WO2010013362A1 - 風力発電装置 - Google Patents

風力発電装置 Download PDF

Info

Publication number
WO2010013362A1
WO2010013362A1 PCT/JP2008/069805 JP2008069805W WO2010013362A1 WO 2010013362 A1 WO2010013362 A1 WO 2010013362A1 JP 2008069805 W JP2008069805 W JP 2008069805W WO 2010013362 A1 WO2010013362 A1 WO 2010013362A1
Authority
WO
WIPO (PCT)
Prior art keywords
nacelle
intake port
outside
power generator
wind power
Prior art date
Application number
PCT/JP2008/069805
Other languages
English (en)
French (fr)
Inventor
内野 隆
慎輔 佐藤
崇俊 松下
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2008360138A priority Critical patent/AU2008360138B2/en
Priority to CN2008801283725A priority patent/CN101981314B/zh
Priority to BRPI0822487A priority patent/BRPI0822487A2/pt
Priority to CA2718340A priority patent/CA2718340A1/en
Priority to US12/377,898 priority patent/US8109814B2/en
Priority to EP08876660A priority patent/EP2306010A1/en
Publication of WO2010013362A1 publication Critical patent/WO2010013362A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/14Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind power generator that generates power using a windmill that converts wind of natural energy into rotational force.
  • a wind power generator that generates power using wind power, which is natural energy, is known.
  • a wind power generator of this type includes, for example, a rotor head 4 in which a wind turbine blade 5 is attached to a nacelle 3 installed on a support 2, as in the wind power generator 1 shown in FIG. 3, and the rotor head 4.
  • a main shaft connected to rotate, a speed increasing device connected to the main shaft rotating by receiving wind power on the wind turbine blade 5, and a generator driven by the shaft output of the speed increasing device are provided.
  • the shaft output with increased rotational speed is transmitted to the generator. For this reason, the shaft output obtained by converting wind power into rotational force can be used as a drive source of the generator, and power generation using wind power as the power of the generator can be performed.
  • the nacelle 3 is provided with a ventilation device in order to cool the inside of the nacelle 3 where the temperature rises due to the heat generated by the equipment E and prevent damage to the equipment E due to the temperature rise above a predetermined temperature.
  • the ventilation device includes an intake port 31 provided in the front surface of the nacelle 3, an exhaust port 32 provided in the upper rear portion of the nacelle 3, and a ventilation fan (not shown) provided in the intake port 31.
  • the front surface of the nacelle 3 provided with the intake port 31 is a position where the dynamic pressure of the air flow flowing outside is the largest.
  • a louver 33 configured as shown in FIG. 15 is provided, for example.
  • the illustrated gallery 33 has a flow path structure that prevents rainwater from entering the nacelle 3, and compares the flow of intake air from the outside of the nacelle to the inside of the nacelle and the flow of exhaust gas from the inside of the nacelle to the outside of the nacelle.
  • the flow path resistance (pressure loss ⁇ p) is equal in any flow direction.
  • the conventional wind power generator 1 described above is provided with an intake port 31 on the front surface of the nacelle 3 and performs intake and exhaust by a ventilation fan for ventilation cooling.
  • ventilation cooling may not provide sufficient cooling capacity depending on the installation environment and season of the wind power generator 1.
  • the installation site of the wind power generator 1 is warm, there is a possibility that the air volume necessary for cooling the device E cannot be secured with the intake port 31 provided on the front surface of the nacelle 3 alone. At such an installation site, damage due to a temperature rise of the device E becomes a problem.
  • the interior of the nacelle 3 communicates with the atmosphere through the air inlet 31 and the air outlet 32 even if the operation is stopped. Ambient temperature decreases. For this reason, the ambient temperature of the device E may be as low as ⁇ 20 ° C. or lower depending on the environment of the cold region. Therefore, when the operation is resumed, the operation of the device E is hindered and the device E may be damaged. . If a specific example is given, if the inside of the nacelle 3 will become low temperature, the temperature of the fats and oils which are supplied to the sliding part of the apparatus E and will cool and lubricate will also fall, and a viscosity will rise. Such an increase in the viscosity of fats and oils increases the load at the time of starting the pump, so that smooth pump starting is hindered, and there is a concern that the pump and the motor may be damaged.
  • the wind turbine generator 1 that ventilates and cools the interior of the nacelle 3 has different conditions such as the outside temperature depending on the installation site and the season, so the inside of the nacelle can be adapted to a wide range of installation environments without depending on the outside temperature. It is desirable to cool.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wind power generator capable of ventilating and cooling the nacelle interior in a wide range of installation environments without depending on the outside air temperature. Is to provide.
  • the present invention employs the following means.
  • the drive mechanism connected to the rotor head to which the wind turbine blade is attached and the devices of the power generation mechanism are housed and installed in the nacelle, and by driving the ventilation fan installed in the nacelle,
  • a wind power generator that ventilates and cools the outside air introduced into the nacelle front through an exhaust port communicating with the fan outlet to the outside of the nacelle. It is characterized in that a side air inlet is added to the side position of the generated nacelle.
  • a rear side air intake port is added to the nacelle side surface position where the negative pressure has been removed, behind the nacelle of the side air intake port, and an open / closed state of the side air intake port and the side rear air intake port is selected. It is preferable to provide a switching means, whereby an intake port that is opened according to the outside air temperature can be selected and used for intake or exhaust.
  • the side rear intake port is preferably located at the upper rear side of the nacelle side surface.
  • the switching means is attached to the side air inlet, and has a front support swing member that opens and closes the nacelle rear side outwardly with the nacelle front side as a fulcrum, and is attached to the side rear air inlet, It is preferable to include a rear support swinging member that opens and closes outward on the front side of the nacelle as a fulcrum, so that if the side intake port is opened, exhaust efficiency increases due to an increase in negative pressure, and side side rear intake If the mouth is opened, the intake air efficiency can be increased by scooping out the flow of outside air.
  • a front hood member that is attached to the outside of the side air inlet, closes the front side of the nacelle and opens the rear side of the nacelle, and is attached to the outside of the side air rear inlet, It is preferable to provide a rear hood member that is open on the front side and closed on the rear side of the nacelle, so that if the side air inlet is opened, the front hood member increases the negative pressure and the exhaust efficiency is increased. If the rear intake port is opened, the rear hood member can take in the flow of outside air and increase the efficiency of intake.
  • the intake port is provided with a gallery having a channel cross-sectional shape in which an inlet opening area on the outflow side is larger than that on the inflow side. be able to.
  • the flow path cross-sectional shape is preferably inclined such that the axial center line is lowered from the inflow side to the outflow side, and provided with a rain gutter on the lower wall surface forming the flow path cross section. Rainwater that enters the nacelle from the gallery can be drained to the outside.
  • the inside of the nacelle can be cooled in a wide range of installation environments without depending on the outside air temperature, even if the conditions such as the outside air temperature vary depending on the installation site and season. be able to.
  • internal cooling is performed by efficient ventilation
  • the ventilation is suppressed to minimize the temperature drop. be able to.
  • FIG. 1 It is sectional drawing which shows the 2nd modification of the louver structure shown in FIG. It is a top view which shows the nacelle structure at the time of operation
  • the nacelle 3 is installed on the upper part of the support 2.
  • a rotor head 4 with a wind turbine blade 5 attached thereto is rotatably supported.
  • a main shaft (not shown) connected to rotate integrally with the rotor head 4, a speed increasing device (not shown) connected to the main shaft that rotates by receiving wind power from the wind turbine blade 5,
  • Devices such as a generator (not shown) driven by the shaft output of the speed machine and a control device (not shown) for performing various controls are installed.
  • the rotor head 4 including the wind turbine blades 5 that convert wind power into rotational force and the main shaft rotate to generate shaft output, and thus a speed increaser connected to the main shaft is provided. It is possible to perform power generation using wind power by a generator driven through the wind turbine.
  • the device E such as a drive / power generation mechanism connected to the rotor head 4 to which the wind turbine blade 5 is attached is housed and installed in the nacelle 3 and installed in an appropriate place inside the nacelle 3.
  • a ventilation fan (not shown)
  • the outside air introduced from the intake port 31 provided on the front surface of the nacelle 3 is discharged from the exhaust port 32 communicating with the fan outlet to the outside of the nacelle 3 to cool the inside.
  • negative pressure is generated by the flow of outside air flowing outside the nacelle 3, for example.
  • a side air inlet 34 is added to the side surface position where the nacelle occurs. Note that the side air inlets 34 are added to the left and right side surfaces of the nacelle 3.
  • the air inlet 31 is an opening provided in the lower part of the front surface of the nacelle 3 and is attached with a louver 40 which will be described later.
  • the lower part of the front surface in this case is below the position where the rotor head 4 rotates, and is an area close to the substantially lower end surface of the nacelle 3.
  • the exhaust port 32 is an exhaust opening disposed on the rear end surface of the nacelle 3.
  • the exhaust port 32 is connected to, for example, an outlet of a ventilation fan installed near the center of the upper end surface of the nacelle 3 and a duct extending rearward from the outlet of the ventilation fan.
  • the side air inlet 34 is installed in a portion where the pressure on the nacelle side surface 3 a is lowest due to the influence of the external airflow flowing from the front of the nacelle 3. That is, the external airflow flowing from the front of the nacelle 3 is installed in a negative pressure region where the flow direction changes due to the influence of the nacelle front end surface, and the pressure is reduced by peeling off from the nacelle side surface 3a. As shown in FIG. 1A, for example, if the total length of the nacelle 3 is L, this negative pressure region is formed in a range of approximately 0.1 L to 0.3 L as a result of simulation based on the nacelle shape.
  • Such a wind power generator 1 operates the ventilation fan to ventilate and cool the inside of the nacelle 3 during the operation of generating normal power.
  • the outside air in this case flows into the nacelle 3 from the intake port 31 and the additional side intake port 34, circulates in the nacelle 3, and flows out from the exhaust port 32. It flows like. That is, the added side air inlet 34 functions to widen the opening area for intake (intake area).
  • the nacelle 3 has a ventilation cooling flow path in which the outside air sucked from the intake port 31 and the side intake port 34 circulates in the nacelle, and is exhausted from the exhaust port 32 to the outside of the nacelle after the nacelle is ventilated and cooled.
  • the intake area increases, the amount of outside air that can be introduced into the nacelle 3 during operation of the wind turbine generator 1 increases, and the temperature rise inside the nacelle can be reduced.
  • the installation position of the side air inlet 34 is in a negative pressure region, but since the ventilation fan is operated, the outside air sucked into the nacelle 3 where a large negative pressure is formed around the side air inlet 34. A flow of is formed.
  • the ventilation fan is also stopped.
  • the side suction port 34 is installed in the negative pressure region, as shown in FIGS. 2A and 2B, the suction force toward the inside of the nacelle does not act around the added side suction port 34. Exhausted toward the outside of the nacelle, which is under negative pressure That is, when the operation of the ventilation fan is stopped, the side air inlet 34 functions as an exhaust port, but the negative pressure outside the nacelle generated in this case is considerably smaller than the negative pressure generated by the operation of the ventilation fan. It becomes.
  • the side rear intake port 35 is added to the position of the nacelle side surface 3a that is the non-negative pressure region where the negative pressure is eliminated and is the rear side position of the side intake port 34 described above.
  • the side rear intake port 35 is provided with, for example, a sliding door member 36 as switching means for selecting an open / closed state of the side surface intake port 34 and the side rear intake port 35.
  • the door member 36 has a first open / close state in which the side intake port 34 is opened and the side rear intake port 35 is closed, and a second open / close state in which the side intake port 34 is closed and the side rear intake port 35 is opened.
  • the nacelle 3 is slid in the front-rear direction of the nacelle 3, and an open / closed state in which one of the nacelle 3 is open can be selected.
  • the side air inlet 34 is disposed at the same position as in the first embodiment described above.
  • the side rear air intake 35 changes the flow direction due to the influence of the front end surface of the nacelle, and the external airflow flowing from the front of the nacelle 3 passes through the negative pressure region where the pressure is peeled off from the nacelle side surface 3a. It is installed at the position where pressure is restored (non-negative pressure region). That is, as shown in FIG. 4A, the side rear intake 35 is formed in a range of approximately 0.5 L to 0.8 L as a result of simulation based on the nacelle shape, where L is the total length of the nacelle 3.
  • b 0.5L to 0.8L are arranged.
  • all the side rear intake ports 35 be installed in the range of 0.5 L to 0.8 L.
  • the door member 36 is operated in accordance with the outside air temperature of the environment where the wind turbine generator 1 is installed, and the intake opening that opens from the side intake 34 and the side rear intake 35 is selected.
  • the side air inlet 34 is opened and the side rear air inlet 35 is opened by sliding the door member 36 toward the back of the nacelle.
  • the first open / close state to be closed is selected. In this state, since the side rear intake port 35 is closed, the configuration is substantially the same as that of the first embodiment described above in which the side rear intake port 35 is not provided.
  • the side air inlet 34 functions as an exhaust outlet. For this reason, a relatively small amount of airflow that flows out from the nacelle to the outside of the nacelle is formed at the side air inlet 34, and the amount of outside air that enters the nacelle can be minimized by this airflow.
  • the wind turbine generator 1 installed in a cold region it takes a long time for low-temperature outside air to enter and ventilate the nacelle when operation is stopped, and the temperature drop inside the nacelle can be suppressed.
  • the side air inlet 34 is closed and the side rear air inlet 35 is opened by sliding the door member 36 forward of the nacelle. 2 open / closed state is selected.
  • the side rear intake port 35 since the side rear intake port 35 is opened, the side rear intake port 35 in the non-negative pressure region functions as an intake port. Therefore, in the normal operation state in which the wind turbine generator 1 and the ventilation fan are operated, the side rear intake port 35 functions as an intake port in addition to the intake port 31, so that the amount of air to ventilate and cool the interior of the nacelle 3 is increased. Increase increases cooling efficiency. Such improvement in cooling efficiency is also effective in reducing the capacity of the ventilation fan.
  • 6A, 6B, 7A and 7B show a first modification according to the second embodiment described above.
  • the side rear intake port 35A is located at the upper rear portion of the nacelle side surface 3a. That is, the side rear intake port 35A is provided in the vicinity of the rear end portion of the equipment E installed in the nacelle 3 and in the vicinity of the upper end portion of the nacelle side surface 3a.
  • This modification also includes a door member 36A that can select an open / closed state so that only one of the side air inlet 34 or the side rear air inlet 35A is opened. As shown in FIGS. 7A and 7B, for example, as shown in FIGS.
  • the side rear intake port 35A having such an arrangement can be used as long as the side rear intake port 34 is closed and the side rear intake port 35A is opened. It is possible to efficiently ventilate the rear upper part where the temperature is high.
  • the state shown in FIGS. 6A and 6B shows a case where the operation of the wind turbine generator 1 is stopped in an installation environment where the outside air temperature is low, as in FIGS. 4A and 4B of the above-described embodiment.
  • hinged door members 37a and 37b are employed.
  • One door member 37 a is attached to the side air inlet 34.
  • the door member 37a is a front support swinging member that opens and closes outward on the rear side of the nacelle with the front side of the nacelle 3 as a fulcrum.
  • the other door member 37 b is attached to the side rear intake port 35.
  • the door member 37a is a rear support swinging member that opens and closes the nacelle front side outward with the rear side of the nacelle 3 as a fulcrum.
  • the exhaust efficiency can be increased by increasing the negative pressure. That is, since the door member 37a in the open state changes the flow of the outside air flowing along the nacelle side surface 3a outward, it can increase the negative pressure acting in the direction of intake from the inside of the nacelle 3 to the outside of the nacelle. it can. Further, for example, as shown in FIGS. 9A and 9B, if the door member 37 b is operated to open the side rear intake port 35, the flow of outside air can be scavenged and taken into the nacelle 3. That is, since the door member 37b in the open state changes the flow of the outside air flowing along the nacelle side surface 3a toward the inside of the nacelle 3, it is possible to increase the efficiency of the intake air that takes the outside air into the nacelle 3.
  • FIG. 10 shows a third modification according to the second embodiment described above.
  • the front hood member 38 that is attached to the outer side of the side intake port 34, closes the nacelle front side and opens the rear side of the nacelle, and is attached to the outer side to the side rear intake port 35, And a rear hood member 39 which is opened and closed on the rear side of the nacelle.
  • the front hood member 38 exerts a negative pressure by the same action as the door member 37a of the second modified example described above. It can be increased to increase the efficiency of exhaust.
  • the rear hood member 39 scoops the flow of outside air by the same action as the door member 37b of the second modification described above.
  • the intake efficiency can be increased.
  • the intake port 31 is provided with a gallery 40 having a channel cross-sectional shape in which the outlet opening area on the outflow side is larger than the inflow side, as shown in FIG.
  • the gallery 40 is also called a louver or an armor window.
  • an outside air passage 41 having a larger channel cross-sectional area on the nacelle outflow side facing the inside of the nacelle is formed as compared with the inflow side of the outside air facing the outside of the nacelle.
  • the cross-sectional shape of the flow channel forming members 42 that are arranged at a predetermined pitch in the vertical direction has an inlet opening area enlarged by making the tip on the nacelle outflow side an acute triangle.
  • the pressure loss ⁇ Po at the time of outflow can be made smaller than the pressure loss ⁇ Pi at the time of inflow. That is, when the operation of the ventilation fan is stopped, the flow resistance of the outside air flowing into the nacelle 3 through the louver 40 becomes larger than the flow resistance of the air flowing out of the nacelle 3. For this reason, in the air volume power generation device 1 installed in a cold district, it is difficult for low-temperature outside air to flow into the nacelle 3 when the operation is stopped, and the internal temperature of the nacelle 3 can be prevented from decreasing. Further, a gallery 40A shown in FIG. 12 is a modification of the gallery 40 shown in FIG.
  • a large number of flow path forming members 42A are arranged at a predetermined pitch in the vertical direction to form a large number of outdoor air flow paths 41A.
  • the cross-sectional shape of the flow path forming member 42A is a substantially triangular shape in which the tip on the nacelle outflow side is narrowed by a curved surface, and the inlet opening area is enlarged by this narrowing.
  • a gallery 40B shown in FIG. 13 is a modification of the gallery 40, 40A shown in FIGS.
  • the flow path cross-sectional shape of the outside air flow path 41B formed in the louver 40B is inclined such that the axial center line is lowered from the inflow side to the outflow side, and the flow path forming member 42B that forms the flow path cross section is formed.
  • a rain gutter 44 is provided on the lower wall surface 43.
  • the wind power generator 1 of the present invention described above is adapted to a wide range of installation environments without depending on the outside air temperature, even if the conditions such as the outside air temperature vary depending on the installation site and season.
  • the inside of can be cooled. That is, in the situation where the internal temperature of the nacelle 3 rises, internal cooling is performed by efficient ventilation, and in the situation where the temperature inside the nacelle decreases, such as in a cold district, the ventilation is suppressed to minimize the temperature drop. Can be suppressed.
  • this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Wind Motors (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

外気温度に依存することなく広範な設置環境に適応してナセル内部を換気冷却することができる風力発電装置を提供する。風車翼を取り付けたロータヘッド(4)に連結されている駆動・発電機構等の機器(E)がナセル(3)の内部に収納設置され、ナセル(3)に設置した換気ファンを駆動することにより、ナセル前面に設けた吸気口(31)から導入した外気をファン出口に連通する排気口(32)からナセル(3)の外部へ排出して内部の換気冷却を行う風力発電装置において、ナセル外部を流れる気流により負圧を生じる位置のナセル側面(3a)に側面吸気口(34)を増設した。

Description

風力発電装置
 本発明は、自然エネルギーの風を回転力に変換する風車を用いて発電を行う風力発電装置に関する。
 従来、自然エネルギーである風力を利用して発電を行う風力発電装置が知られている。この種の風力発電装置は、たとえば図3に示す風力発電装置1のように、支柱2上に設置されたナセル3に、風車翼5を取り付けたロータヘッド4と、このロータヘッド4と一体に回転するよう連結された主軸と、風車翼5に風力を受けて回転する主軸を連結した増速機と、増速機の軸出力によって駆動される発電機とを設けたものである。
 このように構成された風力発電装置1においては、風力を回転力に変換する風車翼5を備えたロータヘッド4及び主軸が回転して軸出力を発生し、主軸に連結された増速機を介して回転数を増速した軸出力が発電機に伝達される。このため、風力を回転力に変換して得られる軸出力を発電機の駆動源とし、発電機の動力として風力を利用した発電を行うことができる。
 上述した風力発電装置1は、たとえば図14に示すように、ナセル3の内部に増速機、発電機及び制御機器等の機器Eが設置されている。このような機器Eは、運転時に発熱して内部温度を上昇させる原因となる。このため、ナセル3には、機器Eの発熱により温度上昇する内部を冷却し、所定温度以上の温度上昇に伴う機器Eの損傷を防止するため、換気装置が設けられている。
 この換気装置は、ナセル3の前面に設けた吸気口31と、ナセル3の後方上部に設けた排気口32と、吸気口31に設けた換気ファン(不図示)とを備えている。吸気口31を設けたナセル3の前面は、外部を流れる空気流の動圧が最も大きくなる位置である。
 上述した吸気口31には、たとえば図15に示すように構成されたガラリ33が設けられている。図示のガラリ33は、ナセル3内へ雨水が侵入することを防止する流路構造を有し、ナセル外部からナセル内部へ向かう吸気の流れと、ナセル内部からナセル外部へ向かう排気の流れと比較すると、いずれの流れ方向においても流路抵抗(圧力損失Δp)が等しいものとなっている。
 また、密閉構造のケース内に発電機が収納されている風力発電装置においては、発電機の下端面側となるケースに設けた吸気口及びケースの前面端部に設けた空気排気口を用いて、ケース内の排気口近傍に設けたファンを駆動することによりケース内の強制換気を行う冷却機構が提案されている。(たとえば、特許文献1参照)
特開昭58-65977号公報(第2図参照)
 上述した従来の風力発電装置1は、ナセル3の前面に吸気口31を設けて換気ファンによる吸排気を行って換気冷却している。しかし、このような換気冷却は、風力発電装置1の設置環境や季節によっては十分な冷却能力を得られない場合がある。
 風力発電装置1の設置サイトが温暖な場合、ナセル3の前面に設けた吸気口31のみでは、機器Eの冷却に必要な風量を十分に確保できない恐れがある。このような設置サイトでは、機器Eの温度上昇による損傷が問題となる。
 風力発電装置1の設置サイトが寒冷地である場合、運転停止されても吸気口31や排気口32を介してナセル3の内部が大気と連通しているので、ナセル3の内部では機器Eの周辺温度が低下する。このため、寒冷地の環境によっては機器Eの周辺温度が-20℃以下の低温になることもあり、従って、運転再開時に機器Eの動作が妨げられ、機器Eが損傷に至ることも考えられる。具体例を挙げると、ナセル3の内部が低温になると、機器Eの摺動部に供給されて冷却及び潤滑を行う油脂類の温度も低下して粘度が上昇する。このような油脂類の粘度上昇は、ポンプ起動時の負荷を増大させるので、スムーズなポンプ起動が妨げられ、さらに、ポンプや電動機の損傷に至ることも懸念される。
 このように、ナセル3の内部を換気冷却する風力発電装置1は、設置サイトや季節によって外気温度等の条件が異なるので、外気温度に依存することなく広範な設置環境に適応してナセル内部を冷却することが望まれる。
 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、外気温度に依存することなく広範な設置環境に適応してナセル内部を換気冷却することができる風力発電装置を提供することにある。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明の風力発電装置は、風車翼を取り付けたロータヘッドに連結されている駆動機構及び発電機構の機器類がナセルの内部に収納設置され、前記ナセルに設置した換気ファンを駆動することにより、ナセル前面に設けた吸気口から導入した外気をファン出口に連通する排気口から前記ナセルの外部へ排出して内部の換気冷却を行う風力発電装置であって、ナセル外部を流れる気流により負圧を生じるナセル側面位置に側面吸気口を増設したことを特徴とするものである。
 このような風力発電装置によれば、ナセル外部を流れる気流により負圧を生じるナセル側面位置に側面吸気口を増設したので、吸気口面積の増加に伴って運転時にナセル内部へ導入できる外気量が増し、ナセル内部の温度上昇を軽減することができる。
 また、風力発電装置の運転停止時には、ナセル外部を流れる気流が側面吸気口の位置で負圧となるため、増設した側面吸気口からナセル内部へ浸入する外気量を最小限に抑えることができる。従って、寒冷地に設置した風力発電装置の運転停止時においては、ナセル内部の温度低下を抑制することができる。
 この場合、増設する側面吸気口を吸気口に近いナセル側面の下部に配置すれば、吸気口から流入した外気は、ナセル内部を循環することなく略そのまま側面吸気口から流出して排気されるので、ナセル内部の換気を抑制することができる。
 上記の風力発電装置においては、前記側面吸気口のナセル後方でかつ負圧が解消したナセル側面位置に側面後方吸気口を増設し、前記側面吸気口及び前記側面後方吸気口の開閉状態を選択する切替手段を設けることが好ましく、これにより、外気温度に応じて開とする吸気口を選択して吸気または排気に使用することができる。
 この場合、前記側面後方吸気口は、ナセル側面の後方上部に位置していることが好ましく、これにより、外気温が高い状況で側面後方吸気口を開とすれば、ナセル内部において温度の高い後方上部の換気を効率よく行うことができる。
 また、前記切替手段は、前記側面吸気口に取り付けられ、ナセル前方側を支点にしてナセル後方側が外向きに開閉する前方支持揺動部材と、前記側面後方吸気口に取り付けられ、ナセル後方側を支点にしてナセル前方側が外向きに開閉する後方支持揺動部材とを備えていることが好ましく、これにより、側面吸気口を開とすれば負圧の増大により排気の効率が増し、側面後方吸気口を開とすれば外気の流れをすくい取るように取り込んで吸気の効率を増すことができる。
 また、本発明の風力発電装置において、前記側面吸気口の外側に取り付けられ、ナセル前方側を閉じてナセル後方側を開口させた前方フード部材と、前記側面後方吸気口に外側に取り付けられ、ナセル前方側を開口させてナセル後方側を閉じた後方フード部材とを設けることが好ましく、これにより、側面吸気口を開とすれば前方フード部材が負圧を増大させて排気の効率を増し、側面後方吸気口を開とすれば後方フード部材が外気の流れをすくい取るように取り込んで吸気の効率を増すことができる。
 上記の発明において、前記吸気口は、流入側より流出側の入口開口面積を大きくした流路断面形状のガラリを備えていることが好ましく、これにより、流出時の圧力損失を流入時より小さくすることができる。
 この場合、前記流路断面形状は、軸中心線が流入側から流出側へ下がるように傾斜し、かつ、流路断面を形成する下部壁面に雨樋を備えていることが好ましく、これにより、ガラリからナセル内部へ浸入しようとする雨水を外部へ排水することができる。
 上述した本発明の風力発電装置によれば、設置サイトや季節によって外気温度等の条件が異なる場合であっても、外気温度に依存することなく広範な設置環境に適応してナセル内部を冷却することができる。すなわち、ナセル内部の温度が上昇する状況では、効率的な換気による内部冷却を行い、寒冷地等のようにナセル内部の温度が低下する状況では、換気を抑制して温度低下を最小限に抑えることができる。
本発明に係る風力発電装置について、第1の実施形態を示す運転時のナセル構造を表した平面図である。 本発明に係る風力発電装置について、第1の実施形態を示す運転時のナセル構造を表した側面図である。 本発明に係る風力発電装置について、第1の実施形態を示す運転停止時のナセル構造を表した平面図である。 本発明に係る風力発電装置について、第1の実施形態を示す運転停止時のナセル構造を表した側面図である。 風力発電装置の概要を示す図である。 本発明に係る風力発電装置について、第2の実施形態を示す低外気温・運転停止時のナセル構造を表した平面図である。 本発明に係る風力発電装置について、第2の実施形態を示す低外気温・運転停止時のナセル構造を表した側面図である。 本発明に係る風力発電装置について、第2の実施形態を示す高外気温・運転時のナセル構造を表した平面図である。 本発明に係る風力発電装置について、第2の実施形態を示す高外気温・運転時のナセル構造を表した側面図である。 第2の実施形態に係る第1変形例を示す低外気温・運転停止時のナセル構造を表した平面図である。 第2の実施形態に係る第1変形例を示す低外気温・運転停止時のナセル構造を表した側面図である。 第2の実施形態に係る第1変形例を示す高外気温・運転時のナセル構造を表した平面図である。 第2の実施形態に係る第1変形例を示す高外気温・運転時のナセル構造を表した側面図である。 第2の実施形態に係る第2変形例を示す低外気温・運転停止時のナセル構造を表した平面図である。 第2の実施形態に係る第2変形例を示す低外気温・運転停止時のナセル構造を表した側面図である。 第2の実施形態に係る第2変形例を示す高外気温・運転時のナセル構造を表した平面図である。 第2の実施形態に係る第2変形例を示す高外気温・運転時のナセル構造を表した側面図である。 第2の実施形態に係る第3変形例を示すナセル構造の平面図である。 本発明に係る風力発電装置の吸気口に取り付けられるガラリ構造を示す断面図である。 図11に示すガラリ構造の第1変形例を示す断面図である。 図11に示すガラリ構造の第2変形例を示す断面図である。 従来の風力発電装置について、運転時のナセル構造を示す平面図である。 風力発電装置の吸気口に取り付けられる受雷のガラリ構造を示す断面図である。
符号の説明
  1  風力発電装置
  3  ナセル
  3a  ナセル側面
 31  吸気口
 32  排気口
 33,40,40A,40B  ガラリ
 34  側面吸気口
 35,35A  側面後方吸気口
 36,36A  ドア部材
 37a,37b  ドア部材
 以下、本発明に係る風力発電装置の一実施形態を図面に基づいて説明する。
 図3に示す風力発電装置1は、支柱2の上部にナセル3が設置されている。ナセル3の前端部側には、風車翼5を取り付けたロータヘッド4が回転可能に支持されている。ナセル3の内部には、ロータヘッド4と一体に回転するよう連結された主軸(不図示)と、風車翼5に風力を受けて回転する主軸を連結した増速機(不図示)と、増速機の軸出力によって駆動される発電機(不図示)と、各種制御を行う制御機器(不図示)のような機器類が設置されている。
 このように構成された風力発電装置1は、風力を回転力に変換する風車翼5を備えたロータヘッド4及び主軸が回転して軸出力を発生するので、主軸に連結された増速機を介して駆動される発電機により、風力を利用した発電を行うことができる。
 すなわち、上述した風力発電装置1は、風車翼5を取り付けたロータヘッド4に連結されている駆動・発電機構等の機器Eがナセル3の内部に収納設置され、ナセル3の内部適所に設置した換気ファン(不図示)を駆動することにより、ナセル3の前面に設けた吸気口31から導入した外気をファン出口に連通する排気口32からナセル3の外部へ排出して内部の換気冷却を行うものである。
 このような風力発電装置1に対し、以下に説明する第1の実施形態では、たとえば図1A、図1B、図2A及び図2Bに示すように、ナセル3の外部を流れる外気の気流によって負圧が生じるナセル側面位置に側面吸気口34を増設している。なお、この側面吸気口34は、ナセル3の左右両側面に増設されている。
 吸気口31は、ナセル3の前面下部に設けられた開口部であり、後述するガラリ40が取り付けられている。この場合の前面下部は、ロータヘッド4が回転する位置より下方であり、ナセル3の略下端面に近い領域となる。
 排気口32は、ナセル3の後端面上部に配置されている排気用の開口部である。この排気口32は、たとえばナセル3の上端面中央付近等に設置した換気ファンの出口と、換気ファン出口から後方へ延びるダクトを介して連結されている。
 側面吸気口34は、ナセル3の正面から流れてくる外気流の影響により、ナセル側面3aの圧力が最も低くなる部分に設置されている。すなわち、ナセル3の正面から流れてくる外気流がナセル前端面の影響を受けて流れ方向が変化し、ナセル側面3aから剥離して圧力が低くなる負圧領域に設置されている。この負圧領域は、たとえば図1Aに示すように、ナセル3の全長をLとすれば、ナセル形状に基づくシミュレーションの結果、概ね0.1L~0.3Lの範囲に形成される。図示の設置例では、ナセル3の前端から側面吸気口34のナセル長さ方向中心軸までの長さをaとした場合、a=0.1L~0.3Lとなるように配置されているが、側面吸気口34が全て0.1L~0.3Lの範囲に設置されることが望ましい。
 また、増設する側面吸気口34は、吸気口31に近いナセル側面3aの下部に、すなわち、図1A、図1B、図2A及び図2Bに示すように、吸気口31から流入した外気がナセル内部を循環しないで流出するように、吸気口31と略同一レベルの後方位置に配置することが望ましい。
 このような風力発電装置1は、通常の発電を行う運転時において、換気ファンを運転してナセル3の内部を換気冷却している。この場合の外気は、図1A,図1Bに示すように、吸気口31及び増設された側面吸気口34からナセル3の内部に流入し、ナセル3の内部を循環して排気口32から流出するように流れる。すなわち、増設された側面吸気口34は、吸気用の開口面積(吸気口面積)を広げるように機能する。
 この結果、ナセル3には、吸気口31及び側面吸気口34から吸気された外気がナセル内部を循環し、ナセル内部を換気冷却した後に排気口32からナセル外へ排気される換気冷却流路が形成されている。従って、吸気口面積の増加に伴って、風力発電装置1の運転時にナセル3の内部へ導入できる外気量が増し、ナセル内部の温度上昇を軽減することができる。なお、側面吸気口34の設置位置は負圧領域となるが、換気ファンが運転されているため、側面吸気口34の周辺では、大きな負圧が形成されるナセル3の内部へ吸引される外気の流れが形成されることとなる。
 一方、風力発電装置1の運転停止時には、換気ファンの運転も停止される。このとき、側面吸気口34は負圧領域に設置されているため、図2A,図2Bに示すように、増設した側面吸気口34の周辺ではナセル内部へ向かう吸引力は作用せず、反対に負圧となるナセル外部へ向けて排気される。すなわち、換気ファンの運転を停止した状態では、側面吸気口34が排気口として機能するが、この場合に生じるナセル外部の負圧は、換気ファンの運転により生じる負圧と比較してかなり小さなものとなる。
 従って、周辺吸気口34には、ナセル内部からナセル外部へ流出する比較的少量の空気流が形成され、この空気流により、ナセル内部へ浸入する外気量を最小限に抑えることができる。
 この結果、寒冷地に設置した風力発電装置1では、運転停止時に低温の外気がナセル内部へ侵入することに起因した換気に時間を要するので、ナセル内部の温度低下を抑制することができる。特に、側面吸気口34を吸気口31に近いナセル側面3aの下部に増設しておけば、吸気口31から流入した外気は、ナセル3の内部を循環することなく略そのまま側面吸気口34からナセル外へ流出して排気されるため、ナセル内部の換気をより一層抑制することができる。
 続いて、本発明に係る風力発電装置について、第2の実施形態を図4A、図4B、図5A及び図5Bに基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 この実施形態では、上述した側面吸気口34のナセル後方位置であり、かつ、負圧が解消した非負圧領域となるナセル側面3aの位置に、側面後方吸気口35を増設している。この側面後方吸気口35には、側面吸気口34及び側面後方吸気口35の開閉状態を選択する切替手段として、たとえばスライド式のドア部材36を備えている。
 このドア部材36は、側面吸気口34を開として側面後方吸気口35を閉とする第1の開閉状態と、側面吸気口34を閉として側面後方吸気口35を開とする第2の開閉状態との間をナセル3の前後方向にスライドし、いずれか一方が開となる開閉状態を選択できるようになっている。
 この実施形態において、側面吸気口34は、上述した第1の実施形態と同様の位置に配設されている。
 側面後方吸気口35は、ナセル3の正面から流れてくる外気流がナセル前端面の影響を受けて流れ方向を変化させ、ナセル側面3aから剥離して圧力が低くなる負圧領域を過ぎて、圧力を回復した位置(非負圧領域)に設置されている。すなわち、図4Aに示すように、側面後方吸気口35は、ナセル3の全長をLとすれば、ナセル形状に基づくシミュレーションの結果、概ね0.5L~0.8Lの範囲に形成される。図示の設置例では、ナセル3の前端から側面後方吸気口35のナセル長さ方向中心軸までの長さをbとした場合、b=0.5L~0.8Lとなるように配置されているが、側面後方吸気口35が全て0.5L~0.8Lの範囲に設置されることが望ましい。
 このような構成とすれば、風力発電装置1が設置された環境の外気温度に応じてドア部材36を操作し、側面吸気口34及び側面後方吸気口35から開とする吸気口を選択して吸気または排気に使用することができる。
 具体的に説明すると、外気温度が低い設置環境では、図4A及び図4Bに示すように、ドア部材36をナセル後方側へスライドさせることで、側面吸気口34を開として側面後方吸気口35を閉とする第1の開閉状態を選択する。この状態では、側面後方吸気口35が閉じられているため、側面後方吸気口35が設けられていない上述した第1の実施形態と実質的に同様の構成になる。
 従って、風力発電装置1の運転を停止し、換気ファンの運転も停止した状態では、側面吸気口34が排気口として機能する。このため、側面吸気口34には、ナセル内部からナセル外部へ流出する比較的少量の空気流が形成され、この空気流により、ナセル内部へ浸入する外気量を最小限に抑えることができる。
 この結果、寒冷地に設置した風力発電装置1では、運転停止時に低温の外気がナセル内部へ侵入して換気するための時間が長くなり、ナセル内部の温度低下を抑制することができる。
 反対に外気温度が高い設置環境では、図5A及び図5Bに示すように、ドア部材36をナセル前方側へスライドさせることにより、側面吸気口34を閉として側面後方吸気口35を開とする第2の開閉状態を選択する。この状態では、側面後方吸気口35が開かれているため、非負圧領域にある側面後方吸気口35は吸気口として機能する。
 従って、風力発電装置1及び換気ファンが運転されている通常の運転状態では、吸気口31に加えて側面後方吸気口35も吸気口として機能するので、ナセル3の内部を換気冷却する空気量の増加により冷却効率が向上する。このような冷却効率の向上は、換気ファンの容量低減にも有効である。
 図6A、図6B、図7A及び図7Bは、上述した第2の実施形態に係る第1変形例を示している。この場合の側面後方吸気口35Aは、ナセル側面3aの後方上部に位置している。すなわち、ナセル3の内部に設置された機器Eの後端部付近であり、かつ、ナセル側面3aの上端部付近となる位置に、側面後方吸気口35Aを設けてある。この変形例においても、側面吸気口34または側面後方吸気口35Aのいずれか一方のみを開とするように、開閉状態を選択できるドア部材36Aを備えている。
 このような配置の側面後方吸気口35Aは、たとえば図7A及び図7Bに示すように、外気温が高い状況で側面吸気口34を閉にして側面後方吸気口35Aを開とすれば、ナセル内部において温度の高い後方上部の換気を効率よく行うことができる。なお、図6A及び図6Bに示す状態は、上述した実施形態の図4A及び図4Bと同様に、外気温が低い設置環境で風力発電装置1の運転を停止した場合を示している。
 図8A、図8B、図9A及び図9Bは、上述した第2の実施形態に係る第2変形例を示している。この場合の切替手段は、ヒンジ式のドア部材37a,37bが採用されている。
 一方のドア部材37aは、側面吸気口34に取り付けられている。このドア部材37aは、ナセル3の前方側を支点にしてナセル後方側が外向きに開閉する前方支持揺動部材である。他方のドア部材37bは、側面後方吸気口35に取り付けられている。このドア部材37aは、ナセル3の後方側を支点にしてナセル前方側が外向きに開閉する後方支持揺動部材である。
 このような構成では、たとえば図8A及び図8Bに示すように、ドア部材37aを操作して側面吸気口34を開とすれば、負圧の増大により排気の効率を増すことができる。すなわち、開状態としたドア部材37aは、ナセル側面3aに沿って流れる外気の流れを外向きに変化させるため、ナセル3の内部からナセル外部へ吸気する方向に作用する負圧を増大させることができる。
 また、たとえば図9A及び図9Bに示すように、ドア部材37bを操作して側面後方吸気口35を開とすれば、外気の流れをすくい取るようにしてナセル3の内部へ取り込むことができる。すなわち、開状態としたドア部材37bは、ナセル側面3aに沿って流れる外気の流れをナセル3の内部へ向けて変化させるため、ナセル3の内部に外気を取り込む吸気の効率を増すことができる。
 図10は、上述した第2の実施形態に係る第3変形例を示している。この場合変形例では、側面吸気口34の外側に取り付けられ、ナセル前方側を閉じてナセル後方側を開口させた前方フード部材38と、側面後方吸気口35に外側に取り付けられ、ナセル前方側を開口させてナセル後方側を閉じた後方フード部材39とを備えている。
 このような構成では、図示しないドア部材36等を操作して側面吸気口34を開とすれば、上述した第2変形例のドア部材37aと同様の作用により、前方フード部材38が負圧を増大させて排気の効率を増すことができる。
 また、図示しないドア部材36等を操作して側面後方吸気口35を開とすれば、上述した第2変形例のドア部材37bと同様の作用により、後方フード部材39が外気の流れをすくい取るように取り込んで吸気の効率を増すことができる。
 上述した各実施形態及びその変形例において、吸気口31には、たとえば図11に示すように、流入側より流出側の入口開口面積を大きくした流路断面形状のガラリ40が設けられている。なお、ガラリ40は、ルーバーや鎧窓とも呼ばれている。
 図11に示すガラリ40には、ナセル外部に面した外気の流入側と比較して、ナセル内部に面したナセル流出側の流路断面積が大きい外気流路41が形成されている。この外気流路41は、上下方向に所定のピッチで多数配置されている流路形成部材42の断面形状について、ナセル流出側の先端部を鋭角の三角形にして入口開口面積を拡大している。
 このようなガラリ40を採用することにより、流出時の圧力損失ΔPoを流入時の圧力損失ΔPiより小さくすることができる。すなわち、換気ファンの運転を停止した場合においては、ガラリ40を通ってナセル3の内部に流入する外気の流路抵抗が、ナセル3の内部から流出する空気の流路抵抗より大きくなる。このため、寒冷地に設置された風量発電装置1においては、運転停止時にナセル3の内部に低温の外気が流入しにくくなり、ナセル3の内部温度が低下することを抑制できる。
 また、図12に示すガラリ40Aは、図11に示したガラリ40の変形例である。この場合のガラリ40Aは、流路形成部材42Aが上下方向に所定のピッチで多数配置され、多数の外気流路41Aを形成している。流路形成部材42Aの断面形状は、ナセル流出側の先端部が曲面により絞った略三角形とされ、この絞りにより入口開口面積を拡大している。
 また、図13に示すガラリ40Bは、図11及び図12に示したガラリ40,40Aの変形例である。この場合、ガラリ40Bに形成された外気流路41Bの流路断面形状は、軸中心線が流入側から流出側へ下がるように傾斜し、かつ、流路断面を形成する流路形成部材42Bの下部壁面43に雨樋44を備えている。
 このような構成とすれば、ガラリ40Bからナセル3の内部へ浸入しようとする雨水が下部壁面43の傾斜により雨樋44に集水される。この雨水は、雨樋44に導かれてナセル3の外部へ排水することができる。
 このように、上述した本発明の風力発電装置1は、設置サイトや季節によって外気温度等の条件が異なる場合であっても、外気温度に依存することなく広範な設置環境に適応してナセル3の内部を冷却することができる。すなわち、ナセル3の内部温度が上昇する状況では、効率的な換気による内部冷却を行い、寒冷地等のようにナセル内部の温度が低下する状況では、換気を抑制して温度低下を最小限に抑えることができる。
 なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。

Claims (7)

  1.  風車翼を取り付けたロータヘッドに連結されている駆動機構及び発電機構の機器類がナセルの内部に収納設置され、前記ナセルに設置した換気ファンを駆動することにより、ナセル前面に設けた吸気口から導入した外気をファン出口に連通する排気口から前記ナセルの外部へ排出して内部の換気冷却を行う風力発電装置であって、
     ナセル外部を流れる気流により負圧を生じるナセル側面位置に側面吸気口を増設したことを特徴とする風力発電装置。
  2.  前記側面吸気口のナセル後方でかつ負圧が解消したナセル側面位置に側面後方吸気口を増設し、前記側面吸気口及び前記側面後方吸気口の開閉状態を選択する切替手段を設けたことを特徴とする請求項1に記載の風力発電装置。
  3.  前記側面後方吸気口がナセル側面の後方上部に位置していることを特徴とする請求項2に記載の風力発電装置。
  4.  前記切替手段は、前記側面吸気口に取り付けられ、ナセル前方側を支点にしてナセル後方側が外向きに開閉する前方支持揺動部材と、前記側面後方吸気口に取り付けられ、ナセル後方側を支点にしてナセル前方側が外向きに開閉する後方支持揺動部材とを備えていることを特徴とする請求項2に記載の風力発電装置。
  5.  前記側面吸気口の外側に取り付けられ、ナセル前方側を閉じてナセル後方側を開口させた前方フード部材と、前記側面後方吸気口に外側に取り付けられ、ナセル前方側を開口させてナセル後方側を閉じた後方フード部材とを備えていることを特徴とする請求項2に記載の風力発電装置。
  6.  前記吸気口は、流入側より流出側の入口開口面積を大きくした流路断面形状のガラリを備えていることを特徴とする請求項1から5のいずれかに記載の風力発電装置。
  7.  前記流路断面形状は、軸中心線が流入側から流出側へ下がるように傾斜し、かつ、流路断面を形成する下部壁面に雨樋を備えていることを特徴とする請求項6に記載の風力発電装置。
PCT/JP2008/069805 2008-07-28 2008-10-30 風力発電装置 WO2010013362A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2008360138A AU2008360138B2 (en) 2008-07-28 2008-10-30 Wind turbine generation system
CN2008801283725A CN101981314B (zh) 2008-07-28 2008-10-30 风力发电装置
BRPI0822487A BRPI0822487A2 (pt) 2008-07-28 2008-10-30 sistema de gerador de turbina eólica
CA2718340A CA2718340A1 (en) 2008-07-28 2008-10-30 Wind turbine generator system
US12/377,898 US8109814B2 (en) 2008-07-28 2008-10-30 Wind turbine generator system
EP08876660A EP2306010A1 (en) 2008-07-28 2008-10-30 Wind-driven electric power generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-193948 2008-07-28
JP2008193948A JP5123780B2 (ja) 2008-07-28 2008-07-28 風力発電装置

Publications (1)

Publication Number Publication Date
WO2010013362A1 true WO2010013362A1 (ja) 2010-02-04

Family

ID=41610081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069805 WO2010013362A1 (ja) 2008-07-28 2008-10-30 風力発電装置

Country Status (10)

Country Link
US (1) US8109814B2 (ja)
EP (1) EP2306010A1 (ja)
JP (1) JP5123780B2 (ja)
KR (1) KR20100126765A (ja)
CN (1) CN101981314B (ja)
AU (1) AU2008360138B2 (ja)
BR (1) BRPI0822487A2 (ja)
CA (1) CA2718340A1 (ja)
TW (1) TW201005181A (ja)
WO (1) WO2010013362A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002491A1 (ja) * 2010-06-30 2012-01-05 三菱重工業株式会社 風力発電装置
WO2012101817A1 (ja) * 2011-01-28 2012-08-02 三菱重工業株式会社 風力発電装置
JP2014047766A (ja) * 2012-09-04 2014-03-17 Japan Steel Works Ltd:The 風力発電装置ナセルおよび風力発電装置

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994944B2 (ja) * 2007-05-18 2012-08-08 三菱重工業株式会社 風力発電装置
DE102009019453B3 (de) * 2008-05-13 2010-09-30 Suzlon Energy Gmbh Schaltschrank für eine Windturbine
WO2011004482A1 (ja) * 2009-07-09 2011-01-13 三菱重工業株式会社 風力発電装置
JP5463218B2 (ja) * 2010-06-30 2014-04-09 三菱重工業株式会社 風力発電装置
US9077212B2 (en) * 2010-09-23 2015-07-07 Northern Power Systems, Inc. Method and apparatus for rotor cooling in an electromechanical machine
JP5550508B2 (ja) * 2010-09-28 2014-07-16 株式会社日立製作所 風力発電装置
US7963743B1 (en) * 2010-10-16 2011-06-21 Winter Curt B Wind turbine with improved cooling
EP2466128B2 (en) * 2010-12-20 2017-06-28 Siemens Aktiengesellschaft Wind turbine and method of control of a wind turbine
EP2532890A4 (en) 2011-04-05 2013-06-19 Mitsubishi Heavy Ind Ltd DEVICE FOR GENERATING ELECTRICITY FROM REGENERATED ENERGY
DK2546515T3 (da) * 2011-07-14 2013-11-04 Siemens Ag Vindmøllekøleanordning
CN103052797A (zh) 2011-08-10 2013-04-17 三菱重工业株式会社 风力发电装置
JP4950367B1 (ja) 2011-08-10 2012-06-13 三菱重工業株式会社 再生エネルギー型発電装置
KR101312952B1 (ko) * 2011-08-11 2013-10-14 삼성중공업 주식회사 풍력발전용 나셀 및 이를 구비한 풍력발전장치
KR101291664B1 (ko) 2012-01-10 2013-08-01 삼성중공업 주식회사 풍력 발전기
KR101394708B1 (ko) * 2012-02-01 2014-05-16 전북대학교산학협력단 풍력발전용 증속기의 냉각시스템
JP2013221416A (ja) 2012-04-13 2013-10-28 Hitachi Ltd 風力発電装置
US9528498B2 (en) * 2012-09-13 2016-12-27 Jaime Miguel Bardia On or off grid vertical axis wind turbine and self contained rapid deployment autonoous battlefield robot recharging and forward operating base horizontal axis wind turbine
CA2836137C (en) 2012-12-05 2020-12-01 Braeburn Systems Llc Climate control panel with non-planar display
JP2014190314A (ja) * 2013-03-28 2014-10-06 Mitsubishi Heavy Ind Ltd 風力発電装置
DK2806542T3 (en) * 2013-05-22 2016-12-19 Siemens Ag Airflow Control Device
KR101521828B1 (ko) * 2013-10-18 2015-05-20 대우조선해양 주식회사 풍력발전기 나셀의 냉각장치
CA2894359C (en) 2014-06-16 2022-07-05 Braeburn Systems Llc Graphical highlight for programming a control
JP6368559B2 (ja) 2014-06-27 2018-08-01 株式会社日立製作所 風力発電装置
MX2015014860A (es) 2014-10-22 2017-03-13 Braeburn Systems Llc Sistema de entrada del codigo de termostato y metodo para el mismo que utiliza el identificador del conjunto de servicios.
MX360294B (es) 2014-10-30 2018-10-29 Braeburn Systems Llc Sistema de edicion rapida.
CA2910895C (en) 2014-10-30 2023-01-10 Braeburn Systems Llc System and method for monitoring building environmental data
CA2920281C (en) 2015-02-10 2021-08-03 Daniel S. Poplawski Thermostat configuration duplication system
US10317867B2 (en) 2016-02-26 2019-06-11 Braeburn Systems Llc Thermostat update and copy methods and systems
US10317919B2 (en) 2016-06-15 2019-06-11 Braeburn Systems Llc Tamper resistant thermostat having hidden limit adjustment capabilities
CN106246477B (zh) * 2016-08-29 2019-07-26 优利康达(天津)科技有限公司 一种风机机舱防护罩
MX2017011987A (es) 2016-09-19 2018-09-26 Braeburn Systems Llc Sistema de gestion de control que tiene calendario perpetuo con excepciones.
WO2018141523A1 (en) * 2017-02-03 2018-08-09 Siemens Wind Power A/S Wind turbine with a tubular support structure and a bearing assembly
EP3382199B1 (en) * 2017-03-27 2023-12-20 Siemens Gamesa Renewable Energy A/S Nacelle for a wind turbine including a cooling circuit
EP3477101B1 (en) * 2017-10-25 2020-06-03 Siemens Gamesa Renewable Energy A/S Wind turbine with a nacelle including a water draining device
US11493027B2 (en) 2017-12-17 2022-11-08 Vestas Wind Systems A/S Wind turbine nacelle cooling
US10921008B1 (en) 2018-06-11 2021-02-16 Braeburn Systems Llc Indoor comfort control system and method with multi-party access
CA3125517A1 (en) * 2019-01-25 2020-07-30 Haralambos Theodoros Dragonas Wind-powered energy generator system
EP3719313A1 (en) * 2019-04-05 2020-10-07 Siemens Gamesa Renewable Energy A/S Cooling arrangement for a wind turbine
US10802513B1 (en) 2019-05-09 2020-10-13 Braeburn Systems Llc Comfort control system with hierarchical switching mechanisms
CN111237140B (zh) * 2020-01-16 2021-03-26 浙江大学 风力发电机组
CN113898542B (zh) * 2021-09-27 2023-04-07 国网浙江省电力有限公司磐安县供电公司 用于风电发电机的散热装置
US11925260B1 (en) 2021-10-19 2024-03-12 Braeburn Systems Llc Thermostat housing assembly and methods
CN115234454B (zh) * 2022-09-23 2022-11-25 国家电投集团繁峙云雾峪风电有限公司 一种风力发电机高效散热装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822835A (ja) * 1981-07-31 1983-02-10 Toshiba Corp 原子力設備建屋空気取入口のル−バ装置
JP2007002773A (ja) * 2005-06-24 2007-01-11 Fuji Heavy Ind Ltd 水平軸風車
US20070222223A1 (en) * 2006-03-22 2007-09-27 General Electric Company Wind turbine generators having wind assisted cooling systems and cooling methods
JP2008513665A (ja) * 2004-09-24 2008-05-01 アロイス・ヴォベン 発電機冷却システムを備えた風力タービン

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1592841A (en) * 1924-12-26 1926-07-20 Ivan D Ansell Vehicle ventilator
US2839986A (en) * 1957-09-11 1958-06-24 Herman John Ventilator for non-porous fabric structures
US3733996A (en) * 1971-01-04 1973-05-22 J Naccarato Ventilation device
US3771430A (en) * 1972-03-10 1973-11-13 Airolite Co Louver assembly
US3788264A (en) * 1972-05-22 1974-01-29 I Gibson Cooling shroud for airboat
US4193339A (en) * 1978-05-30 1980-03-18 Giles William E Motor vehicle ventilation device
JPS5865977A (ja) 1981-10-14 1983-04-19 Hitachi Ltd 風力発電装置の冷却機構
JPS63101185A (ja) * 1986-10-17 1988-05-06 本田技研工業株式会社 自動二輪車
US4958555A (en) * 1989-10-23 1990-09-25 Mestek, Inc. Sight proof, drainable blade louver assembly
JPH06123461A (ja) * 1992-10-12 1994-05-06 Matsushita Electric Ind Co Ltd クリーンルームの空気排出部の構造
DE50003844D1 (de) * 1999-07-14 2003-10-30 Aloys Wobben Windenergieanlage mit einem geschlossenen kühlkreislauf
US6579168B1 (en) * 2002-01-03 2003-06-17 Marconi Communications, Inc. Back-up DC vent system for equipment enclosure
DE10233947A1 (de) * 2002-07-25 2004-02-12 Siemens Ag Windkraftanlage
FR2879564B1 (fr) * 2004-12-20 2008-05-16 Airbus France Sas Agencement d'entree d'air de ventilation a element d'obturation mobile
JP4531613B2 (ja) * 2005-03-31 2010-08-25 本田技研工業株式会社 車輌のカウル構造
JP2007008357A (ja) * 2005-06-30 2007-01-18 Honda Motor Co Ltd 自動二輪車の空気吸入構造
JP4661472B2 (ja) * 2005-09-12 2011-03-30 スズキ株式会社 自動二輪車のカウリング
US20070238407A1 (en) * 2006-03-22 2007-10-11 Richard Nottke Side mounted cowl vents for an over-the-road tractor vehicle
US8938967B2 (en) * 2007-01-30 2015-01-27 Thomas McMaster Hybrid wind turbine
FR2920409B1 (fr) * 2007-08-27 2009-12-18 Airbus France Berceau de support de capot de soufflante monte sur le mat d'accrochage et sur l'entree d'air de la nacelle
US8047774B2 (en) * 2008-09-11 2011-11-01 General Electric Company System for heating and cooling wind turbine components
US7843080B2 (en) * 2009-05-11 2010-11-30 General Electric Company Cooling system and wind turbine incorporating same
US8016569B2 (en) * 2010-06-09 2011-09-13 General Electric Company Configuration of a wind turbine nacelle for transportation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822835A (ja) * 1981-07-31 1983-02-10 Toshiba Corp 原子力設備建屋空気取入口のル−バ装置
JP2008513665A (ja) * 2004-09-24 2008-05-01 アロイス・ヴォベン 発電機冷却システムを備えた風力タービン
JP2007002773A (ja) * 2005-06-24 2007-01-11 Fuji Heavy Ind Ltd 水平軸風車
US20070222223A1 (en) * 2006-03-22 2007-09-27 General Electric Company Wind turbine generators having wind assisted cooling systems and cooling methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002491A1 (ja) * 2010-06-30 2012-01-05 三菱重工業株式会社 風力発電装置
US8672628B2 (en) 2010-06-30 2014-03-18 Mitsubishi Heavy Industries, Ltd. Wind turbine generator
WO2012101817A1 (ja) * 2011-01-28 2012-08-02 三菱重工業株式会社 風力発電装置
CN102753821A (zh) * 2011-01-28 2012-10-24 三菱重工业株式会社 风力发电装置
JP5211244B2 (ja) * 2011-01-28 2013-06-12 三菱重工業株式会社 風力発電装置
JP2014047766A (ja) * 2012-09-04 2014-03-17 Japan Steel Works Ltd:The 風力発電装置ナセルおよび風力発電装置

Also Published As

Publication number Publication date
BRPI0822487A2 (pt) 2019-09-24
KR20100126765A (ko) 2010-12-02
TWI354732B (ja) 2011-12-21
AU2008360138B2 (en) 2013-01-24
TW201005181A (en) 2010-02-01
AU2008360138A1 (en) 2010-02-04
EP2306010A1 (en) 2011-04-06
CN101981314A (zh) 2011-02-23
JP5123780B2 (ja) 2013-01-23
JP2010031722A (ja) 2010-02-12
US20100127502A1 (en) 2010-05-27
CA2718340A1 (en) 2010-02-04
US8109814B2 (en) 2012-02-07
CN101981314B (zh) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5123780B2 (ja) 風力発電装置
US8511989B2 (en) Temperate control for wind turbine generator
AU2008308058B2 (en) Wind turbine generating apparatus
JP4814608B2 (ja) 風車
WO2011021270A1 (ja) 風力発電装置
WO2011004482A1 (ja) 風力発電装置
JP4981702B2 (ja) 風力発電装置
US20070116567A1 (en) Rotor for a wind energy turbine and method for controlling the temperature inside a rotor hub
JP2005069082A (ja) 風車の温度制御装置
JP4848398B2 (ja) 風力発電装置
EP2402593A1 (en) Wind driven generator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128372.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12377898

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08876660

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008360138

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2718340

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 6641/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107021435

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008876660

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008360138

Country of ref document: AU

Date of ref document: 20081030

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0822487

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100922