WO2010013607A1 - ペロブスカイト蛍光体薄膜 - Google Patents

ペロブスカイト蛍光体薄膜 Download PDF

Info

Publication number
WO2010013607A1
WO2010013607A1 PCT/JP2009/062942 JP2009062942W WO2010013607A1 WO 2010013607 A1 WO2010013607 A1 WO 2010013607A1 JP 2009062942 W JP2009062942 W JP 2009062942W WO 2010013607 A1 WO2010013607 A1 WO 2010013607A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
nanosheet
film
perovskite
phosphor thin
Prior art date
Application number
PCT/JP2009/062942
Other languages
English (en)
French (fr)
Inventor
敬一 池上
浩 高島
武雄 蛯名
裕之 手塚
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to US13/055,064 priority Critical patent/US8288022B2/en
Publication of WO2010013607A1 publication Critical patent/WO2010013607A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • C09K11/7703Chalogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Definitions

  • the present invention relates to a perovskite phosphor thin film, and more particularly, to a highly transparent perovskite phosphor thin film that can be formed in a large area on a substrate such as a solid substrate.
  • a polycrystalline thin film composed of a set of three-dimensionally random crystals exhibits fluorescence characteristics but has very low intensity. Therefore, it is necessary to obtain high-intensity fluorescence by growing an alignment film having high crystallinity.
  • the oxide phosphor is highly transparent, it is expected to be used as a display using a window. To achieve this, an oxide phosphor thin film is formed on a transparent and inexpensive substrate. Need to create.
  • Non-Patent Document 1 shows that a nanosheet LB film (Langmuir-Blodgett film) made of Ca 2 Nb 3 O 10 can be obtained on a glass substrate.
  • Non-Patent Document 2 shows that a crystalline thin film of SrTiO 3 can be obtained on a glass substrate by using a nanosheet LB film made of Ca 2 Nb 3 O 10 as a seed layer.
  • Non-Patent Document 3 shows red fluorescence characteristics in a polycrystalline layered perovskite Sr n + 1 TiO 3n + 1 system.
  • Non-Patent Document 4 shows that blue-white fluorescence occurs due to oxygen vacancies in SrTiO 3 single crystals and thin films.
  • Non-Patent Document 5 shows that red fluorescence characteristics can be obtained by substituting Pr atoms for polycrystalline SrTiO 3 .
  • Non-Patent Document 6 shows the red fluorescence characteristics of polycrystalline Pr atom substitution (CaSrBa) TiO 3 .
  • Non-Patent Documents 7 and 8 show that a nanosheet LB film composed of titania and a cationic surfactant can be obtained on a solid substrate.
  • Patent Document 1 discloses a method for producing a double oxide phosphor thin film in which a metal ion is substituted for an inorganic base material such as yttrium aluminate.
  • Patent Document 2 discloses the fluorescence characteristics of polycrystalline Sn perovskite oxide.
  • Patent Document 3 discloses that red fluorescence is obtained with an epitaxial thin film in which Pr and Al atoms are substituted for SrTiO 3 .
  • Patent Document 4 discloses an EL element using an oxide phosphor epitaxial thin film as a light emitting layer.
  • Patent Document 5 shows that a crystalline thin film of SrTiO 3 can be obtained on a glass substrate by using a nanosheet LB film made of Ca 2 Nb 3 O 10 as a seed layer.
  • JP2003-183646 Japanese Patent Application No. 2005-322286 Japanese Patent Application No. 2007-332106 Japanese Patent Application No. 2008-037038 Japanese Patent Application No. 2009-062216
  • the supply source of the nanosheet made of Ca 2 Nb 3 O 10 that is transferred to the surface of the solid substrate as an LB film is a relatively high concentration colloidal suspension of 80 mg / L placed in a water tank as lower layer water. It is a liquid. This is because the electrostatic repulsive force acting between the nanosheets of the polyanion Ca 2 Nb 3 O 10 and the very weak amphipathic property of tetrabutylammonium present in the suspension as a counter cation are used.
  • a Langmuir film serving as a seed layer precursor is formed on the top.
  • the nanosheet Langmuir film made of Ca 2 Nb 3 O 10 used in Non-Patent Document 2 has an electrostatic repulsion force between nanosheets in the Langmuir film.
  • the film structure may be broken, and the stability as a manufacturing method is lacking.
  • the area-surface pressure curve shown in FIG. 9 of Non-Patent Document 1 suggests that electrostatic repulsion is acting between nanosheets prepared by the methods of Non-Patent Document 1 and Non-Patent Document 2.
  • a seed layer is formed using a Langmuir film of a nanosheet made of Ca 2 Nb 3 O 10 and a cationic surfactant, it is between the long chain alkyl groups of the surfactant molecule.
  • the Langmuir film is hard to break and the stability as a manufacturing method is improved.
  • the nanosheet Langmuir film consisting only of Ca 2 Nb 3 O 10 collapses at a surface pressure as low as 10 mN / m, but the nanosheet Langmuir film consisting of a cationic surfactant and Ca 2 Nb 3 O 10 is 60 mN / m. Can withstand surface pressure as high as m.
  • a seed layer can be more stably formed on various types of substrates.
  • the Langmuir film of Ca 2 Nb 3 O 10 nanosheets used in Non-Patent Document 2 is colorless and transparent, when it is transferred to a large substrate, whether it is uniformly adsorbed or not It is very difficult to verify. If a colored substance such as a long-chain alkyl-substituted cyanine dye is used as the cationic surfactant, it can be easily determined visually whether or not the Langmuir film has been transferred.
  • Non-Patent Document 2 the Langmuir film composed of nanosheets is transferred to the solid substrate surface using the vertical pull-up method (Langmuir-Blodgett method), but this method requires that the affinity between the solid substrate surface and the nanosheets is not sufficiently large.
  • the Langmuir film slides down during the transition due to the influence of gravity, and a homogeneous seed layer cannot be obtained, resulting in a lack of stability as a manufacturing method.
  • SrTiO 3 having a lattice constant of 0.3905 nm is stacked on Ca 2 Nb 3 O 10 having a lattice constant of 0.386 nm, but the lattice constants of the two do not match. For this reason, the SrTiO 3 layer, which is the upper structure, is distorted, which causes a decrease in crystallinity.
  • Non-Patent Document 2 Although SrTiO 3 is laminated on a seed layer made of a Ca 2 Nb 3 O 10 nanosheet, fluorescence characteristics cannot be obtained with this material. That is, Non-Patent Document 2 shows that SrTiO 3 was obtained on a glass substrate using a nanosheet as a seed layer, but does not show that fluorescence was obtained.
  • an object of the present invention is to adsorb a nanosheet as a seed layer on a substrate such as a glass substrate, and to produce a highly transparent oxide phosphor alignment film on the display.
  • the object is to provide a perovskite phosphor thin film having red among the three primary colors of red, green, and blue, which is the basis of fabrication.
  • the present invention employs the following means in order to solve the above problems.
  • the first means consists of (Sr x Ca 1-x ) 1-y Pr y TiO 3 : 0 ⁇ x ⁇ 0.8, 0.001 ⁇ y ⁇ 0.01 on the seed layer made of nanosheets adsorbed on the substrate surface. It is a perovskite phosphor thin film characterized by depositing an oxide phosphor.
  • a second means is the perovskite phosphor thin film according to the first means, wherein the base material is a glass substrate.
  • a third means is the perovskite phosphor thin film characterized in that, in the first means or the second means, the nanosheet is made of Ca 2 Nb 3 O 10 .
  • the nanosheets, Ca 2 Nb 3 O 10 and a cationic surfactant Ca 2 cationic surfactant from the composite nanosheet is erased consisting Nb A perovskite phosphor thin film comprising 3 O 10 .
  • a fifth means is the perovskite phosphor thin film characterized in that, in the fourth means, the cationic surfactant is colored.
  • the (Sr x Ca 1-x) 1-y Pr y TiO 3 0 ⁇ x ⁇ 0.8,0.001 ⁇ y ⁇ It is characterized by adjusting Sr / Ca of 0.01 so that the lattice constant of (Sr x Ca 1-x ) 1-y Pr y TiO 3 matches the lattice constant of Ca 2 Nb 3 O 10 It is a perovskite phosphor thin film.
  • a seventh means is the perovskite phosphor thin film according to any one of the first means to the sixth means, wherein the nanosheet is adsorbed on the substrate surface by a quasi-horizontal levitation method. It is.
  • An eighth means is the perovskite phosphor thin film according to any one of the first to seventh means, wherein the perovskite phosphor thin film has a transmittance of 70% or more.
  • a thin film device having a large area having excellent fluorescence characteristics with respect to red was obtained by using an oxide alignment film having a high crystallinity instead of a polycrystal having a low crystallinity.
  • Red is one of the three primary colors, along with green and blue, and is indispensable for highly color-rendering lighting and light sources and displays with good color reproducibility. Development is expected.
  • EL devices using high-quality thin films can be driven at a low voltage, enabling energy savings and downsizing of the system, and using oxides results in very little deterioration of crystallinity due to atmospheric exposure. As a result, the product life can be extended, and as a result, resource saving can be achieved.
  • the transmittance of the perovskite phosphor thin film is 70% or more, it is suitable to be used as a window display.
  • FIG. 3 is a cross-sectional TEM photograph of a structure in which (Sr 0.4 Ca 0.6 ) 0.998 Pr 0.002 TiO 3 is grown by a vapor phase method after adsorbing a seed layer on a glass substrate. It is a figure which shows the result when irradiating an ultraviolet-ray with the lamp
  • a nanosheet is uniformly adsorbed over a large area by a quasi-horizontal levitation method on a glass substrate, thereby obtaining a seed layer made of an aggregate in which plate crystals are uniaxially oriented.
  • the portion that functions as a seed layer at the time of phosphor thin film production is obtained by peeling off the inorganic layered compound, but the thickness can be increased by carrying out the peeling for each layer. It is important that they are perfectly aligned, and the thickness xnm is preferably in the range of 0.3 ⁇ x ⁇ 5.
  • the plate-like crystal size imm 2 is in the range of 10 2 ⁇ y ⁇ 1000 2 .
  • an oxide phosphor alignment film is formed thereon by vapor phase growth or liquid phase growth, and then an appropriate post-treatment is performed to obtain a perovskite phosphor thin film having an alignment film with excellent fluorescence characteristics. obtain.
  • red is obtained from the three primary colors of red, green, and blue, which are the basis for display production.
  • a more specific method for producing the perovskite phosphor thin film of the present invention is to create a monolayer of a cationic surfactant on a colloidal suspension of nanosheets made of Ca 2 Nb 3 O 10 in a water bath. To do. As a result, a composite nanosheet is generated by the electrostatic attractive force acting between the cationic surfactant and Ca 2 Nb 3 O 10, and the nanosheet is moved to the air-water interface by the surface active force of the cationic surfactant. Adsorb to form a Langmuir film. Thereby, the concentration of Ca 2 Nb 3 O 10 in the lower layer water can be reduced to 1/10 or less.
  • the substrate that has been submerged in a slightly tilted state from the horizontal in advance is pulled up while maintaining a predetermined angle.
  • FIG. 1 is a diagram showing a schematic configuration of a perovskite phosphor thin film according to the present invention.
  • a nanosheet 2 composed of a perovskite-related structure Nb-based oxide and a cationic surfactant is physically adsorbed on a glass substrate 1 by a quasi-horizontal levitation method to form a seed layer.
  • a (Sr 0.4 Ca 0.6 ) 0.998 Pr 0.002 TiO 3 film was grown by vapor phase growth to form a phosphor thin film 3 with high crystallinity, and a perovskite phosphor thin film was obtained.
  • FIG. 2 is a diagram showing the results of X-ray observation of the perovskite phosphor thin film. As shown in the figure, it is clear that a phosphor thin film with c-axis orientation is growing, and it is shown that the crystallinity of the phosphor thin film is improved by this uniaxial orientation.
  • FIG. 3 is a diagram showing an atomic force microscope image of the seed layer. As shown in the figure, it can be seen that nanosheets having a rectangle of about 100 nm are uniformly adsorbed on the glass substrate.
  • the seed layer has a c-axis oriented single crystal sheet shape and has an ab axis in the plane.
  • FIG. 4 is a view showing a cross-sectional TEM photograph of a structure in which (Sr 0.4 Ca 0.6 ) 0.998 Pr 0.002 TiO 3 is grown by a vapor phase method after forming a seed layer on a glass substrate.
  • an atomic arrangement of nanosheets of around 1 nm is observed on a glass substrate, and further, a phosphor thin film (Sr 0.4 Ca 0.6 ) 0.998 Pr 0.002 TiO 3 is atomically grown on the top.
  • a phosphor thin film Sr 0.4 Ca 0.6
  • FIG. 5 is a diagram showing the results when the fluorescent alignment film vapor-grown on the nanosheet made of Ca 2 Nb 3 O 10 and a cationic surfactant according to the present invention is irradiated with ultraviolet rays with a lamp having a wavelength of 254 nm. is there. As shown in the figure, red fluorescence was exhibited, and a steep peak was confirmed around a wavelength of 610 nm. When nanosheets are used, the transparency is high and fluorescence can be confirmed visually. On the other hand, no significant fluorescence is obtained with the sample formed directly on the glass substrate, and the fluorescence intensity is weak with the low-quality crystal and high-quality. It became clear that the crystals were expensive.
  • the dielectric (SrCa) TiO 3 has the same crystal structure and almost the same lattice constant as the phosphor (Sr 0.4 Ca 0.6 ) 0.998 Pr 0.002 TiO 3 . Therefore, an SrTiO 3 alignment film is realized on the nanosheet by the same method, and it is expected that a dielectric constant higher than that of the polycrystal formed directly on the glass substrate can be obtained. As a result, it is expected that a high-luminance electroluminescent device driven at a low voltage can be obtained on a glass substrate at a low cost by growing a dielectric / fluorescent thin film on the nanosheet as a seed layer.
  • FIG. 6 shows the transmittance of the thin film (broken line) after the growth of the fluorescent alignment film grown on the nanosheet according to the present invention (solid line) and heat-treated at 1000 ° C.
  • FIG. 6 shows the transmittance of the thin film (broken line) after the growth of the fluorescent alignment film grown on the nanosheet according to the present invention (solid line) and heat-treated at 1000 ° C.
  • FIG. As shown in the figure, both have a transmittance of 70% or more in the wavelength range of 310 nm to 800 nm, and the fluorescent alignment film grown on the nanosheet according to the present invention is highly transparent in the visible light region. It became clear. As a result, it is preferable to use it as a window display as a visible light display.
  • a seed layer was produced on a solid substrate by the following method. First, a suspension of Ca 2 Nb 3 O 10 was obtained at a concentration of 2 g / L by sequentially applying nitric acid and tetrabutylammonium bromide to KCa 2 Nb 3 O 10 crystals prepared by the solid-phase reaction method. It was. Next, pure water was added to this suspension to dilute to 0.008 g / L and poured into a Langmuir water tank.
  • a dioctadecyldimethylammonium (DOA) bromide salt prepared at a concentration of 0.001 mol / L on the water surface.
  • the chloroform solution was added dropwise.
  • a nanosheet LB film composed of Ca 2 Nb 3 O 10 and a cationic surfactant was obtained as a two-dimensional solid state.
  • the LB film was transferred onto the glass substrate by pulling up the glass substrate while maintaining an inclination of about 30 degrees from the horizontal.
  • a pulse laser deposition method was used for the production of the perovskite phosphor thin film according to the present invention.
  • an ArF (wavelength: 193 nm) excimer laser is irradiated, the target material is turned into plasma to form a plume, a heated solid substrate is placed on the surface facing the target material, and a thin film is deposited It is a technique.
  • a glass substrate prepared by transferring a nanosheet LB film made of Ca 2 Nb 3 O 10 and a cationic surfactant prepared in (A) as a solid substrate is used. It was.
  • the target material was a stoichiometric (Sr 0.4 Ca 0.6 ) TiO 3 : Pr polycrystal.
  • the distance between the target and the solid substrate was 30 mm, and the solid substrate was heated to 700 ° C.
  • the laser irradiation frequency is 8 Hz, and the laser energy is about 120 mJ.
  • the atmosphere is 1000 ° C. or lower and low-pressure oxygen of 1 Torr or lower, and the film formation time is 30 minutes.
  • the target material can be formed with the stoichiometric composition.
  • the target material is made of an oxide and the film is formed in an oxygen atmosphere, the deterioration of electrical characteristics and fluorescence characteristics due to oxygen deficiency can be extremely reduced.
  • the cationic surfactant is oxidized and decomposes and evaporates.
  • the remaining Ca 2 Nb 3 O 10 plate crystal comes into direct contact with the plume and functions as a seed layer.
  • the lattice constant of the Ca 2 Nb 3 O 10 plate crystal is 0.386 nm. Since many materials of perovskite oxide have a lattice constant in the vicinity of this material and its lattice matching is good, growth of an oxide oriented thin film with good crystallinity is expected.
  • the reason why the suspension concentration of Ca 2 Nb 3 O 10 used in the above-described example is 0.008 g / L will be described below.
  • the first reason is that in DOA presence is a cationic surfactant, the time until the composite nanosheet consisting DOA and Ca 2 Nb 3 O 10 is formed, Ca 2 Nb 3 O 10 in the DOA absence This is that the amount of adsorption of the nanosheet consisting of the above to the air-water interface is significantly shortened compared to the time ⁇ until the equilibrium is reached. Since ⁇ becomes longer when the suspension concentration is small, workability cannot be ensured unless the concentration is about 0.08 g / L or more in the absence of DOA, but 0.008 g / L is sufficient in the presence of DOA. Secured.
  • the second reason is that by setting the suspension concentration to 0.0004-0.008 g / L, the adsorption amount of the CNO nanosheet is not excessive or insufficient with respect to the cross-sectional area of the DOA molecule.
  • the suspension concentration exceeds 0.008 g / L, a decrease in the area due to the collapse of the excessively adsorbed CNO nanosheet with a surface pressure of about 0.02 N / m is observed.
  • the suspension concentration does not reach 0.0004 g / L, the membrane on the air-water interface is very soft, especially when the surface pressure is about 0.02 N / m or more, and the partition is moved to reduce the surface area. The phenomenon of slipping through is observed. This indicates that the adsorption amount of the CNO nanosheet is insufficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Luminescent Compositions (AREA)

Abstract

ナノシートをシード層として固体基板上に吸着させ、その上に酸化物蛍光体配向膜を作製し、ディスプレイ作製の基礎となる赤色、緑色、青色の3原色のうち、赤色が得られるペロブスカイト蛍光体薄膜において、ガラス基板等からなる固体基板1上に吸着されたナノシート2からなるシード層上に、透明性の高い酸化物蛍光体3を成膜したことを特徴とするペロブスカイト蛍光体薄膜であり、この酸化物蛍光体3が、(SrCa1-x)1-yPryTiO3:0≦x≦0.8、0.001≦y≦0.01であることを特徴とするペロブスカイト蛍光体薄膜である。

Description

ペロブスカイト蛍光体薄膜
本発明は、ペロブスカイト蛍光体薄膜に係わり、特に、固体基板等の基材上に大面積に形成可能な透明性の高いペロブスカイト蛍光体薄膜に関する。
従来、有機エレクトロルミネッセンス(EL)材料や無機EL材料等、多数の蛍光体が実用化されているが、これら蛍光体は、主として酸化・湿化によって結晶性が低下し蛍光特性の経年劣化が著しい。このような短寿命の蛍光体を用いた工業製品は、使い捨てを是とする大量消費社会には馴染むものの、省資源という観点からは問題が大きい。また、蛍光体を照明や光源やディスプレイに応用する際には、省エネルギーの観点から低電圧駆動を実現することが必要不可欠である。一方、未だ実用化はなされていないものの、酸化物多結晶体の中には、蛍光特性と堅牢な化学的安定性を両立するものが知られている。さらに、酸化物蛍光体を高品質な薄膜としてEL素子に組み込んだ場合、他の無機EL材料の場合とは異なり、10V程度の低電圧で駆動できることが期待できることが明らかとなっている。また、一般照明およびディスプレイ応用には大面積化が必要である。
従って、省エネルギー、省資源によって我が国の経済社会の持続性を高めるためには、実用化に耐える蛍光特性を持つ高品質な酸化物蛍光体薄膜を大面積で作成できる技術の開発が急務である。3次元的にランダムな結晶の集合からなる多結晶薄膜は蛍光特性を示すが強度が非常に弱いので、結晶性の高い配向膜を成長させることによって、高強度の蛍光を得る必要がある。さらに、酸化物蛍光体は透明性が高いため、窓を利用したディスプレイとして利用することが期待されるが、それを実現するためには、透明かつ安価な基材上に酸化物蛍光体薄膜を作成する必要がある。
非特許文献1には、Ca2Nb3O10からなるナノシートのLB膜(Langmuir-Blodgett膜)がガラス基板上に得られることが示されている。また、非特許文献2には、Ca2Nb3O10からなるナノシートのLB膜をシード層とすることによってガラス基板上にSrTiO3の結晶性薄膜が得られることが示されている。また、非特許文献3には、多結晶体層状ペロブスカイトSrn+1TiO3n+1系で赤色蛍光特性が示されている。また、非特許文献4には、SrTiO3単結晶および薄膜に関し、酸素欠損により青白蛍光することが示されている。また、非特許文献5には、多結晶体SrTiO3にPr原子を置換することで赤色蛍光特性が得られることが示されている。また、非特許文献6には、多結晶体Pr原子置換(CaSrBa)TiO3の赤色蛍光特性が示されている。また、非特許文献7および8には、チタニアとカチオン性界面活性剤からなるナノシートのLB膜が固体基板上に得られることが示されている。
また、特許文献1には、イットリウムアルミネート等の無機母材材料に金属イオンを置換した複酸化物蛍光体薄膜の製造方法を示している。また、特許文献2には、多結晶体Snペロブスカイト酸化物系の蛍光特性が示されている。また、特許文献3には、SrTiO3にPr、Al原子を置換したエピタキシャル薄膜で赤色蛍光を得ることが示されている。また、特許文献4には、酸化物蛍光体エピタキシャル薄膜を発光層として利用したEL素子について示されている。また、特許文献5には、Ca2Nb3O10からなるナノシートのLB膜をシード層とすることによってガラス基板上にSrTiO3の結晶性薄膜が得られることが示されている。
特開2003-183646号公報 特願2005-322286号公報 特願2007-332106号公報 特願2008-037038号公報 特願2009-062216号公報
Langmuir Vol 21, 6590 (2005) Adv. Mater. 2008, 20, 231-235 J.J. Appl. Phys. Vol.44, pp. 761-764 (2005) Nature Materials Vol 4, 816 (2005)SrTiO3 Appl. Phy. Lett Vol 78, 655 (2001) Chem. Mater. Vol 17, 3200 (2005) Langmuir Vol 17, 2564 (2001) Langmuir Vol 22, 3870 (2006)
以下において、ナノシートのLB膜をシード層としてその上に作製するペロブスカイト材料に焦点を絞り、従来技術の問題点について述べる。非特許文献2において、LB膜として固体基板表面上へ移行させるCa2Nb3O10からなるナノシートの供給源は、下層水として水槽に入れられた80mg/Lという比較的高濃度のコロイド懸濁液である。これは、ポリアニオンであるCa2Nb3O10のナノシート間に働く静電的反発力とカウンターカチオンとして懸濁液中に存在するテトラブチルアンモニウムが有する非常に弱い両親媒性のみを利用して水面上にシード層の前駆体となるLangmuir膜を生成するものである。しかし、この方法ではLangmuir膜をLB膜として固体基板表面上へ移行させることでシード層を作成した後にも非常に多くのCa2Nb3O10からなるナノシートが下層水中に取り残されることになり、これが排水として処理される場合には、省資源と環境保全の観点から問題である。
また、非特許文献2で用いているCa2Nb3O10からなるナノシートのLangmuir膜では、Langmuir膜内においてもナノシート間に静電的反発力が働くため、基材表面上に移行させる際に膜構造が壊れる可能性があり、製法としての安定性に欠ける。(非特許文献1の図9に掲載されている面積-表面圧曲線は、非特許文献1や非特許文献2の方法で作成したナノシート間に静電的反発力が働いていることを示唆するものである。)これに対し、Ca2Nb3O10とカチオン性界面活性剤からなるナノシートのLangmuir膜を用いてシード層を形成する場合は、界面活性剤分子の長鎖アルキル基の間に大きなファンデルワールス力(引力)が働くため、Langmuir膜が壊れにくくなり、製法としての安定性が向上する。実際、Ca2Nb3O10のみからなるナノシートのLangmuir膜では10mN/m程度の低い表面圧で崩壊するが、カチオン性界面活性剤とCa2Nb3O10からなるナノシートのLangmuir膜は60mN/m程度の高い表面圧に耐えられる。一般に、Langmuir膜を基材表面上に移行させる場合には、Langmuir膜に印加する表面圧を高くした方が移行が安定的となり、またLangmuir膜に対する吸着力の弱い基材表面にも移行しやすい。従って、本方法により、多種の基材に対してシード層をより安定的に作成できるようになる。
さらに、非特許文献2で用いているCa2Nb3O10からなるナノシートのLangmuir膜は無色透明であるため、これを大型の基材に移行した場合、むらなく一様に吸着しているかを検証するのは非常に困難である。前記のカチオン性界面活性剤として長鎖アルキル置換シアニン色素などの有色の物質を用いれば、Langmuir膜の移行が問題無く行われたか否かを目視により簡便に判別することができる。
非特許文献2では垂直引き上げ法(Langmuir-Blodgett法)を用いてナノシートからなるLangmuir膜を固体基板表面に移行させているが、この方法では固体基板表面とナノシート間の親和力が十分に大きくないと、重力の影響で移行時にLangmuir膜が滑落してしまって均質なシード層が得られず、製法としての安定性に欠ける。また、非特許文献2においては、格子定数が0.386nmであるCa2Nb3O10の上に格子定数が0.3905 nmであるSrTiO3を積層しているが、両者の格子定数が一致していないため、上部構造であるSrTiO3層に歪みが生じており、これは結晶性を低下させる要因となる。
また、非特許文献2においては、Ca2Nb3O10のナノシートからなるシード層上にSrTiO3を積層しているが、この材料では蛍光特性は得られない。つまり、非特許文献2は、ナノシートをシード層としガラス基板上にSrTiO3が得られたことは示されているが、蛍光が得られたことは示されていない。
本発明の目的は、上記の種々の問題点に鑑みて、ナノシートをシード層としてガラス基板等の基材上に吸着させ、その上に透明性の高い酸化物蛍光体配向膜を作製し、ディスプレイ作製の基礎となる赤色、緑色、青色の3原色のうち、赤色を有するペロブスカイト蛍光体薄膜を提供することにある。
本発明は、上記の課題を解決するために、次のような手段を採用した。第1の手段は、基材表面に吸着されたナノシートからなるシード層上に、(SrCa1-x)1-yPryTiO3:0≦x≦0.8、0.001≦y≦0.01からなる酸化物蛍光体を、成膜したことを特徴とするペロブスカイト蛍光体薄膜である。
第2の手段は、第1の手段において、前記基材が、ガラス基板であることを特徴とするペロブスカイト蛍光体薄膜である。
第3の手段は、第1の手段又は第2の手段において、前記ナノシートが、Ca2Nb3O10からなることを特徴とするペロブスカイト蛍光体薄膜である。
第4の手段は、第1の手段又は第2の手段において、前記ナノシートが、Ca2Nb3O10とカチオン性界面活性剤からなる複合ナノシートからカチオン性界面活性剤が消去されたCa2Nb3O10からなることを特徴とするペロブスカイト蛍光体薄膜である。
第5の手段は、第4の手段において、前記カチオン性界面活性剤が有色であることを特徴とするペロブスカイト蛍光体薄膜である。
第6の手段は、第1の手段ないし第5の手段のいずれか1つの手段において、前記(SrCa1-x)1-yPryTiO3:0≦x≦0.8、0.001≦y≦0.01のSr/Caを調整して、(SrCa1-x)1-yPryTiO3 の格子定数とCa2Nb3O10の格子定数とを一致するようにしたことを特徴とするペロブスカイト蛍光体薄膜である。
第7の手段は、第1の手段ないし第6の手段のいずれか1つの手段において、前記ナノシートは、基材表面上に準水平浮上法によって吸着されていることを特徴とするペロブスカイト蛍光体薄膜である。
第8の手段は、第1の手段ないし第7の手段のいずれか1つの手段において、前記ペロブスカイト蛍光体薄膜の透過率が70%以上であることを特徴とするペロブスカイト蛍光体薄膜である。
本発明によれば、高蛍光強度を得るため、結晶性の低い多結晶ではなく、結晶性の高い酸化物配向膜によって、赤色について優れた蛍光特性を持つ大面積の薄膜デバイスが得られた。赤色は、緑、青色と並び3原色のうちの一つであり、演色性の高い照明・光源や色再現性の良いディスプレイに不可欠であるため、酸化物配向膜によるエレクトロルミネッセンス(EL)デバイスの開発が期待される。また、高品質薄膜によるELデバイスは、低電圧駆動が可能となることから、省エネルギーとシステムの小型化が可能となり、また、酸化物を利用することによって、大気暴露による結晶性の劣化が極めて少なくなり、製品の長寿命化が可能となり、その結果として省資源化が可能となる。また、ペロブスカイト蛍光体薄膜の透過率が70%以上であるので、ウィンドーディスプレイとして利用することが好適である。
本発明に係るペロブスカイト蛍光体薄膜の概略構成を示す図である。 ペロブスカイト蛍光体薄膜のX線観測の結果を示す図である。 シード層の原子間力顕微鏡像を示す図である。 ガラス基板上にシード層を吸着した後、気相法で(Sr0.4Ca0.6)0.998Pr0.002TiO3 を成長させた構造の断面TEM写真を示す図である。 ナノシート上部に気相成長した蛍光配向膜に波長254nmのランプで紫外線を照射した時の結果を示す図である。 ナノシート上部に気相成長した蛍光配向膜の成長後および1000℃熱処理後の透過率を示す図である。
本発明は、ガラス基板上に準水平浮上法でナノシートを大面積で均一に吸着させ、これによって、板状結晶が一軸配向した集合体からなるシード層を得る。この板状結晶の構成要素のうち、蛍光体薄膜作製時にシード層として機能する部分は、無機層状化合物を剥離して得られるものであるが、その剥離を1層毎に行うことによって厚さを完全に揃えることが重要であり、厚さxnmは0.3<x<5の範囲にある事が望ましい。また、板状結晶が小さすぎると、その上に成長させる蛍光体の結晶も小さくなってしまい、蛍光発光が得られない。一方、板状結晶が大きすぎると、基材表面を隙間なく埋めることができない。従って、板状結晶の大きさynm2は102<y<10002の範囲にある事が望ましい。次に、この上に、気相成長または液相成長によって酸化物蛍光体配向膜を作製し、その後、適切な後処理を施すことによって、蛍光特性の優れた配向膜を有するペロブスカイト蛍光体薄膜を得る。これによってディスプレイ作製の基礎となる赤色、緑色、青色の3原色のうち、赤色が得られる。 
本発明のペロブスカイト蛍光体薄膜のより具体的な作製法は、水槽に入れられたCa2Nb3O10からなるナノシートのコロイド懸濁液の上に、カチオン性界面活性剤の単分子膜を作成する。これにより、カチオン性界面活性剤とCa2Nb3O10との間に働く静電的引力により複合ナノシートを生成させ、カチオン性界面活性剤の有する界面活性力により、ナノシートを気水界面へと吸着させ、Langmuir膜を形成させる。これによって、下層水中のCa2Nb3O10の濃度を1/10以下に低減することができる。界面活性剤分子の長鎖アルキル基の間には大きなファンデルワールス力(引力)が働くため、Langmuir膜が壊れにくくなる。このため、表面圧の高い状態が平衡状態として存在し得るようになり、基材表面上への移行を高表面圧下で行うことでナノシートとの親和性が比較的小さい基材に対してもシード層の形成を行えるようになる。 
Langmuir膜をガラス基板等の基材上に移行させる際に、垂直引き上げ法ではなく、予め水中に水平からやや傾けた状態で沈めておいた基材を所定の角度を保ったまま引き上げる準水平浮上法を用いる。これにより重力の影響でLangmuir膜が滑落することが防止され、ナノシートとの間の親和力が十分に大きくはない基材表面上へのシード層の作製が可能となる。
上部構造としては、混晶である(SrCa1-x)1-yPryTiO3を積層する。このとき、x及びyの範囲を0≦x≦0.8、0.001≦y≦0.01とすることで、この混晶に蛍光特性を付与する。また、SrとCaとではイオン半径が異なるため、この混晶においてSr/Ca比を調整することにより格子定数を精密に制御することが可能である。x=0.4とすることでシード層の格子定数と整合する0.386 nmに調整すると、極めて良質なエピタキシャル成長膜が得られる。さらに、x=0.4という条件下で最良の蛍光特性を得るために、y=0.002とする。これによって、シード層上に蛍光を示す結晶性の高いペロブスカイト薄膜が成膜された、ペロブスカイト蛍光体薄膜が得られる。
以下に、本発明の実施例について説明する。図1は、本発明に係るペロブスカイト蛍光体薄膜の概略構成を示す図である。同図に示すように、ガラス基板1上にぺロブスカイト関連構造Nb系酸化物とカチオン性界面活性剤からなるナノシート2を準水平浮上法によって物理吸着させてシード層とし、このシード層の上部に、気相成長によって(Sr0.4Ca0.6)0.998Pr0.002TiO3 膜を成長させ、結晶性の高い蛍光体薄膜3を形成し、ペロブスカイト蛍光体薄膜を得たものである。
図2は、ペロブスカイト蛍光体薄膜のX線観測の結果を示す図である。同図に示すように、c軸配向した蛍光体薄膜が成長していることが明らかであり、この一軸配向性により蛍光体薄膜の結晶性が向上していることが示されている。
図3は、シード層の原子間力顕微鏡像を示す図である。同図に示すように、100 nm程度の長方形を有すナノシートがガラス基板上に一様に吸着されていることが分かる。シード層はc軸配向した単結晶のシート状の形状であり、面内にab軸を有している。
図4は、ガラス基板上にシード層を形成した後、気相法で(Sr0.4Ca0.6)0.998Pr0.002TiO3 を成長させた構造の断面TEM写真を示す図である。同図に示すように、ガラス基板上に1nm前後のナノシートの原子配列が観測され、さらにその上部に蛍光体薄膜(Sr0.4Ca0.6)0.998Pr0.002TiO3 が原子配向し成長していることが分かる。その界面は原子オーダーで配列し、極めて高い品質の格子配列となっていることが分かる。
図5は、本発明に係るCa2Nb3O10とカチオン性界面活性剤からなるナノシート上部に気相成長した蛍光配向膜に、波長254nmのランプで紫外線を照射した時の結果を示す図である。同図に示すように、赤色蛍光を示し、波長610nm付近に急峻なピークが確認された。ナノシートを用いた場合、透明性が高く、目視で蛍光が確認できる一方、ガラス基板上に直接成膜した試料では顕著な蛍光は得られず、蛍光強度は低品位な結晶では弱く、高品位な結晶では高いことが明らかになった。誘電体(SrCa)TiO3は上記蛍光体(Sr0.4Ca0.6)0.998Pr0.002TiO3 と結晶構造が同一であり格子定数はほぼ同一である。したがって同様の手法でナノシート上にSrTiO3配向膜が実現され、ガラス基板上に直接成膜した多結晶よりも高い誘電率が得られることが期待される。これによって、ナノシートをシード層としてその上部に誘電体・蛍光薄膜を成長させることで、低電圧駆動で高輝度な電界発光素子がガラス基板上に低コストで得られることが期待される。
図6は、本発明に係るナノシート上部に気相成長した蛍光配向膜の成長後(実線)および1000℃で熱処理を施した薄膜(破線)の透過率を示したものである。同図に示すように、両者は波長310nm以上800nmの範囲で透過率は70%以上を示しており、本発明に係るナノシート上部に気相成長した蛍光配向膜は可視光領域で透明性が高いことが明らかになった。この結果、可視光ディスプレイとしてウィンドー表示器として用いることが好適である。
以下に、上述の実施例において実際に用いた製法について述べる。(A)本発明に係るペロブスカイト蛍光体薄膜の作製を行うため、以下の方法にて固体基材上にシード層を作成した。まず、固相反応法により作成したKCa2Nb3O10の結晶に硝酸及びテトラブチルアンモニウム臭素塩を順次作用させることによって、Ca2Nb3O10の懸濁液を2g/Lの濃度で得た。
次にこの懸濁液に純水を加えて0.008g/Lに希釈し、Langmuir水槽に注入した。この希釈懸濁液に、予めアルカリエタノールにより表面を洗浄した固体基材としてのガラス基板を沈めた後、水面上に濃度を0.001mol/Lに調製したジオクタデシルジメチルアンモニウム(DOA)の臭素塩のクロロフォルム溶液を滴下した。表面圧が0.045N/mになるまで水面の面積を狭めることより、Ca2Nb3O10とカチオン性界面活性剤からなるナノシートのLB膜を2次元固体の状態として得た。水面の面積が安定してから、水平から約30度の傾きを保ちつつガラス基板を引き上げることで、LB膜をガラス基板上に移行させた。
(B)本発明に係るペロブスカイト蛍光体薄膜の作製には、パルスレーザー堆積法を用いた。パルスレーザー堆積法は、ArF(波長193nm)のエキシマレーザーを照射し、ターゲット材料をプラズマ化させプルームを形成し、そのターゲット材料に対向した面に加熱した固体基材を配置し、薄膜を堆積させる手法である。
本発明に係るペロブスカイト蛍光体薄膜の作製においては、固体基材として(A)で準備した、Ca2Nb3O10とカチオン性界面活性剤からなるナノシートのLB膜を移行させたガラス基板を用いた。ターゲット材料は化学量論組成の(Sr0.4Ca0.6)TiO3: Pr多結晶体を用いた。ターゲットと固体基材の間の距離は30mmとし、固体基材は700℃に加熱した。レーザー照射周波数は8Hzであり、レーザーエネルギーは約120mJである。また、雰囲気は1000℃以下で1Torr以下の低圧酸素中とし、成膜時間は30分である。
なお、本発明に係るペロブスカイト蛍光体薄膜の作製においては、1000℃以下で成膜を行っているため、クラスター成長が支配的であり、ターゲット材料をその化学量論組成で成膜させることができる。しかも、ターゲット材料が酸化物からなっており、酸素雰囲気中での成膜とすることにより、酸素欠損等による電気的特性、蛍光特性の劣化を極めて少なくすることができる。さらに、(A)でガラス基板上に移行させたCa2Nb3O10とカチオン性界面活性剤からなるナノシートのLB膜のうち、カチオン性界面活性剤は酸化されて分解・蒸散するため、後に残るCa2Nb3O10板状結晶が直接プルームに触れることになり、シード層として機能するようになる。Ca2Nb3O10板状結晶の格子定数は0.386nmである。ペロブスカイト酸化物の多くの材料はこの近傍の格子定数を持ち、その格子整合性が良いため、結晶性の良い酸化物配向薄膜の成長が期待される。
以下に、上述の実施例において使用したCa2Nb3O10の懸濁液濃度を0.008g/Lとした理由について述べる。第1の理由は、カチオン性界面活性剤であるDOA存在下において、DOAとCa2Nb3O10からなる複合ナノシートが形成されるまでの時間が、DOA非存在下においてCa2Nb3O10からなるナノシートの気水界面への吸着量が平衡に達するまでの時間τに比べて大幅に短縮されたことである。懸濁液濃度が小さいとτが長くなるため、DOA非存在下では0.08g/L程度以上の濃度にしないと作業性を確保できないが、DOA存在下では0.008g/Lで充分な作業性が担保される。
第2の理由は、懸濁液濃度を0.0004-0.008g/Lとすることで、CNOナノシートの吸着量がDOA分子の断面積に対して過不足なくなるからである。懸濁液濃度が0.008g/Lを超えると、表面圧が0.02N/m程度で過剰吸着したCNOナノシートが崩壊することによる面積の減少が観測される。一方、懸濁液濃度が0.0004g/Lに達していないと、気水界面上の膜が非常に柔らかく、特に0.02N/m程度以上の表面圧下において、水面の面積を狭めるために異動させる仕切りをすり抜けてしまう現象が観測される。これは、CNOナノシートの吸着量が不足していることを示す。
1 ガラス基板、2 ナノシート、3 蛍光体薄膜

Claims (8)

  1. 基材表面上に吸着されたナノシートからなるシード層上に、(SrCa1-x)1-yPryTiO3:0≦x≦0.8、0.001≦y≦0.01からなる酸化物蛍光体を、成膜したことを特徴とするペロブスカイト蛍光体薄膜。
  2. 前記基材が、ガラス基板であることを特徴とする請求項1に記載のペロブスカイト蛍光体薄膜。
  3. 前記ナノシートが、Ca2Nb3O10からなることを特徴とする請求項1又は請求項2に記載のペロブスカイト蛍光体薄膜。
  4. 前記ナノシートが、Ca2Nb3O10とカチオン性界面活性剤からなる複合ナノシートからカチオン性界面活性剤が消去されたCa2Nb3O10からなることを特徴とする請求項1又は請求項2に記載のペロブスカイト蛍光体薄膜。
  5. 前記カチオン性界面活性剤が有色であることを特徴とする請求項4に記載のペロブスカイト蛍光体薄膜。
  6. 前記(SrCa1-x)1-yPryTiO3:0≦x≦0.8、0.001≦y≦0.01のSr/Caを調整して、(SrCa1-x)1-yPryTiO3の格子定数とCa2Nb3O10の格子定数とを一致するようにしたことを特徴とする請求項1ないし請求項5のいずれか1つの請求項に記載のペロブスカイト蛍光体薄膜。
  7. 前記ナノシートは、前記基材上に準水平浮上法によって吸着されていることを特徴とする請求項1ないし請求項6のいずれか1つの請求項に記載のペロブスカイト蛍光体薄膜。
  8. 前記ペロブスカイト蛍光体薄膜の透過率が70%以上であることを特徴とする請求項1ないし請求項7のいずれか1つの請求項に記載のペロブスカイト蛍光体薄膜。
PCT/JP2009/062942 2008-07-27 2009-07-17 ペロブスカイト蛍光体薄膜 WO2010013607A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/055,064 US8288022B2 (en) 2008-07-27 2009-07-17 Perovskite phosphor film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-192925 2008-07-27
JP2008192925 2008-07-27
JP2009141730A JP5371044B2 (ja) 2008-07-27 2009-06-14 ペロブスカイト蛍光体薄膜
JP2009-141730 2009-06-14

Publications (1)

Publication Number Publication Date
WO2010013607A1 true WO2010013607A1 (ja) 2010-02-04

Family

ID=41610307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062942 WO2010013607A1 (ja) 2008-07-27 2009-07-17 ペロブスカイト蛍光体薄膜

Country Status (3)

Country Link
US (1) US8288022B2 (ja)
JP (1) JP5371044B2 (ja)
WO (1) WO2010013607A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034609A (ja) * 2012-08-08 2014-02-24 National Institute Of Advanced Industrial & Technology 波長変換デバイス及びその製造方法
US20150090635A1 (en) * 2011-08-12 2015-04-02 Harris Corporation Hydrocarbon resource processing device including radio frequency applicator and related methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074684A (ja) * 2013-10-07 2015-04-20 株式会社東海理化電機製作所 蛍光薄膜の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075073A (ja) * 2006-08-21 2008-04-03 National Institute Of Advanced Industrial & Technology 蛍光体薄膜の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873464B2 (ja) * 2006-07-11 2012-02-08 独立行政法人産業技術総合研究所 酸化物蛍光体エピタキシャル薄膜
US20080044590A1 (en) 2006-08-21 2008-02-21 National Institute Of Advanced Industrial Science And Technology Manufacturing Method of Phosphor Film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075073A (ja) * 2006-08-21 2008-04-03 National Institute Of Advanced Industrial & Technology 蛍光体薄膜の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
T.SHIBATA: "One-Nanometer-Thick Seed Layer of Unilamellar Nanosheets Promotes Oriented Growth of Oxide Crystal Films", ADVANCED MATERIALS, vol. 20, January 2008 (2008-01-01), pages 231 - 235 *
T.YAMAKI: "Alternate Multilayer Deposition from Ammonium Amphiphiles and Titanium Dioxide Crystalline Nanosheets Using the Langmuir- Blodgett Technique", LANGMUIR, vol. 17, 2001, pages 2564 - 2567 *
TAKAKI IMAI: "Sanka AI Shitachimaku o Mochiita SrAl204 Hakumaku no Sakusei", DAI 52 KAI EXTENDED ABSTRACTS, JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, 2005, pages 732 *
Y.UMEMURA: "Photocatalytic Decomposition of an Alkylammonium Cation in a Langmuir-Blodgett Film of a Titania Nanosheet", LANGMUIR, vol. 22, 2006, pages 3870 - 3877 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150090635A1 (en) * 2011-08-12 2015-04-02 Harris Corporation Hydrocarbon resource processing device including radio frequency applicator and related methods
US9376634B2 (en) * 2011-08-12 2016-06-28 Harris Corporation Hydrocarbon resource processing device including radio frequency applicator and related methods
JP2014034609A (ja) * 2012-08-08 2014-02-24 National Institute Of Advanced Industrial & Technology 波長変換デバイス及びその製造方法

Also Published As

Publication number Publication date
US20110143144A1 (en) 2011-06-16
US8288022B2 (en) 2012-10-16
JP5371044B2 (ja) 2013-12-18
JP2010053339A (ja) 2010-03-11

Similar Documents

Publication Publication Date Title
Zhou et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights
KR100327105B1 (ko) 고휘도 형광체 및 그 제조방법
CN109713100B (zh) 一种制备全无机钙钛矿发光二极管活性层的方法
CA2171020C (en) Ternary compound film and manufacturing method therefor
WO2009104595A1 (ja) 酸化物ぺロブスカイト薄膜el素子
JP2008044803A (ja) 結晶化金属酸化物薄膜の製造方法及びその用途
Chen et al. Structure and photoluminescence property of Eu-doped SnO2 nanocrystalline powders fabricated by sol–gel calcination process
Nouri et al. Photoluminescence study of Eu+ 3 doped ZnO nanocolumns prepared by electrodeposition method
JP5371044B2 (ja) ペロブスカイト蛍光体薄膜
Yang et al. Improved photoelectric performance of all-inorganic perovskite through different additives for green light-emitting diodes
JP2013053279A (ja) 無機蛍光材料
Park et al. Single-crystalline Zn2SiO4: Mn2+ luminescent film on amorphous quartz glass
Sharma et al. Epitaxial growth of Sc-doped ZnO films on Si by sol–gel route
JP5120949B2 (ja) 白色蛍光体の製造方法
Do et al. Large ammonium cation-induced controlled mixed-phase of CsPbBr3 perovskites for color tunable perovskite light-emitting diodes
TW528791B (en) Phosphor multilayer and EL panel
Garcı́a-Hipólito et al. Characterization of ZrO2: Mn, Cl luminescent coatings synthesized by the Pyrosol technique
Cai et al. Ionic-liquid induced enhanced performance of perovskite light-emitting diodes
JP5339288B2 (ja) ペロブスカイト型酸化物蛍光薄膜体
TWI503399B (zh) Preparation of Mn - Activated Zinc - Aluminum Spinel Fluorescent Films
JP2011258416A (ja) ぺロブスカイト型酸化物薄膜el素子
TWI302935B (ja)
JP4952956B2 (ja) 結晶化金属酸化物薄膜を備えた蛍光体
KR100373320B1 (ko) 탄탈륨산화막을 이용한 교류 구동형 전계 발광소자 제조방법
KR20140102368A (ko) 그래핀이 코팅된 형광체 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13055064

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09802850

Country of ref document: EP

Kind code of ref document: A1