WO2010009628A1 - 一种中空纤维膜及其制造方法 - Google Patents

一种中空纤维膜及其制造方法 Download PDF

Info

Publication number
WO2010009628A1
WO2010009628A1 PCT/CN2009/070717 CN2009070717W WO2010009628A1 WO 2010009628 A1 WO2010009628 A1 WO 2010009628A1 CN 2009070717 W CN2009070717 W CN 2009070717W WO 2010009628 A1 WO2010009628 A1 WO 2010009628A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
water
fiber membrane
polyurethane
porogen
Prior art date
Application number
PCT/CN2009/070717
Other languages
English (en)
French (fr)
Inventor
肖长发
胡晓宇
梁海先
安树林
Original Assignee
天津工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津工业大学 filed Critical 天津工业大学
Publication of WO2010009628A1 publication Critical patent/WO2010009628A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/54Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/18Pore-control agents or pore formers

Definitions

  • the invention relates to a preparation technology of a hollow fiber membrane, in particular to a hollow fiber monthly manufacturing method with good elastic function, and the international patent main classification number is intended to be MCLB01D 69/00 (2006.01)1. Background technique
  • Polyurethane ie, polyurethane
  • the soft segment is in a high elastic state at room temperature, and can produce large elongation deformation when stretched, and has excellent properties. The resilience, while the hard segment provides a node for the elongation and springback of the soft segment.
  • Polyurethane's unique chemical structure makes it highly elastic, high-strength, heat-resistant, wear-resistant, chemical-resistant and many other properties, and has been widely used in the automotive, shoe, wire and cable industries. In 1970, Bowen proposed that polyurethane can be used as a selective adsorbent for a certain quality.
  • the solution spinning method is a common technique for preparing a hollow fiber liquid separation membrane, and has the advantages of low spinning, convenient operation, and easy pore formation.
  • Li Xianfeng et al. disclose "a polyamine/inorganic particle blending compound. Membrane and its preparation method (Patent No.
  • the first technical problem to be solved by the present invention is: designing a hollow fiber membrane which has strong pressure sensitivity and good shape memory to the separation system, and has a rich and stable microporous structure, which is suitable for industrialization. Production and actual promotion and application.
  • the second technical problem to be solved by the present invention is: To design a method for manufacturing a hollow fiber membrane, which uses a melt spinning method to manufacture a hollow fiber membrane, but overcomes the disadvantages of high temperature energy consumption and difficulty in controlling the membrane pores.
  • the invention has the characteristics of low spinning temperature, easy control of membrane pore structure, shortened process flow, simple film forming technology, good product quality, low cost, and is suitable for industrial scale production, and can reduce the collection in the solution spinning method. Environmental protection and energy conservation have good industrial prospects.
  • the technical solution to solve the first technical problem of the present invention is: designing a hollow fiber membrane characterized in that the mass percentage of the film forming system of the hollow fiber membrane is:
  • the organic low molecular liquid 15-20 the sum of the components is 100%, wherein the polyurethane is a fiber grade, and the mass ratio of the hard segment to the soft segment is 1/1 to 1/5;
  • the composite porogen is Interface (3 ⁇ 4 pore agent and non-interface agent [3 ⁇ 4 pore agent mixture of two substances, wherein the interface pore porogen accounts for 10 ⁇ 30% of the total mass of the composite porogen, the interface pore porogen refers to the polyurethane Incompatible non-water-soluble inorganic particles, including one or two mixtures of any ratio of SiO 2 and CaCO granules having an average particle diameter of 0.01 to 5 ⁇ m; non-interface pore porogens refer to water-soluble substances,
  • the water-soluble inorganic particles include a mixture of water-soluble inorganic particles, a water-soluble polymer, and a water-soluble material in an arbitrary ratio; the water-soluble inorganic particles include one of LiCl, CaCl 2 , NaCl, and KC1
  • the water-soluble polymer comprises polyvinylpyrrolidone or polyethylene glycol; the organic low-H compound is a high-boiling, 7j-soluble polyurethane good solvent, including dimethylformamidine, dimethyl A mixture of one or more of sulfoxide and dimethyldiamine in any ratio.
  • the technical solution of the present invention to solve the second technical problem is: designing a manufacturer of hollow fiber membranes
  • the method is characterized in that the manufacturing method employs the following melt spinning process: First, a polymer film forming system is prepared according to the hollow fiber membrane mass percentage formula according to the present invention, and then poured into a mixing kettle for heating forced premixing, Heating 3 ⁇ 43 ⁇ 43 ⁇ 4 130 ⁇ 140 °C, mixing and then injecting in A3 ⁇ 4 3 ⁇ 4 rod extruder, after melting and melting process, melt-blending and spinning through a hollow spinning module at 130 ⁇ 155°C3 ⁇ 4 ⁇ 4, and then passing through The hollow fiber membrane is obtained after the water extraction step of the conventional solution spinning.
  • the manufacturing method of the invention combines the advantages of the solution spinning and the melt spinning technology, and uses a small amount of a suitable organic low-hepatic liquid to be uniformly blended with the polyurethane and the composite porogen, and then melts the wire.
  • the spinning temperature can be effectively lowered.
  • the melt spinning processing temperature of the polyurethane film is usually about 160 ° C, and the process temperature of the melt spinning of the present invention is only required to be 130 to 155 ° C, and is easy to control.
  • a hollow fiber membrane having precise pressure responsiveness and multiple micropores (including interfacial microporous and non-interface microporous) structures can be obtained.
  • the membrane has good elastic recovery, high water flux, strong sensitivity to changes in pressure of the separation system and good separation and memory function, and is suitable for industrial production and practical application.
  • the hollow fiber membrane manufacturing method is adopted. Melt spinning process, but the melting is relatively low; although proper classification is adopted, it does not require a large amount of solvent, has a short spinning process, is easy to control the membrane pore structure, is simple in film forming technology, is easy to handle, and requires no special equipment. The product quality is good, and the recycling in the solution spinning method can be reduced, which is beneficial to environmental protection and energy saving, and is convenient for industrial implementation.
  • FIG. 1 is a schematic view showing an engineering stress-strain curve of an embodiment (Example 4) of a hollow fiber membrane of the present invention
  • Fig. 2 is a schematic view showing the pressure response curve of an embodiment (Example 6) of the hollow fiber membrane of the present invention. detailed description
  • the hollow fiber membrane (hereinafter referred to as hollow membrane or membrane) designed by the present invention has a mass ratio of the film forming system:
  • the organic low molecular liquid is 15 to 20, and the sum of the components is 100%.
  • the polyurethane in the formulation of the invention is a base film material or a matrix phase. Its chemical structure includes a soft segment and a hard segment, the hard segment is a low diol, or a diamine-linked aromatic diisocyanate; the soft segment is a polyether diol or a polyester diol.
  • the mass ratio of the hard segment and the soft segment of the polyurethane may be selected from the range of 1/1 to 1/5, but the mass ratio of the hard and soft segments of the polyurethane is preferably 1/2. Other physical chemistry indicators for the selection of polyurethane should be at the fiber level.
  • the composite porogen designed in the formulation of the present invention is required to have a sharp angle of expression higher than the spinning temperature, and has no physical damage or chemical damage to the finally obtained hollow film.
  • the composite porogen is a mixture of an interface pore porogen and a non-interface pore porogen, wherein the interface 3 ⁇ 4 pore agent accounts for 10 to 30% of the total mass of the composite porogen, and the interface pore is caused.
  • the pore agent refers to a water-insoluble inorganic particle which is incompatible with the polyurethane, and includes a mixture of one or two of SiO 2 and CaCO 3 having an average particle diameter of 0.01 to 5 ⁇ m, and the like;
  • the non-interface pore agent is Refers to a water-soluble substance, including a mixture of water-soluble inorganic particles, water-soluble polymer, water or a mixture of the materials in any ratio;
  • the soluble inorganic particles include LiCl, CaCl 2 , NaCl and KC1 having an average particle diameter of 0.01 to 5 ⁇ m.
  • the water-soluble polymer includes polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG), and the like.
  • a small amount of water (generally 10% of the total mass of the composite porogen) can be added to the film-forming system, which is beneficial to the formation of the membrane leakage microporous structure.
  • Tests have shown that in the range of 1J of the composite pore-forming, in order to ensure the "sex nature of the obtained hollow fiber membrane, the non-boundary 3 ⁇ 43 ⁇ 4 pore agent (7j soluble component) should be the main porogen component, and at the same time, to ensure the fiber membrane After removing the non-bounding pore earning agent, the mechanical properties of the composite pore-forming agent are still relatively good, and the percentage of the total mass of the composite porogen is 10-30%.
  • the content of the composite porogen should be controlled ( Within 60% of the total mass of the membrane system, the preferred porogen content is 35 to 60%.
  • the house controls the draw ratio of the spinneret to impart micropores at the interface of the film; 1) The method of extracting removes the soluble porogen and imparts non-interface micropores to the film, thereby obtaining the interface pore structure and non-interface.
  • a suitable organic low molecular liquid is uniquely designed in the formulation of the present invention. This is one of the key technologies of the present invention.
  • the organic low molecular liquid should be selected from a high boiling point, 7j soluble polyurethane good solvent, thereby being plasticizable
  • the polyurethane and the composite porogen enable the components to be fully blended and extruded at a temperature lower than the melting point of the polyurethane to improve the spinnability of the film forming system.
  • Experimental studies have shown that the lower temperature range is 130 to 155 °C. This range is comparable to the melting point of polyurethane (160 ° C), can be 18.75-3.13%, with significant energy savings.
  • the other basis for the selection of the organic low molecular liquid is its boiling point and decomposition temperature, which is required to be higher than that of the spinning film, and no physical damage or chemical damage to the finally obtained hollow film.
  • the organic low molecular liquid of the present invention specifically includes one of dimethylformamidine (DMF), dimethyl sulfoxide (DMAc), and dimethylacetamide (DMSO). A mixture of any of the above ratios.
  • DMF dimethylformamidine
  • DMAc dimethyl sulfoxide
  • DMSO dimethylacetamide
  • the amount of the organic low-hepatic liquid added in the present invention is preferably 15 to 20% of the total mass of the film-forming system.
  • the mass ratio of the polyurethane matrix phase to the organic low liver liquid addition amount in the formulation of the film forming system of the present invention is much higher than that of the solution spinning method, the spinning form and the microporous structure of the fiber membrane are not affected.
  • the formation of the film contrary to the conventional double-diffusion process of the conventional solution method, avoids the formation of a large defect film pore structure, and the strength of the obtained film is significantly higher than that obtained by the conventional solution method.
  • the manufacturing method of the present invention shows that after the selection of the organic low-hepatic liquid according to the formulation of the present invention, the spinning temperature can be desirably reduced to 130 ⁇ 155 ° C, and the temperature selection of the specific process and the quality of the organic low molecular liquid are 100. ⁇ quantity related.
  • the manufacturing method of the invention not only can relatively reduce the spinning, save energy, make the spinning process easy to operate, but also enhances the pre-mixing of the fiber system by using a mixing kettle, and after the dissolution and melting process, the ftA3 ⁇ 4 screw extruder is improved.
  • the fluidity of the polymerization system expands the selection range of the porogen and facilitates industrial implementation.
  • the elastic function of the hollow description of the present invention is mainly embodied in two aspects: one is that it has a high elongation at break and a good elastic recovery rate, and the length of the film can reach the original after the hollow film is subjected to tensile stress. There is a length of 500%, and after the stress is removed, the length of the film can be better restored to the original length (after the deformation is close to 500%, the tensile stress is removed, and the length of the film can be restored to within 200% of the original length) , and the flux can be restored to the original flux.
  • This performance can effectively avoid the deformation ability of the existing fiber membrane material, and it is easy to be used during use.
  • the problem is that the irreversible shape is affected by the problem; the second is that after the inner membrane of the hollow membrane is subjected to internal pressure, the membrane body will uniformly expand, resulting in an increase in the pore diameter of the membrane surface and an increase in porosity, and a "low filtration-high pressure cleaning" can be obtained.
  • the membrane function, the inner pressure membrane module composed of it can easily realize the online cleaning during the application of the membrane, and the number of conventional chemical rinsing can be achieved, thereby achieving the purpose of prolonging the use of the membrane material.
  • the invention simultaneously designs a manufacturing method of the hollow fiber membrane (abbreviated as a manufacturing method), which is required to prepare a polymer film forming system according to the hollow fiber membrane mass percentage formula according to the present invention, and is prepared by the following melt spinning process.
  • the hollow fiber membrane firstly adding the polymer film-forming system to a mixing kettle for heating and pre-mixing, heating at a temperature of 130 to 140 ° C, and then injecting into a 3 ⁇ 4 ⁇ rod rod extruder, after dissolution and melting,
  • the hollow fiber membrane is obtained by melt blending and spinning a film by a hollow fiber spin pack at a spinning temperature of 130 to 155 ° C, followed by a water extraction and the like by a conventional solution spinning.
  • the manufacturing method of the invention adopts a small amount of suitable organic low liquid to be uniformly blended with polyurethane and composite porogen, and then performs relatively low temperature melt spinning, which combines the advantages of solution spinning and melt spinning technology, and innovates.
  • a new hollow film manufacturing method Although the melt spinning process is adopted, the melt spinning temperature is lower than that of the conventional method, although the melt spinning of the solution method is used, but a large amount of il is not required. The process is short, the process is simple, the membrane hole is easy to control and energy saving and emission reduction, and the characteristics of the environment are ⁇ 3 ⁇ 4 ⁇ .
  • the water extraction process of the present invention is the same as the prior art. As far as the water extraction process itself is concerned, there is no essential difference from the conventional solution spinning film forming technology. The difference is that the water extraction and washing action of the conventional solution spinning process is mainly for the double expansion of the solution flow to solidify.
  • the water extraction process designed by the present invention has the traditional double diffusion solidification process and stabilizes. And to improve the pore structure of the fiber membrane, and in order to fully remove the role of water-soluble porogen in the spinning membrane process, the water extraction process does not occur in the conventional melt spinning membrane process.
  • a further feature of the manufacturing method of the present invention is that in the process of melt blending spinning, the stretching process is followed by a water extraction process, and the stretching ratio of the stretching process is 3 to 5 times, and the stretching treatment is performed. 3 ⁇ 43 ⁇ 43 ⁇ 4 is 40 ⁇ 60°C. This process avoids the destruction of the uniformity of the microporous structure of the fiber membrane caused by post-stretching during the conventional melt spinning of the hollow film.
  • the fiber-grade polyether polyurethane with a hard 3 ⁇ 4/soft segment mass ratio of 1/2 is the polymer matrix phase, and the mass is 25%;
  • the composite porogen is ⁇ . ⁇ ⁇ ⁇ of Si0 2 powder and PVP Mixture, accounting for 60% of the total mass of the system, the former being interfacial pore porogen, accounting for 30% of the total mass of the composite porogen, and the latter being non-interfacial pore porogen, accounting for 70% of the total mass of the composite porogen
  • Organic low-hepatic liquid is selected from DMSO, the mass is 15%, the mixture of the mixture is used as the system, and the mixture is heated and forced to be pre-mixed by heating. The heating temperature is 130 ° C. After dissolution and melting, the screw is fed.
  • the extruder is melt-blended and spun into a film by a hollow spinning module, and the stretching ratio of the spinneret is selected to be 3 times and 5 times respectively, and the processing is controlled at 130 ° C, and after being fully immersed and washed by water, the obtained Hollow membrane.
  • the hollow film obtained in the present embodiment has a draw ratio of 3 times and 5 times at 0.lMPa and 3 ⁇ 43 ⁇ 43 ⁇ 4 25°C, and the water flux is determined by internal pressure method, and the corresponding values are: 690 and 1130 (I M— ⁇ .
  • Money example 2
  • the ratio of the interfacial pore porogen in Example 1 was adjusted to 10% of the total mass of the porogen, and the ratio of the non-interfacial pore porogen was adjusted to 90% of the total mass of the porogen, and the spinneret stretching ratio was adjusted.
  • Option 3 the other conditions are unchanged, and the hollow film described above is obtained.
  • the fiber-grade polyether polyurethane with a hard 3 ⁇ 4/soft segment mass ratio of 1/2 is the polymer matrix phase with a mass percentage of 45%;
  • the composite porogen is 0.01 ⁇ m of Si0 2 powder, 5 ⁇ of CaC0 3 powder and PEG mixture, accounting for 60% of the total mass of the system, of which the first two are interfacial pore porogen, the mass ratio of the two is 1 / 1, accounting for 30% of the total mass of the composite porogen, the latter Non-interface 3 ⁇ 43 ⁇ 4 pore agent, accounting for 70% of the total mass of the composite porogen; organic low H ⁇ night body DMSO, the mass is 20%, the mixture of the above as a system,
  • the mixture is heated and pre-mixed by heating, and after being dissolved and melted, it is fed to a ⁇ 3 ⁇ 4 ⁇ tired rod extruder, and melt-blended and spun into a film by a hollow spinning assembly.
  • the drawing ratio of the spinning head is selected to be 3, and the processing temperature is
  • the hollow film obtained in this example was measured by internal pressure method at O.lMPa and 25 °C, and the corresponding values were obtained: 920 (Lm- 2 -h- 1 )o male case 4
  • the non-interfacial porogen PVP was replaced with 2 ⁇ m of LiCl, CaCl 2 , NaCl and KC1 particles, and the other cows were unchanged, and four kinds of hollow membranes were prepared.
  • the hollow membranes obtained in this example were respectively measured by internal pressure method at O.lMPa and 25°C, and the corresponding values were: 1520, 1610, ⁇ ⁇ ⁇ ' ⁇ - 2 ⁇ !!- 1 ; ⁇
  • the hollow film obtained by adding KC1 particles was used as a strong elastic test to obtain a tensile curve (see Fig. 1). It can be seen from Fig. 1 that the elongation at break of the fiber membrane under tensile stress is large, up to 500%, and after the deformation is close to 500%, the tensile stress is removed, and the length of the fiber membrane can be restored to the original length of 200. Less than %. Male case 5
  • Example 1 The organic low-H ⁇ body in Example 1 was changed to DMF and DMAc, and the other cattle were not changed to obtain a hollow film.
  • the pressure response curve of the CaCl 2 -containing hollow E3 ⁇ 4 prepared in Example 4 at 25 ° C was measured by internal pressure method under different working pressures (see Fig. 2).
  • the microporous structure of the hollow membrane can generally be assumed to be a parallel cylindrical pore model and the pore diameters are equal.
  • the water flux J through such pores can be described by the Hagen-Poiseuille equation as follows. j — ⁇ r A p
  • the porosity is the pore radius
  • 77 is the viscosity
  • is the working pressure
  • d is the thickness of the separation membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Description

一种中空纤维膜及其制造方法 技术领域
本发明涉及一种中空纤维膜的制备技术,具体为一种具有良好弹性功能的中空 纤维月 其制造方法, 国际专利主分类号拟为 MCLB01D 69/00(2006.01)1。 背景技术
聚氨基甲酸酯 (即聚氨酯)是一类 ¾硬段交替连接形成的嵌段共聚物,其软段在 室温下处于高弹态, 拉伸时能产生很大的伸长变形, 并具有优良的回弹性, 而硬段 为软段的伸长变形及回弹提供节点。 聚氨酯独特的化学结构使其具有高弹、 高强、 耐热、 耐磨、 耐化学品等诸多特性, 已在汽车、 制鞋、 电线和电缆等行业中广泛应 用。 1970年, Bowen提出聚氨酯可作为某 质的选择吸附剂,此后聚氨酯在制膜 材料方面的应用逐渐引起人们的重视。但由于聚氨酯结构致密、难于成孔, 故聚氨 酯膜主要用于气体分离、渗透汽化和无机金属离子分离等方面, 液体分离膜研究相 对鈔。 目前, 溶液纺丝法是制备中空纤维液体分离膜的常用技术, 其优点是纺丝 低, 操作方便, 且易于成孔, 李先锋等人公开了"一种聚氨 ^/无机粒子共混复 合膜及其制法 (专利号 ZL02131196X.)", 它采用溶液纺丝方法制备了具有界面微孔 特征的聚氨^ /无机粒子共混中空纤维复合膜。经 ¾ΰ£一歩研究发现,所得中空纤维 复合膜具有弹性功能, 且表现为随工作压力的变化纤维膜微孔的孔径发生相应变化 (参见李先锋, 肖长发, 复合聚氨酯中空纤维膜结构与性能, 高分子学报英文版, 23(2005) 203-210); X.F.Li, C.F.Xiao, Structure and properties of Composite Polyurethane Hollow Fiber Membranes, Chinese JPolym.Sci. , 23(2005) 203-210)。但该技术需消耗大 量 ij, 易污染环境, 且所得纤维膜的力学性能, 以及压力响应过程中的形状咴复 性也不尽理想。常规的熔融¾体纺丝方法不需要溶剂, 工艺流程短, 但所得纤维 膜的结构通常较为致密、 不易成孔, 且孔径较难控制; 特别是其较高的纺丝温度, 耗费能源较多, 于聚合物及致孔齐啲热稳定性要求也较为严格, 因而降低熔融 纺丝的温度, 以节约能源, 控制好膜孔精度和结构, 以提高产品性能, 是发挥熔融 纺丝优势, 并使之适纺中空纤维的关键技术。 发明内容
针对现有技术的不足, 本发明拟解决的技术问题有以下 2个:
本发明拟解决第一个技术问题是: 设计一种中空纤维膜, 该膜对分离体系 具有较强的压力敏感性和良好的形状记忆性, 并具有丰富和稳定的微孔结 构, 适于工业化生产及实际推广应用。
本发明拟解决第二个技术问题是: 设计一种中空纤维膜的制造方法, 该制 造方法采用熔融纺丝方法来制造中空纤维膜,但克服了其高温耗能和膜孔难 控的缺点, 具有纺丝温度较低, 膜孔结构易控, 工艺流程缩短、 制膜技术简单、 产品质量好, 成本较低、 适于工业化规模生产等特点, 同时可减少溶液纺丝法中的 收, 有益环境保护和节省能源, 具有良好的工业化前景。
本发明解决第一个技术问题的技术方案是: 设计一种中空纤维膜, 其特征在 于该中空纤维膜的成膜体系质量百分比配方是:
聚氨酯 25-45;
复合致孔剂 35-60;
有机低分子液体 15-20, 各组分之和为 100 % , 其中,所述聚氨酯为纤维级,硬段与软段的质量比为 1/1〜1/5;所述复合致孔剂为 界面子 [¾孔剂及非界面子 [¾孔剂两种物质的混合物, 其中界面孔致孔剂占复合致孔 剂总质量的 10〜30%,界面孔致孔剂是指与所述聚氨酯不相容的非水溶性无机粒子, 包括平均粒径 0. 01〜5 μ m的 Si02和 CaCO冲的一种或二种任意比例的混合物;非界 面孔致孔剂是指水溶性物质, 包括水溶性无机粒子、 水溶性聚合物、 水 述水溶 性物质任意比例的混合物;所述水溶性无机粒子包括平均粒径 0. 01〜5 μ m的 LiCl、 CaCl2、 NaCl和 KC1中的一种; 所述水溶性聚合物包括聚乙烯吡咯垸酮或聚乙二醇; 所述有机低 H^夜体为高沸点、 7j溶性的聚氨酯良溶剂, 包括二甲基甲翻安、 二甲 基亚砜和二甲基乙翻安中的一种或一种以上任意比例的混合物。
本发明解决第二个技术问题的技术方案是: 设计一种中空纤维膜的制造方 法, 其特征在于该制造方法采用如下熔融纺丝工艺: 首先按照本发明所述的中 空纤维膜质量百分比配方要求制备聚合物成膜体系, 然后将其倒入混合釜内进行 加热强制预混合,加热 ¾¾¾ 130〜140°C,混均后注 A¾ ¾杆挤出机中,经溶解及熔 融过程后,在 130〜155°C¾¾下,经中空喷丝组件进行熔融共混纺丝制膜, 再经过 常规溶液纺丝的水萃洗工序后, 即得到所述中空纤维膜。
与现有技术相比, 本发明制造方法结合了溶液纺丝及熔融纺丝技术各自的优 点, 采用少量适当的有机低肝液体与聚氨酯、 复合致孔剂共混均匀后, 进行熔融 坊丝, 可有效降低纺丝温度, 例如, 聚氨酯膜的熔融纺丝加工温度通常在 160°C左 右,而本发明熔融纺丝的工艺温度仅要求 130〜155°C,且易于控制。通过选择合适 的喷丝头拉伸比并经过水萃洗等工艺过程后,可制得具有精确压力响应性及多重微 孔(包括界面微孔和非界面微孔)结构的中空纤维膜。 该膜具有弹性回复性好、 水 通量高、对分离体系压力的变化具有较强的敏感性和良好的分离记忆功能, 适于工 业化生产及实际应用; 同时该中空纤维膜的制造方法虽采用熔融纺丝工艺, 但熔融 相对较低; 虽采用了适当的歸 1」, 但不需大量溶剂, 具有纺丝流程短, 膜孔结 构易控, 制膜技术简单, 易于操作, 无需特殊设备, 产品质量好, 且可减少溶液纺 丝法中的歸 收, 有益环境保护和节省能源, 便于工业化实施。 附图说明
图 1为本发明中空纤维膜一种实施例(实施例 4) 的工程应力一应变曲线示意 图;
图 2为本发明中空纤维膜一种实施例(实施例 6) 的压力响应曲线示意图。 具体实施方式
下面结合实施例进一歩叙述本发明:
本发明设计的中空纤维膜 (以下简称中空膜或膜), 其成膜体系质量百 分比配方是:
聚氨酯 25〜45; 复合致孔剂 35〜60;
有机低分子液体 15〜20,各组分之和为 100 %。 本发明所述配方中的聚氨酯是基膜材料或基质相。 其化学结构包括软段和硬 段, 硬段为低 的二元醇、或者二元胺联接的芳香族二异氰酸酯; 软段为聚醚二 元醇或聚酯二元醇。所述聚氨酯硬段和软段的质量比可以在 1/1〜1/5范围内进行选 择, 但较理想的聚氨酯硬段和软段的质量比是 1/2。 选用聚氨酯的其它各项物理化 学指标应 纤维级水平。
本发明所述配方中设计的复合致孔剂, 要求其分角 显度高于纺丝温度, 并对最 终所得中空膜无物理损伤或化学损害。具体而言, 所述复合致孔剂为界面孔致孔剂 及非界面孔致孔剂两种物质的混合物,其中界面¾孔剂占复合致孔剂总质量的 10〜 30%, 界面孔致孔剂是指与所述聚氨酯不相容的非水溶性无机粒子, 包括平均粒径 0.01〜5μηι的 Si02和 CaC03等中的一种或二种任意比例的混合物;非界面子 孔剂 是指水溶性物质, 包括水溶性无机粒子、 水溶性聚合物、 水或所翻容性物质任意 比例的混合物; 溶性无机粒子包括平均粒径 0.01〜5μηι的 LiCl、 CaCl2、 NaCl 和 KC1等中的一种;所述水溶性聚合物包括聚乙烯吡咯烧酮 (PVP)或聚乙二醇 (PEG) 等。 为保证纺丝过程的顺利进行, 可在成膜体系中加入少量水(一般不舰复合致 孔剂总质量的 10%),有利于膜漏性微孔结构的形成。试验表明,在所述复合致孔 齐 1J范围内, 为保证所得中空纤维膜的《性, 应以非界¾¾孔剂 (7j溶性成份)为主 要致孔剂成分,同时,为保证纤维膜在去除非界赚孔剂后仍保持俯的力学性能, 界靦文孔剂占复合致孔剂总质量的百分比为 10-30%相对较优。 就本发明总体而言, 随复合致孔剂总质量的增加, 所得中空膜的水通量也增大, 但膜的嫩相应下降, 因此, 所述复合致孔剂的含量应当控制在制 (成)膜体系总质量的 60%以内, 但比 较理想的致孔剂含量是 35〜60%。 在戲后, 屋控制喷丝头的拉伸比, 赋予膜界 面微孔; 通) 1/萃洗的方式去除可溶性致孔剂, 赋予膜非界面微孔, 从而得到兼具 界面孔结构与非界面孔结构的通透性较好的中空纤维膜。
本发明所述配方中独特地设计有适当的有机低分子液体。这是本发明的关键技 术之一。所述有机低分子液体应选择高沸点、 7j溶性的聚氨酯良溶剂, 从而可增塑 聚氨酯及复合致孔剂, 使各组分可以在相对聚氨酯熔点较低的温度下充分共混挤 出, 提高制膜体系的可纺性。 实验研究表明, 所述较低的温度范围是 130〜155°C。 这一 范围相对于聚氨酯熔点 (160°C计)而言, 可¾育 18.75-3.13%, 具 有明显的节能效果。此外, 所述有机低分子液体选择的其他依据是其沸点和分解温 度, 要求其应高于所述纺丝制膜的 ¾¾, 并对最终所得中空膜无物理损伤或化学损 害。根据所述的原则,本发明所述的有机低分子液体具体包括二甲基甲醐安 (DMF)、 二甲基亚砜 (DMAc)和二甲基乙酰胺 (DMSO)等中的一种或一种以上任意比例 的混合物。 随着有 低分子液体含量的提高, 其纺丝温度可相应^ ί氐, 萃取后易于 形成微孔, 有利于膜水通量的提高, 但过高的有机低肝液体含量会导致所得膜的 拉伸嫩和耐压性有所下降, 因此, 本发明中有机低肝液体的添加量较优范围是 制膜体系总质量的 15〜20%。尽管本发明所述制膜体系配方中聚氨酯基质相与有机 低肝液体添加量的质量比远高于溶液法纺丝制膜的情况,但这并不影响其纺丝成 形及纤维膜微孔结构的形成, 相反由于¾了常规溶液法的歸1」一非 1J的双扩散 过程, 避免了较大缺陷膜孔结构的形成, 所得膜的强度明显高于常规溶液法所得的 同 莫。 此外, 研究表明, 所述有机低 液体的作用虽然主要在于增塑聚合物、 提高劇莫体系的可纺性, 但将其萃洗去除后, 对中空纤维膜微孔结构《性的提高 也有积极作用。 本发明制造方法 ¾验表明, 按本发明配方选择有机低肝液体后, 所述的纺丝温度理想范围可降至 130〜155°C,具体工艺实施的温度选择与有机低分 子液体的质量百 ^^量有关。本发明制造方法不仅可相对降低纺丝 ,节约能源, 使纺丝过程易于操作, 而且由于对纖体系采用混合釜进行加热强制预混合, 经溶 解及熔融过程后, ftA¾螺杆挤出机, 提高了聚合体系的流动性, 扩大了致孔剂的 选择范围, 便于工业化实施。
本发明中空蕭述的弹性功能,主要体现在两个方面:其一是具有较高的断裂 伸长率和良好的弹性恢复率, 在中空膜受到拉伸应力作用后, 膜的长度可达原有长 度的 500%,而应力撤去后,膜的长度又可较好地咴复为原来的长度 (形变接近 500% 后, 撤去拉伸应力, 膜的长度可恢复至原长的 200%以内), 且通量也可恢复为原有 通量。这一性能可有效避免现有纤维膜材料形变能力较差, 在使用过程中受力易发 生不可逆形^ ¾礙等问题; 其二是在中空膜受内压后, 膜体会发生均匀膨胀, 从 而导致膜表面的微孔孔径增大、 孔隙率提高, 可以得到 "低 滤一高压清洗"的 膜功能, 由其构成的内压膜组件, 容易实现膜应用过程中的在线清洗, 也可¾]常 规化学凊洗的次数, 从而达到延长膜材料使用^ i 的目的。
本发明同时设计了所述中空纤维膜的制造方法 (简称制造方法), 该制造 方法根据本发明所述的中空纤维膜质量百分比配方要求制聚合物成膜体系, 并采 用如下熔融纺丝工艺制备所述中空纤维膜:首先把所述聚合物成膜体系加入混合釜 进行加热强制预混合,加热温度为 130〜140°C,然后注 Λ¾ί累杆挤出机中,经溶解 及熔融过程后,在 130〜155°C纺丝温度下,通过中空纤维喷丝组件进行熔融共混纺 丝制膜, 再经常规溶液纺丝的水萃洗等工序, 即得到所述中空纤维膜。
本发明所述的制造方法采用少量适当的有机低 液体与聚氨酯、复合致孔剂 共混均匀后, 然后进行相对低温的熔融纺丝, 综合了溶液纺丝及熔融纺丝技术各自 的优点, 创新出一种新的中空膜制造方法: 虽采用了熔融纺丝工艺, 但熔融纺丝温 度低于传统方法的熔融纺丝 虽采用了溶液纺丝必用的 1」, 但却不需要大量 il 因而具有流程短, 工艺简单, 膜孔易控和节能减排, ί¾ί户环境的特点。
本发明所述的水萃洗工艺同于现有技术。就水萃洗工艺过程本身而言,与常规 的溶液纺丝制膜技术没有本质区别。所不同的是常规溶液纺丝过程的水萃洗作用主 要是为了使溶液细流发生双扩 程从而凝固劇莫, 本发明设计的水萃洗工序既有 传统的双扩散凝固过程, 起到稳定并改善纤维膜孔结构的作用, 又有为了在纺丝制 膜过程中充分去除水溶性致孔剂的作用,而在常规熔融纺丝制膜过程中则不出现该 水萃洗工艺。
本发明制造方法的进一歩特征是在熔融共混纺丝制膜过程中, 先经拉伸工序, 再进行水萃洗工序,所述拉伸工序的拉伸比为 3〜5倍,拉伸处理 ¾¾¾为 40〜60°C。 这种工艺方法避免了常规熔融纺丝制备中空膜过程中后拉伸所造成纤维膜微孔结 构均匀性的破坏。
本发明未述及之处适用于现有技术。
下面给出本发明的几个具体实施例, 但这些具体实施例不构成对本发明权禾腰 求范围的限制。 雄例 1
以硬 ¾/软段质量比为 1/2的纤维级聚醚型聚氨酯为聚合物基质相,质量百 量为 25%; 复合致孔剂为 Ο.ΟΙ μ πι的 Si02粉体与 PVP的混合物, 占体系总质量的 60%, 其中前者为界面孔致孔剂, 占复合致孔剂总质量的 30%, 后者为非界面孔致 孔剂, 占复合致孔剂总质量的 70%; 有机低肝液体选 DMSO, 质量百 量为 15%, 将 者的混合物作为劇莫体系, 经混合釜进行加热强制预混合, 加热温 度 130°C, 经溶解及熔融等过程后, 喂^螺杆挤出机, 经中空喷丝组件进行熔融 共混纺丝制膜, 喷丝头拉伸比分别选择 3倍和 5倍, 加工 控制在 130°C, 经水 充分浸泡萃洗后, 即得到所述的中空膜。
经检验, 本实施例拉伸比为 3倍和 5倍所得中空膜在 O.lMPa及 ¾¾¾ 25°C下, 采用内压法测定水通量, 得到的相应值分别为: 690和 1130 (I m— ^。 錢例 2
将实施例 1中界面孔致孔剂的配比调整为致孔剂总质量的 10%,非界面孔致孔 剂的配比调整为致孔剂总质量的 90%, 喷丝头拉伸比选择 3, 其他条件不变, 得到 所述的中空膜。
经检验, 本实施例所得中空膜在 O.lMPa及 ¾¾¾25°C下,采用内压法测定水通 量, 得到的相应值为: 1090 (!^—2'!!—1 )。 雄例 3
以硬 ¾/软段质量比为 1/2的纤维级聚醚型聚氨酯为聚合物基质相,质量百分含 量为 45%;复合致孔剂为 0.01 μ m的 Si02粉体、 5μηι的 CaC03粉体与 PEG的混合 物, 占体系总质量的 60%, 其中前两者为界面孔致孔剂, 二者质量比为 1/1, 占复 合致孔剂总质量的 30%, 后者为非界面¾¾孔剂, 占复合致孔剂总质量的 70%; 有 机低 H^夜体选 DMSO,质量百 量为 20%,将上 者的混合物作为劇莫体系, 经混合釜进行加热强制预混合, 经溶解及熔融等过程后喂 Λ¾ί累杆挤出机, 经中空 喷丝组件进行熔融共混纺丝制膜, 喷丝头拉伸比选择 3, 加工温度控制在 155°C, 经水充分浸泡萃洗后, 即可制得所述的中空膜。
经检验, 本实施例所得中空膜在 O.lMPa及 25°C下, 采用内压法测定水通 量, 得到的相应值为: 920 (L-m-2-h-1 )o 雄例 4
在实施 2的基础上,将非界面致孔剂 PVP分别换成 2 μ m的 LiCl、 CaCl2、 NaCl 和 KC1粒子, 其他 牛不变, 可制得 4种配方的中空膜。
经检验, 本实施例所得的各中空膜在 O.lMPa及 25°C下, 采用内压法分别 测定其水通量, 得到的相应值分别为: 1520、 1610、 Μδί^Π ^ ^ ' πι-2 · !!-1 ;^ 采用其中添加 KC1粒子所得的中空膜作强力弹性实验,得拉伸曲线 (参见图 1 )。 从图 1可以看出, 纤维膜在拉伸应力作用下的断裂伸长率较大, 可达 500%, 形变 接近 500%后, 撤去拉伸应力, 纤维膜的长度可恢复至原长的 200%以内。 雄例 5
将实施例 1中的有机低 H^夜体换为 DMF、 DMAc, 其他 牛不变, 制得中空 膜。
经检验, 本实施例所得中空膜在 O.lMPa及鍵 25°C下, 采用内压法分别测定 其水通量, 得到的相应值较实施例 1未发生明显变化。 雄例 6
将实施例 4制得的含 CaCl2的中空 E¾ 25°C下,采用内压法测定其在不同工作 压力下的水通量, 可得到其压力响应曲线(参见图 2)。
中空膜的微孔结构通常可假设为平行圆柱孔模型且孔径均等, 通过这类 孔的水通量 J可用 Hagen-Poiseuille方程描述如下, j — φ r A p
8 77 d 式中, 为孔隙率, 为孔半径, 77为黏度, ΔΡ 为工作压力, d为分离膜 的厚度。 若采用纯水测试且渗透压差为 0的情况下, 若膜的微孔结构及孔隙 率未发生变化, 则水通量正比于其工作压力, 为线性关系, 即 J=KAP。显然, 图 2所示曲线变化不符合线性关系。 这说明, 本发明中空膜受内压后, 膜体 发生膨胀, 导致膜表面的微孔孔径增大, 孔隙率提高, 在内压升高过程中, 膜的直径明显增加。

Claims

权 利 要 求 书
1. 一种中空纤维膜,其特征在于该中空纤维膜的成膜体系质量百分比配方是: 聚氨酯 25〜45;
复合致孔剂 35〜60;
有机低分子液体 15-20 , 各组分之和为 100% ,
其中,所述聚氨酯为纤维级,硬段与软段的质量比为 1/1〜1/5;所述复合致孔剂为 界面子 孔剂及非界面子 孔剂两种物质的混合物, 其中界面孔致孔剂占复合致孔 剂总质量的 10〜30%,界面孔致孔剂是指与所述聚氨酯不相容的非水溶性无机粒子, 包括平均粒径 0. 01〜5 μ m的 Si02和 CaCO冲的一种或二种任意比例的混合物;非界 面孔致孔剂是指水溶性物质, 包括水溶性无机粒子、 水溶性聚合物、 水 述水溶 性物质任意比例的混合物;所述水溶性无机粒子包括平均粒径 0. 01〜5 μ m的 LiCl、 CaCl2、 NaCl和 KC1中的一种; 所述水溶性聚合物包括聚乙烯吡咯垸酮或聚乙二醇; 所述有机低 H^夜体为高沸点、 7j溶性的聚氨酯良溶剂, 包括二甲基甲翻安、 二甲 基亚砜和二甲基乙翻安中的一种或一种以上任意比例的混合物。
2. 根据权利要求 1所述的中空纤维膜, 其特征在于所述聚氨酯的硬段与软段 的质量比为 1/2。
3. 根据权利要求 1所述的屮空纤维膜, 其特征在于在所述劇莫体系配方屮加 入不舰复合致孔剂总质量 10%的水。
4.一种中空纤维膜的制造方法, 其特征在于该制造方法采用如下熔融纺丝工 艺: 首先按照权利要求 1、 2或 3所述的中空纤维膜质量百分比配方要求制备聚合 物戲体系, 然后将其倒入混合釜内进行加热强制预混合, 加 度130〜140 , 混均后 ftA¾螺杆挤出机中, 经溶解及熔融过程后,在 130〜155°C 下,经中空 喷丝组件进行熔融共混纺丝制膜, 再经过常规溶液纺丝的水萃洗工序后, 即得到所 述屮空纤维膜。
5.根据权利要求 4所述的中空纤维膜的制造方法,其特征在于在所述熔融共混 纺丝制膜后, 先经拉伸工序, 再进行水萃洗工序; 所述拉伸工序的拉伸比为 3〜5 倍, 拉伸处理 为 40—60 °C。
PCT/CN2009/070717 2008-07-21 2009-03-10 一种中空纤维膜及其制造方法 WO2010009628A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810053896.4 2008-07-21
CN2008100538964A CN101322922B (zh) 2008-07-21 2008-07-21 一种中空纤维膜及其制造方法

Publications (1)

Publication Number Publication Date
WO2010009628A1 true WO2010009628A1 (zh) 2010-01-28

Family

ID=40186720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070717 WO2010009628A1 (zh) 2008-07-21 2009-03-10 一种中空纤维膜及其制造方法

Country Status (3)

Country Link
CN (1) CN101322922B (zh)
HK (1) HK1126708A1 (zh)
WO (1) WO2010009628A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101322922B (zh) * 2008-07-21 2011-08-10 天津工业大学 一种中空纤维膜及其制造方法
CN101884878B (zh) * 2010-08-18 2012-09-26 天津工业大学 一种全氟聚合物中空纤维多孔膜及其制备方法
CN101912739B (zh) * 2010-08-18 2012-04-18 天津工业大学 一种聚氯乙烯中空纤维膜的制备方法
CN101982604A (zh) * 2010-11-01 2011-03-02 张瑜 一种防水透气聚氨酯合成革及其制造方法
CN102808235B (zh) * 2011-05-31 2015-05-20 上海杰事杰新材料(集团)股份有限公司 一种耐腐蚀聚酰胺中空纤维膜及其制备方法
CN102295323B (zh) * 2011-06-16 2013-06-05 天津工业大学 一种水处理方法
CN102728249B (zh) * 2012-07-22 2014-07-23 天津工业大学 一种聚合物中空纤维多孔膜及其制备方法
CN103030863B (zh) * 2012-12-28 2018-04-06 广东美联新材料股份有限公司 一种透气母粒及利用该母粒制造透气膜的方法
US9649741B2 (en) * 2014-07-07 2017-05-16 Jh Rhodes Company, Inc. Polishing material for polishing hard surfaces, media including the material, and methods of forming and using same
CN107540805A (zh) * 2017-09-06 2018-01-05 烟台蓝海博隆超纤新材料有限公司 一种加工溶剂及其应用
CN108554204A (zh) * 2018-01-08 2018-09-21 天津工业大学 一种聚氯乙烯中空纤维多孔膜的制备方法
CN114733362B (zh) * 2021-01-07 2023-10-31 杭州费尔新材料有限公司 一种聚烯烃中空纤维膜的制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174007A (ja) * 1989-11-29 1991-07-29 Komatsu Ltd 多孔質中空糸及びその製造方法
CN1510181A (zh) * 2002-12-26 2004-07-07 天津工业大学膜科学与技术研究所 复配制膜添加剂湿法纺丝
CN1883778A (zh) * 2006-05-26 2006-12-27 天津工业大学 一种聚氨酯共混中空纤维膜及其制造方法
CN101322922A (zh) * 2008-07-21 2008-12-17 天津工业大学 一种中空纤维膜及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174007A (ja) * 1989-11-29 1991-07-29 Komatsu Ltd 多孔質中空糸及びその製造方法
CN1510181A (zh) * 2002-12-26 2004-07-07 天津工业大学膜科学与技术研究所 复配制膜添加剂湿法纺丝
CN1883778A (zh) * 2006-05-26 2006-12-27 天津工业大学 一种聚氨酯共混中空纤维膜及其制造方法
CN101322922A (zh) * 2008-07-21 2008-12-17 天津工业大学 一种中空纤维膜及其制造方法

Also Published As

Publication number Publication date
HK1126708A1 (en) 2009-09-11
CN101322922B (zh) 2011-08-10
CN101322922A (zh) 2008-12-17

Similar Documents

Publication Publication Date Title
WO2010009628A1 (zh) 一种中空纤维膜及其制造方法
CN1899678B (zh) 中空纤维膜制法
CN101342465B (zh) 一种中空纤维多孔膜及其制备方法
US7632439B2 (en) Poly(ethylene chlorotrifluoroethylene) membranes
KR101597829B1 (ko) 다공성 막 및 그 제조방법
JP5619532B2 (ja) フッ化ビニリデン系樹脂多孔膜およびその製造方法
KR101657307B1 (ko) 불소계 중공사막 및 그 제조 방법
CA2082511C (en) Polyvinylidene fluoride membrane
CN101874988B (zh) 一种分离膜及其制备方法
JP6215996B2 (ja) 同質増強型ppta中空繊維膜の製作方法
WO2009097745A1 (zh) 一种聚偏氟乙烯多孔膜及其制备方法
US20180154314A1 (en) Method for preparing the network-pore polyvinylidene fluoride membrane based on polyvinyl alcohol gel
WO2002102500A1 (en) Membrane polymer compositions
CA2733826A1 (en) Methods of forming poly(ethylene chlorotrifluoroethylene) membranes
JPH02302449A (ja) 微細孔膜の作成法
CN105413486A (zh) 一种醋酸纤维素共混纳滤膜及其制备方法
CN101417213A (zh) 一种中空纤维多孔膜的熔融纺丝制备方法
Liu et al. Preparation and interface structure study on dual-layer polyvinyl chloride matrix reinforced hollow fiber membranes
JP2007181813A (ja) 中空糸膜の製造方法および中空糸膜
CN103861477B (zh) 一种聚偏氟乙烯/钯纳米粒子杂化中空纤维膜及其制备方法
CN106139912A (zh) 一种内支撑增强型聚偏氟乙烯中空纤维膜的制备方法
JP2736992B2 (ja) ポリスルホン系中空糸膜及びその製造方法
CN106268356B (zh) 一种热致相分离制备超高分子量聚乙烯复合中空纤维的方法
CN104519985A (zh) 具有新型结构的中空纤维膜及其制造方法
JP4605752B2 (ja) 多孔質膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09799944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09799944

Country of ref document: EP

Kind code of ref document: A1