WO2010012244A1 - 乙型肝炎病毒基因的小核酸干扰靶位点序列和小干扰核酸及组合物和应用 - Google Patents

乙型肝炎病毒基因的小核酸干扰靶位点序列和小干扰核酸及组合物和应用 Download PDF

Info

Publication number
WO2010012244A1
WO2010012244A1 PCT/CN2009/073049 CN2009073049W WO2010012244A1 WO 2010012244 A1 WO2010012244 A1 WO 2010012244A1 CN 2009073049 W CN2009073049 W CN 2009073049W WO 2010012244 A1 WO2010012244 A1 WO 2010012244A1
Authority
WO
WIPO (PCT)
Prior art keywords
hbv
nucleic acid
small interfering
interfering nucleic
small
Prior art date
Application number
PCT/CN2009/073049
Other languages
English (en)
French (fr)
Inventor
梁子才
张鸿雁
Original Assignee
苏州瑞博生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州瑞博生物技术有限公司 filed Critical 苏州瑞博生物技术有限公司
Priority to CN200980126405.7A priority Critical patent/CN102083983B/zh
Publication of WO2010012244A1 publication Critical patent/WO2010012244A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the small nucleic acid of the hepatitis B virus gene interferes with the target site sequence and
  • the present invention relates to a small nucleic acid interference target site sequence and a small interfering nucleic acid and a composition and application thereof for a hepatitis B virus gene, and more particularly to a small nucleic acid interference target site sequence of a hepatitis B virus gene, A small nucleic acid for inhibiting expression of a hepatitis B virus gene, and a pharmaceutical composition containing the small interfering nucleic acid and the use of the small interfering nucleic acid for preparing a pharmaceutical composition for preventing and/or treating hepatitis B. Background technique
  • Hepatitis B is referred to as hepatitis B and is an infectious disease caused by hepatitis B virus (HBV).
  • HBV hepatitis B virus
  • WHO World Health Organization
  • HBV hepatitis B virus
  • the methods for treating hepatitis B mainly include antiviral replication, improving immune function, protecting liver cells, promoting liver cell regeneration, and comprehensive treatments such as traditional Chinese medicine treatment, basic treatment and psychotherapy.
  • the globally recognized drugs for the prevention and treatment of hepatitis B can be divided into two major categories: interferon and nucleoside analogues. Interferon has been used as a treatment for hepatitis B for a long time, and its terminal response rate is only 30%. Even after combination with other antiviral drugs or increasing dose, the terminal response rate is only 50%, and the drug is discontinued. After reducing or reducing the number of injections, it is easy to relapse and the adverse reactions are significantly increased. In addition, long-term use induces interferon antibodies and loses efficacy.
  • Nucleoside analogs have a fast onset of action, but the terminal response rate is not high, and nucleoside analogs only inhibit the virus in the liver cytoplasm and have no effect on CCC-DNA in the nucleus of hepatocytes, requiring long-term maintenance.
  • the main problem facing long-term medication is the drug resistance caused by virus mutation, and it is also prone to virus rebound and high recurrence rate after drug withdrawal. More serious is the apparent deterioration of liver function and even death after a few patients have stopped taking the drug. It is undoubtedly the most ideal treatment for hepatitis B to inhibit the production and replication of HBV at the genetic level to reduce viral metabolism and infect liver cells.
  • a first object of the present invention is to provide a small nucleic acid interference target site sequence of a hepatitis B virus gene.
  • a second object of the present invention is to provide a small interfering nucleic acid for inhibiting the expression of a hepatitis B virus gene.
  • a third object of the present invention is to provide a pharmaceutical composition comprising the small interfering nucleic acid.
  • a fourth object of the present invention is to provide use of the small interfering nucleic acid for the preparation of a pharmaceutical composition for preventing and/or treating hepatitis B.
  • RNA interference Small nucleic acid interference can also be called RNA interference (RN A interference, RNAi), which is composed of double-stranded RNA.
  • RNA interference technology also known as knock-down or gene silencing
  • PTGS post-transcriptional gene silencing
  • Hamilton and Baulcombe detected RNA fragments of 21-25 nucleotides in length in plants with RNA interference. These RNA fragments proved to be required for RNA interference, called small interfering (siRNA, Small interfering).
  • siRNA small interfering nucleic acid
  • RNA-induced silencing complex forms an RNA-induced silencing complex (RISC) with cell-derived related enzymes and proteins.
  • RISC RNA-induced silencing complex
  • the sense strand in the small interfering nucleic acid (siRNA) is excluded from the complex, the antisense strand directs the RISC to bind to the corresponding site of the target mRNA, and then the target mRNA is degraded by ribonuclease III in the complex. Thereby the expression of the target gene is turned off.
  • RNAi has developed rapidly in the field of infectious disease and malignant gene therapy as a highly efficient sequence-specific gene knockout technique. Selection of a sequence in the viral genome that is not homologous to the human genome as an inhibitory sequence can prevent viral side replication while avoiding toxic side effects on normal tissues.
  • Small interfering nucleic acids inhibit the expression of genes more than 1000 times more efficiently than the currently used methods (antibody or antisense oligodeoxynucleotide), and are safe, specific, and highly efficient. Therefore, the use of small interfering nucleic acid (siRNA) drugs for the treatment of hepatitis B has the advantage that conventional drugs cannot match.
  • Hepatitis B virus is a hepadna DNA
  • the genome is about 3.2 kb in length and is a partially double-stranded circular DNA; the hepatitis B virus genome contains four open reading frames (ORF, S gene region, C gene region, P gene region, and X gene region).
  • the S gene region includes the S gene, the pre-S1 gene and the pre-S2 gene, which encode the S protein, the M protein, and the L protein, respectively; wherein the S protein and the M protein are closely related to the hepatic, genetic, and transcriptional activation of the hepatitis B virus. Related.
  • the C gene region includes the pre-C gene and the C gene, which respectively encode the nucleocapsid proteins HBeAg and HBcAg, which are important components of the core part of the hepatitis B virus and are the main body of viral replication.
  • the P gene region includes the P gene, which encodes the P protein.
  • the P protein contains 816 amino acids and has four functional domains, including DNA polymerase with reverse transcriptase activity and RNase H, which participate in the whole process of HBV replication.
  • the X gene region includes the X gene, which is the smallest open reading frame in the HBV viral genome. It is located at 1374-1838 bp in the HBV genome and has a full length of about 435-462 bp. It encodes a protein of 154 amino acids in length. Direct or Intermittent interaction affects the replication and proliferation of the virus itself, and can affect the apoptosis and carcinogenesis of infected cells in the host cell.
  • the present invention provides a small nucleic acid interference target site sequence of a hepatitis B virus gene, wherein the interference target site sequence comprises one of SEQ ID Nos: 2-11 a nucleotide sequence, and the length of the interfering target site sequence is 15-27 nucleotides.
  • the present invention also provides a small interfering nucleic acid, wherein the small interfering nucleic acid is a double-stranded RNA molecule, including a sense strand and an antisense strand, and the sense strand and the antisense strand
  • the length is 15-27 nucleotides, and the 3' end of each of the sense strand and the antisense strand are two consecutive deoxythymidylates, and the sense strand and the antisense strand are removed from the 3' end.
  • nucleotides other than the continuous deoxythymidylate complement each other to form a double strand, wherein the antisense strand of the small interfering nucleic acid can complement the base of the small nucleic acid interference target site provided by the present invention to inhibit hepatitis B Expression of viral genes.
  • the present invention also provides a pharmaceutical composition for preventing and/or treating hepatitis B, wherein the pharmaceutical composition contains the small interfering nucleic acid provided by the present invention as an active ingredient.
  • the present invention also provides the use of the small interfering nucleic acid described in the preparation of a pharmaceutical composition for preventing and/or treating hepatitis B.
  • the present invention reduces the viral load by specifically inhibiting the expression of one or several genes in the S gene region, the C gene region, the P gene region and the X gene region in the hepatitis B virus genome, and invading at the gene level
  • the body's hepatitis B virus works to prevent and treat hepatitis B disease.
  • the small interference nucleic acid provided by the present invention has high inhibitory activity against hepatitis B virus gene expression and can effectively prevent and/or treat hepatitis B.
  • the present invention provides a small nucleic acid interference target site sequence of a hepatitis B virus gene, wherein the interference target site sequence comprises the nucleotide sequence shown as one of SEQ ID Nos: 2-11, preferably comprising SEQ ID No 2.
  • the nucleotide sequence of SEQ ID No: 4, SEQ ID No: 8, or SEQ ID No: 10 and the length of the interfering target site sequence is 15-27 nucleotides, preferably 19-21 nucleotides.
  • the small nucleic acid interference target site refers to a nucleotide sequence in the mRNA sequence of the gene that is complementary to the antisense strand of the small interfering nucleic acid in the process of inhibiting gene expression using a small interfering nucleic acid.
  • sequence of the interfering target site is as shown in one of SEQ ID Nos: 12-21, and further preferably, the sequence of the interfering target site is SEQ ID No: 12, SEQ ID No. : 14, SEQ ID No: 18, or SEQ ID No: 20.
  • the present invention also provides a small interfering nucleic acid (siRNA), wherein the small interfering nucleic acid is a double-stranded RNA molecule, including a sense strand and an antisense strand, and the sense strand and the antisense strand are 15-27 in length Nucleotide, wherein each of the sense strand and the antisense strand has two consecutive deoxythymidylates, and the sense strand and the antisense strand are separated from the two consecutive deoxythymidylates at the 3' end.
  • siRNA small interfering nucleic acid
  • the other nucleotides are complementary to form a double strand, wherein the antisense strand of the small interfering nucleic acid is capable of complementing the base of the small nucleic acid interference target site provided by the present invention to inhibit the expression of the hepatitis B virus gene.
  • the small interfering nucleic acid provided by the present invention is a double-stranded molecule including a sense strand and an antisense strand, and the sense strand and the antisense strand are respectively 15-27 nucleotides in length; preferably, the sense strand and the opposite strand
  • the sense strands are 19-21 nucleotides in length, respectively.
  • the small interfering nucleic acid has HBV-X1, HBV-X2, HBV-X3, HBV-X4, HBV-PI, HBV-P2, HBV-PSK HBV-PS2, HBV- Nucleotide sequence indicated by CI or HBV-C2, or with HBV-X1, HBV-X2, HBV-X3, HBV-X4, HBV-P1 HBV-P2, HBV-PS1, HBV-PS2, HBV-Cl a nucleotide sequence obtained by chemically modifying a nucleotide sequence represented by HBV-C2, wherein
  • HBV-X1 justice chain 5,- CGACCGACCUUGAGGCAUAdTdT-3'
  • Antisense strand 5,- UAUGCCUCAAGGUCGGUCGdTdT-3';
  • HBV-X2 justice chain 5,- CCUUGAGGCAUACUUCAAAdTdT-3 '
  • Antisense strand 5,- UUUGAAGUAUGCCUCAAGGdTdT-3 ';
  • HBV-X3 justice chain 5,- GCGGGACGUCCUUUGUUUAdTdT-3 '
  • Antisense strand 5'- UAAACAAAGGACGUCCCGCdTdT-3';
  • HBV-X4 justice chain 5'- CUAGGAGGCUGUAGGCAUAdTdT-3 '
  • Antisense strand 5'- UAUGCCUACAGCCUCCUAGdTdT-3';
  • HBV-P1 justice chain: 5'- GGAACAAGAUCUACAGCAUdTdT-3'
  • Antisense chain 5,- AUGCUGUAGAUCUUGUUCCdTdT-3';
  • HBV-P2 justice chain: 5,- G A AAGU AUGUC A ACG A AUUdTdT -3,
  • Antisense chain 5,- A AUUCGUUG AC AU ACUUUCdTdT -3 ';
  • HBV-PS1 justice chain 5' - GAUCCAGCCUUCAGAGCAAdTdT-3'
  • Antisense strand 5,- UUGCUCUGAAGGCUGGAUCdTdT-3';
  • HBV-PS2 justice chain 5' - CGUCAAUCUUCUCGAGGAUdTdT-3'
  • Antisense strand 5,- AUCCUCGAGAAGAUUGACGdTdT-3';
  • HBV-C1 justice chain: 5,- GGGUGUUAAUUUGGAAGAUdTdT-3'
  • Antisense strand 5,- AUCUUCCAAAUUAACACCCdTdT-3';
  • HBV-C2 justice chain: 5,- GGAAACUACUGUUGUUAGAdTdT-3 '
  • Antisense strand 5,- UCUAACAACAGUAGUUUCCdTdT-3'.
  • the small interfering nucleic acid has a nucleotide sequence represented by HBV-X1, HBV-X3, HBV-PS1 or HBV-Cl.
  • the chemical modification is at least one of the following modifications:
  • the chemical modification is well known to those skilled in the art, and the modification of the phosphodiester bond refers to a phosphodiester bond.
  • the oxygen in the modification is modified, including the phosphorothioate modification, as shown in Formula 1; and the boron phosphate phosphate modification, as shown in Formula 2. Both modifications stabilize the structure of small interfering nucleic acids, maintaining high specificity and high affinity for base pairing.
  • the ribose modification refers to a modification of 2'-OH in a nucleotide pentose, gp, which introduces a certain substituent at the hydroxyl position of the ribose, for example, a 2'-fluoro modification, as shown in Formula 3; - oxymethyl modification, as shown in Formula 4; 2'-oxyethylene methoxy modification, as shown in Formula 5; 2,4'-dinitrophenol modification, as shown in Formula 6; LNA), as shown in Formula 7; 2'-amino modification, as shown in Formula 8; 2'-deoxy modification, as shown in Formula 9.
  • the base modification refers to modification of a nucleotide base, for example, 5'-bromouracil modification, as shown in Formula 10; 5'-iodouracil modification, As shown in Formula 11; N-methyluracil modification, as shown in Formula 12; 2,6-diaminopurine modification, as shown in Formula 13.
  • the modification enhances the ability of the modified small interfering nucleic acid to resist nuclease hydrolysis in the cell.
  • a lipophilic group such as cholesterol may be introduced at the end of the sense strand of the small interfering nucleic acid based on the above modification, and the lipophilic group includes a covalent bond and a small interfering nucleic acid. , such as the introduction of cholesterol, lipoprotein, vitamin E, etc. at the end, in order to facilitate the passage of cell membranes composed of lipid bilayers The intracellular mRNA acts.
  • small interfering nucleic acids can also be modified by non-covalent bonds, such as hydrophobic bonds or ionic bonds to bind phospholipid molecules, polypeptides, cationic polymers, etc. to increase stability and biological activity.
  • Methods of preparing small interfering nucleic acids include the design of small interfering nucleic acid sequences and the preparation of small interfering nucleic acids.
  • the design of the small interfering nucleic acid refers to the selection of a relatively conserved hepatitis B virus strain (Genbank accession number U95551) as a template. For the conserved regions of the X, P, S, and C genes of hepatitis B virus, a 19 bp nucleotide sequence was selected to design a corresponding small interfering nucleic acid.
  • the conserved regions of the X, P, S, and C genes are 1376-1820 bp, 2309 bp to 1625 bp, 2848-837 bp, and 1816 bp to 2454 bp, respectively, in the HBV genome (Genbank accession number U95551).
  • the small interfering nucleic acid sequences designed for the X, P, S, and C genes are designed according to the following principles:
  • a nucleotide sequence of 19 bp in length was selected from the genomes of 1376-1820 bp, 2309 bp to 1625 bp, 2848-837 bp, and 1816 bp to 2454 bp of the hepatitis B virus U95551 strain genome.
  • the selection of the 19 bp nucleotide sequence mainly refers to the following principles: (1) GC content is between 35-55 %, (2) avoiding in the sequence of repeat sequences or low complexity, (3) avoiding more than 4 a contiguous base sequence, (4) avoiding single nucleotide polymorphism sites, (5) avoiding within the 50-100 bp region of the reading frame start and stop passwords, in addition to Analyze the composition and thermodynamic properties of the nucleotide sequence.
  • the candidate small interfering nucleic acid target sites are homologously aligned with the human gene sequence, and sequences with great sequence homology (16 or more bases) with other genes are excluded to ensure candidate small interference.
  • the nucleic acid target site does not inhibit other non-related genes, but only has a specific inhibitory effect on the hepatitis B virus gene.
  • the 3' end of the 19 bp nucleotide sequence thus obtained is added with two deoxythymidine nucleotides as the sense strand of the small interfering nucleic acid sequence, and two at the 3' end of the complementary sequence of the 19 bp nucleotide sequence.
  • One deoxythymidine nucleotide acts as the antisense strand of the small interfering nucleic acid sequence.
  • the preparation method of the small interfering nucleic acid is known to those skilled in the art.
  • the small interfering nucleic acid can be obtained by chemical synthesis or by expression of a plasmid and/or a viral vector.
  • the synthesis of the small interfering nucleic acid sequence can be carried out by chemical synthesis or by a biotechnology company specialized in nucleic acid synthesis, such as commissioning by Shanghai GenePharma.
  • the chemical synthesis method includes the following four processes: (1) synthesis of oligoribonucleotides; (2) deprotection; (3) purification separation; (4) desalting.
  • the specific steps of chemical synthesis of small interfering nucleic acids having a nucleotide sequence represented by HBV-X1 are as follows: (1) Synthesis of oligoribonucleotides: synthesis of oligoribonucleotides is in automated DNA/ The RNA synthesizer (for example, Applied Biosystems EXPEDITE 8909) is carried out, and the corresponding nucleotides are linked one by one according to the order of the nucleotide sequences shown by HBV-X1. Since the small interfering nucleic acid is composed of a section of 19 oligoribonucleotides and 2 deoxythymidylates.
  • the starting material is a solid phase-linked 5'-0-p-dimethoxy-thymidine.
  • the specific synthesis of each cycle can be divided into four steps.
  • the first step is to immobilize the thymidine.
  • the protecting group at the 5' position is eluted by the action of trichloroacetic acid;
  • the second step is 5,-0-p-dimethoxytrityl group under the action of the active catalyst S-ethyltetrazole.
  • the thymidine phosphoramidite is coupled to the thymidine which has been deprotected to form the dithymidine phosphite triester.
  • the coupling time and the number of couplings are completed according to the procedure provided by the instrument manufacturer; the third step is to couple the The dithymidine phosphite triester is oxidized to dithymidine phosphate triester under the action of 0.05 M iodine water; the fourth step is acetylation, and a small amount of unreacted reactive groups on the solid phase (for example, hydroxyl and amine groups) An ester or amide is formed under the action of acetic anhydride to achieve a blocking effect to reduce the production of overall by-products, which is repeated until the synthesis of all nucleic acid sequences is completed.
  • the crude product of small interfering nucleic acid was dissolved in 2 ml of aqueous ammonium acetate solution, and then separated by high-pressure liquid chromatography by reaction C18, and the main product of small interfering nucleic acid was collected by gradient elution (eluent A: 0.1 M acetic acid).
  • eluent B 20% of 0.1 M ammonium acetate and 80% acetonitrile
  • the purified small interfering nucleic acid is dialyzed to remove the salt, and then the small interfering nucleic acid solution is subjected to filter sterilization and dry crystallization.
  • the oligoribonucleotide of the sense strand and the antisense strand are then annealed to form a stable double-stranded small interfering nucleic acid by mixing the oligoribonucleotide of the sense strand and the antisense strand in 1-2 ml.
  • small interfering nucleic acids can also be obtained by expression of plasmids and/or viral vectors, resulting in a shRNA having a hairpin structure of 50-90 nucleotides in length.
  • the structure of shRNA is:
  • the ends are cleavage sites (such as BamH? and EcoR?), and the middle is a loop sequence (such as GAAGCTTG), which is inserted into the vector digested with the corresponding endonuclease by cloning technology and integrated into the chromosome. , can stably express small interfering nucleic acids.
  • the present invention also provides a pharmaceutical composition for preventing and/or treating hepatitis B disease, wherein the pharmaceutical composition contains the small interfering nucleic acid provided by the present invention as an active ingredient.
  • the pharmaceutical composition may be an injection.
  • the injection solution contains a pharmaceutically acceptable carrier and the small interfering nucleic acid provided by the present invention
  • the content of the small interfering nucleic acid and the pharmaceutically acceptable carrier may vary within a wide range, and preferably, the pharmaceutically acceptable carrier is contained in an amount of 100 to 10,000,000 parts by weight relative to 100 parts by weight of the small interfering nucleic acid. .
  • the pharmaceutically acceptable carrier is not particularly limited, and may be a phosphate buffer having a pH of 4.0 to 9.0 and a trishydroxymethylaminoguanidine hydrochloride buffer having a pH of 7.5 to 8.5.
  • the injection solution may further contain a protective agent and/or an osmotic pressure adjusting agent;
  • the protective agent is contained in an amount of 0.01 to 30% by weight based on the injection solution, and the protective agent is selected from the group consisting of inositol One or more of sorbitol and sucrose;
  • the osmotic pressure adjusting agent is present in an amount such that the osmotic pressure of the injection is 200-700 milliosmoles per kilogram, and the osmotic pressure adjusting agent is sodium chloride and/or Or potassium chloride.
  • the amount to be administered may be a dose conventionally used in the art, and the dose may be determined according to various parameters, particularly depending on the age, body weight and severity of the condition of the patient to be treated.
  • the invention also provides the use of said small interfering nucleic acid for the preparation of a pharmaceutical composition for the prevention and/or treatment of hepatitis B.
  • Example 1 The present invention will be further illustrated by the following examples, and the reagents and culture media used in the present invention are commercially available unless otherwise specified.
  • Example 1 The reagents and culture media used in the present invention are commercially available unless otherwise specified.
  • the hepatitis B virus genome (Genbank accession number U95551) (SEQ ID NO. 1) with a relatively conserved sequence was selected as a template.
  • a 19 bp nucleotide sequence was selected to design a small interfering nucleic acid.
  • a nucleotide sequence of 19 bp in length was selected from the genome of hepatitis B virus U95551 strain in the range of 1376-1820 bp, 2309 bp to 1625 bp, and 2848-837 bp 1816 bp to 2454 bp.
  • the selection of the 19 bp nucleotide sequence mainly refers to the following principles: (1) GC content is between 35-55 %, (2) avoiding in the sequence of repeat sequences or low complexity, (3) avoiding more than 4 a contiguous base sequence, (4) avoiding single nucleotide polymorphism sites, (5) avoiding within the 50-100 bp region of the reading frame start and stop passwords, in addition to Analyze the composition and thermodynamic properties of the nucleotide sequence.
  • the candidate small interfering nucleic acid target sites are homologously aligned with the human gene sequence, and sequences with great sequence homology (16 or more bases) with other genes are excluded to ensure candidate small interference.
  • the nucleic acid target site does not inhibit other non-related genes, but only has a specific inhibitory effect on the hepatitis B virus gene.
  • the 3' end of the 19 bp nucleotide sequence thus obtained is added with two deoxythymidine nucleotides as the sense strand of the small interfering nucleic acid sequence, and two at the 3' end of the complementary sequence of the 19 bp nucleotide sequence.
  • One deoxythymidine nucleotide acts as the antisense strand of the small interfering nucleic acid sequence.
  • the target site sequence challenged by the small interfering nucleic acid designed in this embodiment includes the nucleotide sequence shown in one of SEQ ID Nos: 2-11, and the specific small nucleic acid interference target site sequence is SEQ ID Nos: 12 One of -21 (19 nucleotides in length).
  • the designed small interfering nucleic acid was chemically synthesized by GenePharma, and the small interfering nucleic acids HBV-XI to HBV-X4, HBV-P1 to HBV-P2, HBV-PS1 to HBV-PS2 and HBV-C1 were obtained. HBV-C2, their nucleotide sequences are shown in Table 1. Table 1
  • the range of attack refers to the corresponding position of the small interfering nucleic acid in SEQ ID: NO.
  • HepG2.2.15 cells were seeded at a density of 1 ⁇ 10 5 cells/well in 24-well cell culture plates using DMEM complete medium containing 10% fetal bovine serum, 2 mM L-glutamine, 380 ug/ml G418 (from Beijing) University People's Hospital), cultured in an incubator with a temperature of 37 ° C and a C02 content of 5%, passaged and replaced every 72 hours Fresh medium.
  • the cells were digested with 0.25% trypsin, counted, and then seeded into 24-well plates at a concentration of lxlO 5 cells/ml, 1000 ⁇ l per well.
  • the small interfering nucleic acids HBV-X1 to HBV-X4, HBV-P1 to HBV-P2, HBV-PS1 to HBV-PS2, and HBV-C1 to HBV-C2 obtained in Example 1 were obtained using Invitrogen's LipofectamineTM 2000 liposome. Transfection was performed separately without adding small interfering nucleic acids as a blank control.
  • the specific steps are as follows: Dissolve the small interfering nucleic acid in RNase-free sterile water to prepare a small interfering nucleic acid solution with a concentration of 2 (mol/L. Aspirate the supernatant from each well, add 0.5 ml of OptiMEM I low. Serum medium (Invitrogen, 31985-062). Dilute 3 ⁇ 1 small interfering nucleic acid solution (20 ⁇ 1/ ⁇ in 50 ⁇ 1 Opti-MEM I low serum medium (Invitrogen, 31985-062), respectively.
  • LipofectamineTM The 2000 liposome was diluted in 50 ⁇ l Opti-MEM I low serum medium (Invitrogen, 31985 ⁇ 62), and then the above two solutions were incubated at room temperature for 5 minutes, mixed, and the mixed solution was allowed to stand at room temperature for 20 minutes, and then ⁇ The mixed solution was added to the 24-well plate inoculated with cells. The final concentration of the small interfering nucleic acid was 100 ⁇ . The cells were cultured at 37 ° C for 4 hours, and then 1 ml of 10% fetal bovine serum and 2 mM L-glutamine were added. 100 U/ml penicillin, 10 ( ⁇ g/ml streptomycin in MEM complete medium, and then incubated at 37 ° C for an additional 48 hours.
  • the specific steps are as follows: Using lml Tri Z0 l (GIBCOL) to lyse HepG2.2.15 cells transfected with small interfering nucleic acid and continuously extracting hepatitis B virus, and extracting total RNA, the specific steps of extracting total RNA are: after transfection The cells were cultured in an incubator at 37 ° C and a C0 2 content of 5% for 48 hours, and then the cells were collected by centrifugation and washed once with pre-cooled 2 ml of PBS; the composition of the PBS was: NaCl 137 mmol/L, KC1 2.7mmol/L, Na 2 HP0 4 4.3mmol/L, KH 2 P0 4 1.4mmol/L; add 1ml Trizol per well, let stand for 5 minutes at room temperature, lyse the cells; transfer the lysate to 1.5ml EP tube; 200 ⁇ l chloroform, shaking vigorously by hand for 15 seconds, room temperature for 3 minutes; 14000 r
  • RNA-free Two units of DNase I (RNase-free) ( TakaRa) were added to the above-mentioned RNA-dissolved DEPC water, and allowed to stand at 37 ° C for 30 minutes to remove residual DNA in the total RNA. After treatment with DNase I, the total RNA was purified by Invitrogen's PureLink Micro-to-Midi Total RNA Purification Kit. The specific steps for purification were as follows: Add 20 ⁇ l of 70% ethanol to the total RNA, shake well and mix well. The mixture was transferred to a purification column, centrifuged at 12,000 rpm for 15 seconds at room temperature, the filtrate was discarded, and 700 ⁇ l of Wash Buffer I (TakaRa) was added.
  • TakaRa Wash Buffer I
  • the reverse transcription reaction is carried out on the total RNA obtained after purification.
  • the reverse transcriptase used is Promega's M-MLV reverse transcriptase.
  • the specific steps of the reverse transcription reaction are: the total RNA after purification of lug and Oligo dT of lul (0.5ug) was mixed in a test tube, the total volume was made up to 16.25 ⁇ 1 with DEPC water, and the test tube was heated.
  • the heating conditions included a heating temperature of 70 ° C and a heating time of 5 minutes; The mixture was rapidly cooled to 0 ° C, and buffer (5 x MLV buffer 5 ⁇ l, 10 mM Dntp 1.25 ⁇ l, RNasin 0.5 ⁇ l, M-MLV 1 ⁇ 1) was added thereto, and incubated at 42 ° C for 1 hour to obtain cDNA.
  • the obtained cDNA was used as a template for a PCR reaction, and a Real-time PCR reaction was carried out.
  • the Real-time PCR reaction system is: ⁇ 1 (1 ⁇ 2 0 17.5 ⁇ 1, 10mM Dntp 0.5 ⁇ 1, lOxTaq buffer 2.5 ⁇ 1, ⁇ 0.5 ⁇ 1, F primer 0.5 ⁇ 1, R primer 0.5 ⁇ 1 , Syber Green I ⁇ , ⁇ 2 ⁇ 1; PCR
  • the reaction conditions were as follows: 94 ° C for 2 minutes, 94 ° C for 15 seconds, and 60 ° C for 30 seconds for 40 cycles.
  • GAPDH was set as the internal reference gene, and the small interfering nucleic acid inhibitory activity was calculated according to the following formula. The results are shown in Table 2. .
  • Realtime PCR primers were used in three pairs, and primers for the C gene, X gene, S and P genes were selected according to the small interfering nucleic acid samples.
  • the sequence is as follows:
  • Small interfering nucleic acid inhibitory activity [1- (copy number of hepatitis B virus gene after small interfering nucleic acid transfection / copy number of GAPDH after transfection of small interfering nucleic acid) I (copy number of control hepatitis B virus gene / Control well GAPDH copy number) ] ⁇ %.
  • GAPDH glyceraldehyde-3-phosphate dehydrogenase gene.
  • 3-Polyglycine glyceraldehyde dehydrogenase gene is a housekeeping gene in cells, which is stably expressed in cells and is not affected by other external factors, and thus serves as an internal reference for fluorescence quantitative PCR reactions.
  • HBV-PS1 to HBV-PS2 and HBV-C1 to HBV-C2 provided by the present invention are capable of inhibiting B.
  • HBV-PS1 3 ⁇ 4 HBV-C1 inhibition rate is above 80%.
  • HBsAg hepatitis B virus s antigen
  • HBeAg hepatitis B virus s antigen
  • HepG2.2.15 cells were seeded at a density of 1 ⁇ 10 5 cells/well in 24-well cell culture plates using MEM complete medium containing 10% fetal bovine serum, 2 mM L-glutamine, 380 ug/ml G418 (from Beijing) University People's Hospital), cultured in an incubator with a temperature of 37 ° C and a C02 content of 5%, and passaged and replaced fresh medium every 72 hours.
  • cells were digested with 0.25% trypsin, counted, and then seeded into 24-well plates at a concentration of 1 x 10 5 cells/ml, 1 ml per well.
  • the small interfering nucleic acids HBV-X1 to HBV-X4, HBV-P1 to HBV-P2, HBV-PS1 to HBV-PS2, and HBV-C1 to HBV-C2 obtained in Example 1 were obtained using Invitrogen's LipofectamineTM 2000 liposome. Transfection was performed separately without adding small interfering nucleic acids as a blank control.
  • the specific steps are as follows: Dissolve the small interfering nucleic acid in RNase-free sterile water to prepare a small interfering nucleic acid solution with a concentration of 2 (mol/L. Aspirate the supernatant from each well, add 0.5 ml of OptiMEM I low. Serum medium (Invitrogen, 31985-062). Dilute 3 ⁇ 1 small interfering nucleic acid solution (20 ⁇ 1/ ⁇ in 50 ⁇ 1 Opti-MEM I low serum medium (Invitrogen, 31985-062), respectively.
  • LipofectamineTM The 2000 liposome was diluted in 50 ⁇ l Opti-MEM I low serum medium (Invitrogen, 31985 ⁇ 62), and then the above two solutions were incubated at room temperature for 5 minutes, mixed, and the mixed solution was allowed to stand at room temperature for 20 minutes, and then ⁇ The mixed solution was added to the 24-well plate inoculated with cells, and gently shaken. The final concentration of the small interfering nucleic acid was 100 ⁇ . The cells were cultured at 37 ° C for 4 hours, and then 1 ml of 10% fetal bovine serum, 2 mM was added. L-Glutamine, 100 U/ml penicillin, 10 ( ⁇ g/ml streptomycin in MEM complete medium, and then cultured for an additional 48 hours.
  • the amount of HBsAg in the collected cell supernatants was determined using an ELISA kit.
  • the kit was purchased from Shanghai Kehua Biotechnology, and the operation was carried out according to the instructions.
  • the light absorption value is the difference obtained by measuring the absorbance of the sample at 450 nm minus the absorbance of the sample at 630 nm.
  • Inhibition rate (%) (P/N value of blank control well - P/N value of experimental well) / (P/N value of blank control well - 2.1) X 100%, knot As shown in Table 3.
  • the amount of HBeAg in the collected cell supernatants was determined using an ELISA kit.
  • the kit was purchased from Shanghai Kehua Biotechnology, and the operation was carried out according to the instructions.
  • the light absorption value is the difference obtained by measuring the absorbance of the sample at 450 nm minus the absorbance of the sample at 630 nm.
  • Inhibition rate (%) (blank control well P/N value - experimental well P/N value) / (blank control well P/N value -2.1) x l00%, and the results are shown in Table 4.
  • Table 3 (blank control well P/N value - experimental well P/N value) / (blank control well P/N value -2.1) x l00%, and the results are shown in Table 4.
  • the small interfering nucleic acids HBV-X1 to HBV-X4, HBV-P1 to HBV-P2, HBV-PS1 to HBV-PS2, and HBV-C1 to HBV-C2 provided by the present invention are capable of inhibiting B.
  • the expression of hepatitis B virus S antigen; especially the small interference nucleic acid HBV-X1, HBV-X3 HBV-PS1 and small interfering nucleic acid HBV ⁇ C1 inhibition rate are above 85%.
  • HBV-PS1 to HBV-PS2 and HBV-C1 to HBV-C2 provided by the present invention are capable of inhibiting B.
  • the expression of hepatitis E virus E antigen; especially HBV-X1, HBV-X3, HBV-PSl and HBV-Cl inhibition rate are above 65%.
  • mice C57BL/6j-TgN (AlblHBV) 44Bri Hepatitis B virus gene mouse, male, 7-8 weeks old, 20-25 g, purchased from Department of Laboratory Animal Science, Peking University Medical School; Animal License No.: SCXK (Beijing) 2006-0008; Feeding conditions are carried out in accordance with SFP class animal standards.
  • the small interfering nucleic acids HBV-X1 to HBV-X4, HBV-P1 to HBV-P2, HBV-PS1 to HBV-PS2, and HBV-C1 to HBV-C2 obtained in Example 1 were chemically modified, respectively, wherein the chemical modification was U, C and G nucleotide pentoses of the sense strands of small interfering nucleic acids HBV-X1 to HBV-X4, HBV-P1 to HBV-P2, HBV-PS1 to HBV-PS2 and HBV-C1 to HBV-C2
  • the 2'-OH was subjected to 2'-fluoro modification, and the 2'-OH of the antisense strand U and C nucleotide pentose was subjected to 2'-oxymethyl modification.
  • the modified small interfering nucleic acid 1.2mg (0.09 ⁇ 1) was dissolved in 1.5ml RNase-free sterile physiological saline to prepare a small interference nucleic acid solution with a concentration of 6 ( ⁇ mol/L, and liposome).
  • the mixture was mixed at a volume ratio of 1:1.
  • the small interfering nucleic acid encapsulated with the liposome was added to 5 ml of RNase-free sterile physiological saline (small interfering nucleic acid concentration: 0.25 mg/ml) to obtain an injection solution.
  • mice were injected with a conventional tail vein injection using an injection solution in an injection volume of 20 ml/kg body weight, and the blank control group was injected with the same volume of physiological saline, and only one injection.
  • MAIN OUTCOME MEASURES On the 3rd, 5th, and 7th day after injection, the blood was taken from the eyelids, and the serum was obtained by routine centrifugation. The test was performed at -20 °C, and the mice were sacrificed after taking the eyeball 7 days after the administration. The liver tissue was taken by laparotomy on an ice box and homogenized for examination.
  • HBV-C2 246 mmol/L
  • the present invention provides small interfering nucleic acids HBV-X1 to HBV-X4, HBV-P1 to HBV-P2.
  • HBV-PS1 to HBV-PS2 and HBV-C1 to HBV-C2 can reduce the content of ALT (alanine aminotransferase) in serum, among which HBV-X1, HBV-X3, HBV-PSl and HBV-Cl have the most obvious effects.
  • the small interfering nucleic acids HBV-XI to HBV-X4, HBV-PI to HBV-P2, HBV-PS1 to HBV-PS2, and HBV-Cl to HBV-C2 provided by the present invention are capable of lowering serum.
  • the light absorption value is the difference obtained by measuring the absorbance of the sample at 450 nm minus the absorbance of the sample at 630 nm.
  • Inhibition rate (%) (blank control well P/N value - experimental well P/N value) / (blank control well P/N value - 2.1) X 100%, and the results are shown in Table 7.
  • Table 7 Example Number of Small Interfering Nucleic Acid Numbers Inhibits HBsAg Content in Serum of Transgenic Mice
  • the small interfering nucleic acids HBV-XI to HBV-X4 and HBV-PI provided by the present invention are:
  • HBV-P2, HBV-PS1 to HBV-PS2, and HBV-C1 to HBV-C2 are all capable of inhibiting the amount of HBsAg in serum.
  • HBV-X1, HBV-X3, HBV-PS1 and HBV 1 inhibited the serum HBsAg content by more than 75%.
  • the liver was taken out, cut into tissue pieces of about 100 mg, and placed in a homogenizer for full grinding. Then, according to the instructions of Trizol (GIBCOL), using Trizol The total RNA extracted from the liver tissue was extracted by DNase digestion, and then reverse transcribed into cDNA. Then, the inhibitory effect of small interfering nucleic acid on the expression of hepatitis B virus mRNA was detected by real-time PCR.
  • Trizol Trizol extracts total RNA.
  • the mice were sacrificed by dislocation, and the liver tissue was taken by laparotomy on an ice box. About 100 mg of liver tissue was cut out, and 1 ml of Trizol reagent was added and homogenized with glass-Teflon or electric homogenizer. After homogenization, it was allowed to stand at room temperature for 30 min to ensure nuclear protein. The complex is completely separated.
  • RNA purification 2 units of DNase I (RNase-free) (TakaRa) was added to total RNA and allowed to stand at 37 ° C for 30 min to remove residual DNA from total RNA; add equal volume of concentration to total RNA For 70% ethanol, shake and mix evenly; transfer the mixture to the purification column, centrifuge at 12000g for 15s at room temperature, discard the filtrate; add 700 ⁇ Wash Buffer I, centrifuge at 12000g for 15s at room temperature, discard the filtrate; add 500 ⁇ Wash Buffer II, Centrifuge at 12000g for 15s at room temperature, discard the filtrate; add 50 (L Wash Buffer II, centrifuge at room temperature 12000g for 15s, discard the filtrate; centrifuge lurin at room temperature 12000g, transfer the purification column to the RNA collection tube; add 30 ⁇ 1 DEPC water, room temperature Lrnin; centrifuge at 13000g for 2min at room temperature, discard the purification column and bring the RNA sample to -80 °C save.
  • RNA reverse transcription The total RNA purified by 1 ⁇ ⁇ (2 L) was heated in EP tube at 70 ° C for 5 min; the EP tube was quickly placed on ice after centrifugation in a micro centrifuge; 25 mM MgCl 2 4 L, 10 ⁇ reverse transcription buffer was added in sequence.
  • the obtained cDNA was used as a template for a PCR reaction, and a Real-time PCR reaction was carried out.
  • the PCR kit was purchased from Beijing Meilaibo Medical Technology Co., Ltd.
  • the Real-time PCR reaction system is: ddH 2 0 17.5 ⁇ 1, 10mM Dntp 0.5 ⁇ 1, lOxTaq buffer 2.5 ⁇ 1, Taq 0 ⁇ 5 ⁇ 1, F primer 0 ⁇ 5 ⁇ 1, R primer 0.5 ⁇ 1, Syber Green I ⁇ , ⁇ 2 ⁇ 1 ; PCR reaction
  • the conditions were: 94 ° C for 2 minutes, 94 ° C for 15 seconds, and 60 ° C for 30 seconds for a total of 40 cycles.
  • GAPDH was set as an internal reference, and the small interfering nucleic acid inhibitory activity was calculated according to the following formula. The results are shown in Table 8.
  • Inhibitory activity of small interfering nucleic acids [1 - (copy of hepatitis B virus gene in the drug-administered group / copy number of GAPDH in the drug-administered group) I (copy number of hepatitis B virus gene in blank control group / copy number of GAPDH in blank control group)] ⁇ 100%.
  • HBV-PS1 to HBV-PS2 and HBV-C1 to HBV-C2 were able to inhibit the expression of HBV gene in the liver of transgenic mice.
  • HBV-X1, HBV-X3, HBV-PS1 and HBV-Cl inhibited the expression of HBV gene in the liver by more than 70%.

Description

乙型肝炎病毒基因的小核酸干扰靶位点序列和
小干扰核酸及组合物和应用 技术领域
本发明是关于乙型肝炎病毒基因的小核酸干扰靶位点序列和小干扰核酸及组合物和 应用, 更确切地说, 本发明涉及乙型肝炎病毒基因的小核酸干扰靶位点序列, 用于抑制 乙型肝炎病毒基因表达的小核酸, 以及含有该小干扰核酸的药物组合物和该小干扰核酸 在制备用于预防和 /或治疗乙型肝炎的药物组合物中的应用。 背景技术
乙型病毒性肝炎简称乙型肝炎, 是一种由乙型肝炎病毒(hepatitis B virus, HBV)引 起的传染病。 据世界卫生组织 (WHO) 统计, 全球乙肝病毒携带者超过了 20亿人, 其 中 3.6亿乙肝慢性患者的病情正在恶化,每年约有 100万人死于 HBV感染所致的肝衰竭、 肝硬化和原发性肝细胞癌。中国是世界范围内感染 HBV人数最多的国家, 乙型肝炎病毒 (HBV) 感染率高达 57.63%。 全国现有慢性乙肝病人 2000万, 每年乙肝新发病人数约 50万,每年有 23.7万人死于乙型肝炎相关的疾病,其中有 15.6万人死于肝癌。据中国肝 炎防治基金会 2006年报道, 我国每年用于治疗慢性肝炎、 肝硬化、 肝癌的直接医疗耗费 约 300亿元人民币, HBV造成的直接经济损失约为 3600亿元 /年。 每人年均医疗花费高 达 28864.89元人民币, 是我国 2005年人均 GDP的 2.12倍。 由此可见, 乙型肝炎不仅严 重危害我国人民的健康, 而且还为国家带来严重的社会经济负担。
治疗乙肝的方法主要包括抗病毒复制、 提高机体免疫功能、 保护肝细胞、 促进肝细 胞再生以及中医药治疗、 基础治疗及心理治疗等综合治疗。 全球公认的防治乙型肝炎的 药物主要可分为干扰素、核苷类似物 2大类。干扰素作为乙肝治疗药物已使用了较长时间, 其治疗终末应答率只有 30%, 即使和其他抗病毒药物联合使用或增加剂量后, 其治疗终 末应答率也只有 50%, 且停药、 减量或减少注射次数后易复发, 不良反应明显增加。 另 外, 长期使用会诱发干扰素抗体, 失去药效。核苷类似物起效快, 但终末应答率也不高, 且核苷类似物只抑制肝细胞质内的病毒, 对肝细胞核内的 CCC-DNA没有作用, 需要长期 维持用药。 长期用药面临的最主要问题是病毒变异而引发的耐药性, 以及停药后也易出 现病毒反弹、 复发率高。 更为严重的是少数病人停药后出现肝功能急剧恶化, 甚至死亡。 从基因水平抑制 HBV的生成和复制来降低病毒代谢和对肝细胞的侵染无疑将是乙肝最为 理想的治疗手段。
因此, 开发出一种新型的能够预防和 /或治疗乙型肝炎的产品成为迫切需要解决的问 题。 发明内容 本发明的第一个目的是提供乙型肝炎病毒基因的小核酸干扰靶位点序列。
本发明的第二个目的是提供一种用于抑制乙型肝炎病毒基因表达的小干扰核酸。 本发明的第三个目的是提供一种含有所述小干扰核酸的药物组合物。
本发明的第四个目的是提供所述小干扰核酸在制备用于预防和 /或治疗乙型肝炎的 药物组合物中的应用。
小核酸干扰也可称 RNA干扰 (RN A interference, RNAi), 是由双链 RNA
(double-stranded RNA, dsRNA)分子在 mRNA水平关闭相应基因的表达或使该基因沉 默的过程。 RNA干扰技术又被形象地称为基因敲低 (knock-down) 或基因沉默 (gene silencing), 是一种典型的转录后基因调控方法,又称转录后基因沉默(post-transcriptional gene silencing, PTGS)。 最早有关 RNA干扰的报道出现在 1990年, 由两个不同的研究 小组同时报道了转基因植物中的 RNA干扰现象, 以后又在线虫、 果蝇、斑马鱼和小鼠等 几乎所有真核生物中观察到了 RNA干扰现象。 1999年, Hamilton和 Baulcombe在发生 RNA干扰的植物中检测到了长度为 21-25个核苷酸的 RNA片段, 这些 RNA片段被证明 是 RNA干扰所必需的, 称为小干扰核酸 (siRNA, Small interfering RNA )。 小干扰核酸
( siRNA) 与细胞源性的相关酶和蛋白质形成 RNA诱导的沉默复合体 (RNA-induced silencing complex, RISC )。 在 RNA干扰过程中, 小干扰核酸 (siRNA) 中的正义链被排 除出复合体, 反义链指导 RISC结合到靶 mRNA的相应位点, 然后由复合物中的核糖核 酸酶 III降解靶 mRNA, 从而关闭靶基因的表达。
近年来, RNAi作为一种高效的序列特异性基因剔除技术在传染性疾病和恶性肿瘤基 因治疗领域发展极为迅速。 选择病毒基因组中与人类基因组无同源性的序列作为抑制序 列可在抑制病毒复制的同时避免对正常组织的毒副作用。 小干扰核酸 (siRNA) 抑制基 因表达的效率比现在临床使用的方法(抗体或反义寡合苷酸)高 1000倍以上, 且具有安 全、 特异、 高效的特性。 因而利用小干扰核酸 (siRNA) 药物治疗乙肝, 具有常规药物 无法比拟的优势。
乙型肝炎病毒 (HBV) 属嗜肝 DNA
Figure imgf000003_0001
基因组长约 3.2kb, 为 部分双链环状 DNA; 乙型肝炎病毒基因组含有 4个开放读码框 (ORF, S基因区、 C基 因区、 P基因区和 X基因区)。
S基因区包括 S基因、 前 S1基因和前 S2基因, 它们分别编码 S蛋白、 M蛋白和 L蛋白; 其中, S蛋白和 M蛋白与乙型肝炎病毒的嗜肝性、 基因免疫及转录激活密切相关。
C基因区包括前 C基因和 C基因, 它们分别编码核壳蛋白 HBeAg和 HBcAg, 该核壳 HBeAg和 HBcAg是组成乙型肝炎病毒核心部分的重要组成部分, 是病毒复制的主体。
P基因区包括 P基因, 编码 P蛋白, P蛋白含 816个氨基酸, 具有 4个功能结构域, 包括 具有反转录酶活性的 DNA聚合酶、 RNA酶 H等, 参与 HBV复制的全过程。
X基因区包括 X基因, 是 HBV病毒基因组中最小的开放性读码框,位于 HBV基因组的 1374-1838 bp处,全长约 435-462 bp, 编码长度为 154个氨基酸的蛋白, 该蛋白能够直接或 间接地对病毒自身的复制与增殖产生影响, 并且能够对宿主细胞中被感染的细胞的调亡 和癌变过程产生影响。
为了实现本发明的第一个目的, 本发明提供了乙型肝炎病毒基因的小核酸干扰靶位 点序列, 其中, 该干扰靶位点序列包括 SEQ ID Nos : 2-11中之一所示的核苷酸序列, 并 且所述干扰靶位点序列的长度为 15-27个核苷酸。
为了实现本发明的第二个目的, 本发明还提供了一种小干扰核酸, 其中, 该小干扰 核酸为双链 RNA分子, 包括正义链和反义链, 且所述正义链和反义链的长度为 15-27个 核苷酸, 所述正义链和反义链各自的 3'端均为两个连续的脱氧胸苷酸, 所述正义链和反 义链中除去 3'端的两个连续的脱氧胸苷酸以外的其他核苷酸互补形成双链, 其中, 所述 小干扰核酸的反义链能够与本发明提供的小核酸干扰靶位点序列碱基互补, 以抑制乙型 肝炎病毒基因的表达。
为了实现本发明的第三个目的, 本发明还提供了一种用于预防和 /或治疗乙型肝炎的 药物组合物, 其中, 该药物组合物含有本发明提供的小干扰核酸作为活性成分。
为了实现本发明的第四个目的, 本发明还提供了所述的小干扰核酸在制备用于预防 和 /或治疗乙型肝炎的药物组合物中的应用。
本发明通过特异性地抑制乙型肝炎病毒基因组中的 S基因区、 C基因区、 P基因区 和 X基因区中的一个或几个基因的表达, 从而降低病毒载量, 在基因水平对侵入机体的 乙型肝炎病毒起作用, 达到预防与治疗乙型肝炎病的目的。 特别是, 本发明提供的小干 扰核酸对乙型肝炎病毒基因表达的抑制活性高, 能够有效的预防和 /或治疗乙型肝炎。 具体实施方式
本发明提供了乙型肝炎病毒基因的小核酸干扰靶位点序列, 其中, 该干扰靶位点序 列包括 SEQ ID Nos : 2-11中之一所示的核苷酸序列,优选包括 SEQ ID No: 2、 SEQ ID No: 4、 SEQ ID No: 8、 或 SEQ ID No: 10所示的核苷酸序列, 并且所述干扰靶位点序列的 长度为 15-27个核苷酸, 优选为 19-21个核苷酸。
所述小核酸干扰靶位点是指在使用小干扰核酸来抑制基因表达的过程中, 该基因的 mRNA序列中能够与所述小干扰核酸的反义链互补的核苷酸序列。
在一个优选的实施方式中, 所述干扰靶位点序列如 SEQ ID Nos : 12-21中之一所示, 进一步优选为, 所述干扰靶位点序列如 SEQ ID No: 12、 SEQ ID No: 14、 SEQ ID No: 18、 或 SEQ ID No: 20所示。
本发明还提供了一种小干扰核酸(siRNA ), 其中, 该小干扰核酸为双链 RNA分子, 包括正义链和反义链, 且所述正义链和反义链的长度为 15-27个核苷酸, 所述正义链和 反义链各自的 3'端均为两个连续的脱氧胸苷酸, 所述正义链和反义链中除去 3'端的两个 连续的脱氧胸苷酸以外的其他核苷酸互补形成双链, 其中, 所述小干扰核酸的反义链能 够与本发明提供的小核酸干扰靶位点序列碱基互补, 以抑制乙型肝炎病毒基因的表达。 本发明提供的小干扰核酸为包括正义链和反义链的双链分子, 所述正义链和反义链 的长度分别为 15-27个核苷酸; 优选情况下, 所述正义链和反义链的长度分别为 19-21 个核苷酸。
在本发明此方面的优选实施方式中, 所述小干扰核酸具有 HBV-X1、 HBV-X2, HBV- X3、 HBV- X4、 HBV- PI、 HBV- P2、 HBV-PSK HBV- PS2、 HBV- CI或 HBV- C2所示 的核苷酸序列, 或者具有对 HBV-X1、 HBV-X2、 HBV-X3、 HBV-X4、 HBV-P1 HBV-P2、 HBV-PS1、 HBV-PS2、 HBV-Cl或 HBV-C2所示的核苷酸序列进行化学修饰所得到的核苷 酸序列, 其中,
HBV-X1 正义链: 5,- CGACCGACCUUGAGGCAUAdTdT-3'
反义链: 5,- UAUGCCUCAAGGUCGGUCGdTdT-3';
HBV-X2 正义链: 5,- CCUUGAGGCAUACUUCAAAdTdT-3 '
反义链: 5,- UUUGAAGUAUGCCUCAAGGdTdT-3 ';
HBV-X3 正义链: 5,- GCGGGACGUCCUUUGUUUAdTdT-3 '
反义链: 5'- UAAACAAAGGACGUCCCGCdTdT-3';
HBV-X4 正义链: 5'- CUAGGAGGCUGUAGGCAUAdTdT-3 '
反义链: 5'- UAUGCCUACAGCCUCCUAGdTdT-3';
HBV-P1 正义链: 5'- GGAACAAGAUCUACAGCAUdTdT-3'
反义链: 5,- AUGCUGUAGAUCUUGUUCCdTdT-3';
HBV-P2 正义链: 5,- G A AAGU AUGUC A ACG A AUUdTdT -3,
反义链: 5,- A AUUCGUUG AC AU ACUUUCdTdT -3 ';
HBV-PS1 正义链: 5' - GAUCCAGCCUUCAGAGCAAdTdT-3'
反义链: 5,- UUGCUCUGAAGGCUGGAUCdTdT-3';
HBV-PS2 正义链: 5' - CGUCAAUCUUCUCGAGGAUdTdT-3'
反义链: 5,- AUCCUCGAGAAGAUUGACGdTdT-3';
HBV-C1 正义链: 5,- GGGUGUUAAUUUGGAAGAUdTdT-3'
反义链: 5,- AUCUUCCAAAUUAACACCCdTdT-3';
HBV-C2 正义链: 5,- GGAAACUACUGUUGUUAGAdTdT-3 '
反义链: 5,- UCUAACAACAGUAGUUUCCdTdT-3'。
优选情况下, 所述小干扰核酸具有 HBV-X1、 HBV-X3, HBV-PS1或 HBV-Cl所示的 核苷酸序列。
根据本发明, 所述化学修饰为如下修饰中的至少一种:
( 1 ) 对所述 siRNA的核苷酸序列中连接核苷酸的磷酸二酯键的修饰;
(2) 对所述 siRNA的核苷酸序列中核糖的 2'-OH的修饰;
(3 ) 对所述 siRNA的核苷酸序列中碱基的修饰。
所述化学修饰为本领域技术人员所公知, 所述磷酸二酯键的修饰是指对磷酸二酯键 中的氧进行修饰, 包括硫代磷酸修饰, 如式 1所示; 和硼垸化磷酸盐修饰, 如式 2所示。 两种修饰都能稳定小干扰核酸结构, 保持碱基配对的高特异性和高亲和力。
Figure imgf000006_0001
(1) (2)
所述核糖修饰是指对核苷酸戊糖中 2'-OH的修饰, gp, 在核糖的羟基位置引入某些 取代基, 例如, 2'-氟代修饰, 如式 3所示; 2'-氧甲基修饰, 如式 4所示; 2'-氧亚乙基甲 氧基修饰, 如式 5所示; 2,4'-二硝基苯酚修饰, 如式 6所示; 锁核酸 (LNA), 如式 7所示; 2'-氨基修饰, 如式 8所示; 2'-脱氧修饰, 如式 9所示。
H,
Figure imgf000006_0002
(3) (4)
Figure imgf000006_0003
Ζ〇 DHP
(c) 2-Ο-ΜΟΕ
(5) (6)
Figure imgf000007_0001
(7) (8) (9) 所述碱基修饰是指对核苷酸的碱基进行修饰,例如, 5'-溴尿嘧啶修饰,如式 10所示; 5'-碘尿嘧啶修饰, 如式 11所示; N-甲基脲嘧啶修饰, 如式 12所示; 2,6—二氨基嘌呤修 饰, 如式 13所示。
Figure imgf000007_0002
(12) (13)
优选情况下,所述修饰使修饰后的小干扰核酸在细胞内抵抗核酸酶水解的能力增强。 此外, 为了促进小干扰核酸进入细胞, 可以在以上修饰的基础上, 在小干扰核酸正 义链的末端引入胆固醇等亲脂性的基团,亲脂性的基团包括以共价键与小干扰核酸结合, 如末端引入胆固醇、 脂蛋白、 维生素 E等, 以利于通过由脂质双分子层构成的细胞膜与 细胞内的 mRNA发生作用。 同时, 小干扰核酸也可以进行非共价键修饰, 如通过疏水键 或离子键结合磷脂分子、 多肽、 阳离子聚合物等增加稳定性和生物学活性。
本发明提供的小干扰核酸的制备方法包括小干扰核酸序列的设计和小干扰核酸的制 备。
所述小干扰核酸的设计是指选择序列相对保守的乙型肝炎病毒株 (Genbank登记号 为 U95551 ) 为模板。 分别针对乙型肝炎病毒的 X、 P、 S、 C基因的保守区, 选取 19bp 的核苷酸序列, 设计相应的小干扰核酸。
所述 X、 P、 S、 C基因的保守区在 HBV基因组 (Genbank登记号为 U95551)相对 位置分别为 1376-1820bp、 2309bp-1625bp, 2848-837bp、 1816bp-2454bp。
所述针对 X、 P、 S、 C基因的小干扰核酸序列设计按以下原则进行:
在乙型肝炎病毒 U95551株基因组的 1376-1820bp、 2309bp-1625bp, 2848-837bp、 1816bp-2454bp的范围内选取 19bp长度的核苷酸序列。 19bp核苷酸序列的选取主要参考 以下几项原则: (1 ) GC含量在 35-55 %之间, (2)避免处于重复序列或低复杂性序列区 域内, (3 ) 避免出现 4个以上的连续碱基序列, (4) 避免含有单核苷酸多态性位点, (5) 避免处于读码框起始密码和终止密码的 50-100bp区域之内, 除此之外, 还要分析核苷酸 序列的组成和热力学性质。通过 BLAST分析,将候选小干扰核酸靶位点同人类基因序列 进行同源性比对, 排除同其它基因有很大的序列同源性 (16个以上碱基) 的序列, 以确 保候选小干扰核酸靶位点不会对其他非相关基因发生抑制作用, 而仅对乙型肝炎病毒基 因具有特异的抑制作用。
最后将这样获得的 19bp核苷酸序列的 3'末端加上两个脱氧胸腺嘧啶核苷酸作为小干 扰核酸序列的正义链,在此 19bp核苷酸序列的互补序列的 3'末端加上两个脱氧胸腺嘧啶 核苷酸作为小干扰核酸序列的反义链。
根据本发明, 所述小干扰核酸的制备方法为本领域技术人员所公知, 例如, 所述小 干扰核酸可以通过化学合成得到, 或者通过质粒和 /或病毒载体的表达而得到。
所述小干扰核酸序列的合成可以采用化学合成的方法, 或者委托专门从事核酸合成 的生物技术公司合成, 如委托上海 GenePharma公司进行合成。
一般来说,所述化学合成的方法包括以下四个过程:(1 )寡聚核糖核苷酸的合成; (2) 脱保护; (3) 纯化分离; (4) 脱盐。
例如, 具有 HBV-X1所示的核苷酸序列的小干扰核酸的化学合成的具体步骤如下: ( 1 )寡聚核糖核苷酸的合成:寡聚核糖核苷酸的合成是在自动 DNA/RNA合成仪(例 如, Applied Biosystems EXPEDITE8909) 上进行, 根据 HBV-X1所示的核苷酸序列的顺 序将对应的核苷酸逐个连接起来。由于小干扰核酸是由一段 19个寡聚核糖核苷酸和 2个 脱氧胸苷酸组成。 因此, 起始物为固相连接的 5'-0-对二甲氧基-胸苷, 具体的每一个循 环合成可分为四步来完成, 第一步是将与固定连接的胸苷上 5'位的保护基在三氯乙酸的 作用下洗脱; 第二步在活性催化剂 S-乙基四唑的作用下, 将 5,-0-对二甲氧基三苯甲基- 胸苷亚磷酰胺偶联至已脱去保护的上一个胸苷上, 形成二胸苷亚磷酸三酯, 偶合时间、 偶合次数均按仪器厂家提供的程序来完成;第三步是将偶合的二胸苷亚磷酸三酯在 0.05M 碘水作用下, 氧化成二胸苷磷酸三酯; 第四步是乙酰化, 将固相上的少量未反应的活性 基团 (例如, 羟基和胺基) 在乙酸酐的作用下形成酯或酰胺, 从而达到封闭的作用, 以 减少整体副产物的产生, 重复此循环直至完成全部核酸序列的合成。
(2) 脱保护
将合成好的固相小干扰核酸放入至一个可以密封的小瓶中, 并加入 1毫升的乙醇 /胺 (体积比为 1 : 3), 然后密封, 置于 55-7CTC温箱中, 孵育 2-30小时, 取出溶液, 并将固 相再次用双蒸水洗脱, 收集洗脱液, 并干燥去除溶剂。 然后, 加入 1毫升四丁基氟化铵 的四氢呋喃溶液 (1M), 室温放置 4-12小时, 再经过乙醇沉淀, 得到小干扰核酸的粗产 物。
(3 ) 纯化分离
将小干扰核酸的粗产物溶解于 2毫升的乙酸铵水溶液中, 然后经过反应 C18高压液 相色谱的分离, 运用梯度洗脱的方法, 收集小干扰核酸主产物(洗脱液 A: 0.1M乙酸铵; 洗脱液 B: 20%的 0.1M乙酸铵和 80 %的乙腈), 除去主产物中的溶剂, 并加入 5毫升 80 %的乙酸水溶液,在室温静置 15分钟,然后将此溶液进行阴离子交换的分离 (DEAE-5PW, 阴离子交换柱), 即可得到纯度在 90 %以上的小干扰核酸(梯度洗脱, 洗脱液 A: 0.025M 的 Tris-HCl' 0.025M的 NaCl, pH=8, 5 %的乙腈; 洗脱液 B: 0.025M的 Tris-HCl, 2.0M 的 NaCl, pH = 8, 5 %的乙腈)。
(4) 脱盐
纯化的小干扰核酸经过透析, 除去盐份, 随后将小干扰核酸溶液进行过滤消毒和干 燥结晶。 然后将正义链和反义链的寡聚核糖核酸经过退火处理形成稳定的双链小干扰核 酸,其方法是将正义链和反义链的寡聚核糖核苷酸混合溶解在 1-2毫升的缓冲液中( 10mM Tris, pH=7.5-8.0, 50mM NaCl),将此溶液加热至 95°C , 然后缓缓将此溶液冷却至室温, 最后将此溶液存放在 4°C冰箱中保存, 以备随时使用。
除化学合成外, 小干扰核酸还可通过质粒和 /或病毒载体的表达而得到, 得到具有发 夹结构的 shRNA, 其长度为 50-90个核苷酸。 shRNA的结构为:
两端为酶切位点(例如 BamH?和 EcoR?),中间为一段 loop序列(例如 GAAGCTTG), 通过克隆技术将其插入到用相应内切酶酶切过的载体中, 再整合到染色体中, 即可稳定 表达小干扰核酸。
例如: 5,-GATCCG-正义链 GAAGCTTG-反义链 TTTTTTGGAATT-3'
本发明还提供了一种用于预防和 /或治疗乙型肝炎病的药物组合物, 其中, 该药物组 合物含有本发明提供的小干扰核酸作为活性成分。
根据本发明, 所述药物组合物可以为注射液。
本发明中, 所述注射液含有药学上可接受的载体和本发明提供的小干扰核酸, 所述 小干扰核酸与药学上可接受的载体的含量可以在很大范围内变动, 优选情况下, 相对于 100重量份的小干扰核酸, 所述药学上可接受的载体的含量为 100-10000000重量份。
本发明中, 对所述药学上可接受的载体没有特别的限制, 可以是 pH值为 4.0-9.0的 磷酸缓冲液、 pH值为 7.5-8.5的三羟甲基胺基甲垸盐酸盐缓冲液、生理盐水或 pH为 5.5-8.5 的磷酸盐缓冲液, 优选情况下, 所述药学上可接受的载体为 pH值为 4.0-9.0的磷酸缓冲 液。
根据本发明, 所述注射液还可以含有保护剂和 /或渗透压调节剂; 以所述注射液为基 准, 所述保护剂的含量为 0.01-30重量%,所述保护剂选自肌醇、 山梨醇和蔗糖中的一种 或几种; 所述渗透压调节剂的含量使所述注射液的渗透压为 200-700毫渗摩尔 /千克, 所 述渗透压调节剂为氯化钠和 /或氯化钾。
当注射本发明所述药用组合物时, 注射用量可以为本领域常用的剂量, 所述剂量可 以根据各种参数、 尤其根据待治疗患者的年龄、 体重和病症的严重程度来确定。
本发明还提供了所述的小干扰核酸在制备用于预防和 /或治疗乙型肝炎的药物组合 物中的应用。
下面结合实施例进一步说明本发明, 除非特别说明, 本发明所用到的试剂、 培养基 均为市售商品。 实施例 1
小干扰核酸的合成
选择序列相对保守的乙型肝炎病毒基因组(Genbank登记号为 U95551 ) ( SEQ ID NO. 1 )为模板。分别针对乙型肝炎病毒 U95551基因的保守区, 选取 19bp的核苷酸序列, 设 计小干扰核酸。
所述针对 X、 P、 s、 C基因小干扰核酸序列设计按以下原则进行:
在乙型肝炎病毒 U95551株基因组的 1376-1820bp、 2309bp-1625bp、 2848-837bp 1816bp-2454bp的范围内选取 19bp长度的核苷酸序列。 19bp核苷酸序列的选取主要参考 以下几项原则: (1 ) GC含量在 35-55 %之间, (2)避免处于重复序列或低复杂性序列区 域内, (3 ) 避免出现 4个以上的连续碱基序列, (4) 避免含有单核苷酸多态性位点, (5) 避免处于读码框起始密码和终止密码的 50-100bp区域之内, 除此之外, 还要分析核苷酸 序列的组成和热力学性质。通过 BLAST分析,将候选小干扰核酸靶位点同人类基因序列 进行同源性比对, 排除同其它基因有很大的序列同源性 (16个以上碱基) 的序列, 以确 保候选小干扰核酸靶位点不会对其他非相关基因发生抑制作用, 而仅对乙型肝炎病毒基 因具有特异的抑制作用。
最后将这样获得的 19bp核苷酸序列的 3'末端加上两个脱氧胸腺嘧啶核苷酸作为小干 扰核酸序列的正义链,在此 19bp核苷酸序列的互补序列的 3'末端加上两个脱氧胸腺嘧啶 核苷酸作为小干扰核酸序列的反义链。 本实施例中设计的小干扰核酸所攻击的靶位点序列包括 SEQ ID Nos: 2-11中之一所 示的核苷酸序列, 具体的小核酸干扰靶位点序列如 SEQ ID Nos: 12-21中之一所示 (长 度为 19个核苷酸)。
设计好的小干扰核酸经上海吉玛 (GenePharma) 公司进行化学合成, 得到小干扰核 酸 HBV- XI至 HBV- X4、 HBV-P1至 HBV- P2、 HBV-PS1至 HBV- PS2以及 HBV- C1至 HBV-C2, 它们的核苷酸序列如表 1所示。 表 1
Figure imgf000011_0001
所述攻击范围是指该小干扰核酸在 SEQ ID: NO.l中的相对应位置。 实施例 2
对乙型肝炎病毒基因表达的抑制活性检测
( 1 ) HepG2.2.15细胞的培养
用含有 10 %胎牛血清、 2mM L-谷胺酰胺、 380ug/ml G418的 DMEM完全培养基, 在 24孔细胞培养板上以 lxlO5个细胞 /孔的密度接种 HepG2.2.15细胞 (源自北京大学人 民医院), 在温度为 37 °C及 C02含量为 5 %的培养箱中进行培养, 每 72小时传代、 更换 新鲜培养基。 在转染前 24小时, 用 0.25%的胰酶消化细胞, 计数, 然后以 lxlO5个细胞 /ml的浓度接种到 24孔板, 每孔 1000μ1。
(2) 小干扰核酸的转染
使用 Invitrogen公司的 Lipofectamine™2000脂质体对实施例 1得到的小干扰核酸 HBV-X1至 HBV- X4、HBV- P1至 HBV- P2、HBV- PS1至 HBV- PS2以及 HBV- C1至 HBV- C2 分别进行转染, 以不添加小干扰核酸作为空白对照。
具体操作步骤如下: 将小干扰核酸溶解于无 RNA酶的无菌水中, 配制成浓度为 2( mol/L的小干扰核酸溶液。 吸出每孔细胞中的上清, 加入 0.5ml的 OptiMEM I低血清 培养基 (Invitrogen公司, 31985-062)。 分别将 3μ1 小干扰核酸溶液(20μηιο1/ω 稀释于 50μ1 Opti-MEM I低血清培养基(Invitrogen公司, 31985-062)中,将 1 .Ομΐ Lipofectamine™ 2000脂质体稀释于 50μ1 Opti-MEM I低血清培养基(Invitrogen公司, 31985Ό62)中, 然 后将上述两种溶液在室温下孵育 5分钟后混合,混合溶液于室温静置 20分钟后,把 ΙΟΟμΙ 该混合溶液加到接种有细胞的所述 24孔板中。 小干扰核酸的最终浓度是 100 ηΜ。 细胞 37°C培养 4小时, 再加入 lml含 10%胎牛血清、 2mM L-谷胺酰胺、 100U/ml青霉素、 10(^g/ml链霉素的 MEM完全培养基, 然后在 37°C下再培养 48小时。
(3 ) 荧光定量 PCR法检测小干扰核酸对乙型肝炎病毒 mRNA表达的抑制作用 通过 Real Time-PCR分别检测(2) 中转染了小干扰核酸 HBV-X1至 HBV-X4、 小干 扰核酸 HBV-P1至 HBV-P2、小干扰核酸 HB V-PS 1至 HB V-PS2以及小干扰核酸 HBV-C1 至 HBV-C2的 HEPG2.2.15细胞中乙型肝炎病毒基因 mRNA的表达量, 以未转染小干扰 核酸的 HEPG2.2.15细胞作为对照。
具体歩骤为: 用 lml TriZ0l(GIBCOL公司)裂解转染小干扰核酸的持续表达乙型肝炎 病毒的 HepG2.2.15细胞, 并提取总 RNA, 提取总 RNA的具体步骤为: 将转染后的细胞 在温度为 37°C及 C02含量为 5 %的培养箱中培养 48小时,然后离心收集细胞, 并用预冷 的 2ml PBS洗一遍; 所述 PBS的组成为: NaCl 137mmol/L, KC1 2.7mmol/L, Na2HP04 4.3mmol/L, KH2P04 1.4mmol/L; 每孔加入 lml Trizol, 室温放置 5分钟, 细胞发生裂解; 将裂解物转移到 1.5ml EP管中;加入 200μ1氯仿,用手剧烈震荡 15秒,室温放置 3分钟; 14000rpm 4°C离心 15分钟;取液相上清约 500μ1放于一新的 ΕΡ管中,加入 500μ1异丙醇, 室温放置 10分钟; 12000 rpm, 4°C 离心 10分钟, 除去上清, 用 1 ml浓度为 75%的乙醇 将沉淀物洗一次; 7600 rpm, 4°C 离心 5分钟; 除去上清, 室温干燥 RNA沉淀 10分钟; 加入 20μ1 ddH20溶解 RNA。
将 2单位的 DNase I (RNase-free) ( TakaRa公司)加入至上述溶解有 RNA的 DEPC水中, 并在 37 °C条件下静置 30分钟, 以除去总 RNA中残留的 DNA。 经过 DNase I处理后, 采用 Invitrogen公司的 PureLink Micro-to-Midi Total RNA Purification Kit对总 RNA进行提纯, 提 纯的具体步骤为: 在总 RNA中加入 20μ1的浓度为 70%的乙醇, 振荡混合均匀, 将混合物 转移至纯化柱上, 室温 12000rpm离心 15秒, 弃去过滤液,加入 700μ1清洗缓冲液 I (TakaRa 公司), 室温 12000rpm离心 15秒, 弃去过滤液, 加入 500μ1清洗缓冲液 II ( TakaRa公司), 室温 12000rpm离心 15秒, 弃去过滤液, 再加入 500μ1清洗缓冲液 II (TakaRa公司), 室温 12000rpm离心 15秒, 弃过滤液, 室温 12000rpm离心 1分钟, 将纯化柱转移至 RNA收集管 上,加入 3CV1 DEPC水,室温放置 1分钟,室温 13000rpm离心 2分钟,将 RNA样品置于 -80°C 保存。
对提纯后得到的总 RNA进行逆转录反应, 在逆转录反应中, 所用的逆转录酶为 Promega公司的 M-MLV逆转录酶, 逆转录反应的具体步骤为: 将 lug提纯后的总 RNA 与 lul ( 0.5ug) 的 Oligo dT在试管中进行混合, 用 DEPC水将总体积补足至 16.25μ1, 将 试管进行加热, 加热的条件包括加热温度为 70°C, 加热时间为 5分钟; 然后将试管迅速 冷却至 0°C,并加入缓冲液 ( 5xMLV buffer 5μ1, 10mM Dntp 1.25μ1, RNasin 0.5μ1, M-MLV 1μ1), 在 42°C条件下孵育 1小时, 得到 cDNA。
将得到的 cDNA作为 PCR反应的模板, 进行 Real-time PCR反应。 Real-time PCR 反应体系为: <1(1Η20 17.5μ1, 10mM Dntp 0.5μ1, lOxTaq buffer 2.5μ1, Τ 0.5μ1 , F primer 0.5μ1, R primer 0.5μ1 , Syber Green I Ιμΐ , οϋΝΑ 2μ1; PCR反应的条件为: 94°C2分钟, 94°C 15秒, 60°C 30秒, 共 40个循环。 同时设立 GAPDH作为内参基因, 根据下式计算 小干扰核酸抑制活性, 结果如表 2所示。
Realtime PCR引物共三对,根据所加小干扰核酸样品分别选取针对 C基因、 X基因、 S和 P基因的引物。 序列如下表:
Figure imgf000013_0001
小干扰核酸抑制活性 = [1- (小干扰核酸转染后的乙型肝炎病毒基因的拷贝数 /小干扰 核酸转染后的 GAPDH拷贝数) I (对照孔乙型肝炎病毒基因的拷贝数 /对照孔 GAPDH拷 贝数) ]χΐοο %。
GAPDH: 3-磷酸甘油醛脱氢酶基因。 3-憐酸甘油醛脱氢酶基因是细胞中的看家基因, 在细胞中稳定表达, 不受其他外加因素的影响, 因此作为荧光定量 PCR反应的内参照。
表 2
Figure imgf000013_0002
HBV-PS2 51 %
HBV-C1 91 %
HBV-C2 46%
从上表 2可以看出, 本发明提供的小干扰核酸 HBV-X1至 HBV-X4、 HBV-P1至 HBV-P2. HBV-PS1至 HBV-PS2以及 HBV-C1至 HBV-C2均能够抑制乙型肝炎病毒基因 的表达, 特别是 HBV-X1、 HBV-X3. HBV-PS1 ¾ HBV-C1的抑制率都在 80%以上。 实施例 3
对乙型肝炎病毒 s抗原 (HBsAg)、 e抗原 (HBeAg)表达的抑制活性检测
( 1 ) HepG2.2.15细胞的培养
用含有 10 %胎牛血清、 2mM L-谷胺酰胺、 380ug/ml G418的 MEM完全培养基, 在 24孔细胞培养板上以 lxlO5个细胞 /孔的密度接种 HepG2.2.15细胞 (源自北京大学人民医 院), 在温度为 37 °C及 C02含量为 5 %的培养箱中进行培养, 每 72小时传代、 更换新鲜 培养基。 在转染前 24小时, 用 0.25%的胰酶消化细胞, 计数, 然后以 lxlO5个细胞 /ml 的浓度接种到 24孔板, 每孔 lml。
(2) 小干扰核酸的转染
使用 Invitrogen公司的 Lipofectamine™2000脂质体对实施例 1得到的小干扰核酸 HBV-X1至 HBV-X4、HBV-P1至 HBV-P2、HBV-PS1至 HBV-PS2以及 HBV-C1至 HBV-C2 分别进行转染, 以不添加小干扰核酸作为空白对照。
具体操作步骤如下: 将小干扰核酸溶解于无 RNA酶的无菌水中, 配制成浓度为 2( mol/L的小干扰核酸溶液。 吸出每孔细胞中的上清, 加入 0.5ml的 OptiMEM I低血清 培养基 (Invitrogen公司, 31985-062)。 分别将 3μ1 小干扰核酸溶液(20μηιο1/ω 稀释于 50μ1 Opti-MEM I低血清培养基(Invitrogen公司, 31985-062)中,将 1 .Ομΐ Lipofectamine™ 2000脂质体稀释于 50μ1 Opti-MEM I低血清培养基(Invitrogen公司, 31985Ό62)中, 然 后将上述两种溶液在室温下孵育 5分钟后混合,混合溶液于室温静置 20分钟后,把 ΙΟΟμΙ 该混合溶液加到接种有细胞的所述 24孔板中, 轻轻摇匀。 小干扰核酸的最终浓度是 100 ηΜ。 细胞 37 °C培养 4小时, 再加入 lml含 10 %胎牛血清、 2mM L-谷胺酰胺、 100U/ml 青霉素、 10(^g/ml链霉素的 MEM完全培养基, 然后再培养 48小时。
(3 ) 检测培养上清液 s抗原 (HBsAg)的含量
为了确定小干扰核酸对 HBV蛋白表达的影响, 使用 ELISA试剂盒对收集的细胞上清 的 HBsAg的含量进行检测。 该试剂盒购自上海科华生物, 操作按说明书进行, 结果以 P/N 值 (?/1^值=样品的光吸收值 /对照的光吸收值)表示, 并按下列公式计算小干扰核酸对两者 的抑制率。
光吸收值为检测样本在 450nm处的吸光值减去样品在 630nm处的吸光值所得的差值。 抑制率 (%) = (空白对照孔 P/N值-实验孔 P/N值) /(空白对照孔 P/N值 -2.1) X 100%, 结 果如表 3所示。
(4) 检测培养上清液 e抗原 (HBeAg)的含量
为了确定小干扰核酸对 HBV蛋白表达的影响, 使用 ELISA试剂盒对收集的细胞上清 HBeAg的含量进行检测。该试剂盒购自上海科华生物, 操作按说明书进行, 结果以 P/N值 (P/I^t=样品的光吸收值 /对照的光吸收值)表示, 并按下列公式计算小干扰核酸对两者的 抑制率。
光吸收值为检测样本在 450nm处的吸光值减去样品在 630nm处的吸光值所得的差值。 抑制率(%) = (空白对照孔 P/N值-实验孔 P/N值) /(空白对照孔 P/N值 -2.1)xl00% , 结果 如表 4所示。 表 3
Figure imgf000015_0001
从上表 3可以看出, 本发明提供的小干扰核酸 HBV-X1至 HBV-X4、 HBV-P1至 HBV-P2、 HBV-PS1至 HBV-PS2以及 HBV-C1至 HBV-C2均能够抑制乙型肝炎病毒 S抗 原的表达; 特别是小干扰核酸 HBV-X1、 HBV-X3 HBV-PS1和小干扰核酸 HBV~C1的 抑制率都在 85%以上。 表 4
Figure imgf000015_0002
HBV-PS2 45 %
HBV-Cl 66%
HBV-C2 53 %
从上表 4可以看出, 本发明提供的小干扰核酸 HBV-X1至 HBV-X4、 HBV-P1至 HBV-P2. HBV-PS1至 HBV-PS2以及 HBV-C1至 HBV-C2均能够抑制乙型肝炎病毒 E抗 原的表达; 特别是 HBV-X1、 HBV-X3 , HBV-PSl禾口 HBV-Cl的抑制率都在 65%以上。 实施例 4
乙型肝炎病毒转基因小鼠实验
实验动物: C57BL/6j-TgN(AlblHBV)44Bri乙型肝炎病毒基因小鼠, 雄性, 7-8周龄, 20-25g, 购自北京大学医学部实验动物科学部; 动物许可证号: SCXK (京) 2006-0008; 饲 养条件按照 SFP级动物标准执行。
眼眶内眦采血, 离心分离血清, 筛选出血清 HBsAg强阳性, HBV DNA阳性的转基 因小鼠。 选择各项指标相近的小鼠随机分组, 每组 6只。 重复 3次。
分别对实施例 1得到的小干扰核酸 HBV-X1至 HBV-X4、 HBV-P1至 HBV-P2、 HBV-PSl至 HBV-PS2以及 HBV-C1至 HBV-C2进行化学修饰,其中,化学修饰是指对小 干扰核酸 HBV-X1至 HBV-X4、 HBV-P1至 HBV-P2、 HBV-PSl至 HBV-PS2以及 HBV-C1 至 HBV-C2的正义链的 U、 C和 G核苷酸戊糖的 2'-OH进行了 2'-氟代修饰, 反义链 U 和 C核苷酸戊糖的 2'-OH进行了 2'-氧甲基修饰。之后分别将修饰后的小干扰核酸 1.2mg (0.09μηιο1)溶解于 1.5ml无 RNA酶的无菌生理盐水中,配制成浓度为 6(^mol/L的小干 扰核酸溶液,并与脂质体以 1 : 1的体积比混合。用脂质体包裹后的小干扰核酸加入到 5ml 无 RNA酶的无菌生理盐水 (小干扰核酸浓度为 0.25mg/ml ) 中, 得到注射液。
分别使用注射液通过常规的尾静脉注射对小鼠进行注射,注射的体积为 20ml的注射 液 / kg体重, 空白对照组注射相同体积的生理盐水, 均只注射 1次。 主要观察指标: 小 鼠注射后第 3、 5、 7天, 从眼眶内眦取血, 常规离心得到血清, -20°C备检, 并于给药后 7天摘眼球取血后处死小鼠, 在冰盒上剖腹取肝组织, 匀浆备检。
( 1 ) 血清蛋白检测
小鼠注射后第 3、 5、 7天, 从眼眶内眦取血, 常规离心得到血清, 利用丙氨酸氨基 转移酶 /谷草转氨酶试剂盒 (ALT/ AST, IFCC推荐法, 北京中生北控生物科技股份有限公 司产品),应用日立 7170A全自动生化分析仪检测生化指标。具体操作严格按照试剂盒说 明书。 结果如表 5和表 6所示。 表 5
Figure imgf000016_0001
HBV-X1 135 mmol/L
HBV-X2 247 mmol/L
HBV-X3 148 mmol/L
HBV-X4 240 mmol/L
实施例 4 HBV-P1 185 mmol/L
HBV-P2 192 mmol/L
HBV-PSl 174 mmol/L
HBV-PS2 223 mmol/L
HBV-Cl 168 mmol/L
HBV-C2 246 mmol/L 从上表 5可以看出, 本发明提供的小干扰核酸 HBV-X1至 HBV-X4、 HBV-P1至 HBV-P2. HBV-PS1至 HBV-PS2以及 HBV-C1至 HBV-C2均能够降低血清中 ALT (丙氨 酸氨基转移酶)的含量,其中 HBV-X1、 HBV-X3 , HBV-PSl和 HBV-Cl的作用最为明显。
表 6
Figure imgf000017_0001
从上表 6可以看出, 本发明提供的小干扰核酸 HBV- XI至 HBV- X4、 HBV- PI至 HBV-P2、 HBV-PSl至 HBV-PS2以及 HBV-Cl至 HBV-C2均能够降低血清中 AST (谷草 转氨酶) 的含量, 其中 HBV-X1、 HBV-X3、 HBV-PSl禾 B HBV-Cl的作用最为明显。
(2) 血清 HBsAg检测
小鼠注射后第 14天, 摘眼球取血, 常规离心分离得到血清, 使用 ELISA试剂盒对血 清中 HBsAg的含量进行检测。 该试剂盒购自法国生物梅里埃有限公司, 操作按说明书进 行。结果以 P/N值 (P/f^S=样品的光吸收值 /对照光吸收值)表示, 并按下列公式计算小干扰 核酸对 HBsAg含量的抑制率。
光吸收值为检测样本在 450nm处的吸光值减去样品在 630nm处的吸光值所得的差值。 抑制率 (% ) = (空白对照孔 P/N值-实验孔 P/N值) /(空白对照孔 P/N值 -2.1) X 100%, 结果如表 7所示。 表 7 实施例编号 小干扰核酸编号 对转基因小鼠血清中的 HBsAg含量的抑制率
( )
HBV-X1 81 %
HBV-X2 22%
HBV-X3 75 %
HBV-X4 15 %
实施例 4
HBV-P1 61 %
HBV-P2 20%
HBV-PS1 77 %
HBV-PS2 23 %
HBV-C1 76%
HBV-C2 19%
从上表 7可以看出, 本发明提供的小干扰核酸 HBV- XI至 HBV- X4、 HBV- PI至
HBV-P2、HBV-PS1至 HBV-PS2以及 HBV-C1至 HBV-C2均能够抑制血清中 HBsAg的含 量。 其中 HBV-X1、 HBV-X3、 HBV-PS1和 HBV 1对血清 HBsAg含量的抑制率更是高 达 75%以上。
(3 ) 肝组织 HBV-mRNA的检测
小鼠注射后第 3、 5、 7天, 摘眼球放血处死后, 取出肝脏, 切取成约 lOOmg的组织 块, 放入匀浆器充分研磨, 然后按照 Trizol(GIBCOL公司)的说明, 使用 Trizol抽提肝组 织总 RNA, 提取的总 RNA经 DNase酶消化去除 DNA后, 逆转录为 cDNA, 接着用荧光 定量 PCR法检测小干扰核酸对乙型肝炎病毒 mRNA表达的抑制作用
具体步骤为:
① Trizol(GIBCOL公司)提取总 RNA。脱臼处死小鼠, 在冰盒上剖腹取肝组织,切取 约 lOOmg的肝脏组织块, 加入 lml Trizol试剂, 用玻璃 -Teflon或电动匀浆器匀浆; 匀浆 后室温放置 30min, 以保证核蛋白复合体完全分离。; 将裂解物转移到新的无 RNase的 1.5ml EP管中, 加入 20( L氯仿 /lmL Trizol试剂, 用手剧烈震荡 15s, 室温放置 3min, 12000g 4°C离心 lOmin; 取上清放于一新的 EP管中, 加入 1/2体积的异丙醇, 室温放置 lOmin; 2000 g, 4°C 离心 lOmin; 吸去上清, 用等体积冰冷 75%的乙醇洗一次, 10000 g, 4°C离心 5min, 吸去上清; 无 RNase环境室温干燥 RNA沉淀 10min, 加入 2(^1 DEPC 水溶解 RNA。
② RNA的纯化。将 2单位的 DNase I (RNase -free) (TakaRa公司)加入至总 RNA中, 并在 37°C条件下静置 30min, 以除去总 RNA中残留的 DNA; 在总 RNA中加入等体积的 浓度为 70%的乙醇, 振荡混合均匀; 将混合物转移至纯化柱上, 室温 12000g离心 15s, 弃过滤液; 加入 700μί清洗缓冲液 I, 室温 12000g离心 15s, 弃过滤液; 加入 500μί清 洗缓冲液 II,室温 12000g离心 15s,弃过滤液;再加入 50( L清洗缓冲液 II,室温 12000g 离心 15s,弃过滤液;室温 12000g离心 lrnin,将纯化柱转移至 RNA收集管上;加入 30μ1 DEPC水, 室温放置 lrnin; 室温 13000g离心 2min, 丢弃纯化柱,将 RNA样品至于 -80°C 保存。
③ RNA逆转录。 将 1μβ (2 L)提纯后的总 RNA在 EP管中 70°C加热 5min; 微型离 心机瞬时离心后将 EP管迅速放到冰上;依次加入 25mM的 MgCl2 4 L, 10x逆转录 buffer lOmM的 dNTP Mixture 2 L, RNase抑制剂 0.5 L, 逆转录酶 15U ( l g), Oligo 弓 I物 0.5 g,用无 RNase水定容至 2( L;在 42 °C条件下孵育 15min, 95 °C加热 5min, 5 °C 孵育 5min, 得到 cDNA。
将得到的 cDNA作为 PCR反应的模板, 进行 Real-time PCR反应。 PCR试剂盒购自 北京美莱博医学科技有限公司。 Real-time PCR反应体系为: ddH20 17.5μ1, 10mM Dntp 0.5μ1, lOxTaq buffer 2.5μ1, Taq 0·5μ1, F primer 0·5μ1, R primer 0.5μ1, Syber Green I Ιμΐ, εϋΝΑ 2μ1; PCR反应的条件为: 94°C2分钟, 94°C 15秒, 60°C 30秒, 共 40个循环。 同 时设立 GAPDH作为内参, 根据下式计算小干扰核酸抑制活性, 结果如表 8所示。
Realtime PCR引物共四对,根据所加小干扰核酸样品分别选取针对 C基因、 X基因、 S和 P基因的引物, 序列如下表:
Figure imgf000019_0001
小干扰核酸的抑制活性 = [1- (给药组乙肝病毒基因的拷贝 ¾/给药组 GAPDH的拷贝 数) I (空白对照组乙肝病毒基因的拷贝数 /空白对照组 GAPDH的拷贝数 )]χ100 %。
表 8
Figure imgf000019_0002
HBV-PSl至 HBV-PS2以及 HBV-C1至 HBV-C2均能够抑制转基因小鼠肝脏中 HBV基因 的表达。 其中 HBV-X1、 HBV-X3、 HBV-PSl和 HBV-Cl对肝脏中 HBV基因表达的抑制 率在 70%以上。

Claims

权利要求书
1、 乙型肝炎病毒基因的小核酸干扰靶位点序列, 其特征在于, 该小核酸干扰靶位 点序列包括 SEQ ID Nos : 2-11中之一所示的核苷酸序列, 并且所述小核酸干扰靶位点序 列的长度为 15-27个核苷酸。
2、 根据权利要求 1所述的小核酸干扰靶位点序列, 其中, 该小核酸干扰靶位点序 列的长度为 19-21个核苷酸。
3、 根据权利要求 1所述的小核酸干扰靶位点序列, 其中, 该小核酸干扰靶位点序 列包括 SEQ ID No: 2、 SEQ ID No: 4、 SEQ ID No: 8、 或 SEQ ID No: 10所示的核苷 酸序列。
4、 根据权利要求 1或 2所述的小核酸干扰靶位点序列, 其中, 该小核酸干扰靶位 点序列如 SEQ ID Nos: 12-21中之一所示。
5、 根据权利要求 4所述的小核酸干扰靶位点序列, 其中, 该小核酸干扰靶位点序 列如 SEQ ID No: 12、 SEQ ID No: 14、 SEQ ID No: 18、 或 SEQ ID No: 20所示。
6、 一种小干扰核酸, 其特征在于, 该小干扰核酸为双链 RNA分子, 包括正义链和 反义链,且所述正义链和反义链的长度为 15-27个核苷酸,所述正义链和反义链各自的 3' 端均为两个连续的脱氧胸苷酸, 所述正义链和反义链中除去 3'端的两个连续的脱氧胸苷 酸以外的其他核苷酸互补形成双链, 其中, 所述小干扰核酸的反义链能够与权利要求 1 或 4所述的小核酸干扰靶位点序列碱基互补, 以抑制乙型肝炎病毒基因的表达。
7、 根据权利要求 6所述的小干扰核酸, 其中, 所述正义链和反义链的长度分别为
19-21个核苷酸。
8、根据权利要求 7所述的小干扰核酸,其中,该小干扰核酸具有 HBV-X1、HBV-X2、 HBV-X3、 HBV-X4、 HBV-Pl、 HBV-P2、 HBV-PSK HBV-PS2、 HBV-Cl或 HBV-C2所示 的核苷酸序列, 或者具有对 HBV-X1、 HBV-X2、 HBV-X3、 HBV-X4、 HBV-Pl HBV-P2、 HBV-PS1、 HBV-PS2, HBV-Cl或 HBV-C2所示的核苷酸序列进行化学修饰所得到的核苷 酸序列, 其中,
HBV-X1 正义链: 5'- CGACCGACCUUGAGGCAUAdTdT-3'
反义链: 5'- UAUGCCUCAAGGUCGGUCGdTdT-3'; HBV-X2 正义链: 5, '- CCUUGAGGCAUACUUCAAAdTdT-3' 反义链: 5, - UUUGAAGUAUGCCUCAAGGdTdT-3';
HBV-X3 正义链: 5, '- GCGGGACGUCCUUUGUUUAdTdT-3 '
反义链: 5, - UAAACAAAGGACGUCCCGCdTdT-3';
HBV-X4 正义链: 5, '- CUAGGAGGCUGUAGGC AUAdTdT-3 '
反义链: 5, - UAUGCCUACAGCCUCCUAGdTdT-3';
HBV-P1 正义链: 5, - GGAACAAGAUCUACAGCAUdTdT-3'
反义链: 5, - AUGCUGUAGAUCUUGUUCCdTdT-3';
HBV-P2 正义链: 5, - GAAAGUAUGUCAACGAAUUdTdT-3'
反义链: 5, - AAUUCGUUGACAUACUUUCdTdT-3';
HBV-PS1 正义链: 5, - GAUCCAGCCUUCAGAGCAAdTdT-3 '
反义链: 5, - UUGCUCUGAAGGCUGGAUCdTdT-3';
HBV-PS2 正义链: 5, - CGUCAAUCUUCUCGAGGAUdTdT-3'
反义链: 5, - AUCCUCGAGAAGAUUGACGdTdT-3';
HBV-C1 正义链: 5' - GGGUGUUAAUUUGGAAGAUdTdT -3 '
反义链: 5, - AUCUUCCAAAUUAACACCCdTdT-3';
HBV-C2 正义链: 5, - GGAAACUACUGUUGUUAGAdTdT-3 ' 反义链: 5, - UCUAACAACAGUAGUUUCCdTdT-3'
9、根据权利要求 8所述的小干扰核酸,其中,该小干扰核酸具有 HBV-X1、HBV-X3、
HBV-PS1或 HBV-C1所示的核苷酸序列。
10、 根据权利要求 8所述的小干扰核酸, 其中, 所述化学修饰为如下修饰中的至少 一种:
( 1 ) 对所述小干扰核酸的核苷酸序列中连接核苷酸的磷酸二酯键的修饰;
(2) 对所述小干扰核酸的核苷酸序列中的核糖的 2'-OH的修饰;
( 3) 对所述小干扰核酸的核苷酸序列中的碱基的修饰。
11、 一种用于预防和 /或治疗乙型肝炎的药物组合物, 其特征在于, 该药物组合物含 有权利要求 6-10中的任意一项所述的小干扰核酸作为活性成分。
12、 根据权利要求 11所述的药物组合物, 其中, 所述药物组合物为注射液, 所述 注射液还含有药学上可接受的载体, 相对于 100重量份的小干扰核酸, 所述药学上可接 受的载体的含量为 100-10000000重量份。
13、根据权利要求 12所述的药物组合物, 其中,所述药学上可接受的载体为 pH值 为 4.0-9.0的磷酸缓冲液、 pH值为 7.5-8.5的三羟甲基胺基甲垸盐酸盐缓冲液、 生理盐水 或 pH为 5.5-8.5的磷酸盐缓冲液。
14、 根据权利要求 12所述的药物组合物, 其中, 所述注射液还含有保护剂和 /或渗 透压调节剂; 以所述注射液的总重量为基准, 所述保护剂的含量为 0.01-30重量%,所述 保护剂选自肌醇、 山梨醇和蔗糖中的一种或几种; 所述渗透压调节剂的含量使所述注射 液的渗透压为 200-700毫渗摩尔 /千克, 所述渗透压调节剂为氯化钠和 /或氯化钾。
15、 权利要求 6-10中的任意一项所述的小干扰核酸在制备用于预防和 /或治疗乙型 肝炎的药物组合物中的应用。
PCT/CN2009/073049 2008-08-01 2009-08-03 乙型肝炎病毒基因的小核酸干扰靶位点序列和小干扰核酸及组合物和应用 WO2010012244A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980126405.7A CN102083983B (zh) 2008-08-01 2009-08-03 乙型肝炎病毒基因的小核酸干扰靶位点序列和小干扰核酸及组合物和应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810135385.7 2008-08-01
CN200810135385 2008-08-01

Publications (1)

Publication Number Publication Date
WO2010012244A1 true WO2010012244A1 (zh) 2010-02-04

Family

ID=41609976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073049 WO2010012244A1 (zh) 2008-08-01 2009-08-03 乙型肝炎病毒基因的小核酸干扰靶位点序列和小干扰核酸及组合物和应用

Country Status (2)

Country Link
CN (1) CN102083983B (zh)
WO (1) WO2010012244A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014094645A1 (zh) * 2012-12-21 2014-06-26 厦门成坤生物技术有限公司 治疗乙型病毒性肝炎的rna干扰制剂
CN104031917A (zh) * 2013-03-06 2014-09-10 石药集团中奇制药技术(石家庄)有限公司 一种针对HBx的siRNA及其脂质体制剂
US9034841B2 (en) 2011-04-21 2015-05-19 Isis Pharmaceuticals, Inc. Modulation of hepatitis B virus (HBV) expression
CN105368860A (zh) * 2014-08-29 2016-03-02 石药集团中奇制药技术(石家庄)有限公司 一种重组质粒载体及其构建方法和应用
WO2019128611A1 (en) * 2017-12-29 2019-07-04 Suzhou Ribo Life Science Co., Ltd. Conjugates and preparation and use thereof
WO2020038377A1 (zh) * 2018-08-21 2020-02-27 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的药物组合物和缀合物及其用途
WO2020063198A1 (zh) * 2018-09-30 2020-04-02 苏州瑞博生物技术有限公司 一种siRNA缀合物及其制备方法和用途
WO2021037205A1 (zh) * 2019-08-29 2021-03-04 苏州瑞博生物技术股份有限公司 化合物和药物缀合物及其制备方法和用途
US11414661B2 (en) 2017-12-01 2022-08-16 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing nucleic acid, preparation method therefor and use thereof
US11414665B2 (en) 2017-12-01 2022-08-16 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate comprising the same, and preparation method and use thereof
US11492620B2 (en) 2017-12-01 2022-11-08 Suzhou Ribo Life Science Co., Ltd. Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method thereof and use thereof
RU2795400C2 (ru) * 2017-12-29 2023-05-03 Сучжоу Рибо Лайф Сайенс Ко., Лтд Конъюгаты и их получение и применение
US11660347B2 (en) 2017-12-01 2023-05-30 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing same, preparation method, and use thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2624045C2 (ru) * 2010-08-17 2017-06-30 Сирна Терапьютикс,Инк ОПОСРЕДУЕМОЕ РНК-ИНТЕРФЕРЕНЦИЕЙ ИНГИБИРОВАНИЕ ЭКСПРЕССИИ ГЕНОВ ВИРУСА ГЕПАТИТА B (HBV) С ПРИМЕНЕНИЕМ МАЛОЙ ИНТЕРФЕРИРУЮЩЕЙ НУКЛЕИНОВОЙ КИСЛОТЫ (миНК)
CN106636086A (zh) * 2015-10-30 2017-05-10 江苏命码生物科技有限公司 一种干扰乙肝病毒复制的siRNA、其构建方法及应用
CN112390835A (zh) * 2019-08-14 2021-02-23 苏州瑞博生物技术股份有限公司 肝靶向化合物及缀合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030206887A1 (en) * 1992-05-14 2003-11-06 David Morrissey RNA interference mediated inhibition of hepatitis B virus (HBV) using short interfering nucleic acid (siNA)
CN1257284C (zh) * 2003-03-05 2006-05-24 北京博奥生物芯片有限责任公司 一种体外阻断乙肝病毒表达的方法
CN1289681C (zh) * 2003-02-20 2006-12-13 重庆医科大学 乙型肝炎病毒siRNA表达载体的构建以及抗病毒治疗应用
CN1322898C (zh) * 2003-06-17 2007-06-27 杭州新瑞佳生物医药技术开发有限公司 攻击人类乙型肝炎病毒的小干扰RNA分子(SiRNA)及其应用
CN100351376C (zh) * 2004-12-30 2007-11-28 中山大学 Hbv的rna干扰靶点序列及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1276086C (zh) * 2003-08-13 2006-09-20 复旦大学 一类双链rna分子及其在制备抑制乙型肝炎病毒复制药物中的应用
CN1312283C (zh) * 2004-12-07 2007-04-25 浙江大学 乙肝病毒基因的小干扰核糖核酸序列及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030206887A1 (en) * 1992-05-14 2003-11-06 David Morrissey RNA interference mediated inhibition of hepatitis B virus (HBV) using short interfering nucleic acid (siNA)
CN1289681C (zh) * 2003-02-20 2006-12-13 重庆医科大学 乙型肝炎病毒siRNA表达载体的构建以及抗病毒治疗应用
CN1257284C (zh) * 2003-03-05 2006-05-24 北京博奥生物芯片有限责任公司 一种体外阻断乙肝病毒表达的方法
CN1322898C (zh) * 2003-06-17 2007-06-27 杭州新瑞佳生物医药技术开发有限公司 攻击人类乙型肝炎病毒的小干扰RNA分子(SiRNA)及其应用
CN100351376C (zh) * 2004-12-30 2007-11-28 中山大学 Hbv的rna干扰靶点序列及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YE JING JIA ET AL.: "Inhibition of hepatitis B virus by combined siRNAS in vitro", ACTA BIOLOGIAE EXPERIMENTALIS SINICA, vol. 38, no. 2, 30 April 2005 (2005-04-30) *
ZHANG BING-QIANG ET AL.: "Inhibition ofHBV replication and antigen expression by RNA interference against different targets", CHIN J HEPATOL, vol. 14, no. 9, 30 September 2006 (2006-09-30) *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034841B2 (en) 2011-04-21 2015-05-19 Isis Pharmaceuticals, Inc. Modulation of hepatitis B virus (HBV) expression
US9127278B2 (en) 2011-04-21 2015-09-08 Isis Pharmaceuticals, Inc. Modulation of hepatitis B virus (HBV) expression
US9677076B2 (en) 2011-04-21 2017-06-13 Ionis Pharmaceuticals, Inc. Modulation of hepatitis B virus (HBV) expression
WO2014094645A1 (zh) * 2012-12-21 2014-06-26 厦门成坤生物技术有限公司 治疗乙型病毒性肝炎的rna干扰制剂
CN104031917A (zh) * 2013-03-06 2014-09-10 石药集团中奇制药技术(石家庄)有限公司 一种针对HBx的siRNA及其脂质体制剂
CN105368860A (zh) * 2014-08-29 2016-03-02 石药集团中奇制药技术(石家庄)有限公司 一种重组质粒载体及其构建方法和应用
US11492620B2 (en) 2017-12-01 2022-11-08 Suzhou Ribo Life Science Co., Ltd. Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method thereof and use thereof
US11414661B2 (en) 2017-12-01 2022-08-16 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing nucleic acid, preparation method therefor and use thereof
US11660347B2 (en) 2017-12-01 2023-05-30 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing same, preparation method, and use thereof
US11414665B2 (en) 2017-12-01 2022-08-16 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate comprising the same, and preparation method and use thereof
CN110959011B (zh) * 2017-12-29 2023-03-28 苏州瑞博生物技术股份有限公司 缀合物及其制备方法和用途
CN110959011A (zh) * 2017-12-29 2020-04-03 苏州瑞博生物技术有限公司 缀合物及其制备方法和用途
WO2019128611A1 (en) * 2017-12-29 2019-07-04 Suzhou Ribo Life Science Co., Ltd. Conjugates and preparation and use thereof
US11633482B2 (en) 2017-12-29 2023-04-25 Suzhou Ribo Life Science Co., Ltd. Conjugates and preparation and use thereof
RU2795400C2 (ru) * 2017-12-29 2023-05-03 Сучжоу Рибо Лайф Сайенс Ко., Лтд Конъюгаты и их получение и применение
EP3842534A4 (en) * 2018-08-21 2022-07-06 Suzhou Ribo Life Science Co., Ltd. NUCLEIC ACID, COMPOSITION AND CONJUGATE CONTAINING NUCLEIC ACID AND METHOD OF USE THEREOF
WO2020038377A1 (zh) * 2018-08-21 2020-02-27 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的药物组合物和缀合物及其用途
US11918600B2 (en) 2018-08-21 2024-03-05 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, pharmaceutical composition and conjugate containing nucleic acid, and use thereof
EP3862024A4 (en) * 2018-09-30 2022-08-17 Suzhou Ribo Life Science Co., Ltd. SHORT INTERFERENT RNA CONJUGATE, METHOD FOR PREPARATION AND USE THEREOF
WO2020063198A1 (zh) * 2018-09-30 2020-04-02 苏州瑞博生物技术有限公司 一种siRNA缀合物及其制备方法和用途
US11896674B2 (en) 2018-09-30 2024-02-13 Suzhou Ribo Life Science Co., Ltd. SiRNA conjugate, preparation method therefor and use thereof
WO2021037205A1 (zh) * 2019-08-29 2021-03-04 苏州瑞博生物技术股份有限公司 化合物和药物缀合物及其制备方法和用途

Also Published As

Publication number Publication date
CN102083983B (zh) 2014-04-16
CN102083983A (zh) 2011-06-01

Similar Documents

Publication Publication Date Title
WO2010012244A1 (zh) 乙型肝炎病毒基因的小核酸干扰靶位点序列和小干扰核酸及组合物和应用
AU2016296592B2 (en) Compositions and agents against Hepatitis B virus and uses thereof
JP4709545B2 (ja) 修飾された低分子干渉rna分子および使用方法
CN116514890A (zh) 用于B型肝炎病毒感染的RNAi剂
EP3472362A1 (en) Nucleic acid molecules for reduction of papd5 or papd7 mrna for treating hepatitis b infection
TW201136594A (en) Modulation of hsp47 expression
CN102140461B (zh) 小干扰核酸和药物组合物及其制药应用
EP1796732A2 (en) Modified small interfering rna molecules and methods of use
WO2014094645A1 (zh) 治疗乙型病毒性肝炎的rna干扰制剂
JP2021524277A (ja) Rtel1発現の調節用のオリゴヌクレオチド
WO2021130270A1 (en) Pharmaceutical combination of antiviral agents targeting hbv and/or an immune modulator for treatment of hbv
JP2023506540A (ja) B型肝炎ウイルス感染を処置するためのscamp3阻害剤の使用
JP2023509870A (ja) Hbvの処置のためのhbvを標的とする治療用オリゴヌクレオチドとtlr7アゴニストとの医薬組合せ
JP2023538630A (ja) B型肝炎ウイルス感染症を処置するためのa1cf阻害剤の使用
JP2023506546A (ja) B型肝炎ウイルス感染症を処置するためのsept9阻害剤の使用
WO2011038700A1 (zh) Fam3b基因的抑制剂和抑制剂组合物及抑制方法以及抑制剂在制药中的应用
CN112266912A (zh) 靶向miR-29b的gRNA、AAV8-CRISPR/Cas9系统及其应用
JP2023506954A (ja) B型肝炎ウイルス感染を処置するためのsaraf阻害剤の使用
JP2023506550A (ja) B型肝炎ウイルス感染症を処置するためのsbds阻害剤の使用
JP2023506547A (ja) B型肝炎ウイルス感染を処置するためのcops3阻害剤の使用
WO2023111210A1 (en) Combination of oligonucleotides for modulating rtel1 and fubp1
CN116790590A (zh) 靶向乙肝病毒rna的反义寡核苷酸、对应嵌合分子及其应用
Ely Optimisation of Expressed RNA Interference Effecters for the Inhibition of Hepatitis B Virus Replication

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126405.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, DATED 17.05.11

122 Ep: pct application non-entry in european phase

Ref document number: 09802437

Country of ref document: EP

Kind code of ref document: A1