WO2010009649A1 - 一种泵的输出液量的控制系统及控制方法 - Google Patents

一种泵的输出液量的控制系统及控制方法 Download PDF

Info

Publication number
WO2010009649A1
WO2010009649A1 PCT/CN2009/072619 CN2009072619W WO2010009649A1 WO 2010009649 A1 WO2010009649 A1 WO 2010009649A1 CN 2009072619 W CN2009072619 W CN 2009072619W WO 2010009649 A1 WO2010009649 A1 WO 2010009649A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
pump
high voltage
value
actuating device
Prior art date
Application number
PCT/CN2009/072619
Other languages
English (en)
French (fr)
Inventor
罗七一
王勤
曾志海
刘宇程
杨平中
Original Assignee
微创医疗器械(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微创医疗器械(上海)有限公司 filed Critical 微创医疗器械(上海)有限公司
Publication of WO2010009649A1 publication Critical patent/WO2010009649A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/04Pressure in the outlet chamber

Definitions

  • the present invention relates to the field of micropumps, and more particularly to a control system and control method for an output liquid volume of a pump. Background technique
  • the piezoelectric ceramic pump 10 includes a piezoelectric ceramic sheet 11 , a variable space cavity 12 , an input channel 13 , an input check valve 14 , and an output check valve 15 . And output channel 16.
  • the piezoelectric ceramic sheet 11 is a multi-layered wafer shape, and the substrate may be made of copper or stainless steel.
  • the substrate is coated with a layer of piezoelectric ceramic material, and the piezoelectric ceramic is coated with a conductive material such as silver.
  • the copper material and the silver material are respectively connected to the two poles of the AC power source. After energization, due to the characteristics of the piezoelectric ceramic material stretching and contracting in the electric field, the piezoelectric ceramic sheet 11 alternately performs an upward convex downward motion and a downward concave motion accompanying the alternating voltage.
  • the vibration amplitude and the vibration frequency of the piezoelectric ceramic sheet 11 are controlled to be long and long, and further The output volume of the piezoelectric ceramic pump 10 can be controlled.
  • the output volume of the piezoelectric ceramic pump 10 is affected by the inlet pressure of the input channel 13, the outlet pressure of the output channel 16, the conversion efficiency of the piezoelectric ceramic piece 11, and the like.
  • the effect is that it is difficult to precisely control the output liquid volume of the piezoelectric ceramic pump 10 only by the preset output pressure value and the alternating frequency, and it is also difficult to accurately control the output pressure of the piezoelectric ceramic pump 10.
  • the technical problem to be solved by the present invention is to provide a control system for the output volume of the pump, which can precisely control the output volume or output pressure of the pump.
  • Another object of the present invention is to provide a method of controlling the output liquid amount of a pump which can precisely control the output liquid volume or output pressure of the pump.
  • the invention introduces a method for controlling the output liquid volume of a pump, comprising: detecting an output pressure value of the pump; controlling an action of the pumping device according to the output pressure value, thereby controlling an output liquid of the pump Volume, output fluid flow rate or output pressure.
  • the actuating device for controlling the pump according to the output pressure value is specifically: calculating an output liquid amount corresponding to the pressure value; determining whether the output liquid amount reaches a preset value, and if not, adjusting the output to the The voltage value on the actuator on the pump controls the actuation of the actuator.
  • the actuating device for controlling the pump according to the output pressure value is specifically: calculating an output liquid amount corresponding to the pressure value; determining whether the output liquid amount reaches a preset value, and if not, adjusting the output to the The frequency or number of actions on the actuator on the pump controls the actuation of the actuator.
  • the invention also discloses a control system for the output volume of the pump, comprising an actuating device, a variable space cavity, an input channel and an output channel, and further comprising: a pressure sensor detecting the output pressure of the pump, the pressure sensor The output pressure value is transmitted to the signal control device, and the signal control device controls the actuation device to act according to the output pressure value.
  • the pressure sensor is disposed in the output channel.
  • the method further includes a protection cavity in communication with the output channel, the pressure sensing The device is disposed in the protective cavity.
  • a diaphragm is disposed in the protection cavity to isolate the protection cavity into an enclosed space.
  • the signal control device comprises a data processor, a high voltage generator, and a high voltage distributor, wherein the data processor controls a voltage value generated by the high voltage generator according to an output pressure value, and the high voltage generator generates the voltage The value is transmitted to the high voltage distributor, which converts the voltage and outputs it to the actuating device.
  • the signal control device comprises a data processor, a high voltage generator, and a high voltage distributor, the high voltage distributor receives a voltage transmitted by the high voltage generator, and the data processor controls the high voltage according to an output pressure value The positive and negative voltages and the number of conversions assigned to the actuator by the dispenser.
  • the signal control device comprises a data processor, a high voltage generator, and a high voltage distributor, wherein the data processor controls a voltage generated by the high voltage generator according to an output pressure value, and the high voltage generator generates a voltage transmission To the high voltage distributor, the data processor controls the voltage, frequency and/or duration of the high voltage distributor assigned to the actuator.
  • an input check valve is disposed on the input channel.
  • the input check valve comprises a first valve plate and a first flow guiding support plate, and the first valve plate is attached to a liquid inlet side of the first flow guiding support plate.
  • the first flow guiding support plate is a porous mesh plate, a tower spring or a coil spring.
  • an output check valve is disposed on the output channel.
  • the output check valve includes a second valve plate and a second flow guiding support plate, and the second valve plate is attached to the liquid inlet side of the second flow guiding support plate.
  • the second flow guiding support plate is a porous mesh plate, a tower spring or a coil spring.
  • the actuating device is a piezoelectric ceramic sheet.
  • the membrane is an elastic membrane.
  • the actuating device is a magnetostrictive device
  • the magnetostrictive device comprises a magnetostrictive material and a coil
  • the coil is wound around the outer circumference of the magnetostrictive material, below the magnetostrictive material Fixed with a thin sheet.
  • the actuating device is a cam motor
  • the cam motor includes a cam and a motor, and the cam is connected to an actuator of the motor, and a sheet is fixed under the cam.
  • the actuating device is an electromagnet
  • the electromagnet comprises an electric soft iron and a wire entangled around the outer circumference of the electric soft iron, and a thin piece is fixed under the electric soft iron.
  • the pump is for an insulin syringe.
  • the invention also discloses a control system for the output liquid quantity of the pump, comprising an actuating device, a variable space cavity, an input channel and an output channel, and further comprising: a flow sensor for detecting the output volume of the pump, the flow sensor And transmitting the output liquid amount to the signal control device, wherein the signal control device controls the action of the actuating device according to the output liquid amount value.
  • the invention also discloses a control system for the output volume of the pump, comprising an actuating device, a variable space cavity, an input channel and an output channel, and further comprising: a flow rate sensor for detecting a flow rate of the pump output liquid, the flow rate sensor The output fluid flow rate value is transmitted to the signal control device, and the signal control device controls the actuation device to act according to the output fluid flow rate value.
  • the invention adds a pressure sensor at the liquid discharge position of the pump, the pressure sensor detects the output pressure of the pump, and adjusts the action of the actuator in the pump according to the output pressure value, thereby controlling the output liquid volume of the pump to realize the output volume of the pump. Precise control.
  • Figure 1 is a schematic view showing the structure of a conventional piezoelectric ceramic pump
  • FIG. 2 is a schematic view showing the working process of the piezoelectric ceramic pump shown in Figure 1;
  • FIG 3 is a schematic view showing the working process of the piezoelectric ceramic pump shown in Figure 1;
  • Figure 4 is a corresponding curve of the pump output liquid volume and output pressure of the present invention.
  • FIG. 5 is a schematic diagram of a control system for an output liquid amount of a pump according to a first embodiment of the present invention
  • FIG. 6 is a schematic diagram of a control system for an output liquid amount of a pump according to a second embodiment of the present invention
  • FIG. 7 is a diagram of a pump output according to a third embodiment of the present invention. Schematic diagram of the control system of the liquid amount
  • FIG. 8 is a schematic view showing the position of the pressure sensor according to the present invention
  • Figure 9 is a schematic view showing the position of the pressure sensor of the present invention
  • Figure 10 is a schematic view showing the structure of a pump using a magnetostrictive device for the actuating device of the present invention
  • Figure 11 is a schematic view showing the structure of a pump using an electromagnet for the actuating device of the present invention
  • Figure 12 is a pump with a cam motor for the actuating device of the present invention
  • FIG. 13 is a schematic structural view of a pump using a floating valve for an input check valve and an output check valve according to the present invention
  • Figure 14 is a flow chart showing a method of controlling the output liquid volume of the pump of the present invention. detailed description
  • the invention adds a pressure sensor at the liquid discharge position of the pump, the pressure sensor detects the output pressure of the pump, and adjusts the action of the actuator in the pump according to the output pressure value, thereby controlling the output liquid volume or the output pressure of the pump to realize the pump Precise control of the output volume or output pressure.
  • the present invention can also add a flow sensor at the liquid discharge position of the pump, the flow sensor detects the output liquid volume of the pump, and controls the action of the actuator in the pump according to the output liquid amount, thereby adjusting the output liquid volume of the pump. Achieve precise control of the pump output volume.
  • the invention can also add a flow rate sensor at the liquid discharge position of the pump, the flow rate sensor detects the flow rate of the output liquid of the pump, and controls the action of the actuating device in the pump according to the flow rate value of the output liquid, thereby adjusting the output liquid volume of the pump, thereby realizing Precise control of pump output volume.
  • the present invention is not only applicable to a pump in which the output medium is a liquid, but also to a pump in which the output medium is a gas.
  • the control system and the control method for the output liquid amount of the pump of the present invention can be widely applied to an infusion device such as an insulin syringe, and various gas delivery devices.
  • Fig. 4 it is the relationship between the output pressure of the pump and the output liquid volume.
  • the abscissa is the pressure value and the ordinate is the time. It can be seen from the curve in Fig. 4 that when the voltage and frequency applied across the piezoelectric ceramic are constant. , output the same amount of liquid, the greater the output pressure, the more time required.
  • the invention adjusts the output pressure value of the pump according to the output pressure value of the pump, adjusts the voltage applied to the actuator in the pump according to the output pressure value, and changes the action amplitude of the actuating device to achieve precise control of the output liquid volume of the pump.
  • the output volume control system of the pump includes a pump 10, a pressure sensor 30, and The signal control device 60, wherein the pump 10 includes an actuating device 17, the signal control device 60 includes a data processor 61, a high voltage generator 62, and a high voltage distributor 63.
  • the pressure sensor 30 is disposed at the discharge position in the pump 10 to accurately detect the output pressure value of the pump 10.
  • the output pressure is the pressure at which the pump 10 outputs liquid, or the pressure of the output liquid is correspondingly transmitted and varied.
  • the pressure sensor 30 transmits the detected pressure value to the data processor 61, and the data processor 61 calculates the voltage value to be generated by the high voltage generator 62 based on the pressure value, and transmits the voltage value to the high voltage generator 62.
  • the data processor 61 can have a built-in correspondence table of output pressure values and voltage values, or an output pressure and flow rate comparison table. According to the correspondence table, the data processor 61 can find a voltage value corresponding to the output pressure value.
  • the high voltage generator 62 adjusts the generated voltage value to the required voltage value and transmits the adjusted voltage to the high voltage distributor 63.
  • the high voltage distributor 63 converts the voltage into a unidirectional pulsating DC voltage, or a bidirectional AC voltage, acting on the actuating device 17 of the pump 10, changing the operating frequency of the actuating device 17, and thereby changing the pumping pressure in the pump 10.
  • the discharge pressure determines the pump's single-action output liquid volume, so precise control of the output fluid volume can be achieved.
  • the present invention controls the output voltage of the pump 10 by detecting the value of the output pressure of the pump 10, and controls the output of the pump 10 to form a closed loop feedback control system.
  • the system achieves precise control of the output or output pressure of the pump 10 through constant feedback adjustment.
  • the present invention can also adjust the operating frequency and duration of the high pressure distributor 63 in accordance with the output pressure value, and apply it to the actuating device 17 to achieve precise control of the output volume of the pump 10.
  • the data processor 61 receives the output pressure value transmitted by the pressure sensor 30, and calculates the number of actions to be assigned to the actuating device 17 at the pressure according to the output pressure value. The number of actions can be multiplied by the frequency and duration. To achieve, it is also possible to first determine the frequency, calculate the number of commutations of the high-pressure distributor, and use the number of commutations as the number of actions assigned to the actuating device 17, and complete the control of the actuating device 17 to achieve the output volume. Precise control.
  • the pressure of the output liquid may change.
  • the data processor 61 adjusts the high pressure distributor 63 in real time to achieve precise control of the output volume of the pump 10.
  • the present invention can also simultaneously adjust the high pressure generator 62 and the high pressure distributor 63 in accordance with the output pressure value to achieve precise control of the output volume of the pump 10. Referring to FIG.
  • the data processor 61 receives the output pressure value transmitted by the pressure sensor 30, calculates the voltage value to be generated by the high voltage generator 62 based on the output pressure value, and the frequency at which the high voltage distributor 63 needs to be allocated to the actuating device 17, And the duration of the action or the number of actions, and the calculation results are transmitted to the high voltage generator 62 and the high pressure distributor 63, respectively.
  • the high voltage generator 62 delivers the corresponding voltage to the high voltage distributor 63, which converts the voltage into the desired alternating voltage, applies it to the actuating device 17, and controls the duration or number of alternating voltages of the alternating voltage. To achieve precise control of the output volume or output pressure of the pump 10.
  • the data processor 61 simultaneously adjusts the high voltage generator 62 and the high pressure distributor 63 according to the detected output pressure value, and can properly configure the high voltage generator 62 and the high pressure distributor 63 as needed to coordinate the high voltage generator 62 and the high pressure distributor 63 to the maximum. Good working condition.
  • the data processor 61 of the present invention can completely calculate the output liquid amount of the pump 10 according to the output pressure value, adjust the output voltage of the high voltage generator 62 according to the output liquid amount, or adjust the voltage assigned to the actuating device 17 by the high voltage distributor 63.
  • the pump 10 of the present invention may further comprise a memory, the memory stores the output pressure and flow rate comparison table of the actuating device 17, the different pumps 10, the memory storage comparison table is also different, the comparison table and the pump 10 - corresponding, can simultaneously eliminate The inconsistency of the actuators 17, the inconsistency of the pressure sensor 30, and the errors caused by inconsistencies in the production of the pump 10, etc., can also be eliminated.
  • the elimination method is to calibrate the pump with a standard instrument after the pump is manufactured, and write the measured output pressure and flow table to the memory.
  • the replaced pump 10 uses its own comparison table in its own memory, so accurate flow or pressure control is still possible.
  • the memory placed in the pump 10 can also provide storage space for the accumulated data.
  • the memory can store all data related to the pump 10.
  • the pressure sensor 30 can be set at The output channel of the pump 10, or the protective cavity in communication with the output channel.
  • the pump 10 of the present invention such as its actuating device 17, employs a piezoelectric ceramic sheet, which may be referred to as a piezoelectric ceramic pump.
  • the piezoelectric ceramic pump 20 includes a piezoelectric ceramic sheet 21, a variable space chamber 22, an input passage 23, an input check valve 24, an output check valve 25, an output passage 26, a pressure sensor 30, and a reservoir 31.
  • the piezoelectric ceramic sheet 21 is tightly covered above the variable space cavity 22.
  • the piezoelectric ceramic sheets 21 alternately perform upward and downward concave movements with alternating current.
  • the variable space cavity 22 is a relatively small space, surrounded by a piezoelectric ceramic pump 10 housing, the piezoelectric ceramic sheet 21 is sealed on the upper side, and the input check valve 24 and the output one-way are respectively connected through two passages.
  • Valve 25 The input check valve 24 is connected to the input channel 23, and the output check valve 25 is connected to the output channel 26.
  • Pressure sensor 30 is disposed within output channel 26.
  • the pressure sensor 30 can accurately detect the pressure of the liquid output through the pressure sensor 30, as the output pressure of the piezoelectric ceramic pump 20. value.
  • a diaphragm 281 is added to the protective cavity 28 to isolate the protective cavity 28 into an enclosed space, preventing liquid from corroding the pressure sensor 30 and the reservoir 31, while also preventing liquid from contacting the pressure sensor 30 and the memory 31 and their The welding material is contaminated. At this point the diaphragm 281 should be relaxed to not create additional deformation forces.
  • the actuating device 17 of the present invention can also employ a magnetostrictive device, an electromagnet, a motor with a cam, and the like.
  • the magnetostrictive device 31 includes a magnetostrictive material 311 and a coil 312 wound around the outer circumference of the magnetostrictive material 311, and a sheet 313 is fixed under the magnetostrictive material 311.
  • the wire ⁇ 312 is connected to the AC power source, and when the wire ⁇ 312 is powered on, a magnetic field is generated, and the magnetostrictive material 311 is moved up and down by the magnetic field to drive the sheet 313 up and down. Actuating, thereby changing the volume of the variable space cavity 22.
  • the electromagnet 41 includes an electric soft iron 411 and a wire 412, and the upper cover may be a permanent magnet.
  • the wire 412 412 is wound around the electric soft iron 411, and a sheet 413 is fixed under the electric soft iron 411.
  • the wire ⁇ 412 is connected to the alternating current power source. When the wire ⁇ 412 is powered on, a magnetic field is generated, and the electric soft iron 411 generates suction and thrust between the permanent magnet and the magnetic force to move up and down, and drives the sheet 413 to move up and down, thereby changing the variable space.
  • the volume of the cavity 22 is a magnetic field.
  • Varying the voltage value or frequency applied to the coil 412 can change the amplitude or frequency of the electrical soft iron 411 for up and down movement, thereby changing the pressure and speed of the liquid output in the pump 10 to achieve control of the output volume of the pump 10.
  • the cam motor 51 includes a motor 511 and a cam 512, and a sheet 513 is fixed under the cam 512.
  • the motor 511 is connected to the power source.
  • the cam 512 is moved up and down to drive the sheet 513 to move up and down, thereby changing the volume of the variable space cavity 22.
  • Changing the voltage value or voltage frequency applied to the motor 511 can change the force or frequency of the cam 512 to move up and down, thereby changing the pressure and speed of the liquid output in the pump 10, thereby achieving control of the output volume of the pump 10.
  • Both the input check valve 24 and the output check valve 25 of the pump 10 of the present invention can employ a floating valve and a floating valve of a flow guiding support plate structure.
  • the input check valve 24 includes a first flow guiding support plate 241 and a first valve piece 242, and the first valve piece 242 is attached below the first flow guiding support plate 241.
  • the first flow guiding support plate 241 may be a perforated mesh plate, a tower spring or a coil spring.
  • the output check valve 25 includes a second flow guiding support plate 251 and a second valve piece 252, and the second valve piece 252 is attached above the second flow guiding support plate 251.
  • the second flow guiding support plate 251 may be a porous mesh plate, a tower spring or a coil spring.
  • the pump 10 of the present invention When the pump 10 of the present invention is applied to an insulin pump, by controlling the voltage and frequency applied to the actuator 17 on the pump 10, the amount of insulin output by the insulin pump can be accurately controlled to ensure accurate injection.
  • the present invention also provides an output of the pump based on the control system of the output liquid amount of the pump described above.
  • the method of controlling the amount of liquid See Figure 14 for specific steps.
  • Step S141 The data processor initializes the internal program, detects whether an end command is received, and if so, ends the operation, and if no, proceeds to step S142.
  • Step S142 The data processor acquires a current output pressure value of the pump through the pressure sensor.
  • Step S 143 the data processor determines whether the adjustment is based on the output pressure value, and if so, further determines whether the required pressure value is reached, if yes, stops the operation, and returns to step S141; if not, proceeds to step S146, if no, Go to step S144.
  • Step S144 the data processor determines whether to adjust according to the output medium flow rate, and if so, further determines whether the required flow rate value is reached, if yes, keeps the action, and returns to step S141; if not, goes to step S146, if no, goes to Step S145.
  • Step S145 The data processor determines whether the adjustment is performed according to the output medium flow, and if yes, further determines whether the required flow value is reached, and if yes, ends the operation; if not, proceeds to step S146, and if not, ends the operation.
  • Step S146 The data processor determines whether the voltage value to be adjusted is still the frequency.
  • Step S147 The data processor looks up the table to obtain the amount of voltage or frequency that needs to be corrected.
  • Step S148 the data processor adjusts the high voltage generator or the distributor.

Description

一种泵的输出液量的控制系统及控制方法 技术领域
本发明涉及微型泵领域, 特别是涉及一种泵的输出液量的控制系 统及控制方法。 背景技术
参阅图 1 , 为现有的压电陶瓷泵的结构示意图, 压电陶瓷泵 10包 括压电陶瓷片 11、 可变空间腔体 12、 输入通道 13、 输入单向阀 14、 输出单向阀 15、 及输出通道 16。 压电陶瓷片 11为多层圆片形, 其基 材可为铜或不锈钢等材料, 基材上覆有一层压电陶瓷材料, 压电陶瓷 上面又覆有一层导电材料, 如银等。 铜材料和银材料分别接交流电源 的两极。 通电后, 由于压电陶瓷材料在电场中伸缩的特性, 压电陶瓷 片 11将伴随交变电压交替进行向上凸起和向下凹入动作。
见图 2, 当压电陶瓷片 11向上凸起时, 由压电陶瓷片 11与压电 陶瓷泵 10壳体构成的可变空间腔体 12的空间变大, 使可变空间腔体 12内的压力变小, 输入通道 13的压力大于可变空间腔体 12的压力, 输入单向阀 14打开,使液体从输入通道 13 , 经输入单向阀 14进入可 变空间腔体 12。同时当可变空间腔体 12的压力小于输出通道 16的压 力时, 关闭输出单向阀 15 , 使液体不会从输出通道 16倒流入可变空 间腔体 12。
见图 3 , 当压电陶瓷片 11向下凹入时, 可变空间腔体 12的空间 变小, 使可变空间腔体 12内的压力变大, 当可变空间腔体 12的压力 大于输出通道 16的压力时, 输出单向阀 15打开, 液体从可变空间腔 体 12, 经输出单向阀 15、 到达输出通道 16。 同时, 当可变空间腔体 12的压力大于输入通道 13的压力时,关闭输入单向阀 14使液体不会 倒流。
通过控制施加在压电陶瓷片 11 两极的电压值和变换频率以及工 作时长, 将控制压电陶瓷片 11 的振动幅度和振动频率及时长, 进而 能控制压电陶瓷泵 10输出液量。
由于交流电源的输出电压值和交变频率都是预先设定的, 而压电 陶瓷泵 10输出液量受输入通道 13入口压力、输出通道 16出口压力、 压电陶瓷片 11 变换效率等诸多方面的影响, 仅凭预先设定的输出压 力值和交变频率, 难以对压电陶瓷泵 10输出液量进行精确控制, 也 很难对压电陶瓷泵 10的输出压力进行精确控制。 发明内容
本发明所要解决的技术问题是提供一种泵的输出液量的控制系 统, 该系统能对泵的输出液量或输出压力进行精确控制。
本发明另一目的是提供一种泵的输出液量的控制方法, 该方法可 对泵的输出液量或输出压力进行精确控制。
本发明介绍了一种泵的输出液量的控制方法, 包括: 检测所述泵 的输出压力值; 依据所述输出压力值控制所述泵的致动装置动作, 进 而控制所述泵的输出液量、 输出液流速或输出压力。
优选的, 依据所述输出压力值控制所述泵的致动装置动作具体 为: 计算所述压力值对应的输出液量; 判断上述输出液量是否达到预 设值, 如否, 调整输出到所述泵上致动装置上的电压值, 控制所述致 动装置动作。
优选的, 依据所述输出压力值控制所述泵的致动装置动作具体 为: 计算所述压力值对应的输出液量; 判断上述输出液量是否达到预 设值, 如否, 调整输出到所述泵上致动装置上的频率或动作次数, 控 制所述致动装置动作。
本发明还公开一种泵的输出液量的控制系统, 包括致动装置、 可 变空间腔体、 输入通道及输出通道, 还包括: 检测所述泵的输出压力 的压力传感器, 所述压力传感器传送输出压力值到信号控制装置, 所 述信号控制装置依据所述输出压力值控制所述致动装置动作。
优选的, 所述压力传感器设置在所述输出通道内。
优选的, 还包括与所述输出通道连通的保护腔体, 所述压力传感 器设置在所述保护腔体内。
优选的, 所述保护腔体内设一隔膜, 将所述保护腔体隔离成封闭 空间。
优选的, 所述信号控制装置包括数据处理器、 高压发生器、 和高 压分配器, 所述数据处理器依据输出压力值控制所述高压发生器生成 的电压值, 所述高压发生器将该电压值传送到所述高压分配器, 所述 高压分配器将该电压转换后输出到所述致动装置。
优选的, 所述信号控制装置包括数据处理器、 高压发生器、 和高 压分配器, 所述高压分配器接收所述高压发生器传送的电压, 所述数 据处理器依据输出压力值控制所述高压分配器分配给所述致动装置 的正负电压及转换次数。
优选的, 所述信号控制装置包括数据处理器、 高压发生器、 和高 压分配器, 所述数据处理器依据输出压力值控制所述高压发生器生成 的电压, 所述高压发生器将生成电压传送到所述高压分配器, 所述数 据处理器控制所述高压分配器分配给所述致动装置的电压、 频率与 / 或时长。
优选的, 在所述输入通道上设置一输入单向阀。
优选的, 所述输入单向阀包括第一阀片和第一导流支撑板, 所述 第一阀片附着在所述第一导流支撑板的进液侧。
优选的, 所述第一导流支撑板为多孔网板、 塔形弹簧或盘簧。 优选的, 在所述输出通道上设置一输出单向阀。
优选的, 所述输出单向阀包括第二阀片和第二导流支撑板, 所述 第二阀片附着在所述第二导流支撑板的进液侧。
优选的, 所述第二导流支撑板为多孔网板、 塔形弹簧或盘簧。 优选的, 所述致动装置为压电陶瓷片。
优选的, 所述隔膜为弹性隔膜。
优选的, 所述致动装置为磁致伸缩设备, 所述磁致伸缩设备包括 磁致伸缩材料和线圏, 所述线圏缠绕在所述磁致伸缩材料外周, 所述 磁致伸缩材料下方固定有薄片。 优选的, 所述致动装置为带凸轮电机, 所述带凸轮电机包括凸轮 和电机, 所述凸轮连接所述电机的执行机构, 所述凸轮下方固定有薄 片。
优选的, 所述致动装置是电磁铁, 所述电磁铁包括电工软铁和线 圏, 所述线圏缠绕在所述电工软铁外周, 所述电工软铁下方固定有薄 片。
优选的, 所述泵用于胰岛素注射器。
本发明还公开一种泵的输出液量的控制系统, 包括致动装置、 可 变空间腔体、 输入通道及输出通道, 还包括: 检测所述泵输出液量的 流量传感器, 所述流量传感器传送输出液量值到信号控制装置, 所述 信号控制装置依据所述输出液量值控制所述致动装置动作。
本发明还公开一种泵的输出液量的控制系统, 包括致动装置、 可 变空间腔体、 输入通道及输出通道, 还包括: 检测所述泵输出液流速 的流速传感器, 所述流速传感器传送输出液流速值到信号控制装置, 所述信号控制装置依据所述输出液流速值控制所述致动装置动作。
本发明在泵的出液位置加设压力传感器, 该压力传感器检测泵的 输出压力, 并根据该输出压力值调节泵内致动装置动作, 进而控制泵 的输出液量, 实现对泵输出液量的精确控制。 附图说明
图 1 为现有的压电陶瓷泵的结构示意图;
图 2 为图 1所示压电陶瓷泵进液时工作过程示意图;
图 3为图 1所示压电陶瓷泵出液时工作过程示意图;
图 4为本发明泵输出液量和输出压力的对应曲线;
图 5为本发明第一实施例泵的输出液量的控制系统示意图; 图 6为本发明第二实施例泵的输出液量的控制系统示意图; 图 7为本发明第三实施例泵的输出液量的控制系统示意图; 图 8为本发明压力传感器设置位置示意图;
图 9为本发明压力传感器设置位置示意图; 图 10为本发明致动装置采用磁致伸缩设备的泵的结构示意图; 图 11为本发明致动装置采用电磁铁的泵的结构示意图; 图 12为本发明致动装置采用带凸轮电机的泵的结构示意图; 图 13 为本发明输入单向阀和输出单向阀采用浮动阀的泵的结构 示意图;
图 14为本发明泵的输出液量的控制方法流程图。 具体实施方式
为使本发明的上述目的、 特征和优点能够更加明显易懂, 下面结 合附图和具体实施方式对本发明作进一步详细的说明。
本发明在泵的出液位置加设压力传感器, 该压力传感器检测泵的 输出压力, 并根据该输出压力值调节泵内致动装置动作, 进而控制泵 的输出液量或输出压力, 实现对泵输出液量或输出压力的精确控制。
同理, 本发明也可在泵的出液位置加设流量传感器, 该流量传感 器检测泵的输出液量, 并根据该输出液量控制泵内致动装置动作, 进 而调节泵的输出液量, 实现对泵输出液量的精确控制。
本发明还可在泵的出液位置加设流速传感器, 该流速传感器检测 泵的输出液流速, 并根据该输出液流速值控制泵内致动装置动作, 进 而调节泵的输出液量, 实现对泵输出液量的精确控制。
当然, 本发明不仅适用于输出介质为液体的泵, 还适用于输出介 质为气体的泵。 本发明泵的输出液量的控制系统及控制方法, 可广泛 适用于胰岛素注射器等输液装置, 及各种气体输送装置。
参阅图 4, 为泵的输出压力与输出液量的关系图, 其横坐标为压 力值, 纵坐标为时间, 由图 4中曲线可知, 当加在压电陶瓷两端的电 压和频率不变时, 输出同等液量, 输出压力越大, 所需的时间越多。 本发明通过检测泵的输出压力值,依据该输出压力值调节施加到泵内 致动装置的电压, 改变致动装置的动作幅度, 实现对泵的输出液量的 精确控制。
参阅图 5 , 泵的输出液量控制系统包括泵 10、 压力传感器 30、 及 信号控制装置 60, 其中, 泵 10包括致动装置 17 , 信号控制装置 60 包括数据处理器 61、 高压发生器 62、 及高压分配器 63。
压力传感器 30设置在泵 10内出液位置, 可准确检测泵 10的输 出压力值。 输出压力为泵 10输出液体的压力, 或该输出液体的压力 经相应的传递、 变化后的压力。
压力传感器 30将检测到的压力值传送给数据处理器 61 , 数据处 理器 61依据该压力值计算高压发生器 62需生成的电压值, 并将该电 压值传送到高压发生器 62。 数据处理器 61可内置输出压力值与电压 值的对应关系表, 或输出压力和流量对照表, 依据该对应关系表, 数 据处理器 61可查找到与输出压力值对应的电压值。
高压发生器 62调整生成的电压值到要求的电压值, 将调整后的 电压传送到高压分配器 63。
高压分配器 63 将电压转换为单方向的脉动直流电压, 或双方向 的交流电压, 作用到泵 10的致动装置 17上, 改变致动装置 17的动 作频率, 进而改变泵 10 内出液压力, 出液压力决定泵的单次动作输 出液量, 因此可实现对输出液量的精确控制。
本发明通过检测泵 10的输出压力值,调节施加到泵 10的电压值, 控制泵 10的输出液量, 形成一个闭环的反馈控制系统。 该系统通过 不断的反馈调节, 实现对泵 10的输出液量或输出压力的精确控制。
本发明也可依据输出压力值调节高压分配器 63 的动作频率和时 长, 施加到致动装置 17 , 实现对泵 10输出液量的精确控制。 参阅图 6, 数据处理器 61接收到压力传感器 30传送的输出压力值, 依据该 输出压力值计算在此压力下需分配给致动装置 17 的动作次数, 该动 作次数可以用频率和时长的乘积来实现, 也可以先确定频率, 再计算 高压分配器的换向次数, 将换向次数作为分配给致动装置 17 的动作 次数, 完成对致动装置 17的控制, 以实现对输出液量的精确控制。
在泵 10 的工作过程中, 输出液体的压力可能会改变, 此时通过 压力传感器 30的实时检测, 数据处理器 61实时调整高压分配器 63 , 以达到对泵 10输出液量的精确控制。 本发明也可依据输出压力值同时调节高压发生器 62和高压分配 器 63 , 以实现对泵 10输出液量的精确控制。 参阅图 7 , 数据处理器 61接收到压力传感器 30传送的输出压力值, 依据该输出压力值计算 高压发生器 62需生成的电压值, 及高压分配器 63需分配给致动装置 17的频率, 以及动作时长或动作次数, 并将计算结果分别传送到高压 发生器 62和高压分配器 63。高压发生器 62将相应的电压传送给高压 分配器 63 , 高压分配器 63将该电压变换成所需的交变电压, 施加到 致动装置 17上, 并控制交变电压的时长或交变次数, 以实现对泵 10 的输出液量或输出压力的精确控制。
数据处理器 61依据检测的输出压力值同时调节高压发生器 62和 高压分配器 63 ,可根据需要合理调配高压发生器 62和高压分配器 63 , 使高压发生器 62和高压分配器 63协调达到最佳工作状态。
总之, 本发明数据处理器 61完全可依据输出压力值计算泵 10的 输出液量, 依据该输出液量调节高压发生器 62的输出电压, 或调节 高压分配器 63分配给致动装置 17的电压的交变状态, 或同时调节高 压发生器 62的输出电压和高压分配器 63分配给致动装置 17的电压 和交变状态, 实现对泵 10的输出液量的精确控制。
本发明泵 10还可以包括存储器, 存储器存储致动装置 17的输出 压力和流量对照表, 不同的泵 10, 其存储器存储的对照表也不相同, 对照表与泵 10——对应, 可同时消除致动装置 17的不一致性、 压力 传感器 30的不一致性、 同时也能消除泵 10在生产中产生的差异等等 不一致性造成的误差。 消除的方法是在该泵制造完成后用标准仪器对 泵进行标定,将实测的输出压力和流量对照表写入存储器中。 当泵 10 作为某设备中需要更换的部件时, 更换后的泵 10使用自己存储器中 自己的对照表, 因此仍能够精确进行流量或压力控制。
如果泵 10 所在的可更换部件需要单独记录其工作累计时间, 存 储器放在泵 10 内也可以提供累计数据的存放空间。 当然存储器可以 存放所有与泵 10有关的数据。
为能够更好的检测泵 10的输出压力值, 压力传感器 30可设置在 泵 10的输出通道上, 或与输出通道相连通的保护腔体内。
本发明的泵 10, 如其致动装置 17采用压电陶瓷片, 该泵可称为 压电陶瓷泵。
参阅图 8 , 压电陶瓷泵 20包括压电陶瓷片 21、 可变空间腔体 22、 输入通道 23、 输入单向阀 24、 输出单向阀 25、 输出通道 26, 压力传 感器 30和存储器 31。 压电陶瓷片 21紧密覆盖在可变空间腔体 22的 上方。 压电陶瓷片 21 将伴随交流电交替进行向上凸起和向下凹入动 作。 可变空间腔体 22为一相对较小的空间, 四周为压电陶瓷泵 10壳 体, 上方使用压电陶瓷片 21 密闭, 下方通过两个通道分别接通输入 单向阀 24和输出单向阀 25。 输入单向阀 24下方连接输入通道 23 , 输出单向阀 25下方连接输出通道 26。压力传感器 30设置在输出通道 26内。 当压电陶瓷泵 20开始工作, 推动液体经输出通道 26流出泵外, 液体流出时, 经过压力传感器 30, 压力传感器 30就可准确检测出液 体输出的压力, 作为压电陶瓷泵 20的输出压力值。 和压力传感器 30 一起放置在泵中的和存储器 31存放这个泵的输出压力和流量的对照 表。 才艮据对照表, 能够准确地知道在目前输出压力下, 泵的流量和流 速, 也就可以调整泵的工作参数达到要求的流量流速或工作压力。
参阅图 9, 在保护腔体 28上加设隔膜 281 , 将保护腔体 28隔离 成封闭空间, 防止液体腐蚀压力传感器 30和存储器 31 , 同时也能防 止液体接触压力传感器 30和存储器 31 以及它们的焊接材料遭到污 染。 此时隔膜 281应松弛到不产生附加变形力。
本发明致动装置 17也可采用磁致伸缩设备、 电磁铁、 带凸轮的 电机等。
参阅图 10 , 磁致伸缩设备 31包括磁致伸缩材料 311和线圏 312, 线圏 312缠绕在磁致伸缩材料 311的外周, 磁致伸缩材料 311下方固 定有薄片 313。 线圏 312接交流电源, 当线圏 312上电工作, 产生磁 场, 磁致伸缩材料 311因磁场作用上下伸缩运动, 带动薄片 313上下 动作, 从而改变可变空间腔体 22的体积。
参阅图 11 , 电磁铁 41 包括电工软铁 411和线圏 412, 此时上盖 可以是永磁铁。 线圏 412缠绕在电工软铁 411的四周, 电工软铁 411 下方固定有薄片 413。 线圏 412接交流电源, 当线圏 412上电工作, 产生磁场, 电工软铁 411在磁场作用下与永磁铁之间产生吸力和推力 而上下运动, 带动薄片 413上下动作, 从而改变可变空间腔体 22的 体积。
改变施加到线圏 412上的电压值或频率, 可改变电工软铁 411作 上下运动的幅度或频率, 进而改变泵 10 内液体输出的压力和速度, 实现对泵 10输出液量的控制。
参阅图 12, 带凸轮电机 51 包括电机 511和凸轮 512, 凸轮 512 下方固定有薄片 513。 电机 511接电源, 当电机 511上电工作, 使凸 轮 512上下运动, 带动薄片 513上下动作,从而改变可变空间腔体 22 的体积。
改变施加到电机 511上的电压值或电压频率, 可改变凸轮 512作 上下运动的力度或频率, 进而改变泵 10 内液体输出的压力和速度, 实现对泵 10输出液量的控制。
本发明泵 10的输入单向阀 24和输出单向阀 25均可采用一种浮 动阀片加导流支撑板结构的浮动式阀门。 参阅图 13 , 输入单向阀 24 包括第一导流支撑板 241和第一阀片 242, 第一阀片 242附着在第一 导流支撑板 241的下方。 第一导流支撑板 241可以是多孔网板、 塔形 弹簧或盘簧。
输出单向阀 25包括第二导流支撑板 251和第二阀片 252,第二阀 片 252附着在第二导流支撑板 251的上方。 第二导流支撑板 251可以 是多孔网板、 塔形弹簧或盘簧。
本发明泵 10在应用到胰岛素泵上时, 通过控制施加到泵 10上致 动装置 17 的电压和频率, 可精确控制胰岛素泵输出的胰岛素量, 确 保注射的准确。
基于上述泵的输出液量的控制系统, 本发明还提供一种泵的输出 液量的控制方法。 具体步骤参阅图 14。
步骤 S141、数据处理器对内部程序进行初始化,检测是否接收到 结束命令, 如是, 结束操作, 如否, 转到步骤 S142。
步骤 S142、 数据处理器通过压力传感器获取泵的当前输出压力 值。
步骤 S 143、数据处理器判断是否依据输出压力值进行调节,如是, 进一步判断是否达到要求的压力值, 如达到, 停止动作, 返回步骤 S141 ; 如没达到, 转到步骤 S146, 如否, 转到步骤 S144。
步骤 S144、数据处理器判断是否依据输出介质流速进行调节, 如 是, 进一步判断是否达到要求的流速值, 如达到, 保持动作, 返回步 骤 S141 ; 如没达到, 转到步骤 S146, 如否, 转到步骤 S145。
步骤 S145、数据处理器判断是否依据输出介质流量进行调节, 如 是, 进一步判断是否达到要求的流量值, 如达到, 结束操作; 如没达 到, 转到步骤 S146, 如否, 结束操作。
步骤 S146、 数据处理器判断需要调节的电压值还是频率。
步骤 S147、 数据处理器查表得到需要修正的电压量或频率量。 步骤 S148、 数据处理器调节高压发生器或分配器。
以上对本发明所提供的一种泵的输出液量的控制系统和控制方 方式进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法 及其核心思想; 同时, 对于本领域的一般技术人员, 依据本发明的思 想, 在具体实施方式及应用范围上均会有改变之处, 综上所述, 本说 明书内容不应理解为对本发明的限制。

Claims

权 利 要 求 书
1、 一种泵的输出液量的控制方法, 其特征在于, 包括: 检测所述泵的输出压力值;
依据所述输出压力值控制所述泵的致动装置动作, 进而控制所述 泵的输出液量、 输出液流速或输出压力。
2、 如权利要求 1 所述的方法, 其特征在于, 依据所述输出压力 值控制所述泵的致动装置动作具体为:
计算所述压力值对应的输出液量;
判断上述输出液量是否达到预设值, 如否, 调整输出到所述泵上 致动装置上的电压值, 控制所述致动装置动作。
3、 如权利要求 1 所述的方法, 其特征在于, 依据所述输出压力 值控制所述泵的致动装置动作具体为:
计算所述压力值对应的输出液量;
判断上述输出液量是否达到预设值, 如否, 调整输出到所述泵上 致动装置上的频率或动作次数, 控制所述致动装置动作。
4、 一种泵的输出液量的控制系统, 包括致动装置、 可变空间腔 体、 输入通道及输出通道, 其特征在于, 还包括: 检测所述泵的输出 压力的压力传感器, 所述压力传感器传送输出压力值到信号控制装 置, 所述信号控制装置依据所述输出压力值控制所述致动装置动作。
5、 如权利要求 4 所述的泵, 其特征在于, 所述压力传感器设置 在所述输出通道内。
6、 如权利要求 4 所述的泵, 其特征在于, 还包括与所述输出通 道连通的保护腔体, 所述压力传感器设置在所述保护腔体内。
7、 如权利要求 6 所述的泵, 其特征在于, 所述保护腔体内设一 隔膜, 将所述保护腔体隔离成封闭空间。
8、 如权利要求 4 所述的泵, 其特征在于, 所述信号控制装置包 括数据处理器、 高压发生器、 和高压分配器, 所述数据处理器依据输 出压力值控制所述高压发生器生成的电压值, 所述高压发生器将该电 压值传送到所述高压分配器, 所述高压分配器将该电压转换后输出到 所述致动装置。
9、 如权利要求 4 所述的泵, 其特征在于, 所述信号控制装置包 括数据处理器、 高压发生器、 和高压分配器, 所述高压分配器接收所 述高压发生器传送的电压, 所述数据处理器依据输出压力值控制所述 高压分配器分配给所述致动装置的正负电压及转换次数。
10、 如权利要求 4所述的泵, 其特征在于, 所述信号控制装置包 括数据处理器、 高压发生器、 和高压分配器, 所述数据处理器依据输 出压力值控制所述高压发生器生成的电压, 所述高压发生器将生成电 压传送到所述高压分配器, 所述数据处理器控制所述高压分配器分配 给所述致动装置的电压、 频率与 /或时长。
11、 如权利要求 4所述的泵, 其特征在于, 在所述输入通道上设 置一输入单向阀。
12、 如权利要求 11 所述的泵, 其特征在于, 所述输入单向阀包 括第一阀片和第一导流支撑板, 所述第一阀片附着在所述第一导流支 撑板的进液侧。
13、 如权利要求 12 所述的泵, 其特征在于, 所述第一导流支撑 板为多孔网板、 塔形弹簧或盘簧。
14、 如权利要求 4所述的泵, 其特征在于, 在所述输出通道上设 置一输出单向阀。
15、 如权利要求 14 所述的泵, 其特征在于, 所述输出单向阀包 括第二阀片和第二导流支撑板, 所述第二阀片附着在所述第二导流支 撑板的进液侧。
16、 如权利要求 15 所述的泵, 其特征在于, 所述第二导流支撑 板为多孔网板、 塔形弹簧或盘簧。
17、 如权利要求 4至 16任一项所述的泵, 其特征在于, 所述致 动装置为压电陶瓷片。
18、 如权利要求 4至 16任一项所述的泵, 其特征在于, 所述隔 膜为弹性隔膜。
19、 如权利要求 4至 16任一项所述的泵, 其特征在于, 所述致 动装置为磁致伸缩设备, 所述磁致伸缩设备包括磁致伸缩材料和线 圏, 所述线圏缠绕在所述磁致伸缩材料外周, 所述磁致伸缩材料下方 固定有薄片。
20、 如权利要求 4至 16任一项所述的泵, 其特征在于, 所述致 动装置为带凸轮电机, 所述带凸轮电机包括凸轮和电机, 所述凸轮连 接所述电机的执行机构, 所述凸轮下方固定有薄片。
21、 如权利要求 4至 16任一项所述的泵, 其特征在于, 所述致 动装置是电磁铁, 所述电磁铁包括电工软铁和线圏, 所述线圏缠绕在 所述电工软铁外周, 所述电工软铁下方固定有薄片。
22、 如权利要求 4至 16任一项所述的泵, 其特征在于, 所述泵 用于胰岛素注射器。
23、 一种泵的输出液量的控制系统, 包括致动装置、 可变空间腔 体、 输入通道及输出通道, 其特征在于, 还包括: 检测所述泵输出液 量的流量传感器, 所述流量传感器传送输出液量值到信号控制装置, 所述信号控制装置依据所述输出液量值控制所述致动装置动作。
24、 一种泵的输出液量的控制系统, 包括致动装置、 可变空间腔 体、 输入通道及输出通道, 其特征在于, 还包括: 检测所述泵输出液 流速的流速传感器, 所述流速传感器传送输出液流速值到信号控制装 置, 所述信号控制装置依据所述输出液流速值控制所述致动装置动 作。
PCT/CN2009/072619 2008-07-23 2009-07-03 一种泵的输出液量的控制系统及控制方法 WO2010009649A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810041057.0 2008-07-23
CN200810041057A CN101634291A (zh) 2008-07-23 2008-07-23 一种泵的输出液量的控制系统及控制方法

Publications (1)

Publication Number Publication Date
WO2010009649A1 true WO2010009649A1 (zh) 2010-01-28

Family

ID=41570015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072619 WO2010009649A1 (zh) 2008-07-23 2009-07-03 一种泵的输出液量的控制系统及控制方法

Country Status (2)

Country Link
CN (1) CN101634291A (zh)
WO (1) WO2010009649A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102797667A (zh) * 2012-09-01 2012-11-28 安徽理工大学 一种基于超磁致伸缩薄膜驱动器的微型泵
CN109939292A (zh) * 2019-04-04 2019-06-28 河南驼人医疗器械集团有限公司 一种自动调节出液量的输注泵
CN109939292B (zh) * 2019-04-04 2024-05-10 河南驼人医疗器械集团有限公司 一种自动调节出液量的输注泵

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998486B2 (ja) * 2012-01-16 2016-09-28 オムロンヘルスケア株式会社 血圧測定装置、および、血圧測定装置の制御方法
CN102536755B (zh) * 2012-03-01 2015-10-28 苏州大学 一种闭环压电薄膜泵及流量控制方法
CN105026760A (zh) * 2013-02-27 2015-11-04 株式会社松井制作所 液体供给装置
CN103599578B (zh) * 2013-12-03 2015-08-05 吉林大学 一种便携式压电驱动胰岛素泵
CN104014045A (zh) * 2014-05-28 2014-09-03 苏州瓦屋物联网科技有限公司 带主机控制与压力检测的点滴监控装置
CN104014048A (zh) * 2014-06-15 2014-09-03 苏州瓦屋物联网科技有限公司 基于振动传感检测及流速显示的点滴注射系统
CN104014013A (zh) * 2014-06-15 2014-09-03 苏州瓦屋物联网科技有限公司 基于压力检测与流速提示的点滴挤压注射装置
DE102015208680A1 (de) * 2015-05-11 2016-11-17 Continental Automotive Gmbh Verfahren zum Betrieb des Fluidfördersystems
CN105587650B (zh) * 2015-12-22 2018-12-25 佛山市威灵洗涤电机制造有限公司 增压泵的输出电压控制方法及装置
CN106438303B (zh) * 2016-10-25 2018-08-17 吉林大学 一种压电泵输出压强恒压控制系统及恒压控制方法
CN109882381B (zh) * 2019-03-01 2020-08-18 浙江师范大学 一种双振子驱动的自激泵
CN110439789B (zh) * 2019-07-19 2021-03-23 常州工学院 单腔轴流式有阀压电泵及驱动方法
CN110594138A (zh) * 2019-10-28 2019-12-20 南京航空航天大学 一种夹心式无阀压电泵及其工作方法
WO2022170956A1 (zh) * 2021-02-09 2022-08-18 杭州堃博生物科技有限公司 注射器的推柄扭矩调整装置、方法及注射泵
CN114949430B (zh) * 2022-06-20 2023-06-09 安徽通灵仿生科技有限公司 一种医用输液泵的控制方法、装置及冲洗系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1051073A (zh) * 1989-10-17 1991-05-01 精工爱普生株式会社 微电化泵
US5542821A (en) * 1995-06-28 1996-08-06 Basf Corporation Plate-type diaphragm pump and method of use
JPH10220357A (ja) * 1997-02-10 1998-08-18 Kasei Optonix Co Ltd 圧電ポンプ
US6283717B1 (en) * 1997-10-17 2001-09-04 Tacmina Corporation Control circuit of a solenoid actuated pump to be powered by any variable voltage between 90 and 264 volts
CN1467376A (zh) * 2002-06-03 2004-01-14 ������������ʽ����
CN1467375A (zh) * 2002-06-03 2004-01-14 精工爱普生株式会社
CN1548737A (zh) * 2003-05-06 2004-11-24 勤 王 具有双向过压保护功能的微量薄膜泵及其应用
CN1614232A (zh) * 2004-12-03 2005-05-11 贵州大学 数字式变量泵
US7312554B2 (en) * 2004-04-02 2007-12-25 Adaptivenergy, Llc Piezoelectric devices and methods and circuits for driving same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1051073A (zh) * 1989-10-17 1991-05-01 精工爱普生株式会社 微电化泵
US5542821A (en) * 1995-06-28 1996-08-06 Basf Corporation Plate-type diaphragm pump and method of use
JPH10220357A (ja) * 1997-02-10 1998-08-18 Kasei Optonix Co Ltd 圧電ポンプ
US6283717B1 (en) * 1997-10-17 2001-09-04 Tacmina Corporation Control circuit of a solenoid actuated pump to be powered by any variable voltage between 90 and 264 volts
CN1467376A (zh) * 2002-06-03 2004-01-14 ������������ʽ����
CN1467375A (zh) * 2002-06-03 2004-01-14 精工爱普生株式会社
CN1548737A (zh) * 2003-05-06 2004-11-24 勤 王 具有双向过压保护功能的微量薄膜泵及其应用
US7312554B2 (en) * 2004-04-02 2007-12-25 Adaptivenergy, Llc Piezoelectric devices and methods and circuits for driving same
CN1614232A (zh) * 2004-12-03 2005-05-11 贵州大学 数字式变量泵

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102797667A (zh) * 2012-09-01 2012-11-28 安徽理工大学 一种基于超磁致伸缩薄膜驱动器的微型泵
CN109939292A (zh) * 2019-04-04 2019-06-28 河南驼人医疗器械集团有限公司 一种自动调节出液量的输注泵
CN109939292B (zh) * 2019-04-04 2024-05-10 河南驼人医疗器械集团有限公司 一种自动调节出液量的输注泵

Also Published As

Publication number Publication date
CN101634291A (zh) 2010-01-27

Similar Documents

Publication Publication Date Title
WO2010009649A1 (zh) 一种泵的输出液量的控制系统及控制方法
TW520414B (en) Method and apparatus for controlling a pump
US7520487B2 (en) Valve arrangement with piezoelectric control
JP2019518501A5 (zh)
JP5652551B2 (ja) 流体制御装置
CN103899518A (zh) 基于压电陶瓷驱动的数字液压泵
EP2888479A2 (en) Systems and methods for supplying reduced pressure using a disc pump with electrostatic actuation
WO2006120881A1 (ja) 薬液供給システム及び薬液供給ポンプ
EP3167915B1 (en) Aspirator and pressurizer
CN104373327A (zh) 一种具有混合式电磁力弹簧的压电泵
JP4419790B2 (ja) 圧電ダイヤフラムポンプ
EP2581799A1 (en) Pressure-reducing valve with injector and fuel cell system including pressure-reducing valve
JPWO2020066440A1 (ja) 液体塗布装置
TW201221768A (en) Contactless fluid pumping method and apparatus
AU757146B2 (en) Compressor drive
JP3951603B2 (ja) ポンプ用逆止弁及びこれを使用したポンプ
CN108223339A (zh) 腔室泵和用于运行腔室泵的方法
US20090281494A1 (en) Heat Sterilizable Ambulatory Infusion Devices
JP2004285883A (ja) ポンプ装置
CN203925952U (zh) 闭环压电薄膜泵
CN110337542A (zh) 流体控制装置
CN204200533U (zh) 一种具有混合式电磁力弹簧的压电泵
WO2009134189A1 (en) A pumping system
US20060200032A1 (en) Linear oscillation pressurization type electronic sphygmomanometer
CN104781555A (zh) 流体泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09799964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09799964

Country of ref document: EP

Kind code of ref document: A1