WO2010006571A1 - Verkapseltes optoelektronisches bauelement und verfahren zu dessen herstellung - Google Patents

Verkapseltes optoelektronisches bauelement und verfahren zu dessen herstellung Download PDF

Info

Publication number
WO2010006571A1
WO2010006571A1 PCT/DE2009/000858 DE2009000858W WO2010006571A1 WO 2010006571 A1 WO2010006571 A1 WO 2010006571A1 DE 2009000858 W DE2009000858 W DE 2009000858W WO 2010006571 A1 WO2010006571 A1 WO 2010006571A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
optoelectronic component
encapsulation
diffusion barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/DE2009/000858
Other languages
German (de)
English (en)
French (fr)
Inventor
Karsten Heuser
Christian Schmid
Tilman Schlenker
Peter GRÖPPEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to EP09775897.3A priority Critical patent/EP2301092B1/de
Priority to US13/054,397 priority patent/US8530928B2/en
Priority to CN200980127652.9A priority patent/CN102099943B/zh
Priority to JP2011517746A priority patent/JP5579177B2/ja
Publication of WO2010006571A1 publication Critical patent/WO2010006571A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • a method for encapsulating an optoelectronic component according to claim 1 is specified.
  • Encapsulation techniques still occur in pinholes or defects in the encapsulation layer which lead to leaks. By these leaks, for example, humidity from the environment can penetrate to the optoelectronic device and this with the
  • the optoelectronic component can be, for example, an organic light emitting diode (OLED).
  • OLED organic light emitting diode
  • an OLED can comprise the following layer sequence: an anode, a cathode, and a radiation-emitting layer arranged between the two.
  • the radiation-emitting layer may in this case comprise an organic material.
  • Electrodes which are discharged from the cathode, in the radiation-emitting layer.
  • the energy released by the recombination can be emitted in the radiation Layer molecules to stimulate the emission of radiation.
  • the OLED is an optoelectronic electroluminescent component.
  • an OLED may comprise as further layers: a hole-inducing layer, a hole-transporting layer
  • the optoelectronic component can also be other forms of electroluminescent components, as well as non-electroluminescent components.
  • the optoelectronic component is covered by a housing and the space between the component and the housing additionally contains a getter.
  • a getter is one
  • a "large-area" optoelectronic component is understood to be an optoelectronic component whose area is greater than or equal to 3 mm 2 , and it is also difficult to produce very thin optoelectronic components with this method.
  • An object of method variants of this invention is to provide a method by which an optoelectronic device can be tightly encapsulated to protect against environmental influences.
  • a method variant for the encapsulation of an optoelectronic component comprises the method steps A) providing the optoelectronic component, and B) depositing a diffusion barrier for protection against environmental influences by means of an atmospheric pressure plasma on at least one subregion of the surface of the optoelectronic component.
  • the diffusion barrier By depositing the diffusion barrier by means of atmospheric pressure plasma, it can be ensured that the deposited layer has a very high density.
  • the diffusion barrier has no or almost no pinholes or defects. It is achieved a significantly higher density than in the usual Dünnfilmverkapselungsstepn.
  • the optoelectronic device can be effectively protected from environmental influences by the atmospheric pressure plasma encapsulation. This method is also suitable for very large area applications.
  • the use of an atmospheric pressure plasma has some advantages over the use of a low pressure plasma technique.
  • the apparatus cost of the atmospheric pressure plasma is significantly lower than in low-pressure plasma.
  • low-pressure plasma it is necessary that the device to be coated is placed in a chamber in which then the pressure is reduced, after the deposition process, the pressure is adjusted back to normal pressure and the
  • Component is retrieved from the chamber again.
  • the atmospheric pressure plasma it is not necessary to introduce the device in a closed chamber.
  • the device can be coated under normal conditions, that is to say in air atmosphere under normal pressure. This is thus also possible, for example, directly on an assembly line. Due to the fact that there is no spatial restriction, it is much easier, for example, to use only individual points on the component, for example with machines that are used for deposition, and not to coat the entire surface as in the low-pressure chamber.
  • the use of the atmospheric pressure plasma can also be carried out under a protective gas atmosphere.
  • the diffusion barrier can be deposited here in a thickness of 50 ntn to 1000 nm. Preferably, it is deposited in a thickness of 100 nm to 250 nm.
  • This encapsulation technique thus enables the production of very thin optoelectronic components, which nevertheless have a very high impermeability to environmental influences.
  • This method can also be used very well for large-area components, since here in contrast to the housing technology in which the production of very large housings is a problem, here the size of the optoelectronic device from a technical point of view does not matter.
  • the diffusion barrier can be produced in the process by depositing individual layers. In this case, two or more individual layers can be deposited one above the other. Each of the individual layers may have a thickness of, for example, 50 to 100 nm. By applying single layers, the tightness of the total layer can be increased again. Furthermore, layers with different thicknesses can thus be produced on the component at different points.
  • the diffusion barrier may comprise SiO 2 .
  • the total diffusion barrier preferably consists of amorphous SiO 2 .
  • the SiO 2 can in this case only be formed in the gas phase.
  • a silane and another compound serving as an oxygen source can be used.
  • As the silane SiH4 example, can be used and as an oxygen source for example N 2 O.
  • a plasma jet can be used for the deposition in process step B) on partial regions of the optoelectronic component.
  • the plasma jet can be guided over the surface of the component to be coated at a speed of 5 to 1000 m per minute.
  • the diffusion barrier can thus be deposited as required on very small, for example punctiform subregions, as well as on very large areas of the device.
  • the plasma can be generated in a process variant in a plasma nozzle.
  • the plasma nozzle it can be formed into a plasma jet.
  • the plasma jet can be found in the Plasma nozzle are fed to a precursor from which then the material is formed, which forms the diffusion barrier layer.
  • These can also be multiple precursors.
  • two precursors can react in the plasma jet and the reaction product of this reaction can then be deposited on the surface of the optoelectronic component.
  • the precursors may be, for example, a silane and a compound which serves as an oxygen source.
  • a pulsed arc is generated in the plasma nozzle by means of high-voltage discharge.
  • a voltage can be used which is in the range of 5 to 30 kV.
  • a frequency can be used which is in the range of 10 to 100 kHz.
  • a DC discharge is used.
  • method step A) comprises the following partial method steps A1) providing a substrate, A2) applying a first electrode layer to the substrate, A3) applying an organic functional layer to the first electrode layer, and A4) applying a second electrode layer the organic functional layer, wherein a layer stack comprising the first electrode layer, the second electrode layer and the organic functional layer is formed.
  • a layer stack of the optoelectronic component is generated.
  • at the organic functional layer may be, for example, a light-emitting layer.
  • the two electrode layers serve for electrical contacting of the component.
  • method step A) comprises, as a further substep step A5), the application of a first encapsulation layer to the second electrode layer.
  • the encapsulation layer serves for encapsulation of the optoelectronic component and thus for protection against environmental influences.
  • the first encapsulation layer is applied by means of atmospheric pressure plasma.
  • a sufficient degree of tightness is already achieved by the application of the first encapsulation layer.
  • the application of further encapsulation layers is not necessary in this process variant.
  • the application of the first encapsulation layer can take place under protective gas atmosphere.
  • the layer stack generated in the partial process steps A1) to A4) has main surfaces, which are the outer surfaces that run parallel to the layer sequence. Furthermore, the layer stack has side surfaces which are the outer surfaces that run perpendicular to the layer sequence.
  • An optoelectronic component can be encapsulated, for example, in that the diffusion barrier on the side surfaces of the
  • Layer stack is deposited. This variant of the method is conceivable, for example, if the layer stack already has a layer as the uppermost layer, which has a layer has very high tightness, so that the penetration of, for example, humidity is conceivable only on the side surfaces of the layer stack.
  • a thin-film encapsulation layer is applied to the second electrode layer in an additional process step after the partial process step A4).
  • the optoelectronic component is already pre-encapsulated by the thin-film encapsulation layer.
  • the optoelectronic component then already has a first basic tightness against environmental influences.
  • Subprocesses Al) and A2) applied a conductive transparent layer on the first substrate.
  • a second method step is used in an additional method step
  • Verkappeiungstik applied to the Dünnfilmverkapselungs slaughter.
  • a particularly high degree of tightness is achieved.
  • a cover plate can be used for the first encapsulation layer. This makes it possible, for example, to seal one or even both main surfaces of the layer stack quickly and efficiently in the case of very large-area components.
  • the optoelectronic component can thus radiate without great radiation losses, for example, through the main surface which has been encapsulated, for example, with a glass cover plate.
  • Process variant must then be tightly encapsulated the side surfaces of the layer stack. This can be done, for example, by depositing the diffusion barrier on the side surfaces of the layer stack.
  • a lacquer is used for the first encapsulation layer.
  • the lacquer layer can be applied for example on a previously deposited diffusion barrier.
  • the paint layer can serve as scratch protection, for example.
  • a variant of the method is also possible in which first the lacquer layer is applied, for example, to the second electrode layer, and only then, in a subsequent method step, is the diffusion barrier applied to the lacquer layer.
  • the layer stack or the second electrode layer can be protected by the lacquer layer in front of the plasma jet, with which the diffusion barrier is deposited.
  • the optoelectronic component can be encapsulated in such a way that no cavity, ie no cavities, arises between the component and the encapsulation.
  • An embodiment of the optoelectronic component here comprises a first substrate, a first one
  • Electrode layer disposed on the first substrate, an organic functional layer disposed on the first electrode layer, a second electrode layer arranged on the organic functional layer, a first encapsulation layer disposed on the second electrode layer and a diffusion barrier of SiC> 2, which was deposited on at least a portion of the surface of the device by means of atmospheric pressure plasma.
  • the optoelectronic component further comprises a conductive transparent layer, which is arranged on the first substrate.
  • the optoelectronic component comprises a thin-film encapsulation layer, which is arranged on the second electrode layer.
  • the optoelectronic component comprises a second encapsulation layer which is located on the
  • Thin film encapsulation layer is arranged.
  • the component comprises a cover plate as the first encapsulation layer.
  • the component comprises a lacquer layer as the first encapsulation layer.
  • the component comprises a first encapsulation layer, which was deposited by means of atmospheric pressure plasma.
  • FIGS. 1 to 5 each show a schematic side view of an embodiment of the optoelectronic component.
  • FIG. 1 shows the schematic side view of a possible embodiment of the optoelectronic component.
  • 1 shows the layer sequence substrate 1, arranged thereon a conductive transparent layer 2, arranged thereon a first electrode layer 3, on which the organic functional layer 4 is arranged.
  • the organic functional layer 4 is followed by the second electrode layer 5.
  • the first electrode layer 3 is electrically conductive over the
  • the first electrode layer 3 is electrically insulated from the second electrode layer 5.
  • the organic functional layer for example, visible radiation can be generated which are then discharged, for example, over the bottom of the device as visible radiation 20 can.
  • the radiation can be emitted via the upper side.
  • the second electrode layer 5 is followed by a thin-film encapsulation 6.
  • the thin-film encapsulation 6 is used for pre-encapsulation of the optoelectronic component, so that it already has a first basic seal with respect to environmental influences.
  • the thin-film encapsulation can be applied, for example, using a PE-CVD process (plasma-enhanced chemical vapor deposition).
  • the thin-film encapsulation 6 can For example, consist of oxide or nitride layers such as SiO or SiN. It is also conceivable a multi-layer combination of nitride and oxide layers. However, since such a thin-film encapsulation 6 may have pinholes or other leaks, there are others
  • the component in FIG. 1 comprises a thin film encapsulation 6
  • Diffusion barrier 12 which was deposited by means of atmospheric pressure plasma.
  • the diffusion barrier 12 is deposited in this embodiment both on the upper main surface as well as on the side surfaces of the layer stack.
  • the diffusion barrier 12 can be applied by means of atmospheric pressure plasma in several individual layers, thus the different partial regions can have different thicknesses of the diffusion barrier 12.
  • FIG. 2 shows a further embodiment of the optoelectronic component.
  • this embodiment also comprises the layer sequence substrate 1, conductive transparent layer 2, first electrode layer 3, the organic functional layer 4 arranged thereon, and the second electrode layer 5 arranged thereon.
  • the embodiment also comprises the contacting 9, the insulation layer 10, as well as the thin-film encapsulation 6, which is arranged on the second electrode layer 5.
  • Thin film encapsulation 6 a resist layer 8 is arranged in this embodiment.
  • the main surface is the combination Thin-film encapsulation 6 and paint layer 8 encapsulated.
  • the side surfaces of the layer stack are encapsulated in this embodiment, as well as in the embodiment shown in Figure 1 by the diffusion barrier 12, which was deposited with atmospheric pressure plasma. The deposition of the diffusion barriers 12 by means of atmospheric pressure plasma has thus taken place in this embodiment only on the side surfaces.
  • FIG. 3 shows a schematic side view of a further embodiment of the optoelectronic component.
  • the embodiment shown in FIG. 3 may, for example, be apparent from the embodiment shown in FIG. 1, in that a lacquer layer 8 was applied to the diffusion barrier 12, which was deposited by means of atmospheric pressure plasma.
  • the lacquer layer 8 can serve, for example, as scratch protection for the diffusion barrier 12.
  • FIG. 4 shows a schematic side view of a further exemplary embodiment of the optoelectronic component.
  • the embodiment illustrated in FIG. 4 may be apparent, for example, from the embodiment shown in FIG. 2, in that a diffusion barrier 12 is provided on the lacquer layer 8 by means of
  • the lacquer layer 8 under the diffusion barrier 12 may, for example, the device during the deposition of Protect diffusion barrier 12 by means of atmospheric pressure plasma.
  • FIG. 5 shows a schematic side view of a further embodiment of the optoelectronic component.
  • This comprises the layer sequence substrate 1, conductive transparent layer 2, first electrode layer 3, the organic functional layer 4 arranged thereon, and subsequently the second electrode layer 5.
  • the embodiment further comprises the contact 9 as well as the insulating layer 10 and that on the second electrode layer 5 arranged thin-film encapsulation 6.
  • a second encapsulation layer 7 is applied on the thin-film encapsulation 6 and around the side surfaces of the layer stack.
  • This second encapsulation layer 7 can serve for pre-encapsulation of the component as well as for planarization of the thin-film encapsulation 6.
  • the second encapsulation layer 7 can comprise, for example, a transparent epoxide.
  • the second encapsulation layer 7 is followed by a cover plate 11.
  • the cover plate may, for example, be a glass substrate.
  • cover plates 11 which are not transparent.
  • the use of a cover plate 11 makes it possible to encapsulate large or large components quickly and efficiently on one or both main surfaces.
  • the device is to the bottom over the substrate for Top over the cover plate and on the side surfaces over the diffusion barrier 12 completely encapsulated.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
PCT/DE2009/000858 2008-07-14 2009-06-19 Verkapseltes optoelektronisches bauelement und verfahren zu dessen herstellung Ceased WO2010006571A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09775897.3A EP2301092B1 (de) 2008-07-14 2009-06-19 Verkapseltes optoelektronisches bauelement und verfahren zu dessen herstellung
US13/054,397 US8530928B2 (en) 2008-07-14 2009-06-19 Encapsulated optoelectronic component and method for the production thereof
CN200980127652.9A CN102099943B (zh) 2008-07-14 2009-06-19 封装的光电子元件和用于其的制造方法
JP2011517746A JP5579177B2 (ja) 2008-07-14 2009-06-19 カプセル封入されたオプトエレクトロニクスデバイスおよびカプセル封入されたオプトエレクトロニクスデバイスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008033017A DE102008033017A1 (de) 2008-07-14 2008-07-14 Verkapseltes optoelektronisches Bauelement und Verfahren zu dessen Herstellung
DE102008033017.5 2008-07-14

Publications (1)

Publication Number Publication Date
WO2010006571A1 true WO2010006571A1 (de) 2010-01-21

Family

ID=41202706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/000858 Ceased WO2010006571A1 (de) 2008-07-14 2009-06-19 Verkapseltes optoelektronisches bauelement und verfahren zu dessen herstellung

Country Status (7)

Country Link
US (1) US8530928B2 (enExample)
EP (1) EP2301092B1 (enExample)
JP (1) JP5579177B2 (enExample)
KR (1) KR101554763B1 (enExample)
CN (1) CN102099943B (enExample)
DE (1) DE102008033017A1 (enExample)
WO (1) WO2010006571A1 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076733A1 (de) 2011-05-30 2012-12-06 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement, Verfahren zum Herstellen eines optoelektronischen Bauelements, Verwendung einer Glasfritte zur Kantenpassivierung einer Elektrode eines optoelektronischen Bauelements, und Verwendung einer Glasfritte zur Passivierung einer o
US8866181B2 (en) 2009-07-31 2014-10-21 Osram Opto Semiconductors Gmbh Method for producing a component with at least one organic material and component with at least one organic material
US9797567B2 (en) 2008-12-11 2017-10-24 Osram Oled Gmbh Organic-light-emitting diode and luminaire

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102113600B1 (ko) * 2012-12-07 2020-05-21 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치 및 이의 제조 방법
KR102113175B1 (ko) * 2013-08-19 2020-05-21 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102203447B1 (ko) * 2014-05-27 2021-01-18 엘지디스플레이 주식회사 유기발광 표시패널 및 그 제조방법
DE102015106631A1 (de) 2015-04-29 2016-11-03 Osram Oled Gmbh Optoelektronisches Halbleiterbauteil
CN109768184B (zh) * 2019-02-18 2020-10-27 武汉华星光电半导体显示技术有限公司 一种oled显示面板及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152590A (ja) * 2002-10-30 2004-05-27 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
JP2004152664A (ja) * 2002-10-31 2004-05-27 Seiko Epson Corp 表示パネル及びその表示パネルを備えた電子機器並びに表示パネルの製造方法
EP1849593A1 (en) * 2005-02-17 2007-10-31 Konica Minolta Holdings, Inc. Gas-barrier film, process for producing gas-barrier film, resin base with the gas-barrier film for organic electroluminescent element, and organic electroluminescent element

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020041916A1 (en) * 2000-10-06 2002-04-11 Burdick William E. Method for distributed production of beer and restaurant services
JP2003168571A (ja) 2001-11-29 2003-06-13 Ulvac Japan Ltd 有機el素子
US6936131B2 (en) * 2002-01-31 2005-08-30 3M Innovative Properties Company Encapsulation of organic electronic devices using adsorbent loaded adhesives
EP1351321B1 (en) * 2002-04-01 2013-12-25 Konica Corporation Support and organic electroluminescence element comprising the support
US6710542B2 (en) * 2002-08-03 2004-03-23 Agilent Technologies, Inc. Organic light emitting device with improved moisture seal
WO2004014644A1 (ja) * 2002-08-07 2004-02-19 Kabushiki Kaisha Toyota Chuo Kenkyusho 密着層を備える積層体及び保護膜を備える積層体
JP2004192822A (ja) 2002-12-06 2004-07-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子およびその製造方法
JP2005085604A (ja) * 2003-09-09 2005-03-31 Seiko Epson Corp 有機金属化合物の薄膜形成方法、有機金属化合物薄膜、およびこれを備えた有機電子デバイスの製造方法、有機電子デバイス、有機エレクトロルミネッセンスの製造方法、有機エレクトロルミネッセンス、及び電子機器
KR20070015590A (ko) * 2004-04-22 2007-02-05 오스람 옵토 세미컨덕터스 게엠베하 유기 전자 부품용 캡슐, 그의 제조 방법 및 용도
US8486487B2 (en) * 2005-02-17 2013-07-16 Konica Minolta Holdings, Inc. Gas barrier film, gas barrier film manufacturing method, resin substrate for organic electroluminescent device using the aforesaid gas barrier film, and organic electroluminescent device using the aforementioned gas barrier film
JPWO2006092943A1 (ja) * 2005-03-02 2008-08-07 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006100868A1 (ja) * 2005-03-18 2006-09-28 Konica Minolta Holdings, Inc. 有機化合物層の形成方法、有機el素子の製造方法、有機el素子
JPWO2007020718A1 (ja) * 2005-08-18 2009-02-19 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007032175A1 (ja) * 2005-09-12 2007-03-22 Idemitsu Kosan Co., Ltd. 導電性積層体及び有機el素子
JP5003491B2 (ja) * 2005-10-28 2012-08-15 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子の製造方法及び製造装置
USRE44831E1 (en) * 2006-01-05 2014-04-08 Konica Minolta Holdings, Inc. Organic electroluminescent device, display, and illuminating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152590A (ja) * 2002-10-30 2004-05-27 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
JP2004152664A (ja) * 2002-10-31 2004-05-27 Seiko Epson Corp 表示パネル及びその表示パネルを備えた電子機器並びに表示パネルの製造方法
EP1849593A1 (en) * 2005-02-17 2007-10-31 Konica Minolta Holdings, Inc. Gas-barrier film, process for producing gas-barrier film, resin base with the gas-barrier film for organic electroluminescent element, and organic electroluminescent element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9797567B2 (en) 2008-12-11 2017-10-24 Osram Oled Gmbh Organic-light-emitting diode and luminaire
US10605422B2 (en) 2008-12-11 2020-03-31 Osram Opto Semiconductors Gmbh Organic-light-emitting diode
US11585504B2 (en) 2008-12-11 2023-02-21 Pictiva Displays International Limited Organic-light-emitting diode
US11828425B2 (en) 2008-12-11 2023-11-28 Pictiva Displays International Limited Organic-light emitting diode
US12158250B2 (en) 2008-12-11 2024-12-03 Pictiva Displays International Limited Organic-light emitting diode
US8866181B2 (en) 2009-07-31 2014-10-21 Osram Opto Semiconductors Gmbh Method for producing a component with at least one organic material and component with at least one organic material
DE102011076733A1 (de) 2011-05-30 2012-12-06 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement, Verfahren zum Herstellen eines optoelektronischen Bauelements, Verwendung einer Glasfritte zur Kantenpassivierung einer Elektrode eines optoelektronischen Bauelements, und Verwendung einer Glasfritte zur Passivierung einer o

Also Published As

Publication number Publication date
JP5579177B2 (ja) 2014-08-27
EP2301092B1 (de) 2019-05-22
US20110266590A1 (en) 2011-11-03
US8530928B2 (en) 2013-09-10
EP2301092A1 (de) 2011-03-30
KR20110040750A (ko) 2011-04-20
CN102099943B (zh) 2016-03-09
KR101554763B1 (ko) 2015-09-21
JP2011528156A (ja) 2011-11-10
CN102099943A (zh) 2011-06-15
DE102008033017A1 (de) 2010-01-21

Similar Documents

Publication Publication Date Title
EP2301092B1 (de) Verkapseltes optoelektronisches bauelement und verfahren zu dessen herstellung
DE112009000756B4 (de) Verfahren zur Herstellung eines elektronischen Bauelements
DE102006027393A1 (de) Verkapselung für organisches Bauelement
WO2013037764A2 (de) Optoelektronisches bauelement
DE102008031405A1 (de) Verfahren zur Herstellung eines organischen elektronischen Bauelements und organisches elektronisches Bauelement
DE102016106846A1 (de) Mehrschichtige Verkapselung, Verfahren zur Verkapselung und optoelektronisches Bauelement
DE102008019900A1 (de) Verfahren zur Herstellung eines organischen elektronischen Bauelements und organisches elektronisches Bauelement
DE102014222920A1 (de) Licht emittierendes Bauelement und Verfahren zur Herstellung eines Licht emittierenden Bauelements
WO2013076073A1 (de) Verfahren zum herstellen eines opto-elektronischen bauelements und opto-elektronisches bauelement
DE102012220724B4 (de) Optoelektronisches Bauelement
DE102012109218B4 (de) Verfahren zum Herstellen einer optoelektronischen Baugruppe und optoelektronische Baugruppe
DE102014106885B4 (de) Verfahren zur Herstellung einer Isolatorschicht, Verfahren zur Herstellung eines organischen optoelektronischen Bauelements umfassend eine Isolatorschicht und organisches optoelektronisches Bauelement umfassend eine Isolatorschicht
DE102011079160B4 (de) Verkapselungsstruktur für ein optoelektronisches bauelement und verfahren zum verkapseln eines optoelektronischen bauelements
WO2015032750A1 (de) Organisches optoelektronisches bauelement
DE102015112681B4 (de) Organisches optoelektronisches Bauelement und Verfahren zum Herstellen eines organischen optoelektronischen Bauelements
WO2014207039A1 (de) Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelementes
DE102017107707A1 (de) Verfahren zur Herstellung eines elektronischen Bauelements und elektronisches Bauelement
DE102015212477A1 (de) Organisches lichtemittierendes Bauelement und Verfahren zur Herstellung eines organischen lichtemittierenden Bauelements
DE102015118417A1 (de) Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
DE102017100929B4 (de) Verfahren zur Herstellung eines organischen elektronischen Bauelements
DE102014222946A1 (de) Licht emittierendes Bauelement und Verfahren zur Herstellung eines Licht emittierenden Bauelements
EP3895225A2 (de) Stabilisierung laserstrukturierter organischer fotovoltaik vorrichtungen
DE102016122685A1 (de) Organisches Bauelement und Verfahren zur Herstellung eines organischen Bauelements
WO2017118574A1 (de) Verfahren zur herstellung von organischen leuchtdioden und organische leuchtdiode
DE102016111320A1 (de) Verfahren zur Herstellung eines organischen lichtemittierenden Bauelements und organisches lichtemittierendes Bauelement

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980127652.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09775897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009775897

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107025554

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011517746

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13054397

Country of ref document: US