WO2015090021A1 - 波束质量信息反馈方法和系统 - Google Patents

波束质量信息反馈方法和系统 Download PDF

Info

Publication number
WO2015090021A1
WO2015090021A1 PCT/CN2014/080193 CN2014080193W WO2015090021A1 WO 2015090021 A1 WO2015090021 A1 WO 2015090021A1 CN 2014080193 W CN2014080193 W CN 2014080193W WO 2015090021 A1 WO2015090021 A1 WO 2015090021A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
training
terminal
iteration
base station
Prior art date
Application number
PCT/CN2014/080193
Other languages
English (en)
French (fr)
Inventor
赵晶
陈艺戬
鲁照华
郁光辉
肖华华
王瑜新
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015090021A1 publication Critical patent/WO2015090021A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present invention relates to the field of beam quality information feedback technologies, and in particular, to a beam quality information feedback method and system.
  • the transmitting end and the receiving end use spatial multiplexing to obtain a higher rate using multiple antennas.
  • a widely used technology is that the receiving end feeds back channel information to the transmitting end, and the transmitting end uses some transmitting precoding techniques according to the obtained channel information, which greatly improves the transmission performance.
  • MIMO single-user multi-input multi-output
  • channel feature vector information is used for precoding directly; for multi-users, more accurate channel information is needed.
  • the feedback of channel information mainly utilizes a simple single codebook feedback method, and the performance of MIMO transmit precoding technology depends more on the accuracy of codebook feedback.
  • the basic principle of quantizing feedback of channel information based on codebook is briefly described as follows:
  • the transmitting end and the receiving end jointly save or generate the codebook in real time (the same as the transmitting end).
  • the receiving end selects a codeword that best matches the channel according to a certain criterion and feeds back the codeword sequence number ⁇ 'back to the transmitting end.
  • the codeword sequence number is called PMI (Precoding Matrix Indicator). This sequence number '' finds the corresponding precoding codeword to obtain channel information, indicating the feature vector information of the channel.
  • Multi-antenna technology is a key technology to cope with the explosive growth of wireless data services.
  • multi-antenna technology supported in 4G only supports up to 8 ports.
  • the horizontal dimension beamforming technology has a great potential to further greatly increase system capacity.
  • Massive MIMO technology is a key enhancement technology in the next generation communication technology.
  • the main features of the Massive MIMO system are: Large-scale antenna arrays are configured on the base station side, such as 100 antennas, and even more.
  • MU- MIMO technology while multiplexing multiple users at the same time, in general, the ratio of the number of antennas to the number of multiplexed users is maintained at about 5-10 times.
  • the correlation coefficient between the channels of any two users is exponentially attenuated as the number of antennas increases, whether in the strong correlation channel in the line-of-sight environment or the non-correlated channel under rich scattering, for example, when the base station side is configured
  • the correlation coefficient between channels of any two users approaches 0, which means that the multi-user corresponding channels are close to orthogonal.
  • large arrays can bring very impressive array gain and diversity gain.
  • the conventional method is: Each channel transmits a channel measurement pilot CSI-RS, and the terminal detects the CSI-RS and obtains a channel matrix corresponding to each transmission resource through channel estimation, according to the channel.
  • the matrix obtains the best subband precoding vector and the best transmission layer information for each frequency domain on the baseband, and then feeds back based on the codebook feedback technique introduced above.
  • This method has a relatively large problem when applied in massive MIMO. The main reason is that the pilot overhead increases with the increase of Nt. When the number of antennas is large, the pilot overhead is very large.
  • the codebook used for feedback is used.
  • the basic principle of the beam training technology is as shown in FIG. 1.
  • the process of transmitting the training pilot to the terminal by the base station is determined.
  • the process in which the terminal processes the received data and sends it to the base station is called an iterative process. Ending the iteration after multiple iterations is called completing a training process.
  • the iteration diagram is shown in Figure 1.
  • Step 1 The base station sends a training pilot to the terminal.
  • Step 2 The terminal receives the training pilot and performs reception processing.
  • Step 3 The terminal sends the processed training pilot to the base station.
  • Step 4 The base station receives the training pilot sent by the terminal and performs processing;
  • the precoding vector can be well matched with the channel feature vector, so that the terminal can obtain more accurate precoding and improve the signal to noise ratio of the system.
  • the feature vector can be obtained by normalizing it, and after the feature vector is obtained, the appropriate number of iterations can be selected for the training algorithm. Important, if the number of iterations is not suitable, for example, too many iterations will not only cause waste of resources, but also make the training time longer, and the iterative information of the feedback will be invalid. If the training time is too short, the current signal quality may be caused. Not enough to complete the data transfer, or after more training, you can get better performance. Improve the transmission capacity of the entire system.
  • the well-supported iteration number selection mechanism is the signaling that the terminal feeds back to the base station. Only when the signaling feedback is appropriate and accurate, the base station and the terminal can better complete the training.
  • the CQI Channel Quality Indicator
  • the base station can know the current channel status and decide which to use. Transmission mode and modulation and coding mode are transmitted.
  • the CQI information reported by the terminal to the base station is also critical. The base station can view the current training situation according to the current CQI information, and determine whether the training needs to be continued according to the information, so select an appropriate CQI signaling reporting manner. It is necessary for beam training. Summary of the invention
  • the embodiment of the invention provides a beam quality information feedback method and system, which solves the problem of lacking a signaling reporting mechanism in beam training.
  • a beam quality information feedback method including:
  • the base station sends a training pilot signal to the terminal
  • the terminal generates the judgment result indication information according to the training pilot signal, and sends the judgment result indication information to the base station, and the base station determines whether to continue the iteration according to the judgment result indication information.
  • the step of the terminal generating the judgment result indication information according to the training pilot signal includes:
  • the terminal generates the determination result indication information including whether to continue the iteration and whether the training is successful.
  • the determining result indication information includes whether to continue the iteration and whether the training is successful a bit
  • the whether to continue the iteration and the training success flag includes at least three status bits of a first status bit, a second status bit, and a third status bit, wherein the first status bit indicates to continue after the iteration Iteration, the second status bit indicates that the iteration is ended after the iteration and the training fails, the third status bit indicates that the iteration is ended after the iteration and the training is successful.
  • the step of the terminal generating the determination result indication information according to the training pilot signal includes:
  • the terminal determines whether to continue the iteration according to the training pilot signal, and generates judgment result indication information including the judgment result.
  • the determining result indicates that the information is carried by whether to end the iteration flag bit; whether the end iteration flag bit includes two status bits, a first status bit and a second status bit, where:
  • the first status bit indicates the end of the iteration after this iteration.
  • the second status bit indicates that the iteration continues after this iteration.
  • the method further includes:
  • the terminal determines whether the training is successful according to the training pilot signal, and sends a result of determining whether the training is successful to the base station.
  • the terminal sends, by sending the current training success flag, a result of determining whether the training is successful to the base station;
  • Whether the training success flag includes the first status bit and the second status bit, wherein:
  • the first status bit indicates that the training is successful.
  • the second status bit indicates that the training failed.
  • the method further includes:
  • the terminal reports the channel quality indication CQI information.
  • the step of reporting the CQI information by the terminal includes:
  • the terminal jointly reports the CQI information while transmitting the judgment result indication information.
  • the CQI information is differential CQI information.
  • the differential CQI information is a specific differential CQI value.
  • the differential CQI information is a differential CQI level value.
  • the method further includes:
  • the terminal reports the differential CQI information to the base station according to the configuration information sent by the base station.
  • the configuration information is specific differential CQI value or differential CQI level information.
  • the method further includes:
  • the terminal configures its own CQI level information according to the hierarchical information.
  • the method further includes:
  • a beam quality information feedback method includes:
  • the base station sends a training pilot signal to the terminal
  • the base station receives the determination result indication information returned by the terminal, and determines whether to continue the iteration according to the determination result indication information.
  • the method further includes: The base station configures the differential CQI mode and generates configuration information, and sends the configuration information to the terminal.
  • the method further includes:
  • the base station configures the threshold for reporting the differential CQI, and sends the configuration information to the terminal.
  • the method further includes:
  • the base station divides the CQI information into different levels, and notifies the terminal of the hierarchical information including the divided different level related information.
  • the method further includes:
  • the base station receives the hierarchical information returned by the terminal, and the hierarchical information carries the related information that the terminal divides the CQI information into different levels.
  • a base station includes a sending unit, a receiving unit, and a determining and processing unit, where the sending unit is configured to: send a training pilot signal to the terminal;
  • the receiving unit is configured to: receive the determination result indication information that is generated by the terminal according to the training pilot signal, where the determination result indication information is used to indicate that the base station determines whether to continue the iteration;
  • the determining and processing unit is configured to: determine, according to the determination result indication information, whether to continue the iteration.
  • the determining and processing unit is further configured to:
  • a terminal comprising: a sending unit, a receiving unit, and a determining and processing unit, wherein the receiving unit is configured to: receive a training pilot signal sent by the base station, and perform receiving processing on the training pilot signal;
  • the determining and processing unit is configured to: generate a determination result indication information according to the training pilot signal;
  • the sending unit is configured to: send the determination result indication information to the base station, so that the base station determines whether to continue the iteration according to the determination result indication information.
  • the determining and processing unit is configured to generate the determination result indication information according to the training pilot signal according to the following manner:
  • the determining result indication information includes whether to continue the iteration and the training success flag, and whether the whether to continue the iteration and the training success flag includes the first status bit, the second status bit, and the third status bit. a status bit, where the first status bit indicates that the iteration is continued after the iteration, the second status bit indicates that the iteration is ended after the iteration and the training fails, and the third status bit indicates the end of the iteration after the iteration And the training is successful.
  • the determining and processing unit is configured to generate the determination result indication information according to the training pilot signal according to the following manner:
  • the determining result indicates that the information is carried by whether to end the iteration flag bit; whether the end iteration flag bit includes two status bits, a first status bit and a second status bit, where:
  • the first status bit indicates the end of the iteration after this iteration.
  • the second status bit indicates that the iteration continues after this iteration.
  • the determining and processing unit is further configured to: determine, according to the training pilot signal, whether the training is successful; the sending unit is further configured to: send a result of determining whether the training is successful to the base station .
  • Whether the training success flag includes the first status bit and the second status bit, wherein:
  • the first status bit indicates that the training is successful.
  • the sending unit is further configured to:
  • the channel quality indication CQI information is reported to the base station.
  • the sending unit is configured to report the CQI information to the base station according to the following manner: jointly send the CQI information by sending the judgment result indication information to the base station.
  • the CQI information is differential CQI information.
  • the differential CQI information is a specific differential CQI value.
  • the differential CQI information is a differential CQI level value.
  • the sending unit is further configured to: report the differential CQI information to the base station according to the configuration information sent by the base station.
  • the configuration information is specific differential CQI value or differential CQI level information.
  • the receiving unit is further configured to: receive the hierarchical information sent by the base station, where the hierarchical information includes a division of different levels of CQI information;
  • the determining and processing unit is further configured to: configure its own CQI level information according to the rating information.
  • the determining and processing unit is further configured to: divide the CQI information into different levels; and the sending unit is further configured to: feed the hierarchical information to the base station.
  • a beam quality information feedback system including a base station and a terminal:
  • the base station is configured to send a training pilot signal to the terminal, and receive the determination result indication information returned by the terminal according to the training pilot signal, and indicate, in the determination result indication information, whether the base station continues to perform iteration. Determining whether to continue the iteration according to the judgment result indication information;
  • the terminal is configured to select a training pilot signal sent by the receiving base station, perform receiving processing on the training pilot signal, generate determination result indication information according to the training pilot signal, and send the determination result indication information to the The base station indicates whether the base station continues to iterate.
  • An embodiment of the present invention provides a beam quality information feedback method and system, where a base station sends a training pilot signal to the terminal, and receives a determination result indication information returned by the terminal according to the training pilot signal, where the determination result is Instructing, in the indication information, whether the base station continues to perform iteration, determining, according to the determination result indication information, whether to continue the iteration; the terminal selecting to receive the training pilot signal sent by the base station, and receiving and processing the training pilot signal, And generating, according to the training pilot signal, judgment result indication information, and transmitting the judgment result indication information to the base station, indicating whether the base station continues to perform iteration.
  • the technical solution of the invention realizes the control of the beam training process by the terminal, and solves the problem that the signaling reporting mechanism is lacking in the beam training.
  • FIG. 1 is a flowchart of a beam quality information feedback method according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of a beam quality information feedback method according to Embodiment 1 of the present invention
  • 4 is a flowchart of a beam quality information feedback method according to Embodiment 4 of the present invention
  • FIG. 5 is a schematic diagram of a base station according to Embodiment 8 of the present invention.
  • FIG. 6 is a schematic diagram of a terminal provided in Embodiment 9 of the present invention. detailed description
  • the signal quality ratio between the two iterations i.e., the i-th and the i-1th iterations, is ⁇ , and i is a positive integer greater than one.
  • the signal quality includes, but is not limited to, a signal to noise ratio, a signal to interference and noise ratio, and is represented by R.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 is a first flowchart of a beam quality information feedback method according to an embodiment of the present invention.
  • the method includes:
  • Step 201 The terminal acquires signal state information of the training.
  • Step 202 The terminal calculates whether it is necessary to continue the iteration, whether the training is successful, and forms a feedback report of at least 2 bits.
  • Step 203 The terminal feeds back the feedback report on the physical uplink control channel or the physical uplink shared channel.
  • the base station configures the maximum number of iterations for the terminal.
  • the specific operations are as follows:
  • the base station sends the maximum number of iterations N information to the terminal on the downlink control channel, and the maximum number of iterations N information sent may be directly the number N, or a flag representing the N level, and the base station may according to the terminal channel environment or other information.
  • the same or different maximum number of iterations can be configured for different terminals.
  • the same or different maximum number of iterations can be configured for different terminals at the same time.
  • the maximum number of iterations of the N-level flag can be expressed as shown in Table 1.
  • the terminal obtains the maximum number of iterations on the downlink control channel and configures its maximum number of iterations.
  • the base station configures the terminal to terminate the training judgment criteria in advance.
  • the specific operations are as follows:
  • the base station sends the early termination training judgment criterion information to the terminal on the downlink control channel, and the sent judgment criterion may be the signal quality threshold information, or is 4 threshold information; the threshold information may be a specific value, or a level;
  • the terminal acquires the pre-end training judgment threshold information on the downlink control channel, and configures its own threshold.
  • the base station transmits the training pilot signal to the terminal in the OFDM symbol continuously or discontinuously at the agreed pilot position, where ⁇ is a positive integer; the OFDM symbol transmitted by the base station may be periodically transmitted or aperiodically transmitted. ;
  • the terminal acquires the number of times of the iterations m; the terminal can obtain the current number of iterations through the agreed pilot position;
  • the terminal compares the iteration number m with the maximum number of iterations N. If m is equal to N, the end iteration is fed back to the base station on the uplink control channel or the data channel, and the training is completed. If m is less than N, the process proceeds to step (7). ;
  • the terminal judges whether to end the iteration early by using the recorded channel quality information. If the iteration can be terminated early, the terminal feeds back to the base station to end the iteration; if the training needs to be continued, the terminal goes to the base station.
  • the feedback training continues; the terminal can judge whether it is necessary to end the iteration in advance according to the current CQI level, and can also judge whether to end the iteration early by the CQI level change.
  • step (9) If the terminal judges that the iteration continues, it goes directly to step (9); if the terminal determines that the iteration is over, it proceeds to step (8).
  • the terminal compares the signal quality of the last iteration with the signal quality threshold ⁇ . When the signal quality is greater than or equal to ⁇ , the training is successful. If the signal quality is less than ⁇ , the training fails; or, when the signal quality is greater than ⁇ When ⁇ , the training is successful. If the signal quality is equal to or less than, the training fails.
  • the report contains at least three status bits, as shown in Table 2.
  • the terminal selects a status bit to report. If the terminal calculates that the iteration continues, the index is selected as 0. If the terminal calculates the iteration and the training is successful, then the index is 1 if the terminal is selected. After the iteration is completed and the training fails after this iteration, the index is selected to be 2.
  • the terminal normalizes the received training signal to obtain a normalized received signal to the base station at the agreed pilot position continuously or non-continuously within the ⁇ 2 OFDM symbols;
  • the base station selects the training pilot signal sent by the terminal in the ⁇ 2 OFDM symbols; (12) the base station selects whether the receiving terminal continues to iterate and the training success flag is fed back, and determines whether to continue the iteration through the flag bit feedback information. If you continue the iteration, you will receive the training
  • the training pilot information is normalized and obtained as a new training pilot.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the terminal reports to the base station whether the training is successful and whether the iteration continues.
  • the specific operation steps are as follows: (1) The base station configures the maximum number of iterations for the terminal;
  • the base station sends the maximum number of iterations N information to the terminal on the downlink control channel, and the maximum number of iterations N information sent may be directly the number N, or a flag representing the N level, and the base station may according to the terminal channel environment or other information. Configure the same or different maximum number of iterations for different terminals, or configure the same or different maximum number of iterations for different terminals at the same time;
  • the terminal acquires the maximum number of iterations on the downlink control channel, and configures its own maximum number of iterations through the information
  • the base station configures the terminal to terminate the training judgment criteria:
  • the base station sends the early termination training judgment criterion information to the terminal on the downlink control channel, and the sent judgment criterion includes but is not limited to the signal quality threshold information R, or is the threshold information; the threshold information may be a specific value, or a level ;
  • the terminal acquires the early termination training judgment threshold information on the downlink control channel, and configures its own threshold according to the information.
  • the base station transmits the training pilot signal to the terminal continuously or discontinuously at the agreed pilot position within ⁇ OFDM symbols, where ⁇ is a positive integer; the OFDM symbol transmitted by the base station may be periodically transmitted or aperiodically transmitted. ;
  • the terminal acquires the number m of times of the iteration; the terminal can obtain the current time by the agreed pilot position. Number of iterations;
  • the terminal compares the iteration number m with the maximum number of iterations N. If m is equal to N, the end iteration is fed back to the base station on the uplink control channel or the data channel, and the training is completed. If m is less than N, the process proceeds to step (7). ;
  • the terminal judges whether to end the iteration early by using the recorded channel quality information. If the iteration can be terminated early, the terminal feeds back the iteration to the base station; if the training needs to be continued, the terminal feeds back the training to the base station, and the terminal can judge according to the current CQI level. Whether it is necessary to end the iteration in advance, it is also possible to judge whether the iteration is terminated early by the CQI level change condition.
  • step (9) If the terminal judges that the iteration continues, it goes directly to step (9); if the terminal determines that the iteration is over, it proceeds to step (8).
  • the terminal compares the signal quality of the last iteration with the signal quality threshold ⁇ . When the signal quality is greater than or equal to ⁇ , the training is successful. If the signal quality is less than ⁇ , the training fails; or, when the signal quality is greater than ⁇ , the training is successful, if the signal quality is equal to or less than ⁇ ⁇ , the training fails;
  • the terminal selects a status bit to report according to the current iteration. If the terminal calculates that the training is successful, the index is selected as 0. If the terminal calculates that the training fails, the index is selected as 1 report.
  • the terminal normalizes the received training signal to obtain a normalized received signal to the base station at the agreed pilot position continuously or discontinuously within the ⁇ 2 01 ⁇ ) ⁇ 1 symbols.
  • the base station selects a training pilot signal transmitted by the terminal within ⁇ 2 OFDM symbols;
  • the base station selects whether the receiving terminal continues to iterate the flag bit, and determines whether to continue the iteration by using the flag bit feedback information; if the iteration is continued, the received training pilot information is normalized to obtain ⁇ , ⁇ is new Training pilot; the base station selects whether the receiving terminal feedback training success flag is set, and determines whether the training is successful.
  • FIG. 3 is a first flowchart of a channel feedback method according to an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • Step 301 The terminal acquires signal state information of the training.
  • Step 302 The terminal calculates whether it is necessary to continue the iteration, whether the training is successful, and forms a 5-bit feedback report with the CQI.
  • Step 303 The terminal feeds back the feedback report on the physical uplink control channel or the physical uplink shared channel. This step gives a training end flag, so that after receiving the feedback information, the base station can determine whether to continue training or whether to perform data transmission, and obtain the current system CQI value.
  • the specific implementation process is:
  • the base station configures the maximum number of iterations for the terminal
  • the base station configures the terminal to terminate the training judgment criterion in advance
  • the base station is continuously or discontinuously at the agreed pilot position within ⁇ OFDM symbols Sending a training pilot signal to the terminal, ⁇ being a positive integer; the OFDM symbol sent by the base station may be sent periodically or aperiodically;
  • the terminal acquires the number of times of the iterations m; the terminal can obtain the current number of iterations through the agreed pilot position;
  • the terminal compares the iteration number m with the maximum number of iterations N. If m is equal to N, the end iteration is fed back to the base station on the uplink control channel or the data channel, and the training is completed. If m is less than N, the process proceeds to step (7). ;
  • the terminal determines whether to end the iteration early by using the recorded channel quality information. If the iteration can be terminated early, the terminal feeds back to the base station to end the iteration; if the training needs to be continued, the terminal feeds back to the base station that the training continues;
  • step (9) If the terminal judges that the iteration continues, it goes directly to step (9); if the terminal determines that the iteration is over, it proceeds to step (8).
  • the terminal determines whether the training is successful according to the threshold, and the determining method is as shown in step (8) of Embodiment 4-1.
  • the terminal needs to continue the iteration, whether the training is successful, and the CQI is jointly coded, and a 5-bit feedback report is used for feedback.
  • the 5-bit feedback report is used to indicate whether the iteration continues and the training is successful after the iteration. CQI value when training is successful.
  • the 5bits feedback report is shown in Table 5.
  • CQI value is CQI
  • the base station selects a training pilot signal transmitted by the terminal within ⁇ 2 OFDM symbols;
  • the base station selects a feedback report fed back by the terminal, determines whether the iteration continues by the report, and whether the training is successful;
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 4 is a first flowchart of a channel feedback method according to an embodiment of the present invention.
  • the method includes: Step 401: A terminal acquires SNR information of the training.
  • Step 402 The terminal calculates whether it is necessary to continue the iteration, whether the training is successful, and forms a 6-bit feedback report with the CQI.
  • Step 403 The terminal feeds back the feedback report on the physical uplink control channel or the physical uplink shared channel.
  • the 5bits report reported by the terminal may be 6 bits, and the specific joint coding mode is shown in Table 6.
  • the end flag enables the base station to determine whether to continue training or whether to perform data transmission after receiving the feedback information, and obtain the current system CQI value.
  • the above 6-bit feedback report is used to indicate whether the iteration continues after the iteration and whether the training is successful or not, and the CQI value when the training is successful.
  • the specific operation process is:
  • the base station configures the maximum number of iterations for the terminal
  • the base station configures the terminal to terminate the training judgment criterion in advance
  • the base station transmits the training pilot signal to the terminal in the OFDM symbol continuously or discontinuously at the agreed pilot position, where ⁇ is a positive integer; the OFDM symbol transmitted by the base station may be periodically transmitted or aperiodically transmitted. ;
  • the terminal acquires the number of times of the iterations m; the terminal can obtain the current number of iterations through the agreed pilot position;
  • the terminal compares the iteration number m with the maximum number of iterations N. If m is equal to N, the end iteration is fed back to the base station on the uplink control channel or the data channel, and the training is completed. If m is less than N, the process proceeds to step (7). ;
  • the terminal determines whether to end the iteration early by using the recorded channel quality information. If the iteration can be terminated early, the terminal feeds back to the base station to end the iteration; if the training needs to be continued, the terminal feeds back to the base station that the training continues;
  • step 8 If the terminal judges that the iteration continues, it goes directly to step (9); if the terminal determines that the iteration is over, it proceeds to step 8)
  • the terminal determines, according to the threshold, whether the training is successful; (9) Whether the terminal needs to continue the iteration, whether the training is successful, and the CQI is jointly coded, and the 6-bit feedback report is used for feedback.
  • the 6-bit feedback report is used to indicate whether the iteration continues and the training is successful after the iteration. CQI value when training is successful.
  • the terminal normalizes the received training signal to obtain a normalized received signal to the base station at a predetermined pilot position continuously or non-continuously within the ⁇ 2 01 ⁇ ) ⁇ 1 symbols;
  • the base station selects a training pilot signal transmitted by the terminal within ⁇ 2 OFDM symbols;
  • the base station selects a feedback report fed back by the terminal, determines whether the iteration continues by the report, and whether the training is successful;
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the channel quality information reported by the terminal to the base station may be differential CQI information, and the specific operation process is:
  • the base station configures the maximum number of iterations for the terminal.
  • the specific operation steps are as follows:
  • the base station sends the maximum number of iterations N information to the terminal on the downlink control channel, and the maximum number of iterations N information sent may be directly the number N, or a flag representing the N level, and the base station may according to the terminal channel environment or other information. Configure the same or different maximum number of iterations for different terminals, or configure the same or different maximum number of iterations for different terminals at the same time;
  • the terminal acquires the maximum number of iterations on the downlink control channel, and configures its own maximum number of iterations through the information
  • the base station configures the terminal to terminate the training judgment criteria:
  • the base station sends the early termination training judgment criterion information to the terminal on the downlink control channel, and the sent judgment criterion includes but is not limited to the signal quality threshold information R, or Limit information; the threshold information may be a specific value, or a level;
  • the terminal acquires the early termination training judgment threshold information on the downlink control channel, and configures its own threshold according to the information;
  • the base station transmits the training pilot signal to the terminal in the OFDM symbol continuously or discontinuously at the agreed pilot position, where ⁇ is a positive integer; the OFDM symbol transmitted by the base station may be periodically transmitted or aperiodically transmitted. ;
  • the terminal selects the training pilot signal transmitted by the base station in the "one OFDM symbol, and calculates the signal quality information of the corresponding received signal and records the channel quality information, which may be the received power, or the received signal to noise ratio.
  • the channel quality information which may be the received power, or the received signal to noise ratio.
  • the terminal calculates the difference CQI value ⁇ of the report according to the signal quality information of the two successive iterations ⁇ 3 ⁇ 4", ⁇ 3 ⁇ 4; if the iteration is the first iteration in the training, the real CQI information is directly reported;
  • the terminal acquires the number of times of the iterations m; the terminal can obtain the current number of iterations through the agreed pilot position;
  • the terminal compares the iteration number m with the maximum number of iterations N. If m is equal to N, the end iteration is fed back to the base station on the uplink control channel or the data channel, and the training is completed. If m is less than N, the process proceeds to step (8). ;
  • the terminal determines whether the iteration ends early by using a preset condition, and the terminal determines whether to end the iteration early by using the recorded channel quality information. If the iteration can be terminated early, the terminal feeds back to the base station to end the iteration; if the training needs to be continued, the terminal The training is continued to the base station; the terminal may determine whether it is necessary to end the iteration in advance according to the current CQI level, or determine whether to end the iteration early by the CQI level change condition.
  • the terminal feeds back the iteration to the base station; if the training needs to be continued, the terminal feeds back the training to the base station; if the terminal determines that the iteration is over, it determines whether the training is successful:
  • the terminal compares the signal quality of the last iteration with the signal quality threshold ⁇ , and when the signal quality is greater than or equal to ⁇ , the training is successful, and if the signal quality is less than ⁇ , the training fails; Or, when the signal quality is greater than ⁇ ⁇ , the training is successful, and if the signal quality is equal to or less than ⁇ ⁇ , the training fails.
  • the terminal normalizes the received training signal to obtain a normalized received signal to the base station at the agreed pilot position continuously or discontinuously within the ⁇ 2 01 ⁇ ) ⁇ 1 symbols.
  • the terminal feeds back channel state information to the base station, where the differential CQI information is included;
  • the base station selects a training pilot signal transmitted by the receiving terminal within ⁇ 2 OFDM symbols;
  • the base station selects whether the receiving terminal continues to iterate the flag bit, and determines whether to continue the iteration by using the flag bit feedback information; if the iteration is continued, the received training pilot information is normalized ; ⁇ is a new training guide (14)
  • the base station selects the channel state information fed back by the terminal, and calculates the CQI information of the iteration by using the differential CQI information and the CQI value of the last iteration.
  • the specific operation process is:
  • the CQI information received by the base station is the actual CQI value; the base station reads the CQI information reported by the terminal;
  • the CQI information received by the base station is differential CQI information, and after receiving the CQI information, the base station adds the C 2 ' -i calculated after the last iteration to obtain the CQI information.
  • Embodiment 6 The CQI information in the step (5) in the fifth embodiment may also be a differential CQI value level, and the level classification is as shown in Table 7.
  • the process of configuring the maximum number of iterations for the terminal by the base station is as follows:
  • the base station sends differential CQI configuration information to the terminal on the downlink control channel, and the sent differential CQI configuration information may be a specific difference value or a differential CQI level information, and the base station may use each terminal channel environment or other information for each
  • the terminal configures differential CQI information, and the information supports reconfiguration
  • the terminal acquires differential CQI configuration information on the downlink control channel, and the terminal configures its own CQI information according to the received information;
  • the terminal calculates differential CQI information or its corresponding level, and reports it to the base station.
  • FIG. 5 is a base station according to an embodiment of the present invention, which includes a sending unit 51, a receiving unit 52, and a determining and processing unit 53.
  • the sending unit 51 is configured to: send a training pilot signal to the terminal;
  • the receiving unit 52 is configured to: receive the determination result indication information that is generated by the terminal according to the training pilot signal, where the determination result indication information is used to indicate that the base station determines whether to continue the iteration;
  • the determining and processing unit 53 is configured to: determine whether to continue the iteration according to the determination result indication information.
  • the determining and processing unit 53 is further configured to:
  • Hierarchical information carries related information that the terminal divides the CQI information into different levels.
  • FIG. 6 is a terminal provided by an embodiment of the present invention, which includes a sending unit 61, a receiving unit 62, and a determining and processing unit 63, where
  • the receiving unit 62 is configured to: receive a training pilot signal sent by the base station, and perform receiving processing on the training pilot signal;
  • the determining and processing unit 63 is configured to: generate a determination result indication information according to the training pilot signal;
  • the sending unit 61 is configured to: send the determination result indication information to the base station, so that the base station determines whether to continue the iteration according to the determination result indication information.
  • the determining and processing unit 63 is configured to generate the determination result indication information according to the training pilot signal as follows:
  • the determining result indication information includes whether to continue the iteration and whether the training is successful a bit, the whether to continue the iteration and the training success flag includes three status bits, a first status bit, a second status bit, and a third status bit, wherein the first status bit indicates that the iteration continues after the iteration The second status bit indicates that the iteration is ended after the iteration and the training fails. The third status bit indicates that the iteration is ended after the iteration and the training is successful.
  • the determining and processing unit 63 is configured to generate the determination result indication information according to the training pilot signal as follows:
  • the determining result indicates that the information is carried by whether to end the iteration flag bit; whether the end iteration flag bit includes two status bits, a first status bit and a second status bit, where:
  • the first status bit indicates the end of the iteration after this iteration.
  • the second status bit indicates that the iteration continues after this iteration.
  • the determining and processing unit 63 is further configured to: determine, according to the training pilot signal, whether the training is successful; the sending unit 61 is further configured to: send a result of determining whether the training is successful Said base station.
  • the sending unit 61 sends a result of determining whether the training is successful to the base station by sending the training success flag.
  • Whether the training success flag includes the first status bit and the second status bit, wherein:
  • the first status bit indicates that the training is successful.
  • the second status bit indicates that the training failed.
  • the sending unit 61 is further configured to:
  • the channel quality indication CQI information is reported to the base station.
  • the sending unit 61 is configured to report CQI information to the base station according to the following manner: The CQI information is jointly reported when the judgment result indication information is sent to the base station.
  • the CQI information is differential CQI information.
  • the differential CQI information is a specific differential CQI value.
  • the differential CQI information is a differential CQI level value.
  • the sending unit 61 is further configured to: report the differential CQI information to the base station according to the configuration information sent by the base station.
  • the configuration information is specific differential CQI value or differential CQI level information.
  • the receiving unit 62 is further configured to: receive the hierarchical information sent by the base station, where the hierarchical information includes a division of different levels of CQI information;
  • the determining and processing unit 63 is further configured to: configure its own CQI level information according to the rating information.
  • the determining and processing unit 63 is further configured to: divide the CQI information into different levels; the sending unit 61 is further configured to: feed back related hierarchical information to the base station.
  • An embodiment of the present invention provides a beam quality information feedback method and system, where a base station sends a training pilot signal to the terminal, and receives a judgment result indication information returned by the terminal according to the training pilot signal, where the determining The result indication information indicates whether the base station continues to perform iteration, and determines whether to continue the iteration according to the determination result indication information; the terminal selects to receive the training pilot signal sent by the base station, and performs reception processing on the training pilot signal, 4 And generating a judgment result indication information according to the training pilot signal, and transmitting the judgment result indication information to the base station, indicating whether the base station continues to perform iteration.
  • the technical solution of the invention realizes the control of the beam training process by the terminal, and solves the problem that the signaling reporting mechanism is lacking in the beam training.
  • the various devices/function modules/functional units in the above embodiments may be implemented using a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • Each device/function module/functional unit in the above embodiments can be stored in a computer readable storage medium when implemented in the form of a software function module and sold or used as a standalone product.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like. It is to be understood by those skilled in the art that variations or substitutions are within the scope of the present invention. Therefore, the scope of protection of the present invention should be determined by the scope of the claims.
  • An embodiment of the present invention provides a beam quality information feedback method and system, where a base station sends a training pilot signal to the terminal, and receives a judgment result indication information returned by the terminal according to the training pilot signal, where the determining The result indication information indicates whether the base station continues to perform iteration, and determines whether to continue the iteration according to the determination result indication information; the terminal selects to receive the training pilot signal sent by the base station, and performs reception processing on the training pilot signal, 4 And generating a judgment result indication information according to the training pilot signal, and transmitting the judgment result indication information to the base station, indicating whether the base station continues to perform iteration.
  • the technical solution of the invention realizes the control of the beam training process by the terminal, and solves the problem that the signaling reporting mechanism is lacking in the beam training. Therefore, the present invention has a strong industrial applicability.

Abstract

 一种波束质量信息反馈方法和系统。涉及通信领域;解决了在波束训练中缺少信令上报机制的问题。该方法包括:终端选择接收基站发送的训练导频信号,并对所述训练导频信号进行接收处理;所述终端根据所述训练导频信号生成判断结果指示信息,并将该判断结果指示信息发送给所述基站,指示所述基站是否继续进行迭代。上述技术方案适用于4G网络,实现了终端对波束训练过程的控制。

Description

波束质量信息反馈方法和系统
技术领域
本发明涉及波束质量信息反馈技术领域, 尤其涉及一种波束质量信息反 馈方法和系统。
背景技术
无线通信系统中, 发送端和接收端釆取空间复用的方式使用多根天线来 获取更高的速率。 相对于一般的空间复用方法, 一种被广泛应用的技术是接 收端反馈信道信息给发送端, 发送端根据获得的信道信息使用一些发射预编 码技术, 极大地提高传输性能。 对于单用户多输入多输出 (Multi-input Multi-output, MIMO ) , 直接使用信道特征矢量信息进行预编码; 对于多用 户 ΜΙΜΟ, 需要比较准确的信道信息。
在 4G的一些技术如 LTE, 802.16m标准规范中, 信道信息的反馈主要是 利用较简单的单一码本的反馈方法, 而 MIMO的发射预编码技术的性能更依 赖于其中码本反馈的准确度。 这里将基于码本的信道信息量化反馈的基本原 理简要阐述如下:
假设有限反馈信道容量为 bps/Hz, 那么可用的码字的个数为 w = 2B个。 信道矩阵的特征矢量空间经过量化构成码本空间 = {FlF2'"F 。发射端与接 收端共同保存或实时产生此码本(收发端相同 ) 。 根据接收端所获得的信道 矩阵 H, 接收端根据一定准则从 中选择一个与信道最匹配的码字 并将 码字序号 ζ'反馈回发射端。这里,码字序号称为 PMI( Precoding Matrix Indicator, 预编码矩阵指示符)。 发射端根据此序号' '找到相应的预编码码字 从而获 得信道信息, 表示了信道的特征矢量信息。
随着无线通信技术的高速发展,用户无线应用越来越丰富,带动了无线数 据业务迅速增长。 据预测, 未来 10年间, 数据业务以每年 1.6-2倍速率增长。 这给无线接入网络带来了巨大的挑战。 多天线技术是应对无线数据业务爆发 式增长挑战的关键技术,目前 4G中支持的多天线技术仅仅支持最大 8端口的 水平维度波束赋形技术, 还有较大的潜力进一步地大幅提升系统容量。
Massive MIMO 技术是下一代通信技术中的一个关键的增强技术, Massive MIMO 系统主要特征为: 基站侧配置有大规模天线阵列, 比如 100 个天线, 甚至更多, 在数据传输的时候, 利用 MU-MIMO技术, 同时同频复 用多个用户, 一般来说, 天线数目与复用用户数目比例维持在 5-10倍左右。 可以证明, 无论是在视距环境的强相关信道, 还是富散射下的非相关信道, 任意两个用户的信道之间的相关系数随着天线数目的增加成指数形式衰减, 比如当基站侧配置有 100根天线时, 任意两个用户的信道之间相关系数趋近 于 0, 也就是说多用户对应信道之间接近正交。 另一方面, 大阵列可以带来 非常可观的阵列增益和分集增益。
对于 Massive MIMO来说, 由于大量天线的引入, 传统的方法是: 每根 天线发送信道测量导频 CSI-RS, 终端检测 CSI-RS并通过信道估计获得每个 传输资源对应的信道矩阵, 根据信道矩阵获得最佳的基带上每个频域子带预 编码矢量和宽带的最佳传输层数信息, 然后基于前面介绍的码本反馈技术进 行反馈。 这种方式在 massive MIMO中应用时存在比较大的问题, 主要体现 在,导频开销会随 Nt增多而增加,天线数多时导频开销非常巨大,除此之外, 由于反馈时使用的码本中需要包含非常多的码字, 码字的选择十分困难, 造 成终端大量的复杂度增加, 几乎无法实现, 或者需要付出巨大的成本代价。 码本反馈的开销也很大,使得上行链路开销巨大。因此一般来说,对于 massive MIMO, 更好的方式是釆用波束赋形权值训练方法, 可以有效地减小导频和 反馈开销, 并使系统获得较好的预编码性能。
波束训练技术的基本原理如图 1所示,定义由基站向终端发送训练导频, 终端将收到的数据经过处理后发送给基站的过程称为一次迭代过程。 经过多 次迭代后结束迭代称为完成一次训练过程。 迭代示意图如图 1所示。
波束训练原理介绍:
步骤 1 : 基站向终端发送训练导频;
步骤 2: 终端接收训练导频并进行接收处理;
步骤 3: 终端向基站发送处理后的训练导频; 步骤 4: 基站接收终端发送的训练导频并进行处理;
重复步骤 1-4直到训练完成。
下面的公式表示了这种波束训练可以带来的有益效果:
H = (TjMj + <T2M2 + · · -Ovu l ( ) 这里 σι ... 是奇异值, ul-up是左特征矢量, vl-vp是右特征矢量 (
H2m = ( HHH = HHH HHH x · · ·ΗΗ H
定义 (2)
H2m+l =H(HHH)m =HxHHHxHHHx---HHH
(3 )
可以发现:
Figure imgf000005_0001
1 Η (投影矩阵形式), ― 1 11
一般情况下认为当 >100^ 即可认为^
通过数次的迭代即可达到上述效果。 经过多次迭代后, 预编码矢量可以很好 地与信道特征向量相匹配, 从而使终端获得更准确的预编码, 提高系统的信 噪比。
相关技术中波束赋形训练方法受噪声影响比较大, 设每次训练开始时, 初始的 为任意 Ntxl的矢量, 由于 p (p=Nt) 个特征矢量是 Nt维空间的一组
=ycv
基, 因此一定可以将 表示为 考虑到前面的结论 ^"^ ^ ,
H - όλ ηλνλ 那么有
H2 = clVl (4)
H t =σ1 cxux (5) 对其进行归一化处理即可得到特征矢量, 且该特征矢量获得后仍然可以 对于该训练算法来说, 合适的迭代次数选择对于该方案至关重要, 如果迭代 次数选择不合适, 例如迭代次数过多, 不仅会造成资源的浪费, 而且会使训 练时间变长, 反馈的迭代信息就会失效; 而训练时间过短可能会造成当前的 信号质量不足以完成数据传输,或者经过更多次训练后可以获得更好的性能, 提高整个系统的传输能力。 而支撑完善的迭代次数选择机制的即为终端向基 站反馈的信令, 只有信令反馈的合适与准确, 基站和终端才能更好地完成训 练。
信令反馈中一个重要的反馈为 CQI反馈, CQI ( Channel Quality Indicator, 信道质量指示)是 CSI信息的重要组成部分, 通过终端上报的 CQI信息, 基 站可以了解当前信道状况, 并决定釆用何种传输方式以及调制编码方式进行 传输。 在波束训练算法中, 终端向基站上报的 CQI信息也是十分关键的, 基 站可以根据当前 CQI信息查看当次训练情况, 并根据此信息决定训练是否需 要继续, 因此选择合适的 CQI等信令上报方式对波束训练十分必要。 发明内容
本发明实施例提供了一种波束质量信息反馈方法和系统, 解决了在波束 训练中缺少信令上报机制的问题。
为解决上述技术问题, 釆用如下技术方案: 一种波束质量信息反馈方法, 包括:
基站向终端发送训练导频信号;
所述终端接收所述基站发送的训练导频信号;
所述终端根据所述训练导频信号生成判断结果指示信息, 并将该判断结 果指示信息发送给所述基站, 所述基站根据该判断结果指示信息判断是否继 续进行迭代。 可选地, 所述终端根据所述训练导频信号生成判断结果指示信息的步骤 包括:
所述终端根据所述训练导频信号判断是否继续进行迭代及此次训练是否 成功;
所述终端生成包含是否继续进行迭代及此次训练是否成功相关信息的所 述判断结果指示信息。 可选地, 所述判断结果指示信息包括是否继续迭代和训练是否成功标志 位, 所述是否继续迭代和训练是否成功标志位至少包含第一状态位、 第二状 态位和第三状态位这三种状态位, 其中, 所述第一状态位指示此次迭代后继 续进行迭代, 所述第二状态位指示此次迭代后结束迭代并且训练失败, 所述 第三状态位指示此次迭代后结束迭代并且训练成功。 可选地, 所述终端根据所述训练导频信号生成判断结果指示信息的步骤 包括:
所述终端根据所述训练导频信号判断是否继续进行迭代, 生成包含该判 断结果的判断结果指示信息。 可选地, 所述判断结果指示信息通过是否结束迭代标志位携带; 所述是否结束迭代标志位包含第一状态位和第二状态位这两种状态位, 其中:
所述第一状态位表示此次迭代后迭代结束,
所述第二状态位表示此次迭代后继续迭代。 可选地, 该方法还包括:
所述终端根据所述训练导频信号判断此次训练是否成功, 并将判断此次 训练是否成功的结果发送给所述基站。 可选地, 所述终端通过发送此次训练是否成功标志位向所述基站发送判 断此次训练是否成功的结果;
所述此次训练是否成功标志位包含第一状态位和第二状态位这两种状态 位, 其中:
所述第一状态位表示此次训练成功,
所述第二状态位表示此次训练失败。 可选地, 该方法还包括:
当所述是否继续迭代和训练是否成功标志位指示此次迭代后迭代结束并 且训练成功时, 终端上报信道质量指示 CQI信息。 可选地, 终端上报 CQI信息的步骤包括:
所述终端在发送所述判断结果指示信息的同时联合上报 CQI信息。 可选地, 所述 CQI信息为差分 CQI信息。 可选地, 所述差分 CQI信息为具体的差分 CQI值。 可选地, 所述差分 CQI信息为差分 CQI等级值。 可选地, 该方法还包括:
所述终端根据所述基站发送的配置信息,向所述基站上报差分 CQI信息。 可选地, 所述配置信息为具体差分 CQI值或差分 CQI等级信息。 可选地, 该方法还包括:
所述终端接收所述基站发送的分级信息, 在所述分级信息中包含有对
CQI信息不同等级的划分;
所述终端根据所述分级信息配置自己的 CQI等级信息。 可选地, 该方法还包括:
所述终端将 CQI信息划分成为不同的等级, 并将分级信息反馈给所述基 站。 一种波束质量信息反馈方法, 包括:
基站向终端发送训练导频信号;
终端接收所述基站发送的训练导频信号, 根据所述训练导频信号生成判 断结果指示信息, 并将所述判断结果指示信息返回给所述基站, 其中, 在所 述判断结果指示信息中指示了所述基站是否继续进行迭代;
所述基站接收所述终端返回的判断结果指示信息, 并根据所述判断结果 指示信息判断是否继续进行迭代。 可选地, 该方法还包括: 所述基站对差分 CQI方式进行配置并生成配置信息, 将所述配置信息发 送给所述终端。 可选地, 该方法还包括:
基站对终端上报差分 CQI的门限进行配置, 并将配置信息发送给终端。 可选地, 该方法还包括:
所述基站将 CQI信息划分为不同的等级, 并将包含划分的不同等级相关 信息的分级信息通知给所述终端。 可选地, , 该方法还包括:
基站接收终端返回的分级信息, 所述分级信息中携带有终端将 CQI信息 划分成为不同的等级的相关信息。
一种基站, 包括发送单元、 接收单元、 及判断和处理单元, 其中, 所述发送单元配置成: 向终端发送训练导频信号;
所述接收单元配置成: 接收所述终端发来的根据所述训练导频信号生成 的判断结果指示信息, 其中, 所述判断结果指示信息用于指示所述基站判断 是否继续进行迭代;
所述判断和处理单元配置成: 根据所述判断结果指示信息判断是否继续 进行迭代。
可选地, 所述判断和处理单元还配置成:
对差分 CQI方式进行配置并生成配置信息, 将所述配置信息发送给所述 终端;
对所述终端上 差分 CQI的门限进行配置, 并将配置信息发送给所述终 端;
将 CQI信息划分为不同的等级, 并将包含划分的不同等级相关信息的分 级信息通知给所述终端; 或
接收所述终端返回的分级信息, 所述分级信息中携带有所述终端将 CQI 信息划分成为不同的等级的相关信息。 一种终端, 其包括发送单元、 接收单元、 及判断和处理单元, 其中, 所述接收单元配置成: 接收基站发送的训练导频信号, 并对所述训练导 频信号进行接收处理;
所述判断和处理单元配置成: 4艮据所述训练导频信号生成判断结果指示 信息;
所述发送单元配置成: 将所述判断结果指示信息发送给所述基站, 以便 于所述基站根据该判断结果指示信息判断是否继续进行迭代。
可选地, 所述判断和处理单元配置成按照如下方式根据所述训练导频信 号生成判断结果指示信息:
根据所述训练导频信号判断是否继续进行迭代及此次训练是否成功; 生成包含是否继续进行迭代及此次训练是否成功相关信息的所述判断结 果指示信息。 可选地, 所述判断结果指示信息包括是否继续迭代和训练是否成功标志 位, 所述是否继续迭代和训练是否成功标志位包含第一状态位、 第二状态位 和第三状态位这三种状态位, 其中, 所述第一状态位指示此次迭代后继续进 行迭代, 所述第二状态位指示此次迭代后结束迭代并且训练失败, 所述第三 状态位指示此次迭代后结束迭代并且训练成功。 可选地, 所述判断和处理单元设置成按照如下方式根据所述训练导频信 号生成判断结果指示信息:
根据所述训练导频信号判断是否继续进行迭代, 生成包含该判断结果的 判断结果指示信息。 可选地, 所述判断结果指示信息通过是否结束迭代标志位携带; 所述是否结束迭代标志位包含第一状态位和第二状态位这两种状态位, 其中:
所述第一状态位表示此次迭代后迭代结束,
所述第二状态位表示此次迭代后继续迭代。 可选地, 所述判断和处理单元还配置成: 根据所述训练导频信号判断此 次训练是否成功; 所述发送单元还设置成: 将判断此次训练是否成功的结果发送给所述基 站。
送判断此次训练是否成功的结果;
所述此次训练是否成功标志位包含第一状态位和第二状态位这两种状态 位, 其中:
所述第一状态位表示此次训练成功,
所述第二状态位表示此次训练失败。 可选地, 所述发送单元还配置成:
当所述是否继续迭代和训练是否成功标志位指示此次迭代后迭代结束并 且训练成功时, 向基站上报信道质量指示 CQI信息。 可选地, 所述发送单元设置成按照如下方式向基站上报 CQI信息: 在向基站发送所述判断结果指示信息的同时联合上报 CQI信息。 可选地, 所述 CQI信息为差分 CQI信息。 可选地, 所述差分 CQI信息为具体的差分 CQI值。 可选地, 所述差分 CQI信息为差分 CQI等级值。 可选地, 所述发送单元还配置成: 根据所述基站发送的配置信息, 向所 述基站上报差分 CQI信息。 可选地, 所述配置信息为具体差分 CQI值或差分 CQI等级信息。 可选地, 所述接收单元还配置成: 接收所述基站发送的分级信息, 在所 述分级信息中包含有对 CQI信息不同等级的划分; 所述判断和处理单元还配置成: 根据所述分级信息配置自己的 CQI等级 信息。 可选地, 所述判断和处理单元还配置成: 将 CQI信息划分成为不同的等 级; 所述发送单元还设置成: 将分级信息反馈给所述基站。 一种波束质量信息反馈系统, 包括基站和终端:
所述基站设置成向所述终端发送训练导频信号, 接收所述终端根据所述 训练导频信号返回的判断结果指示信息, 在所述判断结果指示信息中指示所 述基站是否继续进行迭代, 根据所述判断结果指示信息判断是否继续进行迭 代;
所述终端设置成选择接收基站发送的训练导频信号, 并对所述训练导频 信号进行接收处理, 根据所述训练导频信号生成判断结果指示信息, 并将该 判断结果指示信息发送给所述基站, 指示所述基站是否继续进行迭代。
本发明实施例提供了一种波束质量信息反馈方法和系统, 基站向所述终 端发送训练导频信号, 接收所述终端根据所述训练导频信号返回的判断结果 指示信息, 在所述判断结果指示信息中指示所述基站是否继续进行迭代, 根 据所述判断结果指示信息判断是否继续进行迭代; 终端选择接收基站发送的 训练导频信号, 并对所述训练导频信号进行接收处理, 4艮据所述训练导频信 号生成判断结果指示信息, 并将该判断结果指示信息发送给所述基站, 指示 所述基站是否继续进行迭代。 本发明的技术方案实现了终端对波束训练过程 的控制, 解决了在波束训练中缺少信令上报机制的问题。 附图说明
图 1是本发明的实施例一提供的一种波束质量信息反馈方法的流程图; 图 2是本发明的实施例一提供的一种波束质量信息反馈方法的流程图; 图 3是本发明的实施例三提供的一种波束质量信息反馈方法的流程图; 图 4是本发明的实施例四提供的一种波束质量信息反馈方法的流程图; 图 5是本发明的实施例八提供的一种基站的示意图;
图 6是本发明的实施例九提供的一种终端的示意图。 具体实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
定义在同一次训练中, 相邻两次迭代如第 i次与第 i-1次迭代之间的信号 质量比值为 ^, i为大于 1的正整数。 所述信号质量包括但不限于信噪比、 信 干噪 比, 并用 R表示。
Figure imgf000013_0001
实施例一:
本实施例提供了一种波束质量信息反馈方法, 图 2是根据本发明实施例 的波束质量信息反馈方法的第一流程图, 该方法包括:
步骤 201 : 终端获取此次训练的信号状态信息。
步骤 202: 终端计算是否需要继续迭代、 此次训练是否成功, 并组成至 少 2bit的反馈报告。
步骤 203: 终端将反馈报告在物理上行控制信道或者物理上行共享信道 上进行反馈。
下面对各步骤的具体操作流程进行详细说明。 具体操作步骤如下:
( 1 )基站为终端配置最大迭代次数, 具体操作为:
( 1.1 )基站在下行控制信道上给终端发送最大迭代次数 N信息, 发送的 最大迭代次数 N信息可以直接为次数 N, 或者为代表 N等级的标志位, 基站 可以根据终端信道环境或其它信息, 为不同终端配置相同或不同的最大迭代 次数, 也可以为同一终端不同时刻配置相同或者不同的最大迭代次数; 最大 迭代次数 N等级标志位可以表示成如表 1所示形式。
表 1 等级 Index 迭代次数
0 5
1 10
2 15
3 保留
( 1.2 )终端在下行控制信道上获取最大迭代次数信息, 并配置自身的最 大迭代次数。
( 2 )基站为终端配置提前结束训练判断标准, 具体操作为:
( 2.1 )基站在下行控制信道上给终端发送提前结束训练判断准则信息, 发送的判断准则可以为信号质量门限信息, 或者为 4门限 信息; 所述门限 信息可以为具体的 值, 或者 等级;
( 2.2 )终端在下行控制信道上获取提前结束训练判断门限信息信息, 并 对自身的门限进行配置。
( 3 )基站在 ^ 个 OFDM符号内, 连续或者非连续地在约定的导频位 置上给终端发送训练导频信号, ^ 为正整数; 基站发送的 OFDM符号可以 为周期发送或者非周期发送的;
( 4 )终端选择在 ^ 个 OFDM符号内接收基站发送的训练导频信号, 并计算对应的接收信号的信号质量信息并进行记录, 信号质量信息可以为接 收功率, 也可以是接收信噪比、 接收信干噪比、 接收载干噪比等, 其中, 第 i个 OFDM符号对应的信号质量信息为 ^ ' , i = U
( 5 )终端获取当次迭代的次数 m; 终端可以通过约定的导频位置获取当 次的迭代次数;
( 6 )终端将迭代次数 m与最大迭代次数 N对比, 如果 m等于 N, 则在 上行控制信道或者数据信道上向基站反馈结束迭代, 训练完成; 如果 m小于 N, 则进入到步骤(7 );
( 7 )终端通过记录的信道质量信息判断是否提前结束迭代, 如果可提前 结束迭代, 则终端向基站反馈迭代结束; 如果需要继续训练, 则终端向基站 反馈训练继续; 终端可以根据当前 CQI等级判断是否需要提前结束迭代, 也 可以通过 CQI等级变化判断是否提前结束迭代。
如果终端判断迭代继续则直接进去步骤(9 ); 如果终端判断迭代结束则 进入步骤( 8 )
( 8 )终端根据门限判断该次训练是否成功:
终端将最后一次迭代的信号质量与信号质量门限^ ^进行对比, 当信号 质量大于或者等于^ ^时, 则训练成功, 若信号质量小于^ ^时, 则训练失 败; 或者, 当信号质量大于^ ^时, 则训练成功, 若信号质量等于或者小于 时, 则训练失败。
( 9 )终端将是否继续迭代、 训练是否成功联合编码为 2bits的报告上报, 所述报告至少包含 3个状态位, 如表 2所示。
表 2
Figure imgf000015_0001
终端按本次迭代情况, 选择一个状态位上报, 如终端计算得到迭代继续, 则选择 index为 0上 4艮; 如果终端计算此次迭代后迭代结束且训练成功,则选 择 index为 1上 如果终端计算此次迭代后迭代结束且训练失败, 则选择 index为 2上才艮。
( 10 )终端将接收到的训练信号归一化, 得到 在^ 2个 0FDM符号 内,连续或者非连续地在约定的导频位置上给基站发送归一化的接收信号 ;
( 11 )基站选择在 ^ 2个 OFDM符号内接收终端发送的训练导频信号; ( 12 )基站选择接收终端反馈的是否继续迭代与训练是否成功标志位, 通过标志位反馈信息决定是否继续进行迭代; 若继续进行迭代, 则将收到训 练导频信息归一化得到 , 为新的训练导频。
重复步骤(3) - (12) , 直至步骤(6)或 (7) 中基站收到终端反馈结 束迭代。
实施例二:
终端向基站分别上报训练是否成功, 迭代是否继续, 具体操作步骤如下: ( 1 )基站为终端配置最大迭代次数;
( 1.1 )基站在下行控制信道上给终端发送最大迭代次数 N信息, 发送的 最大迭代次数 N信息可以直接为次数 N, 或者为代表 N等级的标志位, 基站 可以根据终端信道环境或其它信息, 为不同终端配置相同或不同的最大迭代 次数, 也可以为同一终端不同时刻配置相同或者不同的最大迭代次数;
(1.2)终端在下行控制信道上获取最大迭代次数信息, 并通过该信息 配置自身的最大迭代次数;
(2)基站为终端配置提前结束训练判断标准:
( 2.1 )基站在下行控制信道上给终端发送提前结束训练判断准则信息, 发送的判断准则包括但不限于信号质量门限信息 R, 或者为 门限 信 息; 所述门限 信息可以为具体的 值, 或者 等级;
(2.2)终端在下行控制信道上获取提前结束训练判断门限信息, 并根 据所述信息对自身的门限进行配置。
(3)基站在 ^ 个 OFDM符号内, 连续或者非连续地在约定的导频位 置上给终端发送训练导频信号, ^ 为正整数; 基站发送的 OFDM符 号可以为周期发送或者非周期发送的;
( 4 )终端选择在 NB 个 OFDM符号内接收基站发送的训练导频信号, 并计算对应的接收信号的信号质量信息并进行记录,信号质量信息可以 为接收功率, 也可以是接收信噪比、 接收信干噪比、 接收载干噪比等, 其中, 第 i个 OFDM符号对应的信号质量信息为 ^', i = U
(5)终端获取当次迭代的次数 m; 终端可以通过约定的导频位置获取当次的 迭代次数;
( 6 )终端将迭代次数 m与最大迭代次数 N对比, 如果 m等于 N, 则在上行 控制信道或者数据信道上向基站反馈结束迭代, 训练完成; 如果 m小于 N, 则进入到步骤(7 );
( 7 )终端通过记录的信道质量信息判断是否提前结束迭代, 如果可提前结束 迭代, 则终端向基站反馈迭代结束; 如果需要继续训练, 则终端向基站反馈 训练继续, 终端可以根据当前 CQI等级判断是否需要提前结束迭代, 也可以 通过 CQI等级变化情况判断是否提前结束迭代。
如果终端判断迭代继续则直接进去步骤(9 ); 如果终端判断迭代结束则 进入步骤( 8 )
( 8 )终端根据门限判断该次训练是否成功:
终端将最后一次迭代的信号质量与信号质量门限^ ^进行对比, 当信号 质量大于或者等于^ ^时, 训练成功, 若信号质量小于^ ^时, 训练失败; 或者, 当信号质量大于^ ^时,训练成功,若信号质量等于或者小于^ ^时, 训练失败;
( 9 )终端将是否继续迭代标志位上报给基站, 如表 3所示。
表 3
Figure imgf000017_0001
上报 lndexl=0表示此次迭代后继续迭代;上报 Indexl=l表示此次迭代后 结束迭代;
只有当终端判断迭代结束后, 才向基站上班训练是否成功标志位上报, 如表 4所示。
表 4
Figure imgf000017_0002
Figure imgf000018_0001
终端按本次迭代情况, 选择一个状态位上报, 如终端计算训练成功, 则 选择 Index2为 0上报; 如果终端计算此次训练失败, 则选择 index为 1上报。
(10)终端将接收到的训练信号归一化, 得到 在^ 201^)^1符号内, 连续或者非连续地在约定的导频位置上给基站发送归一化的接收信号
(11)基站选择在 ^ 2个 OFDM符号内接收终端发送的训练导频信号;
(12)基站选择接收终端反馈的是否继续迭代标志位, 通过标志位反馈信息 决定是否继续进行迭代; 若继续进行迭代, 则将收到的训练导频信息归一化 得到 ^, ^为新的训练导频;基站选择接收终端反馈训练是否成功标志位, 确 定该次训练是否成功。
重复步骤(3) - (12) , 直至步骤(6)或 (7) 中基站收到终端反馈结 束迭代。
实施例三: 图 3是根据本发明实施例的信道反馈方法的第一流程图, 如图 3所示, 该方法包括:
步骤 301: 终端获取此次训练的信号状态信息。 步骤 302: 终端计算是否需要继续迭代、 此次训练是否成功, 并与 CQI 起组成 5bit的反馈报告。
步骤 303: 终端将反馈报告在物理上行控制信道或者物理上行共享信道 上进行反馈。 该步骤给出了一种训练结束标志, 使基站接收到反馈信息后可以确定是 否继续进行训练或者是否进行数据传输, 并获得当前系统 CQI值, 具体的实 施过程为:
(1)如实施例一所示, 基站为终端配置最大迭代次数;
(2)如实施例一所示, 基站为终端配置提前结束训练判断标准;
( 3 )基站在 ^ 个 OFDM符号内, 连续或者非连续地在约定的导频位置上 给终端发送训练导频信号, ■为正整数; 基站发送的 OFDM符号可以为周 期发送或者非周期发送的;
( 4 )终端选择在 "个 OFDM符号内接收基站发送的训练导频信号, 并计 算对应的接收信号的信号质量信息并进行记录, 信号质量信息可以为接收功 率, 也可以是接收信噪比、 接收信干噪比、 接收载干噪比等, 其中, 第 i个 OFDM符号对应的信号质量信息为 CQ1' , i = U
( 5 )终端获取当次迭代的次数 m; 终端可以通过约定的导频位置获取当次的 迭代次数;
( 6 )终端将迭代次数 m与最大迭代次数 N对比, 如果 m等于 N, 则在上行 控制信道或者数据信道上向基站反馈结束迭代, 训练完成; 如果 m小于 N, 则进入到步骤(7 );
( 7 )终端通过记录的信道质量信息判断是否提前结束迭代, 如果可提前结束 迭代, 则终端向基站反馈迭代结束; 如果需要继续训练, 则终端向基站反馈 训练继续;
如果终端判断迭代继续则直接进去步骤(9 ); 如果终端判断迭代结束则 进入步骤 ( 8 )
( 8 )终端根据门限判断该次训练是否成功, 判断方法如实施例 4-1步骤( 8 ) 所示。
( 9 )终端将是否需要继续迭代、 此次训练是否成功和 CQI进行联合编码, 并得到 5bit的反馈报告进行反馈, 所述 5bit反馈报告用于指示此次迭代后迭 代是否继续和训练是否成功, 训练成功时的 CQI值. 5bits反馈报告如表 5所 示。
Figure imgf000019_0001
是否继续迭代
CQI值 ( 4bit ) 表示含义
( lbit )
0 _ 继续进行迭代 结束迭代,训练成功, CQI值为 CQI
1 1-15
指示数值
Figure imgf000020_0001
(10)终端将接收到的训练信号归一化, 得到 ι, 在7 2个 OFDM符号内, 连续或者非连续地在约定的导频位置上给基站发送归一化的接收信号
(11)基站选择在 ^ 2个 OFDM符号内接收终端发送的训练导频信号;
(12)基站选择接收终端反馈的反馈报告, 通过报告确定迭代是否继续, 训 练是否成功;
(13)若继续进行迭代, 则将收到训练导频信息归一化得到 ^, ^为新的训 练导频;
重复步骤(3) - (13) , 直至步骤(6)或 (7) 中基站收到终端反馈结 束迭代。
实施例四:
图 4是根据本发明实施例的信道反馈方法的第一流程图, 该方法包括: 步骤 401: 终端获取此次训练的 SNR信息。
步骤 402: 终端计算是否需要继续迭代、 此次训练是否成功, 并与 CQI 起组成 6bit的反馈报告。
步骤 403: 终端将反馈报告在物理上行控制信道或者物理上行共享信道 上进行反馈。
本发明实施例中,终端上报的 5bits报告可以为 6bits,具体的联合编码方 式如表 6所示.
表 6
Figure imgf000020_0002
1 1 1-15 迭代结束, 训练成功, 当 前 CQI为指示值 将是否需要继续迭代、 此次训练是否成功和 CQI进行联合编码, 并得到 6bit 的反馈报告进行反馈, 该步骤给出了一种训练结束标志, 使基站接收到 反馈信息后可以确定是否继续进行训练或者是否进行数据传输, 并获得当前 系统 CQI值。 上述 6bit反馈报告用于指示此次迭代后迭代是否继续和训练是 否成功, 训练成功时的 CQI值. 具体操作过程为:
( 1 )如实施例一所示, 基站为终端配置最大迭代次数;
( 2 )如实施例一所示, 基站为终端配置提前结束训练判断标准;
( 3 )基站在 ^ 个 OFDM符号内, 连续或者非连续地在约定的导频位置上 给终端发送训练导频信号, ^ 为正整数; 基站发送的 OFDM符号可以为周 期发送或者非周期发送的;
( 4 )终端选择在 "个 OFDM符号内接收基站发送的训练导频信号, 并计 算对应的接收信号的信号质量信息并进行记录, 信号质量信息可以为接收功 率, 也可以是接收信噪比、 接收信干噪比、 接收载干噪比等, 其中, 第 i个 OFDM符号对应的信号质量信息为 CQ1' , I = UB
( 5 )终端获取当次迭代的次数 m; 终端可以通过约定的导频位置获取当次的 迭代次数;
( 6 )终端将迭代次数 m与最大迭代次数 N对比, 如果 m等于 N, 则在上行 控制信道或者数据信道上向基站反馈结束迭代, 训练完成; 如果 m小于 N, 则进入到步骤(7 );
( 7 )终端通过记录的信道质量信息判断是否提前结束迭代, 如果可提前结束 迭代, 则终端向基站反馈迭代结束; 如果需要继续训练, 则终端向基站反馈 训练继续;
如果终端判断迭代继续则直接进去步骤(9 ); 如果终端判断迭代结束则 进入步骤 8 )
( 8 )如实施例一所述, 终端根据门限判断该次训练是否成功; (9)终端将是否需要继续迭代、 此次训练是否成功和 CQI进行联合编码, 并得到 6bit的反馈报告进行反馈, 所述 6bit反馈报告用于指示此次迭代后迭 代是否继续和训练是否成功, 训练成功时的 CQI值.
(10)终端将接收到的训练信号归一化, 得到 在^ 201^)^1符号内, 连续或者非连续地在约定的导频位置上给基站发送归一化的接收信号 ;
(11)基站选择在 ^ 2个 OFDM符号内接收终端发送的训练导频信号;
(12)基站选择接收终端反馈的反馈报告, 通过报告确定迭代是否继续, 训 练是否成功;
(13)若继续进行迭代, 则将收到训练导频信息归一化得到 ^, ^为新的训 练导频;
重复步骤(3) - (13) , 直至步骤(6)或 (7) 中基站收到终端反馈结 束迭代。
实施例五:
在每次迭代中, 终端向基站上报的信道质量信息可为差分的 CQI信息, 具体操作过程为:
( 1 )基站为终端配置最大迭代次数, 具体操作步骤为:
( 1.1 )基站在下行控制信道上给终端发送最大迭代次数 N信息, 发送 的最大迭代次数 N信息可以直接为次数 N,或者为代表 N等级的标志 位, 基站可以根据终端信道环境或其它信息, 为不同终端配置相同或 不同的最大迭代次数, 也可以为同一终端不同时刻配置相同或者不同 的最大迭代次数;
(1.2)终端在下行控制信道上获取最大迭代次数信息, 并通过该信息 配置自身的最大迭代次数;
(2)基站为终端配置提前结束训练判断标准:
(2.1 )基站在下行控制信道上给终端发送提前结束训练判断准则信 息, 发送的判断准则包括但不限于信号质量门限信息 R, 或者为 门 限 信息; 所述门限 信息可以为具体的 值, 或者 等级;
( 2.2 )终端在下行控制信道上获取提前结束训练判断门限信息, 并根 据所述信息对自身的门限进行配置;
( 3 )基站在 ^ 个 OFDM符号内, 连续或者非连续地在约定的导频位置上 给终端发送训练导频信号, ^ 为正整数; 基站发送的 OFDM符号可以为周 期发送或者非周期发送的;
( 4 )终端选择在 "个 OFDM符号内接收基站发送的训练导频信号, 并计 算对应的接收信号的信号质量信息并进行记录, 信道质量信息可以为接收功 率, 也可以是接收信噪比、 接收信干噪比、 接收载干噪比等, 其中, 第 i个 OFDM符号对应的信道质量信息为 ^ ' , = 1''"'^,;
( 5 )终端根据相邻两次迭代的信号质量信息 ^¾ "、 ^¾ 计算该次上报的差 分 CQI值△;如果该次迭代为训练中的首次迭代,则直接上报真实 CQI信息;
Δ = CQI, - CQI^
( 6 )终端获取当次迭代的次数 m; 终端可以通过约定的导频位置获取当次的 迭代次数;
( 7 )终端将迭代次数 m与最大迭代次数 N对比, 如果 m等于 N, 则在上行 控制信道或者数据信道上向基站反馈结束迭代, 训练完成; 如果 m小于 N, 则进入到步骤(8 );
( 8 )终端通过预设条件判定该次迭代是否提前结束, 终端通过记录的信道质 量信息判断是否提前结束迭代, 如果可提前结束迭代, 则终端向基站反馈迭 代结束; 如果需要继续训练, 则终端向基站反馈训练继续; 终端可以根据当 前 CQI等级判断是否需要提前结束迭代,也可以通过 CQI等级变化情况判断 是否提前结束迭代。
( 9 )如果提前结束迭代, 则终端向基站反馈迭代结束; 如果需要继续训练, 则终端向基站反馈训练继续; 如果终端判断迭代结束, 则判断该次训练是否 成功:
终端将最后一次迭代的信号质量与信号质量门限^ ^进行对比, 当信号 质量大于或者等于^ ^时, 训练成功, 若信号质量小于^ ^时, 训练失败; 或者, 当信号质量大于^ ^时,训练成功,若信号质量等于或者小于^ ^时, 训练失败。
(10)终端将接收到的训练信号归一化, 得到 在^ 201^)^1符号内, 连续或者非连续地在约定的导频位置上给基站发送归一化的接收信号
(11 )终端向基站反馈信道状态信息, 其中包括差分的 CQI信息;
( 12 )基站选择在 ^ 2个 OFDM符号内接收终端发送的训练导频信号;
( 13)基站选择接收终端反馈的是否继续迭代标志位, 通过标志位反馈信息 决定是否继续进行迭代; 若继续进行迭代, 则将收到训练导频信息归一化得 到 ; ^为新的训练导频; (14)基站选择接收终端反馈的信道状态信息, 并通过差分 CQI信息与上次 迭代的 CQI值计算得到该次迭代的 CQI信息。 具体操作过程为:
(14.1 )在首次迭代中, 基站收到的 CQI信息为实际的 CQI值; 基站读 取终端上报的 CQI信息;
(14.2)在第二次及以后的迭代中, 基站收到的 CQI信息为差分 CQI信 息, 基站收到该次 CQI信息后与上次迭代后计算得到的 C2'-i相加, 得到该 次的 CQI信息, 并记录,
CQI^^+CQI^ i>2 重复步骤(3) - ( 14) , 直至步骤(7)或 (8) 中基站收到终端反馈结 束迭代。
实施例六: 实施例五中的步骤(5) 中的 CQI信息也可以为差分 CQI值等级, 等级 分类如表 7所示。
表 7
Figure imgf000024_0001
1 1
2 2
3 >3
4 <-4
5 -3
6 -2
7 -1
实施例七:
基站为终端配置最大迭代次数过程如下:
( 1 )基站在下行控制信道上给终端发送差分 CQI 配置信息, 发送的差 分 CQI配置信息可以为具体的差分值, 或者为差分 CQI等级信息, 基站可以 根据终端信道环境或其它信息, 为每个终端配置差分 CQI信息, 并且该信息 支持重配;
( 2 )终端在下行控制信道上获取差分 CQI 配置信息, 终端根据收到的 信息配置自身的 CQI信息;
( 3 )训练时, 如实施例五步骤(5 ) , 终端计算得到差分 CQI信息或者 其对应等级, 并将其上报给基站。
实施例八:
本发明实施例提供一种基站, 图 5是本发明的实施例提供的一种基站, 其包括发送单元 51、 接收单元 52、 及判断和处理单元 53 , 其中,
所述发送单元 51配置成: 向终端发送训练导频信号;
所述接收单元 52配置成:接收所述终端发来的根据所述训练导频信号生 成的判断结果指示信息, 其中, 所述判断结果指示信息用于指示所述基站判 断是否继续进行迭代; 所述判断和处理单元 53配置成:根据所述判断结果指示信息判断是否继 续进行迭代。
可选地, 所述判断和处理单元 53还配置成:
对差分 CQI方式进行配置并生成配置信息, 将所述配置信息发送给所述 终端;
对所述终端上 差分 CQI的门限进行配置, 并将配置信息发送给所述终 端;
将 CQI信息划分为不同的等级, 并将包含划分的不同等级相关信息的分 级信息通知给所述终端; 或
接收所述终端返回的分级信息, 所述分级信息中携带有所述终端将 CQI 信息划分成为不同的等级的相关信息。
实施例九:
本发明实施例提供一种终端, 图 6是本发明的实施例提供的一种终端, 其包括发送单元 61、 接收单元 62、 及判断和处理单元 63 , 其中,
所述接收单元 62配置成: 接收基站发送的训练导频信号, 并对所述训练 导频信号进行接收处理;
所述判断和处理单元 63配置成: 4艮据所述训练导频信号生成判断结果指 示信息;
所述发送单元 61配置成: 将所述判断结果指示信息发送给所述基站, 以 便于所述基站根据该判断结果指示信息判断是否继续进行迭代。
可选地,所述判断和处理单元 63配置成按照如下方式根据所述训练导频 信号生成判断结果指示信息:
根据所述训练导频信号判断是否继续进行迭代及此次训练是否成功; 生成包含是否继续进行迭代及此次训练是否成功相关信息的所述判断结 果指示信息。 可选地, 所述判断结果指示信息包括是否继续迭代和训练是否成功标志 位, 所述是否继续迭代和训练是否成功标志位包含第一状态位、 第二状态位 和第三状态位这三种状态位, 其中, 所述第一状态位指示此次迭代后继续进 行迭代, 所述第二状态位指示此次迭代后结束迭代并且训练失败, 所述第三 状态位指示此次迭代后结束迭代并且训练成功。 可选地,所述判断和处理单元 63设置成按照如下方式根据所述训练导频 信号生成判断结果指示信息:
根据所述训练导频信号判断是否继续进行迭代, 生成包含该判断结果的 判断结果指示信息。 可选地, 所述判断结果指示信息通过是否结束迭代标志位携带; 所述是否结束迭代标志位包含第一状态位和第二状态位这两种状态位, 其中:
所述第一状态位表示此次迭代后迭代结束,
所述第二状态位表示此次迭代后继续迭代。 可选地, 所述判断和处理单元 63还配置成: 根据所述训练导频信号判断 此次训练是否成功; 所述发送单元 61还设置成:将判断此次训练是否成功的结果发送给所述 基站。 可选地,所述发送单元 61通过发送此次训练是否成功标志位向所述基站 发送判断此次训练是否成功的结果;
所述此次训练是否成功标志位包含第一状态位和第二状态位这两种状态 位, 其中:
所述第一状态位表示此次训练成功,
所述第二状态位表示此次训练失败。 可选地, 所述发送单元 61还配置成:
当所述是否继续迭代和训练是否成功标志位指示此次迭代后迭代结束并 且训练成功时, 向基站上报信道质量指示 CQI信息。 可选地, 所述发送单元 61设置成按照如下方式向基站上报 CQI信息: 在向基站发送所述判断结果指示信息的同时联合上报 CQI信息。 可选地, 所述 CQI信息为差分 CQI信息。 可选地, 所述差分 CQI信息为具体的差分 CQI值。 可选地, 所述差分 CQI信息为差分 CQI等级值。 可选地, 所述发送单元 61还配置成: 根据所述基站发送的配置信息, 向 所述基站上报差分 CQI信息。 可选地, 所述配置信息为具体差分 CQI值或差分 CQI等级信息。 可选地, 所述接收单元 62还配置成: 接收所述基站发送的分级信息, 在 所述分级信息中包含有对 CQI信息不同等级的划分;
所述判断和处理单元 63 还配置成: 根据所述分级信息配置自己的 CQI 等级信息。 可选地, 所述判断和处理单元 63还配置成: 将 CQI信息划分成为不同 的等级; 所述发送单元 61还设置成: 将相关的分级信息反馈给所述基站。
本发明的实施例提供了一种波束质量信息反馈方法和系统, 基站向所述 终端发送训练导频信号 , 接收所述终端根据所述训练导频信号返回的判断结 果指示信息, 在所述判断结果指示信息中指示所述基站是否继续进行迭代, 根据所述判断结果指示信息判断是否继续进行迭代; 终端选择接收基站发送 的训练导频信号, 并对所述训练导频信号进行接收处理, 4艮据所述训练导频 信号生成判断结果指示信息, 并将该判断结果指示信息发送给所述基站, 指 示所述基站是否继续进行迭代。 本发明的技术方案实现了终端对波束训练过 程的控制, 解决了在波束训练中缺少信令上报机制的问题。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计 算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中 , 所述计算机程序在相应的硬件平台上(如系统、 设备、 装置、 器件等)执行, 在执行时, 包括方法实施例的步骤之一或其组合。 可选地, 上述实施例的全部或部分步骤也可以使用集成电路来实现, 这 些步骤可以被分别制作成一个个集成电路模块, 或者将它们中的多个模块或 步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬 件和软件结合。
上述实施例中的各装置 /功能模块 /功能单元可以釆用通用的计算装置来 实现, 它们可以集中在单个的计算装置上, 也可以分布在多个计算装置所组 成的网络上。
上述实施例中的各装置 /功能模块 /功能单元以软件功能模块的形式实现 并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。 上述提到的计算机可读取存储介质可以是只读存储器, 磁盘或光盘等。 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想 到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范 围应以权利要求所述的保护范围为准。
工业实用性
本发明的实施例提供了一种波束质量信息反馈方法和系统, 基站向所述 终端发送训练导频信号 , 接收所述终端根据所述训练导频信号返回的判断结 果指示信息, 在所述判断结果指示信息中指示所述基站是否继续进行迭代, 根据所述判断结果指示信息判断是否继续进行迭代; 终端选择接收基站发送 的训练导频信号, 并对所述训练导频信号进行接收处理, 4艮据所述训练导频 信号生成判断结果指示信息, 并将该判断结果指示信息发送给所述基站, 指 示所述基站是否继续进行迭代。 本发明的技术方案实现了终端对波束训练过 程的控制, 解决了在波束训练中缺少信令上报机制的问题。 因此本发明具有 4艮强的工业实用性。

Claims

权 利 要 求 书
1、 一种波束质量信息反馈方法, 包括:
基站向终端发送训练导频信号;
所述终端接收所述基站发送的训练导频信号;
所述终端根据所述训练导频信号生成判断结果指示信息, 并将该判断结 果指示信息发送给所述基站, 所述基站根据该判断结果指示信息判断是否继 续进行迭代。
2、 根据权利要求 1所述的波束质量信息反馈方法, 其中, 所述终端根据 所述训练导频信号生成判断结果指示信息的步骤包括:
所述终端根据所述训练导频信号判断是否继续进行迭代及此次训练是否 成功;
所述终端生成包含是否继续进行迭代及此次训练是否成功相关信息的所 述判断结果指示信息。
3、 根据权利要求 2所述的波束质量信息反馈方法, 其中, 所述判断结果 指示信息包括是否继续迭代和训练是否成功标志位, 所述是否继续迭代和训 练是否成功标志位至少包含第一状态位、 第二状态位和第三状态位这三种状 态位, 其中, 所述第一状态位指示此次迭代后继续进行迭代, 所述第二状态 位指示此次迭代后结束迭代并且训练失败, 所述第三状态位指示此次迭代后 结束迭代并且训练成功。
4、 根据权利要求 1所述的波束质量反馈方法, 其中, 所述终端根据所述 训练导频信号生成判断结果指示信息的步骤包括:
所述终端根据所述训练导频信号判断是否继续进行迭代, 生成包含该判 断结果的判断结果指示信息。
5、 根据权利要求 4所述的波束质量反馈方法, 其中, 所述判断结果指示 信息通过是否结束迭代标志位携带;
所述是否结束迭代标志位包含第一状态位和第二状态位这两种状态位, 其中:
所述第一状态位表示此次迭代后迭代结束,
所述第二状态位表示此次迭代后继续迭代。
6、 根据权利要求 1所述的波束质量反馈方法, 该方法还包括:
所述终端根据所述训练导频信号判断此次训练是否成功, 并将判断此次 训练是否成功的结果发送给所述基站。
7、 根据权利要求 6所述的波束质量反馈方法, 其中, 所述终端通过发送 此次训练是否成功标志位向所述基站发送判断此次训练是否成功的结果; 所述此次训练是否成功标志位包含第一状态位和第二状态位这两种状态 位, 其中:
所述第一状态位表示此次训练成功,
所述第二状态位表示此次训练失败。
8、 根据权利要求 3所述的波束质量信息反馈方法, 该方法还包括: 当所述是否继续迭代和训练是否成功标志位指示此次迭代后迭代结束并 且训练成功时, 终端上报信道质量指示 CQI信息。
9、 根据权利要求 8所述的波束质量信息反馈方法, 其中, 终端上报 CQI 信息的步骤包括:
所述终端在发送所述判断结果指示信息的同时联合上报 CQI信息。
10、根据权利要求 8或 9所述的波束质量信息反馈方法,其中,所述 CQI 信息为差分 CQI信息。
11、 根据权利要求 10 所述的波束质量信息反馈方法, 其中, 所述差分 CQI信息为具体的差分 CQI值。
12、 根据权利要求 10 所述的波束质量信息反馈方法, 其中, 所述差分 CQI信息为差分 CQI等级值。
13、 根据权利要求 8所述的波束质量信息反馈方法, 该方法还包括: 所述终端根据所述基站发送的配置信息,向所述基站上报差分 CQI信息。
14、 根据权利要求 13所述的波束质量信息反馈方法, 其中, 所述配置信 息为具体差分 CQI值或差分 CQI等级信息。
15、 根据权利要求 8所述的波束质量信息反馈方法, 该方法还包括: 所述终端接收所述基站发送的分级信息, 在所述分级信息中包含有对 CQI信息不同等级的划分;
所述终端根据所述分级信息配置自己的 CQI等级信息。
16、 根据权利要求 8所述的波束质量信息反馈方法, 该方法还包括: 所述终端将 CQI信息划分成为不同的等级, 并将分级信息反馈给所述基 站。
17、 一种波束质量信息反馈方法, 包括:
基站向终端发送训练导频信号;
终端接收所述基站发送的训练导频信号, 根据所述训练导频信号生成判 断结果指示信息, 并将所述判断结果指示信息返回给所述基站, 其中, 在所 述判断结果指示信息中指示了所述基站是否继续进行迭代;
所述基站接收所述终端返回的判断结果指示信息, 并根据所述判断结果 指示信息判断是否继续进行迭代。
18、 根据权利要求 17所述的波束质量信息反馈方法, 其中, 该方法还包 括:
所述基站对差分 CQI方式进行配置并生成配置信息, 将所述配置信息发 送给所述终端。
19、 根据权利要求 17所述的波束质量信息反馈方法, 其中, 该方法还包 括:
基站对终端上报差分 CQI的门限进行配置, 并将配置信息发送给终端。
20、 根据权利要求 17所述的波束质量信息反馈方法, 其中, 该方法还包 括:
所述基站将 CQI信息划分为不同的等级, 并将包含划分的不同等级相关 信息的分级信息通知给所述终端。
21、 根据权利要求 17所述的波束质量信息反馈方法, 其中, 该方法还包 括:
基站接收终端返回的分级信息, 所述分级信息中携带有终端将 CQI信息 划分成为不同的等级的相关信息。
22、 一种波束质量信息反馈系统, 包括基站和终端:
所述基站设置成向所述终端发送训练导频信号, 接收所述终端根据所述 训练导频信号返回的判断结果指示信息, 在所述判断结果指示信息中指示所 述基站是否继续进行迭代, 根据所述判断结果指示信息判断是否继续进行迭 代;
所述终端设置成选择接收基站发送的训练导频信号, 并对所述训练导频 信号进行接收处理, 根据所述训练导频信号生成判断结果指示信息, 并将该 判断结果指示信息发送给所述基站, 指示所述基站是否继续进行迭代。
23、 一种基站, 包括发送单元、 接收单元、 及判断和处理单元, 其中, 所述发送单元配置成: 向终端发送训练导频信号;
所述接收单元配置成: 接收所述终端发来的根据所述训练导频信号生成 的判断结果指示信息, 其中, 所述判断结果指示信息用于指示所述基站判断 是否继续进行迭代;
所述判断和处理单元配置成: 根据所述判断结果指示信息判断是否继续 进行迭代。
24、根据权利要求 23所述的基站,其中,所述判断和处理单元还配置成: 对差分 CQI方式进行配置并生成配置信息, 将所述配置信息发送给所述 终端;
对所述终端上报差分 CQI的门限进行配置, 并将配置信息发送给所述终 端;
将 CQI信息划分为不同的等级, 并将包含划分的不同等级相关信息的分 级信息通知给所述终端; 或
接收所述终端返回的分级信息, 所述分级信息中携带有所述终端将 CQI 信息划分成为不同的等级的相关信息。
25、 一种终端, 其包括发送单元、 接收单元、 及判断和处理单元, 其中, 所述接收单元配置成: 接收基站发送的训练导频信号, 并对所述训练导 频信号进行接收处理;
所述判断和处理单元配置成: 4艮据所述训练导频信号生成判断结果指示 信息;
所述发送单元配置成: 将所述判断结果指示信息发送给所述基站, 以便 于所述基站根据该判断结果指示信息判断是否继续进行迭代。
26、 根据权利要求 25所述的终端, 其中, 所述判断和处理单元配置成按 照如下方式 4艮据所述训练导频信号生成判断结果指示信息:
根据所述训练导频信号判断是否继续进行迭代及此次训练是否成功; 生成包含是否继续进行迭代及此次训练是否成功相关信息的所述判断结 果指示信息。
27、 根据权利要求 26所述的终端, 其中, 所述判断结果指示信息包括是 否继续迭代和训练是否成功标志位, 所述是否继续迭代和训练是否成功标志 位包含第一状态位、 第二状态位和第三状态位这三种状态位, 其中, 所述第 一状态位指示此次迭代后继续进行迭代, 所述第二状态位指示此次迭代后结 束迭代并且训练失败, 所述第三状态位指示此次迭代后结束迭代并且训练成 功。
28、 根据权利要求 25所述的终端, 其中, 所述判断和处理单元设置成按 照如下方式 4艮据所述训练导频信号生成判断结果指示信息:
根据所述训练导频信号判断是否继续进行迭代, 生成包含该判断结果的 判断结果指示信息。
29、 根据权利要求 28所述的终端, 其中, 所述判断结果指示信息通过是 否结束迭代标志位携带;
所述是否结束迭代标志位包含第一状态位和第二状态位这两种状态位, 其中:
所述第一状态位表示此次迭代后迭代结束,
所述第二状态位表示此次迭代后继续迭代。
30、 根据权利要求 25所述的终端, 其中: 所述判断和处理单元还配置成: 根据所述训练导频信号判断此次训练是 否成功; 所述发送单元还设置成: 将判断此次训练是否成功的结果发送给所述基 站。
31、 根据权利要求 30所述的终端, 其中, 所述发送单元通过发送此次训 练是否成功标志位向所述基站发送判断此次训练是否成功的结果;
所述此次训练是否成功标志位包含第一状态位和第二状态位这两种状态 位, 其中:
所述第一状态位表示此次训练成功,
所述第二状态位表示此次训练失败。
32、 根据权利要求 27所述的终端, 其中, 所述发送单元还配置成: 当所述是否继续迭代和训练是否成功标志位指示此次迭代后迭代结束并 且训练成功时, 向基站上报信道质量指示 CQI信息。
33、 根据权利要求 32所述的终端, 其中, 所述发送单元设置成按照如下 方式向基站上报 CQI信息:
在向基站发送所述判断结果指示信息的同时联合上报 CQI信息。
34、根据权利要求 32或 33所述的终端,其中,所述 CQI信息为差分 CQI 信息。
35、 根据权利要求 34所述的终端, 其中, 所述差分 CQI信息为具体的 差分 CQI值。
36、根据权利要求 34所述的终端, 其中, 所述差分 CQI信息为差分 CQI 等级值。
37、 根据权利要求 32所述的终端, 其中, 所述发送单元还配置成: 根据所述基站发送的配置信息, 向所述基站上报差分 CQI信息。
38、 根据权利要求 37所述的终端, 其中, 所述配置信息为具体差分 CQI 值或差分 CQI等级信息。
39、 根据权利要求 32所述的终端, 其中: 所述接收单元还配置成:
接收所述基站发送的分级信息, 在所述分级信息中包含有对 CQI信息不 同等级的划分;
所述判断和处理单元还配置成: 根据所述分级信息配置自己的 CQI等级 信息。
40、 根据权利要求 32所述的终端, 其中: 所述判断和处理单元还配置成: 将 CQI信息划分成为不同的等级; 所述发送单元还设置成: 将分级信息反馈给所述基站。
PCT/CN2014/080193 2013-12-20 2014-06-18 波束质量信息反馈方法和系统 WO2015090021A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310718971.5 2013-12-20
CN201310718971.5A CN104734805A (zh) 2013-12-20 2013-12-20 波束质量信息反馈方法和系统

Publications (1)

Publication Number Publication Date
WO2015090021A1 true WO2015090021A1 (zh) 2015-06-25

Family

ID=53402044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080193 WO2015090021A1 (zh) 2013-12-20 2014-06-18 波束质量信息反馈方法和系统

Country Status (2)

Country Link
CN (1) CN104734805A (zh)
WO (1) WO2015090021A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581503B2 (en) 2015-10-21 2020-03-03 Apple Inc. Method, apparatus and system for reporting beam reference signal receiving power
CN106936487B (zh) 2015-12-31 2021-01-05 华为技术有限公司 一种波束训练方法和装置
CN108924855B (zh) * 2017-03-24 2020-06-02 维沃移动通信有限公司 一种信息传输方法、终端及网络设备
CN108112074B (zh) * 2017-05-05 2023-07-18 中兴通讯股份有限公司 信息的上报、接收方法、装置及计算机可读存储介质
US10743204B2 (en) * 2017-11-10 2020-08-11 Futurewei Technologies, Inc. System and method for reporting beam information
CN110249683B (zh) * 2018-01-11 2023-07-14 瑞典爱立信有限公司 用于波束故障恢复的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070178862A1 (en) * 2006-01-30 2007-08-02 Motia, Inc. Weight Training For Antenna Array Beam Patterns in FDD/TDMA Terminals
CN101635593A (zh) * 2008-07-25 2010-01-27 华为技术有限公司 实现多播广播业务数据传输方法、装置及系统
CN102468879A (zh) * 2010-10-29 2012-05-23 日电(中国)有限公司 用于无线通信系统的波束形成训练方法、设备和系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175059B (zh) * 2006-10-30 2013-01-02 华为技术有限公司 对信道质量指示进行量化的方法与装置
CN101111083B (zh) * 2007-08-13 2011-11-30 中兴通讯股份有限公司 信道质量指数反馈方法
US7899129B2 (en) * 2007-09-11 2011-03-01 Intel Corporation Wireless personal area network communication systems, apparatus and methods with fast adaptive beamforming
CN101453255A (zh) * 2007-11-28 2009-06-10 华为技术有限公司 一种波束成形的方法、系统和装置
CN101753187B (zh) * 2008-12-18 2013-08-07 电信科学技术研究院 多流波束赋形传输时cqi估计方法、系统及装置
US8743838B2 (en) * 2009-09-15 2014-06-03 Intel Corporation Millimeter-wave communication station and method for scheduling association beamforming training with collision avoidance
CN102412881B (zh) * 2010-09-26 2015-06-17 日电(中国)有限公司 无线通信系统和用于无线通信系统的波束形成训练方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070178862A1 (en) * 2006-01-30 2007-08-02 Motia, Inc. Weight Training For Antenna Array Beam Patterns in FDD/TDMA Terminals
CN101635593A (zh) * 2008-07-25 2010-01-27 华为技术有限公司 实现多播广播业务数据传输方法、装置及系统
CN102468879A (zh) * 2010-10-29 2012-05-23 日电(中国)有限公司 用于无线通信系统的波束形成训练方法、设备和系统

Also Published As

Publication number Publication date
CN104734805A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
JP6920416B2 (ja) 更に最適化されたオーバーヘッドを有するマルチビームコードブック
JP5127394B2 (ja) Mimoシステムのプリコーディング方法及び該方法を用いた装置
US9001907B2 (en) Multi-rank precoding matrix indicator (PMI) feedback in a multiple-input multiple-output (MIMO) system
US8644411B2 (en) Generalized reference signaling scheme for multi-user multiple input, multiple output (MU-MIMO) using arbitrarily precoded reference signals
CN102725967B (zh) 用于信息反馈以及预编码的方法和装置
US7961807B2 (en) Reference signaling scheme using compressed feedforward codebooks for multi-user, multiple input, multiple output (MU-MIMO) systems
CN101771505B (zh) 一种额外的预编码矩阵索引的指示方法和系统
JP6118423B2 (ja) チャネル状態情報をフィードバックする方法、ユーザ装置及び基地局
EP2442509B1 (en) System and method for channel status information feedback in a wireless communications system that utilizes multiple-input multiple-output (MIMO) transmission
KR101650699B1 (ko) 프리코딩 및 프리코딩 디바이스를 사용하여 다중 사용자 mimo 네트워크에서의 통신 방법
WO2015089894A1 (zh) 一种波束赋形权值训练方法及基站、终端
WO2017076347A1 (zh) 一种信道状态信息量化反馈方法及终端
CN101686110A (zh) 一种多输入多输出系统、及其数据传输的方法及装置
WO2012129810A1 (en) Method in a wireless communication system
WO2012022100A1 (zh) 一种码本的配置方法、装置和系统
WO2012041107A1 (zh) 信道状态信息反馈方法及终端
WO2015090021A1 (zh) 波束质量信息反馈方法和系统
JP6122218B2 (ja) プリコーディング行列インジケータを決定するための方法および装置、ユーザ機器、ならびに基地局
WO2017167156A1 (zh) Dmrs的发送方法及装置
US10581497B2 (en) Transmit diversity method, terminal, and base station
JP5865485B2 (ja) 多重入出力(mimo)のための空間チャネル状態情報のフィードバック方法およびシステム
WO2011123977A1 (zh) 针对天线阵列的相关矩阵反馈方法和系统
CN111757382B (zh) 指示信道状态信息的方法以及通信装置
KR101807931B1 (ko) 이동국 및 보고 방법
CN108781100B (zh) 一种传输分集方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872957

Country of ref document: EP

Kind code of ref document: A1