転中心となる仮想軸が位置する)こと以外は、上記実施の形態4-1と同様である。この構成によっても、上記実施の形態4-1と同様の効果が得られる。
 (実施例1)
 本実施例は、実施の形態1-1に対応するものである。
 図20に示すように、直径4cm、厚さ1mmの平面円形の基板(主基板)1に、幅400μm、深さ50μm、平面視円周状の反応場Aを形成した。また、厚さ0.5mmのアクリル板(蓋基板3)に、主基板1の反応場Aとの重なり部分に対応した位置に導入部5および排出部7を形成し、これらを図20(b)に示すようにはりあわせてマイクロデバイスとした。
 この実施例では、反応場を構成する4つの壁面のうち、天面以外の3面に抗体が固定されていることになる。また、反応場の平面形状は、回転中心Oを中心とする円周状であるので、反応場と遠心力方向とのなす角は90°である。
 このマイクロデバイスを回転させながら、マイクロデバイスの反応場Aに、抗cryj-1抗体を含む溶液を流して、反応場Aに抗cryj-1抗体を固定した。なお、cryj-1は、スギ花粉に含まれるアレルゲンである。
 マイクロデバイス内にアルブミン水溶液を流して、反応場の壁面にアルブミン膜(非特異的吸着防止膜)を形成させ、その後バッファー液で洗浄した。
 pH7.4に調製したリン酸バッファー溶液に、cryj-1を100ng/mLの濃度に調製し、FITC(フルオレセイン)標識抗cryj-1抗体溶液と混合させた。
 マイクロデバイスを回転させながら、上記混合溶液を、シリンジポンプを用いてデバイス内に導入し、反応場A表面上に、抗体-抗原-FITC標識抗体の複合体を形成した。
 マイクロデバイスの回転を止め、図20に示している導入部5からエアーを送って、被検液と蛍光標識抗体の混合溶液を排出部7から排出した。続いて、マイクロデバイス内にバッファー液を流してデバイス内部を洗浄した。
 マイクロデバイスの反応場Aを、蛍光顕微鏡で観察した。
 比較として、抗原-FITC修飾抗体混合溶液が反応場Aを満たし、且つ上記の場合と抗原量が等しくなるように抗原濃度を調製した溶液を、図20に示すマイクロデバイスに導入した。上記の場合と同じ時間反応させた後、バッファー液を流してデバイス内部を洗浄した。その後、マイクロデバイスの反応場Aを、蛍光顕微鏡で観察した。
 これらの実験の結果、マイクロデバイスを回転させたときの反応場Aの蛍光強度は、マイクロデバイスを回転させない場合の、およそ5倍であった。
 このことから、本実施例によると、被検出物質が微量であっても、従来よりも短時間で高感度に検出することができる。
 (実施例2)
 本実施例は、実施の形態1-6に対応するものである。
 図12(a)に示すように、直径4cm、厚さ1mm、中心部分に穴Hが設けられた主基板1に、幅400μm、深さ50μm、平面視矩形状の反応場Aを形成した。また、厚さ0.5mmのアクリル板からなる蓋基板3の、主基板1の反応場Aと重なる部分に、導入部5及び排出部7を形成した。これらを図12(b)に示すように重ね合わせて、本実施例にかかるマイクロデバイスとした。
 マイクロデバイス内にアルブミン水溶液を流して、反応場Aの壁面にアルブミン膜(非特異的吸着防止膜)を形成させ、その後バッファー液で洗浄し、排出部7から廃液した。
 pH7.4のリン酸バッファー液に、cryj-1を100ng/mlの濃度で含ませ、これにFITC(フルオレセイン)標識抗cryj-1抗体を混合した。
 マイクロデバイスを回転させながら、上記混合溶液を、シリンジポンプを用いてデバイス内に導入し、反応場A表面上に、抗体-抗原-FITC標識抗体の複合体を形成した。
 マイクロデバイスの回転を止め、導入部5からエアーを送って、被検液と蛍光標識抗体の混合溶液を排出部7から排出した。続いて、マイクロデバイス内にバッファー液を流してデバイス内部を洗浄した。
 マイクロデバイスの反応場Aを、蛍光顕微鏡で観察した。
 比較として、抗原-FITC修飾抗体混合溶液が反応場Aを満たし、且つ上記の場合と抗原量が等しくなるように抗原濃度を調製した溶液を、上記マイクロデバイスに導入した。上記の場合と同じ時間反応させた後、バッファー液を流してデバイス内部を洗浄した。その後、マイクロデバイスの反応場Aを、蛍光顕微鏡で観察した。
 これらの実験の結果、マイクロデバイスを回転させたときの反応場Aの蛍光強度は、マイクロデバイスを回転させない場合の、およそ3倍であった。
 このことから、本実施例によると、被検出物質が微量であっても、従来よりも短時間で高感度に検出することができる。
 (実施例3)
 本実施の形態は、実施の形態4-2に対応するものである。
 図17(a)に示すように、直径12cm、厚さ1.2mm、中心部分に穴Hが設けられた回転盤12に、幅1.9cm、長さ0.5mmの凹部を4つ形成した。
 図17(b)に示すように、幅2cm、長さ3cm、厚さ1mmの基板に、幅400μm、長さ1.5cm、深さ50μmの直線状の反応場Aを形成し、さらに液溜め部6及び液溜め部と反応場Aを繋ぐ流路Cを形成し、マイクロチップを作製した。このマイクロチップの反応場Aに、公知の方法で抗cryj-1抗体を固定化した。
 マイクロチップ内にアルブミン水溶液を流して、マイクロチップの反応場Aの壁面にアルブミン膜(非特異的吸着防止膜)を形成させ、その後バッファー液で洗浄した。
 pH7.4のリン酸バッファー液に、cryj-1を100ng/mlの濃度で含ませ、これにFITC(フルオレセイン)標識抗cryj-1抗体を混合した。
 上記混合溶液をシリンジポンプを用いてマイクロチップ内に導入した。この後、マイクロチップを、図17(a)に示すように、回転盤12に、回転盤を回転中心(穴Hの中心部分に位置する仮想軸である)を中心として回転させたときに生じる遠心力の方向と、反応場の壁面のうち最も遠心力が大きく作用する部分における接線とのなす角が常に45~90°(本実施例では、反応場Aの中央において、接線とのなす角が90°)となるように位置決めして設置した。
 この後、回転盤を回転させて、マイクロチップの反応場A表面上に、抗体-抗原-FITC標識抗体の複合体を形成した。
 回転盤の回転を止め、導入部5からエアーを送って、被検液と蛍光標識抗体の混合溶液を排出部7から排出した。続いて、マイクロチップ装置内にバッファー液を流してデバイス内部を洗浄した。
 マイクロチップの反応場Aを、蛍光顕微鏡で観察した。
 比較として、抗原-FITC修飾抗体混合溶液が反応場Aを満たし、且つ上記の場合と抗原量が等しくなるように抗原濃度を調製した溶液を、上記マイクロチップに導入した。上記の場合と同じ時間反応させた後、バッファー液を流してデバイス内部を洗浄した。その後、マイクロチップの反応場Aを、蛍光顕微鏡で観察した。
 これらの実験の結果、回転盤を回転させたときの反応場Aの蛍光強度は、回転盤を回転させない場合の、およそ3倍であった。
 このことから、本実施例によると、被検出物質が微量であっても、従来よりも短時間で高感度に検出することができる。
 以上説明したように、本発明によれば、微量な試料量で、迅速かつ高感度な測定を行うことができるマイクロデバイス及びマイクロチップ装置を提供することができる。よって、産業上の利用可能性が大きい。
1:主基板(回転基板の主構成要素)
2:検出基板
3:蓋基板
4:検出部
5:導入部
6:液溜め部
7:排出部
8:突起(せき止め部)
9:マイクロ開閉バルブ
10:マイクロ開閉バルブ
11:マイクロ開閉バルブ
12:回転盤

20:固定化された抗体
21:被検出物質
22:被検液

A:反応場
B:接続流路
C:液溜め部と反応場をつなぐ流路
D:導入部と液溜め部とをつなぐ流路
E:導入部となる流路
H  :穴
O  :回転中心
Q  :回転中心

100:マイクロチップ
101:流路
102:導入部
103:液溜め部
104:排出部
105:タンパク質固定部
110:微小凹凸
120:被検出物質
121:標識物質
122:抗体
123:標識抗体
124:免疫複合体
125:抗体
126:複合体

Claims (26)

  1.  回転基板と、
     前記回転基板に設けられた反応場と、
     前記反応場に液を導入する導入部と、を備え、
     前記回転基板を回転させたときに生じる遠心力方向と、前記反応場の壁面のうち最も遠心力が大きく作用する部分における接線とのなす角が常に45~90°である、
     ことを特徴とするマイクロデバイス。
  2.  請求項1に記載のマイクロデバイスにおいて、
     少なくとも前記反応場の壁面のうち前記最も遠心力が大きく作用する部分には、被検出物質と特異的に反応する反応物質が固定されている、
     ことを特徴とするマイクロデバイス。
  3.  請求項2に記載のマイクロデバイスにおいて、
     前記被検出物質の量を検出する検出部と、
     前記反応場と前記検出部とをつなぐ接続流路と、
     をさらに備えることを特徴とするマイクロデバイス。
  4.  請求項3に記載のマイクロデバイスにおいて、
     前記接続流路は、前記回転基板の基板面に略垂直に設けられている、
     ことを特徴とするマイクロデバイス。
  5.  請求項4に記載のマイクロデバイスにおいて、
     前記接続流路には、回転時に前記液が前記検出部に移動することをせき止めるせき止め部が設けられている、
     ことを特徴とするマイクロデバイス。
  6.  請求項3に記載のマイクロデバイスにおいて、
     前記検出部が、前記反応場よりも前記回転基板の回転中心から遠い方に位置する、
     ことを特徴とするマイクロデバイス。
  7.  請求項6に記載のマイクロデバイスにおいて、
     前記接続流路が、前記回転中心を基点として発生する遠心力の方向に略平行である、
     ことを特徴とするマイクロデバイス。
  8.  請求項7に記載のマイクロデバイスにおいて、
     前記接続流路に、開閉バルブが設けられている、
     ことを特徴とするマイクロデバイス。
  9.  請求項1ないし8いずれか1項に記載のマイクロデバイスにおいて、
     前記回転基板に設けられた反応場の平面形状は、前記回転基板の回転中心を中心とする円弧状又は円周状である、
     ことを特徴とするマイクロデバイス。
  10.  請求項1ないし8いずれか1項に記載のマイクロデバイスにおいて、
     前記回転基板に設けられた反応場の平面形状は、直線状である、
     ことを特徴とするマイクロデバイス。
  11.  請求項1ないし10いずれか1項に記載のマイクロデバイスにおいて、
     前記導入部と前記反応場との間に、前記液を一時的に貯蔵する液溜め部を備える、
     ことを特徴とする記載のマイクロデバイス。
  12.  請求項11に記載のマイクロデバイスにおいて、
     前記液溜め部と前記反応場との間に、開閉バルブが設けられている、
     ことを特徴とするマイクロデバイス。
  13.  請求項1に記載のマイクロデバイスにおいて、
     前記回転基板は、
     前記反応場用の溝が形成された主基板と、
     前記導入部が形成された蓋基板と、を含む基板群が重ね合わされてなるものである、
     ことを特徴とするマイクロデバイス。
  14.  請求項4に記載のマイクロデバイスにおいて、
     前記回転基板は、
     前記導入部が形成された蓋基板と、
     前記反応場用の溝及び前記接続流路用の貫通孔が形成された主基板と、
     前記検出部が形成された検出基板と、を含む基板群が重ね合わされてなるものである、
     ことを特徴とするマイクロデバイス。
  15.  請求項1ないし14のいずれか1項に記載のマイクロデバイスにおいて、
     前記反応場の壁面に、撥水処理が施されている、
     ことを特徴とするマイクロデバイス。
  16.  請求項1ないし15いずれか1項に記載のマイクロデバイスを用いる分析方法であって、
     目的物質を含む液を、前記導入部からマイクロデバイスの内部に導入する導入工程と、
     前記マイクロデバイスを回転させる回転工程と、を備え、
     前記目的物質を含む液の導入量を、前記反応場の体積よりも小さくする、
     ことを特徴とする分析方法。
  17.  回転盤と、
     前記回転盤の回転中心に対して位置決めされて前記回転盤に固定されたマイクロチップと、
     を備えるマイクロチップ装置であって、
     前記マイクロチップは、
     反応場と、前記反応場に液を導入する導入部と、を少なくとも備え、
     前記回転盤に前記マイクロチップが固定された状態で、前記回転盤を回転させたときに生じる遠心力の方向と、前記反応場の壁面のうち最も遠心力が大きく作用する部分における接線とのなす角が常に45~90°である、
     ことを特徴とするマイクロチップ装置。
  18.  請求項17に記載のマイクロチップ装置において、
     前記最も遠心力が大きく作用する反応場の壁面部分には、被検出物質と特異的に反応する反応物質が固定されている、
     ことを特徴とするマイクロチップ装置。
  19.  請求項18に記載のマイクロチップ装置において、
     前記マイクロチップは、
     前記被検出物質の量を検出する検出部と、前記反応場と前記検出部とをつなぐ接続流路と、をさらに備える、
     ことを特徴とするマイクロチップ装置。
  20.  請求項17、18又は19に記載のマイクロチップ装置において、
     前記反応場の平面形状が直線状である、
     ことを特徴とするマイクロチップ装置。
  21.  請求項17ないし20いずれか1項に記載のマイクロチップ装置において、
     前記導入部と前記反応場との間に、液を一時的に貯蔵する液溜め部を備える、
     ことを特徴とするマイクロチップ装置。
  22.  請求項21に記載のマイクロチップ装置において、
     前記液溜め部と前記反応場との間に、開閉バルブが設けられている、
     ことを特徴とするマイクロチップ装置。
  23.  請求項17ないし22のいずれか1項に記載のマイクロチップ装置において、
     前記反応場の壁面に、撥水処理が施されている、
     ことを特徴とするマイクロチップ装置。
  24.  請求項17ないし23いずれか1項に記載のマイクロチップ装置を用いる分析方法であって、
     目的物質を含む液を、前記導入部からマイクロチップ装置の内部に導入する導入工程と、
     前記マイクロチップ装置を回転させる回転工程と、を備え、
     前記目的物質を含む液の導入量を、前記反応場の体積よりも小さくする、
     ことを特徴とする分析方法。
  25.  回転盤に、少なくとも反応場と前記反応場に目的物質を含む液を導入する導入部とを有するマイクロチップを、前記回転盤の回転中心に対して位置決めして固定する固定工程と、
     前記固定工程の後、前記導入部から前記目的物質を含む液を導入する導入工程と、
     前記導入工程の後、前記回転盤を回転させる回転工程と、
     を備える分析方法であって、
     前記固定工程は、前記回転盤を回転させたときに生じる遠心力の方向と、前記反応場の壁面のうち最も遠心力が大きく作用する部分における接線とのなす角が常に45~90°となるように配置して固定する工程であり、
     前記目的物質を含む液の導入量を、前記反応場の体積よりも小さくする、
     ことを特徴とする分析方法。
  26.  請求項25に記載の分析方法において、
     少なくとも前記反応場の壁面の最も遠心力が大きく作用する部分には、前記目的物質としての被検出物質と反応する反応物質を固定する、
     ことを特徴とする分析方法。
PCT/JP2009/063413 2008-07-29 2009-07-28 マイクロデバイス及びマイクロチップ装置並びにこれらを用いた分析方法 WO2010013704A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/056,485 US9080993B2 (en) 2008-07-29 2009-07-28 Microdevice, microchip apparatus and analysis method utilizing the same
JP2010522722A JP5430569B2 (ja) 2008-07-29 2009-07-28 マイクロデバイス及びマイクロチップ装置並びにこれらを用いた分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-195343 2008-07-29
JP2008195343 2008-07-29

Publications (1)

Publication Number Publication Date
WO2010013704A1 true WO2010013704A1 (ja) 2010-02-04

Family

ID=41610404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063413 WO2010013704A1 (ja) 2008-07-29 2009-07-28 マイクロデバイス及びマイクロチップ装置並びにこれらを用いた分析方法

Country Status (3)

Country Link
US (1) US9080993B2 (ja)
JP (1) JP5430569B2 (ja)
WO (1) WO2010013704A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122618A (ja) * 2016-01-06 2017-07-13 信越ポリマー株式会社 分析用基板およびその製造方法
JP2019519798A (ja) * 2016-06-21 2019-07-11 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) 微細流体装置
JP2021521417A (ja) * 2018-04-13 2021-08-26 ユニヴァーシティ オブ ワシントン 単一の生物学的ナノ粒子分析のための方法および装置
US11260319B2 (en) 2018-08-21 2022-03-01 Lg Chem, Ltd. Solid phase extraction method using micro device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10549273B2 (en) 2014-09-19 2020-02-04 Tokitae Llc Flow assay with at least one electrically-actuated fluid flow control valve and related methods
US9638685B2 (en) 2014-09-19 2017-05-02 Tokitae Llc Flow assay with at least one electrically-actuated fluid flow control valve and related methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028883A (ja) * 1997-05-23 2003-01-29 Gamera Bioscience Corp ミクロ流体工学システムでの流動運動を駆動するために向心的加速を使用するための装置および方法
JP2003531018A (ja) * 2000-04-14 2003-10-21 ナノストリーム・インコーポレイテッド マイクロ流体システムにおける流体インピーダンス
JP2006145451A (ja) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd 攪拌装置とこれを用いた攪拌方法
WO2007052648A1 (ja) * 2005-11-02 2007-05-10 Matsushita Electric Industrial Co., Ltd. 試料分析用ディスク

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061381A (en) * 1990-06-04 1991-10-29 Abaxis, Inc. Apparatus and method for separating cells from biological fluids
JP3061414B2 (ja) * 1990-06-04 2000-07-10 アバクシス,インコーポレイテッド 分析用回転装置および生物学的流体の分析方法
US7189368B2 (en) * 2001-09-17 2007-03-13 Gyros Patent Ab Functional unit enabling controlled flow in a microfluidic device
JP2005257337A (ja) 2004-03-09 2005-09-22 Brother Ind Ltd 検査対象受体、検査装置、及び検査方法
EP1816187A4 (en) * 2004-11-22 2011-08-03 Nissui Seiyaku Co MICROCHIP
JP2007057378A (ja) 2005-08-24 2007-03-08 National Institute Of Advanced Industrial & Technology マイクロチップ、及びマイクロチップを用いた分析方法
GB0621520D0 (en) * 2006-10-28 2006-12-06 P2I Ltd Novel products
KR101102532B1 (ko) * 2008-07-10 2012-01-03 삼성전자주식회사 시약 카트리지, 시약 카트리지를 구비하는 미세유동장치, 그 제조방법, 및 이를 이용한 시료분석방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028883A (ja) * 1997-05-23 2003-01-29 Gamera Bioscience Corp ミクロ流体工学システムでの流動運動を駆動するために向心的加速を使用するための装置および方法
JP2003531018A (ja) * 2000-04-14 2003-10-21 ナノストリーム・インコーポレイテッド マイクロ流体システムにおける流体インピーダンス
JP2006145451A (ja) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd 攪拌装置とこれを用いた攪拌方法
WO2007052648A1 (ja) * 2005-11-02 2007-05-10 Matsushita Electric Industrial Co., Ltd. 試料分析用ディスク

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122618A (ja) * 2016-01-06 2017-07-13 信越ポリマー株式会社 分析用基板およびその製造方法
JP2019519798A (ja) * 2016-06-21 2019-07-11 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) 微細流体装置
JP2021004899A (ja) * 2016-06-21 2021-01-14 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) 微細流体装置
US11484883B2 (en) 2016-06-21 2022-11-01 Unist (Ulsan National Institute Of Science And Technology) Microfluidic device
JP2021521417A (ja) * 2018-04-13 2021-08-26 ユニヴァーシティ オブ ワシントン 単一の生物学的ナノ粒子分析のための方法および装置
JP7344569B2 (ja) 2018-04-13 2023-09-14 ユニヴァーシティ オブ ワシントン 単一の生物学的ナノ粒子分析のための方法および装置
US11260319B2 (en) 2018-08-21 2022-03-01 Lg Chem, Ltd. Solid phase extraction method using micro device

Also Published As

Publication number Publication date
JPWO2010013704A1 (ja) 2012-01-12
JP5430569B2 (ja) 2014-03-05
US9080993B2 (en) 2015-07-14
US20110185827A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
US9827564B2 (en) Fluidic systems and methods for analyses
US10620194B2 (en) Characterization of reaction variables
JP4597664B2 (ja) 微細流体構造
JP5430569B2 (ja) マイクロデバイス及びマイクロチップ装置並びにこれらを用いた分析方法
US20030178641A1 (en) Microfluidic platforms for use with specific binding assays, specific binding assays that employ microfluidics, and methods
WO2006092959A1 (ja) マイクロ流路及びマイクロ流体チップ
US20070116594A1 (en) Analytical microchip
JP2009535635A (ja) 化学的、生化学的、生物学的および物理学的分析、反応、アッセイなどのためのデバイスおよび方法
WO1997039338A9 (en) Microfabricated diffusion-based chemical sensor
WO2012081361A1 (ja) 分析装置および分析方法
US7754151B2 (en) Liquid homogenizer and analyzer employing the same
WO2008052358A1 (en) Microfluidic device having an array of spots
CA2900708A1 (en) Mixing of fluids in fluidic systems
JP4471687B2 (ja) 生化学分析方法と生化学分析装置
JP2011220768A (ja) 分析装置および分析方法
US20220016627A1 (en) Detection of components
JP2008268194A (ja) 分析方法
JP2008215880A (ja) 免疫分析チップ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802947

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010522722

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13056485

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09802947

Country of ref document: EP

Kind code of ref document: A1