WO2010009640A1 - 多输入多输出系统中选取预编码矩阵的方法、设备和系统 - Google Patents

多输入多输出系统中选取预编码矩阵的方法、设备和系统 Download PDF

Info

Publication number
WO2010009640A1
WO2010009640A1 PCT/CN2009/071763 CN2009071763W WO2010009640A1 WO 2010009640 A1 WO2010009640 A1 WO 2010009640A1 CN 2009071763 W CN2009071763 W CN 2009071763W WO 2010009640 A1 WO2010009640 A1 WO 2010009640A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
feedback
selecting
expected
matrix
Prior art date
Application number
PCT/CN2009/071763
Other languages
English (en)
French (fr)
Inventor
魏璟鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010009640A1 publication Critical patent/WO2010009640A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, device and system for selecting a precoding matrix in a multiple input multiple output system.
  • the pre-coding method can effectively improve system capacity, reduce interference, and improve performance. It is an important multi-antenna technology. Assuming that the MIMO system is configured with N transmit antennas and receive antennas, and the data stream X to be transmitted has a device ⁇ N T ), the so-called precoding is that the transmitter uses a precoding matrix W to weight X and then transmit it. And W is fed back to the transmitting end by the receiving end. In order to ensure the transmission quality of the system, the selection of the precoding matrix at the receiving end becomes an important issue in practical applications.
  • the selection of the precoding matrix can be divided into the selection of the precoding matrix in the single carrier system and the selection of the precoding matrix in the multicarrier system.
  • the selection criteria for the singular value decomposition precoding matrix based on the channel transmission matrix are as follows:
  • W. PT denotes a feedback precoding matrix (optimal precoding matrix)
  • P denotes a precoding matrix in the codebook set
  • denotes an expected precoding matrix (ideal precoding matrix)
  • d cdl (V, ⁇ ) M T - ⁇ VV
  • F is the square of the Chordal distance between the matrices P and V, representing the precoding matrix P that minimizes the value of ⁇ .
  • the ⁇ + 1 pre-coding matrix at between subcarriers and subcarrier Nos nK + are equal to the pre-coding matrix at the sub-carrier No. 1, and the first " ⁇ + The precoding matrix at subcarrier No. 1 is selected according to the selection criterion of the single carrier precoding matrix, so that the selected precoding matrix can not reflect the channel characteristics of this subcarrier well, resulting in unsatisfactory system performance. .
  • Embodiments of the present invention provide a method, device, and system for selecting a precoding matrix in a multiple input multiple output system.
  • the technical solution is as follows:
  • An embodiment of the present invention provides a method for selecting a precoding matrix in a multiple input multiple output system, where the method includes: calculating an expected precoding matrix;
  • An embodiment of the present invention further provides an apparatus for selecting a precoding matrix, where the device includes:
  • a calculation module configured to calculate an expected precoding matrix
  • a selection module configured to select a precoding matrix with a minimum Euclide distance of an expected precoding matrix calculated by the calculation module, and use the precoding matrix as a feedback precoding matrix of the multiple input multiple output system;
  • the embodiment of the invention further provides a system for selecting a precoding matrix, the system comprising:
  • a receiving end device configured to calculate an expected precoding matrix, and select a precoding matrix having a smallest Euclidean distance from the expected precoding matrix, using the precoding matrix as a feedback precoding matrix, and feeding back Feedback precoding matrix;
  • the transmitting end device is configured to pre-code the transmitting data according to the feedback precoding matrix fed back by the receiving end device.
  • the system can be selected in a large number of cases.
  • Feedback precoding matrix such that the size of the chord distance between the precoding matrix in the codebook set and the expected precoding matrix is selected
  • the problem of selecting the feedback precoding matrix when the number of transmitted data streams is equal to the number of transmitting antennas improves the system performance.
  • FIG. 1 is a structural diagram of a MIMO system when a precoding matrix is selected according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for selecting a precoding matrix in a multiple input multiple output system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of selecting a precoding matrix in a multi-carrier multiple input multiple output system according to another embodiment of the present invention. Flow chart of the method;
  • FIG. 4 is a flowchart of a method for selecting a precoding matrix in another multi-carrier multi-input multiple-output system according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an apparatus for selecting a precoding matrix according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another apparatus for selecting a precoding matrix according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a system for selecting a precoding matrix according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for selecting a precoding matrix in a multiple input multiple output system according to an embodiment of the present invention. detailed description
  • the receiving end when the receiving end selects the precoding matrix in the codebook set based on the channel transmission matrix, the general structure of the MIMO system precoding is: the receiving end first estimates the channel transmission matrix H, and then according to The precoding matrix selection criterion is used to select an appropriate precoding matrix 1 ⁇ , and the precoding matrix is fed back to the transmitting end through a feedback channel (Feedback Channel), and the transmitting end uses the precoding matrix pair to The data is pre-coded.
  • the receiving end is an MS (Mobile Station) and the transmitting end is a BS (Base Station).
  • the feedback precoding matrix is selected from a given set (codebook set), and the set is known to both the sender and the receiver, so that only the number of the precoding matrix in the set needs to be fed back.
  • the selection of the codebook set depends on ⁇ and ⁇ ⁇ and the number of bits J of the feedback.
  • the ⁇ , ⁇ ⁇ ) indicates that the transmitted data stream is a ⁇ ,, the transmitting antenna is a ⁇ road, and the codebook containing 2 £ precoding matrices In the feedback, only the number of the precoding matrix W in the codebook set needs to be fed back, that is, only one bit needs to be fed back.
  • one precoding matrix can be used per subcarrier, but the number of bits that need feedback will It is very large, and the uplink feedback bandwidth and rate are both limited. Therefore, in order to reduce the total number of feedback bits, only the precoding matrix at a part of the subcarriers can be fed back, and then each subcarrier can be obtained by a certain method (for example, interpolation). The precoding matrix at the place.
  • the precoding matrix used by the adjacent 1 ⁇ subcarriers is the same, the parameter IN) is the update step size of the precoding matrix;
  • the precoding matrix 1 ⁇ " on the subcarrier No. 1 does not need to be searched in the entire codebook set ⁇ , only in the set.: ⁇ ( ⁇ , ⁇ ) ⁇
  • the specific process of selecting the feedback precoding matrix in the multi-carrier system is as follows:
  • the precoding matrix W is still used as 1 ⁇ : 1 ⁇ : ⁇ ..., ⁇ );
  • the feedback precoding matrix is selected according to the Euclidean distance between the precoding matrix in the codebook set and the expected precoding matrix, which may be in any case. Feedback precoding matrices that reflect channel characteristics can be selected to improve system performance.
  • An embodiment of the present invention provides a method for selecting a precoding matrix in a multiple input multiple output system. As shown in FIG. 8, the method includes:
  • the feedback precoding matrix is selected according to the Euclidean distance between the precoding matrix in the codebook set and the expected precoding matrix, which may be in any case.
  • Feedback precoding matrices that reflect channel characteristics can be selected to improve system performance.
  • the feedback precoding matrix of the single carrier system is selected as an example.
  • the feedback precoding matrix of the single carrier system is selected as an example.
  • after calculating the expected precoding matrix according to the European standard between the precoding matrix in the codebook set and the expected precoding matrix. Jared distance The size is used to select a feedback precoding matrix.
  • an embodiment of the present invention provides a method for selecting a precoding matrix in a multiple input multiple output system, which specifically includes:
  • the pre-coded actual transmit vector is , z is related to the precoding matrix W as shown in ( 2 ):
  • r is the receiving vector
  • H U ⁇ r , which is the transmission coefficient of the channel between the first transmitting antenna and the first receiving antenna, which can be obtained by channel estimation
  • n is a noise vector independent of components, receiving signal and noise The relationship is independent, that is, ⁇ 111 ⁇ is satisfied. 1
  • E(nx H ) o
  • the expected precoding matrix w is chosen to be ⁇ .
  • the number of precoding matrices in the codebook set is determined, and the Euclid distance between each precoding matrix in the codebook set and the expected precoding matrix can be separately calculated, and then according to the calculated Euclid distance value.
  • the size of the precoding matrix with the smallest Euclid distance between the codebook set and the expected precoding matrix is selected as the feedback precoding matrix.
  • p denotes a precoding matrix in the codebook set
  • p , v ll
  • v _ p denotes a precoding matrix p in the codebook set and an expected precoding matrix The distance between Euclid.
  • the transmitting end After receiving the feedback precoding matrix, the transmitting end precodes the transmitting data according to the feedback precoding matrix.
  • the feedback precoding matrix of the MIMO system is selected according to the Euclidean distance between the precoding matrix and the expected precoding matrix in the codebook set, thereby avoiding the present
  • the problem that the number of transmitting data streams is equal to the number of transmitting antennas cannot select a feedback precoding matrix improves the performance of the system.
  • the precoding matrix selection of the multi-carrier system is taken as an example.
  • the feedback precoding matrix of each subcarrier of the K subcarriers is selected according to the method of selecting a feedback precoding matrix by using a single carrier, and then the number is used. The most feedback precoding matrix is used as a feedback precoding matrix for K subcarriers.
  • an embodiment of the present invention provides a method for selecting a precoding matrix in a multiple input multiple output system, which specifically includes:
  • the same precoding matrix selection method as in the single carrier system is adopted, and the codebook set is selected from the codebook set.
  • the feedback precoding matrix of each subcarrier is the same as that described in Embodiment 1, and details are not described herein again.
  • the precoding matrix in the codebook set has the first one, respectively ⁇ ⁇ , ⁇ ..., ⁇ for the subcarriers between the first and the first
  • the selected feedback precoding matrix of each subcarrier is respectively, A , A , ...
  • Pr ⁇ + ⁇ P represents the number of precoding matrices P selected from the subcarriers between the ⁇ +1th and the first subcarriers, that is, the feedback precoding matrix with P as a single carrier The number of subcarriers.
  • the transmitting end precodes the transmitting data according to the feedback precoding matrix.
  • the first step is to select a pre-coding matrix for the adjacent sub-carriers according to the method of selecting a pre-coding matrix for a single carrier, so that in any case, each sub-carrier can be selected.
  • Feedback precoding matrix in addition, the feedback precoding matrix that is selected most frequently is used as feedback of adjacent subcarriers
  • the precoding matrix, the selected feedback precoding matrix can take into account the channel characteristics of the subcarriers in the sense of probability, and improve system performance.
  • the feedback precoding matrix of the multicarrier system is selected from the perspective of the probability.
  • the feedback precoding matrix is selected from the perspective of the distance. That is, after calculating the expected precoding matrix of each of the K subcarriers, the precoding matrix with the smallest total distance from the K expected precoding matrices is selected as the feedback precoding matrix of the K subcarriers.
  • an embodiment of the present invention further provides a method for selecting a precoding matrix in another multiple input multiple output system, which specifically includes:
  • the number of precoding matrices in the codebook set is determined, and the Euclid distance of each precoding matrix in the codebook set and the K expected precoding matrices may be separately calculated, and then according to the calculated K.
  • the P norm of the distance vector formed by the Euclid distance values, and the precoding matrix which minimizes the P norm of the distance vector is selected as the feedback precoding of the subcarriers between the ⁇ 1 and the number according to the size of the P norm.
  • Matrix in this embodiment, the overall Euclid distance is measured in terms of the P norm of the vector.
  • the multi-carrier precoding matrix selection criterion in this embodiment is as shown in the function formula of (6):
  • the transmitting end precodes the transmitting data according to the feedback precoding matrix.
  • the first pre-coding matrix of each sub-carrier is calculated for the adjacent sub-carriers, and then the coding matrix with the smallest overall Euclid distance of the two expected pre-coding matrices is selected as the phase.
  • the feedback precoding matrix of the adjacent subcarriers, the selected feedback precoding matrix can balance the channel characteristics of the subcarriers, and improve system performance.
  • the feedback precoding matrix of the MIMO system is selected from the codebook set, and the set is known to both the transmitting end and the receiving end, so that the feedback pre-selection is selected. After coding matrix, only The number of the feedback precoding matrix in the codebook set needs to be fed back. This process is the same as the prior art, and is not described here.
  • the methods for selecting the feedback precoding matrix in the multi-carrier system provided by the foregoing Embodiment 2 and Embodiment 3 are applicable not only to the WiMAX system but also to other multi-carrier systems.
  • an embodiment of the present invention provides an apparatus for selecting a precoding matrix, where the apparatus includes: a calculating module 401, configured to calculate an expected precoding matrix;
  • the selecting module 402 is configured to select a precoding matrix with the smallest Euclidean distance of the expected precoding matrix calculated by the calculating module 401, and use the selected precoding matrix as a feedback precoding matrix of the multiple input multiple output system;
  • the feedback module 403 is configured to feedback the feedback precoding matrix selected by the module 402.
  • the foregoing calculating module 401 may be specifically configured to calculate an expected precoding matrix of each subcarrier for the K subcarriers between the ⁇ +1 to the ("+1"), and obtain K expected precoding matrices;
  • the foregoing selecting module 402 may specifically include:
  • the subcarrier selecting unit 4021 is configured to select a precoding matrix with the smallest Euclide distance of the expected precoding matrix of each subcarrier calculated by the calculation module 401 as a feedback precoding matrix of each subcarrier, and obtain K feedbacks. Precoding matrix
  • the selecting unit 4022 is configured to select, according to the K optimal precoding matrices selected by the subcarrier selecting unit 4021, the precoding matrix with the largest number, and select the selected feedback precoding matrix as the ⁇ + 1 to the first Feedback precoding matrix for subcarriers between numbers.
  • the feedback precoding matrix of the MIMO system may also be selected from the perspective of the overall Euclidean distance of the precoding matrix and the expected precoding matrix of each subcarrier.
  • this embodiment also provides Another device for selecting a precoding matrix
  • the module 402 of the device may further include:
  • the selecting unit 4023 is configured to select a precoding matrix with the smallest overall Euclidean distance of the K expected precoding matrices calculated by the calculating module 401, and use the precoding matrix as the " ⁇ + 1 to the number Feedback precoding matrix for each subcarrier.
  • the expected precoding matrix is calculated by the calculating module 401, and then the selecting module 402 selects a precoding matrix having the smallest Euclidean distance from the expected precoding matrix, and uses the precoding matrix as a feedback precoding matrix, so that In the single-carrier system, the problem that the feedback precoding matrix cannot be selected when the number of transmitted data streams is equal to the number of transmitting antennas can be avoided in the prior art; in addition, for the multi-carrier system, the feedback with the largest number of K feedback precoding matrices is used.
  • the precoding matrix acts as a feedback precoding matrix for adjacent ⁇ subcarriers, or will total with K expected precoding matrices
  • the precoding matrix with the smallest body distance is used as the feedback precoding matrix of the adjacent ⁇ subcarriers.
  • the selected feedback precoding matrix takes into account the channel characteristics of the K subcarriers and improves the system performance.
  • an embodiment of the present invention provides a system for selecting a precoding matrix, where the system includes:
  • the receiving end device 501 is configured to calculate an expected precoding matrix, and select a precoding matrix with a minimum Euclidean distance from the expected precoding matrix, use the selected precoding matrix as a feedback precoding matrix, and feed back the selection.
  • Feedback precoding matrix
  • the transmitting end device 502 is configured to pre-code the transmitting data according to the feedback precoding matrix fed back by the receiving end device 501.
  • the apparatus for selecting the precoding matrix provided by the foregoing Embodiment 4 can be used as the receiving end device 501 in this embodiment. Further, the receiving end device 501 specifically includes:
  • a calculation module 401 configured to calculate an expected precoding matrix
  • the selecting module 402 is configured to select a precoding matrix with the smallest Euclidean distance of the expected precoding matrix calculated by the calculating module 401, and use the selected precoding matrix as a feedback precoding matrix of the multiple input multiple output system;
  • the feedback module 403 is configured to feedback the feedback precoding matrix selected by the module 402.
  • the receiving end device 501 selects a feedback precoding matrix according to the Euclidean distance between the precoding matrix in the codebook set and the expected precoding matrix, and can select multiple inputs in any case.
  • the feedback precoding matrix of the output system is output, so that the transmitting end device 502 can precode the transmitting data according to the feedback precoding matrix, thereby improving the performance of the system.
  • the embodiments of the present invention can be implemented by software, and correspondingly, the software can be stored in a readable storage medium, such as a hard disk, a floppy disk or an optical disk of a computer.
  • a readable storage medium such as a hard disk, a floppy disk or an optical disk of a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Description

多输入多输出系统中选取预编码矩阵的方法、 设备和系统 本申请要求于 2008年 07月 21 日提交中国专利局、 申请号为 200810116917.2、 发明 名称为 "多输入多输出系统中选取预编码矩阵的方法、 设备和系统"的中国专利申请的优先 权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域, 特别涉及一种多输入多输出系统中选取预编码矩阵的方法、 设 备和系统。
书 背景技术
在闭环 MIMO ( Multiple-Input Multiple-Output , 多输入多输出) 系统中, 预编码 ( Preceding) 方法可以有效地提高系统容量, 降低干扰, 提高性能, 是一种很重要的多天 线技术。 假设 MIMO 系统配置有 N 个发射天线和 个接收天线, 要发射的数据流 X有 Μ具≤NT )路, 则所谓预编码就是发射端用一个预编码矩阵 W对 X进行加权后再发射出 去, 而 W是由接收端反馈给发射端的, 为了保证系统的发射质量, 接收端预编码矩阵的选 取就成为实际应用中一个很重要的问题。
现有技术中, 预编码矩阵的选取可以分为单载波系统中预编码矩阵的选取和多载波系 统中预编码矩阵的选取。 在单载波系统中, 基于信道传输矩阵的奇异值分解预编码矩阵的 选取准则如下:
WOPT = arg min d]dl (P, V)
其中, W。PT表示反馈预编码矩阵(最优的预编码矩阵), P表示码本集中的预编码矩阵, ^表示预期的预编码矩阵 (理想的预编码矩阵), dcdl (V, \) = MT - \\ V V ||F是矩阵 P,V之 间的弦 (Chordal) 距离的平方, 表示使^^ 的取值最小的预编码矩阵 P。
从上述可以看出单载波系统中预编码矩阵选取准则的核心是基于矩阵的弦距离定义代 价函数, 如 (1 ) 所示: 其中,
Figure imgf000003_0001
为 Euclid (欧几里德) 范数, 其定义为 ll A ^ = tr(Aff A)。 如果给定的码本集中的预编码矩 阵 P, 当 1^ 即发射数据流数目等于发射天线数目时是酉阵, 满足 PPff = I, 由 (1 ) 式可以看出, 在这种情况下上述选取准则对任意的预编码矩阵得到相同的代价函数值, 从 而无法选出反馈预编码矩阵。
在多载波系统中选取预编码矩阵时, 第 ^ + 1号和第 号子载波之间的 个子载 波处的预编码矩阵都等于第 nK + 1号子载波处的预编码矩阵,而第" ^ + 1号子载波处的预编 码矩阵是按照单载波预编码矩阵的选取准则来选取的, 这样使得所选取的预编码矩阵不能 很好的反映这 个子载波处的信道特性, 导致系统性能不理想。
综上所述, 在实现本发明的过程中, 发明人发现上述现有技术中至少存在以下缺点: 现有的预编码矩阵的选取方法在发射数据流数目等于发射天线数目时, 不能选出反馈 预编码矩阵。 发明内容
本发明实施例提供了一种多输入多输出系统中选取预编码矩阵的方法、 设备和系统。 所述技术方案如下:
本发明实施例提供了一种多输入多输出系统中选取预编码矩阵的方法, 所述方法包括: 计算预期的预编码矩阵;
选取与所述预期的预编码矩阵的欧几里德距离最小的预编码矩阵, 将所述预编码矩阵 作为多输入多输出系统的反馈预编码矩阵, 并反馈所述反馈矩阵。
本发明实施例还提供了一种选取预编码矩阵的设备, 所述设备包括:
计算模块, 用于计算预期的预编码矩阵;
选取模块, 用于选取与所述计算模块计算出的预期的预编码矩阵的欧几里德距离最小 的预编码矩阵, 将所述预编码矩阵作为多输入多输出系统的反馈预编码矩阵;
本发明实施例还提供了一种选取预编码矩阵的系统, 所述系统包括:
接收端设备, 用于计算预期的预编码矩阵, 并选取与所述预期的预编码矩阵的欧几里 德距离最小的预编码矩阵, 将所述预编码矩阵作为反馈预编码矩阵, 并反馈所述反馈预编 码矩阵;
发射端设备, 用于根据所述接收端设备反馈的反馈预编码矩阵对发射数据进行预编码。 在本发明实施例中, 通过根据码本集中的预编码矩阵与预期的预编码矩阵之间的欧几 里德距离的大小来选取反馈预编码矩阵, 可以在较多的情况下选出 ΜΙΜΟ系统的反馈预编 码矩阵, 使得通过码本集中的预编码矩阵与预期的预编码矩阵之间的弦距离的大小来选取 反馈预编码矩阵时, 在发射数据流数目等于发射天线数目的情况下选出反馈预编码矩阵的 问题, 提高了系统性能。 附图说明
图 1是本发明实施例提供的进行预编码矩阵选取时 MIMO系统的结构图;
图 2是本发明一个实施例提供的多输入多输出系统中选取预编码矩阵的方法的流程图; 图 3 是本发明另一个实施例提供的多载波时多输入多输出系统中选取预编码矩阵的方 法的流程图;
图 4 是本发明在一个实施例提供的另一种多载波时多输入多输出系统中选取预编码矩 阵的方法的流程图;
图 5是本发明在一个实施例提供的选取预编码矩阵的设备的结构示意图;
图 6是本发明在一个实施例提供的另一种选取预编码矩阵的设备的结构示意图; 图 7是本发明在一个实施例提供的选取预编码矩阵的系统的结构示意图;
图 8是本发明实施例提供的多输入多输出系统中选取预编码矩阵的方法的流程图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。
参见图 1, 为当接收端基于信道传输矩阵在码本集中进行预编码矩阵选取时, MIMO系 统的结构图, MIMO 系统预编码的一般过程为: 接收端先估计出信道传输矩阵 H, 再按照 预设的预编码矩阵选取准则选取适当的预编码矩阵1^, 并将该预编码矩阵作为反馈预编码 矩阵通过反馈信道 (Feedback Channel) 反馈给发射端, 发射端用此预编码矩阵对后面的发 射数据进行预编码, 特别地, 在 WIMAX (Worldwide interoperability for Microwave Access, 微波接入全球互通) 系统中, 接收端为 MS (Mobile Station, 移动台), 发射端为 BS (Base Station, 基站)。
反馈预编码矩阵是从一个给定的集合 (码本集) 中选取的, 发送端和接收端都已知这 个集合, 这样只需要反馈预编码矩阵在这个集合中的编号即可。 码本集的选取依赖于 ^和 Μτ以及反馈的比特数 J, 以^^,^ ^)表示发射数据流为 ΜΓ路, 发射天线为^路, 含 有 2£个预编码矩阵的码本集, 在反馈时中只需要反馈预编码矩阵 W在码本集中的编号, 即 只需要反馈 个比特即可。
在多载波系统中, 可以每个子载波采用一个预编码矩阵, 但这样需要反馈的比特数会 很大, 而且上行反馈带宽和速率都是受限的, 因此为了减少反馈总比特数, 可以只反馈部 分子载波处的预编码矩阵, 然后再通过一定的方法 (例如: 插值) 得到每个子载波处的预 编码矩阵。
假设多载波系统中子载波的个数为 W, 并且所有子载波共用相同的码本集
^ NT,MT,L), 为了减少反馈比特, 令相邻的 1 ^ 个子载波所用的预编码矩阵相同, 参数 IN)为预编码矩阵的更新步长; 在确定第 号子载波上的预编码矩阵 w 后, 第 + 1号子载波上的预编码矩阵1^^"不需要在整个码本集 Ω中搜索, 只需要在集合 。: ^(\¥,\¥^)<^}中搜索即可, 多载波系统中选取反馈预编码矩阵的具体过 程如下:
1) 对第 1号子载波, 用全部码本集 Ω搜索得到预编码矩阵 W 1 ;
2) 对第 ^:23,…^)号子载波, 仍使用预编码矩阵 W1^ :1^^:^…,^);
3)对第"^ + 1(" = 1)号子载波,在预编码矩阵1^^的邻域 2^中搜索预编码矩阵1^^", 邻域 2^由码本集 Ω中距离1^^最近的 2 个元素组成,其中参数?用于确定搜索集合大小。.
4 ) 对第 ^ + 2,^ + 3,''' + 1)^ 号子载波仍使用预编码矩阵 W^+i , 即 W„ . =W„^, 其中 = 2,3,..·,^ ;
对" = 2,3,'",N/ _1重复上述 3)4)。 本发明实施例在 MIMO系统中选取预编码矩阵时, 根据码本集中的预编码矩阵与预期 的预编码矩阵之间的欧几里德距离的大小来选取反馈预编码矩阵, 可以在任意情况下都能 选取出能反映信道特性的反馈预编码矩阵, 提高了系统性能。
本发明实施例提供了一种多输入多输出系统中选取预编码矩阵的方法, 如图 8 所示, 该方法包括:
801: 计算预期的预编码矩阵;
802: 选取与上述预期的预编码矩阵的欧几里德距离最小的预编码矩阵, 将该选取的预 编码矩阵作为多输入多输出系统的反馈预编码矩阵, 并反馈该选取的预编码矩阵。
本发明实施例在 MIMO系统中选取预编码矩阵时, 根据码本集中的预编码矩阵与预期 的预编码矩阵之间的欧几里德距离的大小来选取反馈预编码矩阵, 可以在任意情况下都能 选取出能反映信道特性的反馈预编码矩阵, 提高了系统性能。 实施例 1
本实施例以单载波系统的反馈预编码矩阵选取为例进行说明, 本实施例中在计算出预 期的预编码矩阵后, 根据码本集中的预编码矩阵与预期的预编码矩阵之间的欧几里德距离 的大小来选取反馈预编码矩阵, 参见图 2, 本发明实施例提供了一种多输入多输出系统中选 取预编码矩阵的方法, 具体包括:
101: 计算预期的预编码矩阵。
其中, 计算预期的预编码矩阵的过程具体如下:
参见图 1,假设 MIMO系统配置有^个发射天线和^个接收天线,要发射的数据流 X Mr(Mr≤Nr)路,其中 满足 £(Χχ = £ ,其中, 表示能量, Es
Figure imgf000007_0001
为能量, 取值为 1, 表示单位阵。经过预编码后的实际发射向量为
Figure imgf000007_0002
, z 与预编码矩阵 W的关系如 (2) 式所示:
z = Wx (2) 其中, ^^^']^^^ 接收信号的频域模型如 (3) 式所示:
r = Hz + n = HWx + n
(3)
其中, r = 为接收向量, H = U^ r, 为第 号发射天线和第 号接 收天线之间信道的传输系数, 可以通过信道估计得到, n为分量互相独立的噪声向量, 接收 信号和噪声之间是独立的, 即满足^111^^^。1, E(nxH) = o
= [w y]A^ 是酉阵, V = [V, 是奇异
Figure imgf000007_0003
值矩阵, 则预期的预编码矩阵 w选取为 ^。
102: 选取码本集中与预期的预编码矩阵的 Euclid距离最小的预编码矩阵, 将该预编码 矩阵作为多输入多输出系统的反馈预编码矩阵。
在实际应用中, 码本集中的预编码矩阵的个数是确定的, 可以分别计算码本集中的每 个预编码矩阵与预期的预编码矩阵的 Euclid距离, 然后再根据计算出的 Euclid距离值的大 小, 选取码本集中与预期的预编码矩阵的 Euclid距离最小的预编码矩阵, 将该预编码矩阵 作为反馈预编码矩阵。
W。w表示选取的反馈预编码矩阵, 综上所述, 本实施例中选取反馈预编码矩阵的准 则如 (4) 式所示的函数式所示:
WnpT = arg min d P, V)
Pen(NTMr,L) (4) 其中, p表示码本集中的预编码矩阵, pv)=ll v_p 表示码本集中的预编码矩阵 p 与预期的预编码矩阵 ^之间的 Euclid距离。
103: 向发射端反馈选出的反馈预编码矩阵。 104: 发射端收到反馈预编码矩阵后, 根据该反馈预编码矩阵对发射数据进行预编码。 综上可以看出, 本实施例提供的单载波系统的反馈预编码阵选取准则不仅适用于发射 数据流数目等于发射天线数的情况, 还可以应用于其它基于码本集的反馈预编码阵选取,即 码本集中的预编码矩阵 P可以不满足^ ff = 1。
本实施例在单载波系统中, 通过根据码本集中的预编码矩阵与预期的预编码矩阵之间 的欧几里德距离的大小来选取多输入多输出系统的反馈预编码矩阵, 避免了现有技术中发 射数据流数目等于发射天线数目时不能选出反馈预编码矩阵的问题, 提高了系统的性能。
实施例 2
本实施例以多载波系统的预编码矩阵选取为例进行说明, 本实施例中, 根据单载波选 取反馈预编码矩阵的方法选取 K个子载波中每个子载波的反馈预编码矩阵, 然后将个数最 多的反馈预编码矩阵作为 K个子载波的反馈预编码矩阵。 参见图 3, 本发明实施例提供了 一种多输入多输出系统中选取预编码矩阵的方法, 具体包括:
201: 对于多载波系统中的第" ^ + 1号到第 ( " ^,1,…) 号之间的 个子载波, 采用与单载波系统时相同的预编码矩阵选取方法, 从码本集选取每个子载波的反馈预编码 矩阵, 该过程与实施例 1中所述相同, 此处不再赘述。
202: 根据 201中选取的 个反馈预编码矩阵, 选取个数最多的反馈预编码矩阵, 将选 出的反馈预编码矩阵作为第 + 1号到第 ( n = 0^ - )号之间的 个子载波的反馈 预编码矩阵。
例如, 假设码本集中的预编码矩阵有第 个, 分别为 Ρι, Ρ …, Ρ 对于第 1号到 第 号之间的 子载波, 选取的每个子载波的反馈预编码矩阵分别为 , A , A , …,
Ρι, 如果 Ρι的个数最多, 则将 Ρι作为第 1号到第 号之间的 个子载波的反馈预编码矩阵。
综上所述, 本实施例中 (5 ) 式所示的函数式所示:
Figure imgf000008_0001
( 5 )
其中, Pr^+^^P)表示第 ^ + 1号到第 号子载波之间的 个子载波中, 选取到 的预编码矩阵 P的个数, 即以 P为单载波的反馈预编码矩阵的子载波的数目。
203: 向发射端反馈选出的反馈预编码矩阵。
204: 发射端收到反馈预编码矩阵后, 根据该反馈预编码矩阵对发射数据进行预编码。 本实施例在多载波系统时, 首先根据单载波时选取预编码矩阵的方法, 对相邻的 个 子载波先单独进行反馈预编码矩阵的选取, 这样在任何情况下都可以选出每个子载波的反 馈预编码矩阵; 另外, 将被选到次数最多的反馈预编码矩阵作为相邻的 个子载波的反馈 预编码矩阵, 这样选取的反馈预编码矩阵在概率意义上可以兼顾 个子载波的信道特性, 提高系统性能。
实施例 3
在多载波系统中, 上述实施例 2在选取出每个子载波的反馈预编码矩阵后, 从概率的 角度选取多载波系统的反馈预编码矩阵, 本实施例从距离的角度选取反馈预编码矩阵, 即 在计算出 K个子载波中每个子载波的预期的预编码矩阵后, 选取与 K个预期的预编码矩阵 总体距离最小的预编码矩阵作为 K个子载波的反馈预编码矩阵。 参见图 4, 本发明实施例 还提供了另一种多输入多输出系统中选取预编码矩阵的方法, 具体包括:
301: 对于多载波系统中的第" ^ + 1号到第 ( "二。,1,…) 号之间的 个子载波, 计算每个子载波的预期的预编码矩阵, 该过程与实施例 1中 101所述相同, 此处不再赘述。
302:选取码本集中与 301中计算出的 K个预编码矩阵的总体 Euclid距离最小的预编码 矩阵, 将该预编码矩阵作为第^ ^ + 1号到第 号之间的 个子载波的反馈预编码矩 阵。
在实际应用中, 码本集中的预编码矩阵的个数是确定的, 可以分别计算码本集中的每 个预编码矩阵与 K个预期的预编码矩阵的 Euclid距离,然后再根据计算出的 K个 Euclid距 离值构成的距离向量的 P范数, 根据 P范数的大小选取使距离向量的 P范数最小的预编码 矩阵作为第^ + l号到第 号之间的 个子载波的反馈预编码矩阵, 本实施例中, 以 向量的 P范数衡量总体 Euclid距离。
综上所述, 本实施例中多载波的预编码矩阵选取准则如 (6 ) 式所示的函数式所示:
Figure imgf000009_0001
( 6 ) ~ ~ ~
其中, d = [d(¥, ηΚ+ ), d(V, \nK+2 ), · · · , d(V, \(η+ι)κ )f , 为 K个 Eudid距离值构成的距离 向量, I H | 是向量的 P范数, P取值 1、 2或者∞, (')Τ表示转置。
303: 向发射端反馈选出的反馈预编码矩阵。
304: 发射端收到反馈预编码矩阵后, 根据该反馈预编码矩阵对发射数据进行预编码。 本实施例在多载波系统时, 首先对相邻的 个子载波计算每个子载波的预期的预编码 矩阵, 然后选取与计算出的 Κ个预期的预编码矩阵的总体 Euclid距离最小的编码矩阵作为 相邻的 个子载波的反馈预编码矩阵, 这样选取的反馈预编码矩阵能兼顾 个子载波的信 道特性, 提高系统性能。
进一步地, 在上述实施例 1、 实施例 2和实施例 3中, MIMO系统的反馈预编码矩阵是 从码本集中选取的, 发送端和接收端都已知这个集合, 这样在选出反馈预编码矩阵后, 只 需要反馈该反馈预编码矩阵在码本集中的编号即可, 此过程与现有技术相同, 此处不再赘 述。
另外, 上述实施例 2和实施例 3提供的在多载波系统中选取反馈预编码矩阵的方法, 不仅适用于 WiMAX系统, 还可用于其它多载波系统。
实施例 4
参见图 5, 本发明实施例提供了一种选取预编码矩阵的设备, 该设备包括: 计算模块 401, 用于计算预期的预编码矩阵;
选取模块 402,用于选取与计算模块 401计算出的预期的预编码矩阵的欧几里德距离最 小的预编码矩阵, 将该选取的预编码矩阵作为多输入多输出系统的反馈预编码矩阵;
反馈模块 403, 用于反馈选取模块 402选取的反馈预编码矩阵。
进一步地, 在多载波系统时, 上述计算模块 401 可以具体用于对于第 ^ + l号到第 (" + l) 号之间的 K个子载波, 计算每个子载波的预期的预编码矩阵, 得到 K个预期的预 编码矩阵;
相应地, 上述选取模块 402可以具体包括:
子载波选取单元 4021, 用于选取与计算模块 401计算出的每个子载波的预期的预编码 矩阵的欧几里德距离最小的预编码矩阵作为每个子载波的反馈预编码矩阵, 得到 K个反馈 预编码矩阵;
选取单元 4022, 用于根据子载波选取单元 4021选取出的 K个最优的预编码矩阵, 选 取个数最多的预编码矩阵, 将选出的反馈预编码矩阵作为第^ ^ + 1号到第 号之间的 个子载波的反馈预编码矩阵。
进一步地, 还可以从预编码矩阵与每个子载波的预期的预编码矩阵的总体欧几里德距 离的角度选取多输入多输出系统的反馈预编码矩阵, 参见图 6, 本实施例还提供了另一种选 取预编码矩阵的设备, 该设备中选取模块 402还可以具体包括:
选取单元 4023, 用于选取与计算模块 401计算出的 K个预期的预编码矩阵的总体欧几 里德距离最小的预编码矩阵, 将该预编码矩阵作为第" ^ + 1号到第 号之间的 个子 载波的反馈预编码矩阵。
本实施例通过计算模块 401计算预期的预编码矩阵, 然后选取模块 402选取与预期的 预编码矩阵的欧几里德距离最小的预编码矩阵, 将该预编码矩阵作为反馈预编码矩阵, 这 样在单载波系统时可以避免现有技术中在发射数据流数目等于发射天线数目时不能选出反 馈预编码矩阵的问题; 另外, 对于多载波系统, 将 K个反馈预编码矩阵中个数最多的反馈 预编码矩阵作为相邻的 κ个子载波的反馈预编码矩阵, 或者将与 K个预期的预编码矩阵总 体距离最小的预编码矩阵作为相邻的 κ个子载波的反馈预编码矩阵, 这样选取的反馈预编 码矩阵兼顾了 K个子载波的信道特性, 提高了系统性能。
实施例 5
参见图 7, 本发明实施例提供了一种选取预编码矩阵的系统, 该系统包括:
接收端设备 501, 用于计算预期的预编码矩阵, 并选取与预期的预编码矩阵的欧几里德 距离最小的预编码矩阵, 将该选取预编码矩阵作为反馈预编码矩阵, 并反馈该选取的反馈 预编码矩阵;
发射端设备 502,用于根据接收端设备 501反馈的反馈预编码矩阵对发射数据进行预编 码。
上述实施例 4提供的选取预编码矩阵的设备可以作为本实施例中的接收端设备 501,进 一步地, 上述接收端设备 501具体包括:
计算模块 401, 用于计算预期的预编码矩阵;
选取模块 402,用于选取与计算模块 401计算出的预期的预编码矩阵的欧几里德距离最 小的预编码矩阵, 将该选取的预编码矩阵作为多输入多输出系统的反馈预编码矩阵;
反馈模块 403, 用于反馈选取模块 402选取的反馈预编码矩阵。
本发明实施例通过接收端设备 501 根据码本集中的预编码矩阵与预期的预编码矩阵之 间的欧几里德距离的大小来选取反馈预编码矩阵, 可以在任意情况下选出多输入多输出系 统的反馈预编码矩阵, 从而发射端设备 502可以根据该反馈预编码矩阵对发射数据进行预 编码, 提高了系统的性能。
本发明实施例可以通过软件实现, 相应地软件可以存储到可读取的存储介质中, 例如, 计算机的硬盘、 软盘或者光盘中。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1.一种多输入多输出系统中选取预编码矩阵的方法, 其特征在于, 所述方法包括: 计算预期的预编码矩阵;
选取与所述预期的预编码矩阵的欧几里德距离最小的预编码矩阵, 将所述选取的预编 码矩阵作为多输入多输出系统的反馈预编码矩阵, 并反馈所述选取的反馈预编码矩阵。
2. 根据权利要求 1所述的多输入多输出系统中选取预编码矩阵的方法, 其特征在于, 在多载波系统时, 所述计算预期的预编码矩阵, 具体为:
对于第 ηΚ + 1号到第 (η + \)Κ号之间的 Κ个子载波, 计算每个子载波的预期的预编码矩 阵, 得到 Κ个预期的预编码矩阵。
3. 根据权利要求 2所述的多输入多输出系统中选取预编码矩阵的方法, 其特征在于, 所述选取与所述预期的预编码矩阵的欧几里德距离最小的预编码矩阵, 将所述选取的预编 码矩阵作为多输入多输出系统的反馈预编码矩阵, 具体包括:
选取与计算出的每个子载波的预期的预编码矩阵的欧几里德距离最小的预编码矩阵作 为每个子载波的反馈预编码矩阵, 得到 Κ个反馈预编码矩阵;
根据选取出的 Κ个反馈预编码矩阵, 选取个数最多的反馈预编码矩阵, 将选出的反馈 预编码矩阵作为第 ηΚ + 1号到第 (η + \)Κ号之间的 Κ个子载波的反馈预编码矩阵。
4. 根据权利要求 2所述的多输入多输出系统中选取预编码矩阵的方法, 其特征在于, 所述选取与所述预期的预编码矩阵的欧几里德距离最小的预编码矩阵, 将所述选取的预编 码矩阵作为多输入多输出系统的反馈预编码矩阵, 具体包括:
选取与计算出的 Κ个预期的预编码矩阵的总体欧几里德距离最小的预编码矩阵, 将所 述预编码矩阵作为第 + 1号到第 (《 + l) 号之间的 个子载波的反馈预编码矩阵。
5. 一种选取预编码矩阵的设备, 其特征在于, 所述设备包括:
计算模块 (401 ), 用于计算预期的预编码矩阵;
选取模块 (402), 用于选取与所述计算模块 (401 ) 计算出的预期的预编码矩阵的欧几 里德距离最小的预编码矩阵, 将所述选取的预编码矩阵作为多输入多输出系统的反馈预编 码矩阵; 反馈模块 (403 ), 用于反馈所述选取模块 (402) 选取的反馈预编码矩阵。
6. 根据权利要求 5所述的选取预编码矩阵的设备, 其特征在于, 在多载波系统时, 所 述计算模块 (401 ) 具体用于对于第^: + 1号到第 (《 + l) 号之间的 K个子载波, 计算每个 子载波的预期的预编码矩阵, 得到 K个预期的预编码矩阵。
7. 根据权利要求 6所述的选取预编码矩阵的设备, 其特征在于, 所述选取模块 (402) 具体包括:
子载波选取单元 (4021 ), 用于选取与所述计算模块 (401 ) 计算出的每个子载波的预 期的预编码矩阵的欧几里德距离最小的预编码矩阵作为每个子载波的反馈预编码矩阵, 得 到 K个反馈预编码矩阵;
选取单元 (4022), 用于根据子载波选取单元 (4021 ) 选取出的 K个反馈预编码矩阵, 选取个数最多的反馈预编码矩阵, 将选出的反馈预编码矩阵作为第^: + l号到第 (《 + 1)^号 之间的 个子载波的反馈预编码矩阵。
8. 根据权利要求 6所述的选取预编码矩阵的设备, 其特征在于, 所述选取模块 (402) 具体包括:
选取单元 (4023 ), 用于选取与所述计算模块 (401 ) 计算出的 K个预期的预编码矩阵 的总体欧几里德距离最小的预编码矩阵, 将所述预编码矩阵作为第^: + l号到第 (《 + 1) 号 之间的 个子载波的多输入多输出系统的反馈预编码矩阵。
9. 一种选取预编码矩阵的系统, 其特征在于, 所述系统包括:
接收端设备 (501 ), 用于计算预期的预编码矩阵, 并选取与所述预期的预编码矩阵的 欧几里德距离最小的预编码矩阵, 将所述选取预编码矩阵作为反馈预编码矩阵, 并反馈所 述选取的反馈预编码矩阵;
发射端设备 (502), 用于根据所述接收端设备 (501 ) 反馈的反馈预编码矩阵对发射数 据进行预编码。
10. 根据权利要求 9所述的系统, 其特征在于, 所述接收端设备 (501 ) 具体包括: 计算模块 (401 ), 用于计算预期的预编码矩阵;
选取模块 (402), 用于选取与所述计算模块 (401 ) 计算出的预期的预编码矩阵的欧几 里德距离最小的预编码矩阵, 将所述选取的预编码矩阵作为多输入多输出系统的反馈预编 码矩阵;
反馈模块 (403), 用于反馈所述选取模块 (402) 选取的反馈预编码矩阵。
PCT/CN2009/071763 2008-07-21 2009-05-12 多输入多输出系统中选取预编码矩阵的方法、设备和系统 WO2010009640A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810116917A CN101316156B (zh) 2008-07-21 2008-07-21 多输入多输出系统中选取预编码矩阵的方法、设备和系统
CN200810116917.2 2008-07-21

Publications (1)

Publication Number Publication Date
WO2010009640A1 true WO2010009640A1 (zh) 2010-01-28

Family

ID=40107016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071763 WO2010009640A1 (zh) 2008-07-21 2009-05-12 多输入多输出系统中选取预编码矩阵的方法、设备和系统

Country Status (2)

Country Link
CN (1) CN101316156B (zh)
WO (1) WO2010009640A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992374A (zh) * 2014-12-09 2016-10-05 山东大学 基于L2-Hausdorff距离的多用户MIMO系统用户调度方法
US9571310B2 (en) 2009-08-07 2017-02-14 Huawei Technologies Co., Ltd. Method, codebook and base station for precoding

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316156B (zh) * 2008-07-21 2012-08-29 华为技术有限公司 多输入多输出系统中选取预编码矩阵的方法、设备和系统
CN101510820B (zh) * 2008-12-30 2010-09-29 普天信息技术研究院有限公司 一种预编码矩阵的选择方法
WO2010105415A1 (en) * 2009-03-17 2010-09-23 Huawei Technologies Co., Ltd. Method for generating a codebook
KR101610305B1 (ko) * 2009-03-20 2016-04-20 삼성전자주식회사 다중 안테나 시스템에서 셀 간 간섭을 감소시키기 위한 장치 및 방법
CN102045139A (zh) * 2009-10-16 2011-05-04 华为技术有限公司 预编码码本反馈方法与装置
CN101764770B (zh) * 2009-10-26 2013-04-10 广州杰赛科技股份有限公司 一种基于预编码的信道均衡方法及其通信系统
CN101741523B (zh) * 2009-12-11 2012-09-19 中国科学技术大学 多用户多天线系统反馈码字空间距离阈值的有限反馈方法
CN101789850B (zh) * 2010-03-09 2013-04-17 上海交通大学 多输入多输出系统中子载波的合并预处理方法
CN102195755A (zh) 2010-03-10 2011-09-21 松下电器产业株式会社 反馈双极化天线的预编码矩阵索引的方法和设备
CN102771073A (zh) * 2010-04-29 2012-11-07 富士通株式会社 生成码书的方法和装置及使用该码书的通信系统、移动台、基站和通信方法
CN102315912B (zh) * 2010-07-01 2013-11-06 华为技术有限公司 预编码矩阵的提供方法、解码矩阵的提供方法和基站
CN102546120A (zh) * 2010-12-07 2012-07-04 上海贝尔股份有限公司 在mimo系统中基于矩阵分解的预编码方法和设备
CN102065434B (zh) 2011-01-06 2015-10-21 中兴通讯股份有限公司 一种下行多基站多输入多输出预编码的协调方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007051192A2 (en) * 2005-10-27 2007-05-03 Qualcomm Incorporated A method and apparatus for pre-coding for a mimo system
CN101136718A (zh) * 2006-11-07 2008-03-05 中兴通讯股份有限公司 无线通信系统中多输入多输出的空间复用的预编码方法
WO2008086239A1 (en) * 2007-01-04 2008-07-17 Texas Instruments Incorporated Precoding codebook for mimo systems
CN101316156A (zh) * 2008-07-21 2008-12-03 华为技术有限公司 多输入多输出系统中选取预编码矩阵的方法、设备和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050286663A1 (en) * 2004-06-23 2005-12-29 Intel Corporation Compact feedback for closed loop MIMO systems
CN101129037B (zh) * 2005-01-14 2013-05-08 诺基亚公司 经由特征坐标变换的酉矩阵码本的改进Hochwald构造
CN101212281B (zh) * 2006-12-31 2011-10-26 华为技术有限公司 基于多输入多输出系统的通信方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007051192A2 (en) * 2005-10-27 2007-05-03 Qualcomm Incorporated A method and apparatus for pre-coding for a mimo system
CN101136718A (zh) * 2006-11-07 2008-03-05 中兴通讯股份有限公司 无线通信系统中多输入多输出的空间复用的预编码方法
WO2008086239A1 (en) * 2007-01-04 2008-07-17 Texas Instruments Incorporated Precoding codebook for mimo systems
CN101316156A (zh) * 2008-07-21 2008-12-03 华为技术有限公司 多输入多输出系统中选取预编码矩阵的方法、设备和系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9571310B2 (en) 2009-08-07 2017-02-14 Huawei Technologies Co., Ltd. Method, codebook and base station for precoding
CN105992374A (zh) * 2014-12-09 2016-10-05 山东大学 基于L2-Hausdorff距离的多用户MIMO系统用户调度方法
CN105992374B (zh) * 2014-12-09 2019-09-27 山东大学 基于L2-Hausdorff距离的多用户MIMO系统用户调度方法

Also Published As

Publication number Publication date
CN101316156B (zh) 2012-08-29
CN101316156A (zh) 2008-12-03

Similar Documents

Publication Publication Date Title
WO2010009640A1 (zh) 多输入多输出系统中选取预编码矩阵的方法、设备和系统
JP5127394B2 (ja) Mimoシステムのプリコーディング方法及び該方法を用いた装置
RU2407158C1 (ru) Способ и устройство для обеспечения эффективной обратной связи с предварительным кодированием в системе беспроводной связи mimo
US8989285B2 (en) Efficient MIMO precoding feedback scheme
US8509339B2 (en) Reference signaling scheme using compressed feedforward codebooks for multi-user multiple input multiple output (MU-MIMO) systems
US9154201B2 (en) Adaptation techniques in MIMO
JP5236753B2 (ja) 開ループ空間多重化モードでの信号送受信方法
US7769098B2 (en) Low complexity precoding matrix selection
CN102130752B (zh) 获取预编码矩阵指示以及预编码矩阵的方法和装置
US7751494B2 (en) Reduced search space technique for codeword selection
TWI406523B (zh) Mimo預編碼器中處理通信信號的方法和系統
WO2011124021A1 (zh) 用于信息反馈以及预编码的方法和装置
TW201001950A (en) Method and apparatus for performing multiple-input multiple-output wireless communications
EP1820287A1 (en) Transmitter, receiver and method for controlling multiple input multiple output system
JP2014030270A (ja) 位相遷移ベースのプリコーディングを用いたデータ送受信方法及びこの方法を支援する送受信機
WO2011020428A1 (zh) 用于实现下行多输入多输出传输的方法和装置
WO2008131352A1 (en) Method and apparatus for efficient precoding information validation for mimo communications
WO2008128439A1 (fr) Procédé et dispositif pour réduire le nombre de bits de précodage par rétroaction en fonction d&#39;une recherche de livre de codage dans un système mimo-ofdm
WO2008109790A1 (en) Codebook selection for transmit beamforming
EP2484021A1 (en) Concatenating precoder selection for ofdma-based multi-bs mimo
WO2011020226A1 (zh) 码本构建方法和设备以及预编码方法、设备和系统
WO2011035698A1 (zh) 一种上行数据处理方法及系统
WO2011054143A1 (zh) 处理下行通信的方法和装置以及相应的辅助方法和装置
CN102598731A (zh) 获取下行信道状态信息的方法及装置
WO2015090021A1 (zh) 波束质量信息反馈方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09799956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09799956

Country of ref document: EP

Kind code of ref document: A1