WO2010005727A2 - Dispositifs et procédés de surveillance - Google Patents

Dispositifs et procédés de surveillance Download PDF

Info

Publication number
WO2010005727A2
WO2010005727A2 PCT/US2009/047519 US2009047519W WO2010005727A2 WO 2010005727 A2 WO2010005727 A2 WO 2010005727A2 US 2009047519 W US2009047519 W US 2009047519W WO 2010005727 A2 WO2010005727 A2 WO 2010005727A2
Authority
WO
WIPO (PCT)
Prior art keywords
subject
temperature
core body
wearable device
wearable
Prior art date
Application number
PCT/US2009/047519
Other languages
English (en)
Other versions
WO2010005727A3 (fr
Inventor
Paul Zei
Bryant Lin
Robert C. Allison
Kenneth Carr
Original Assignee
Paul Zei
Bryant Lin
Allison Robert C
Kenneth Carr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Zei, Bryant Lin, Allison Robert C, Kenneth Carr filed Critical Paul Zei
Publication of WO2010005727A2 publication Critical patent/WO2010005727A2/fr
Publication of WO2010005727A3 publication Critical patent/WO2010005727A3/fr
Priority to US12/969,834 priority Critical patent/US8303172B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • A61B5/015By temperature mapping of body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0008Temperature signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4519Muscles

Definitions

  • Athletes have long sought ways to improve their performance through a variety of often complex training regimens. Optimizing training and competition by avoiding fatigue and not significantly exceeding anaerobic threshold is extremely important to improve performance.
  • Physiologic monitoring can be used to assess whether athletes are reaching their fatigue and anaerobic threshold (i.e. exceeding their exercise capacity).
  • the most common monitoring metric is heart rate.
  • heart rate When athletes approach or reach a predetermined target heart rate or heart rate range (zone), they can modify their exertion level (e.g. pace) to avoid fatiguing too soon.
  • a variety of portable devices including watches with wireless heart rate sensors are being used to measure heart rate during exercise.
  • heart rate is an imperfect metric and has significant variability due to influence from endogenous and exogenous factors.
  • Another method of measuring or evaluating fatigue in a subject may be temperature. Fatigue may occur at, for example, repeatable, predictable core body and muscle temperature thresholds. However, skin temperature is significantly less effective at predicting fatigue due to influence from the ambient temperature and other factors.
  • Previous studies evaluating core and muscle temperature during exercise utilized invasive measurements of temperature such as rectal, invasive muscle probes and/or oral methods. These standard methods of measuring core and muscle temperature are cumbersome and most people would not utilize them during exercise.
  • microwave radiometry has been utilized in temperature measurement including measuring temperature from specific locations from a satellite, such microwave radiometry devices are typically large and not portable. For example, radiometers have been disclosed in e.g., U.S. Patent Nos: US4346716, US4647281, US4774961, US5334141, US5662110, US5779635; and US5983124, hereby incorporated by reference.
  • the present disclosure generally provides methods and devices for monitoring core temperature of the body, e.g. during exercise.
  • a wearable radiometer for continuously or periodically measuring core body, muscle and other internal organ temperatures, for example, during exercise.
  • methods, systems and devices for the continuous or periodic measurement of core body, muscle or other internal organ temperature during exercise may include exertional feedback which may, for example, prevent and evaluate fatigue, anaerobic threshold and/or exercise capacity.
  • a non-invasive method of assessing fatigue and/or anaerobic threshold in a subject during physical exertion comprising measuring core body or muscle temperature of said subject, for example, wherein the measuring core body temperature comprises the using microwave radiometry.
  • Such measuring core body temperature may include providing a wearable device to said subject during physical exertion.
  • Such device may, in some embodiments, provide a sensory signal (e.g. visual, tactile, or audio) detectable by said subject when a predetermined core body or muscle temperature is reached.
  • a method of controlling a subject's physical activity comprising monitoring the subject's core body or muscle temperature. Such methods may further comprise adjusting said physical activity once a selected core body or muscle temperature is achieved.
  • monitoring may include providing a device that comprises a microwave radiometer and a transducer for detecting core body or muscle microwave emissions and positioning said device on said subject at a position suitable for detecting the subject's core body or muscle temperature substantially continuously during physical exertion, an audio, visual or tactile signal, where the signal configured for indicating when the subject's core body or muscle temperature is at a selected level, for example, a predetermined temperature, or a predetermined change in temperature over a set time.
  • Disclosed methods may include providing a display unit configured for displaying the subject's core body or muscle temperature, for example positioned so that the temperature displayed by said display unit can be viewed by a subject, e.g. the subject wearing a wearable radiometer device.
  • Contemplated physical activity may include walking, running, swimming, bicycling, skating, skiing, climbing, wheelchairing, snowshoeing, or the like.
  • a wearable apparatus for measuring core body temperature during exercise comprising: an antenna; a microwave radiometer circuit; a microcontroller; and a power supply; all or some of which may be disposed within a device body suitable for continuous use on a subject during exercise.
  • the device body may be suitable for use on a subject's extremities, or is suitable for use as an earpiece, suitable for use on the body, or is suitable for inserting or attaching to an article of clothing or a shoe.
  • Exemplary device bodies may be suitable for use on a subject's wrist, ankle, finger, hand, toe, arm, leg, chest, torso, head or neck.
  • a wearable apparatus for measuring core body temperature or sub-dermal tissue temperature of a subject during exercise, comprising a temperature acquisition unit comprising: an antenna; a microwave radiometer circuit; a low frequency electronics unit; and a power supply, said temperature acquisition unit disposed within a device body configured for continuous use on the subject during exercise.
  • the wearable apparatus or temperature acquisition unit may further comprise a microcontroller.
  • a disclosed wearable apparatus includes an antenna which may be less or equal about 50mm in the antenna's greatest dimension, e.g. about 2mm to about 50mm in diameter, or about 4 mm in length and about 2 mm in diameter, and/or wherein the power supply is a battery.
  • Disclosed wearable apparatus may further comprise a display unit configured for displaying real time body core temperature data or tissue temperature provided by the microwave radiometer, for example, a display unit may be configured to be worn by the subject so as to be visible to the subject while performing exercise.
  • the wearable apparatus or the display unit may further comprise an alarm which is activated when the body core temperature or tissue temperature meets a predetermined target.
  • a disclosed apparatus e.g. a display unit and/or a temperature acquisition unit, may further comprise at least one memory and at least one processor for processing acquired temperature data in accordance with instructions stored in the at least one memory.
  • Disclosed display units may be configured for communication with a temperature acquisition unit via a wired or wireless link.
  • a display unit forms part of the temperature acquisition unit. In another embodiment, a display unit is disposed in a separate unit.
  • a method of substantially continuously self-monitoring core body temperature in a subject comprising: providing a first wearable device to said subject, wherein said first wearable device comprises a transducer for detecting body core microwave emissions of the subject and a wireless transmission module; providing a second wearable device suitable for self-monitoring to said subject, wherein said second wearable device comprises a transducer, a wireless transmission module, a microwave radiometer integrated circuit chip, and a display user interface for providing the core body temperature information to said subject; detecting body core microwave emissions from the subject using the first wearable device; transmitting said microwave emissions from the first wearable device to the second wearable device; and displaying the core body temperature.
  • a first wearable device may include, for example, a chest strap, and a second wearable device may include an
  • a method of substantially continuously self-monitoring core body temperature in a subject comprising: providing a first wearable device to said subject, wherein said first wearable device comprises a transducer for detecting body core microwave emissions of the subject, a microwave radiometer integrated circuit chip and a wireless transmission module; providing a second wearable device suitable for self-monitoring to said subject, wherein said second wearable device comprises a wireless transmission module and a display user interface for providing the core body temperature information to said subject; detecting body core microwave emissions from the subject and converting the emissions to temperature information using the first wearable device; transmitting said temperature information from the first wearable device to the second wearable device; and displaying the core body temperature using the second wearable device.
  • kits for substantially continuously measuring body core temperature comprising: a first wearable device comprising an antenna, a microwave radiometer circuit, a microcontroller and a power supply; and optionally instructions for use.
  • FIGURE 1 is a system block diagram showing an apparatus for measuring core body temperature.
  • FIGURE 2 depicts a microwave radiometry circuit.
  • FIGURE 3 depicts a wearable chest strap on a subject for detecting core body temperature and the wireless transmission of temperature information to a wrist strap.
  • FIGURE 4 is a side view of a microwave radiometry device including a strap suitable for use on a subject.
  • FIGURE 5 is a top view of the device of Figure 4.
  • FIGURE 6 is a side view of an accessory radiometer sensor device for measuring body core temperature and transmitting to another device.
  • FIGURE 7 depicts body temperature measurements using both an oral thermometer and a disclosed device on subjects during exercise.
  • FIGURE 8 depicts body temperature measurements and heart rate measurements on a subject during exercise.
  • This disclosure is generally directed to wearable apparatus or device for measuring core body temperature or tissue (e.g. muscle) temperature (for example sub-surface (e.g., below skin)) temperature) in a subject (e.g. in a human) during e.g., exercise, and non-invasive methods for assessing fatigue and/or anaerobic threshold in a subject, e.g., while exercising.
  • core body temperature or tissue e.g. muscle
  • sub-surface e.g., below skin
  • Disclosed devices may measure core body or tissue temperatures that fluctuate, for example, due to a subject's regulation of temperature during exercise.
  • a wearable device that includes a radiometer.
  • a radiometer device generally includes four major components: 1) antenna and optional shielding, 2) measurement and calibration apparatus (software and/or hardware), 3) data display and/or communications module and 4) power supply.
  • Disclosed wearable devices are significantly smaller than typical radiometers.
  • disclosed devices include an antenna for localized temperature measurements of the body which may be for example, smaller than or equal to about 4 mm length and 2 mm diameter, or e.g. about 2mm to about 50 mm in the antenna's greatest dimension.
  • a disclosed antenna may be for example flexible (e.g. a printed antenna) or substantially rigid.
  • an antenna for use in a disclosed device may be proportional to the measurement depth of e.g. tissue. Such antennas may be capable of use in a local volumetric measurement of core body temperature.
  • a disclosed radiometer device may include a transducer or antenna 60 that detects and/or receives microwaves emitted by sub-surface tissue over a specific volume of tissue of interest (e.g. an area of subject's body near core organs, e.g. near the chest).
  • Microwave electronics 10 convert detected microwave signal from the subject into a lower frequency electronic signal that can be filtered, biased and/or otherwise transformed by low frequency electronics 20. The low frequency electronics feed either analog or digital data from which temperature can be calculated to the microcontroller 30.
  • Microwave section 10 may include or form part of a microwave radiometer circuit such as shown in Figure 2, and as known in the art.
  • a calibration apparatus or micro-controller 30 may include one or more integrated circuits, and/or may include a means for AfD, temperature calculation algorithm and/or a display driver.
  • the microcontroller 30 can execute algorithmic and/or other operations on the temperature data and/or may display information via a user interface 50.
  • Power forms 40 may include a power supply such as a battery 45, (which may be for example a standard watch,
  • the data display and communication module 50 can be driven by the measurement/calibration apparatus 30 or be self contained, and may display and/or transmit the temperature data.
  • Microwave section 10 may include, for example, the section (or parts of the section) depicted as a block diagram in Figure 2.
  • the transducer/antenna can pick up microwave energy and can be tuned to a specific wavelength or range of wavelengths (e.g. at about 1 Ghz to about 4 Ghz).
  • the signal can be amplified by a low noise radio frequency (RF)/microwave amplifier, as shown in Figure 2, which can feed into a filter to e.g. substantially eliminate noise.
  • RF radio frequency
  • Peak or other like detectors may be used to detect an envelope of signal, and the envelope may then be amplified by a DC amplifier and low pass filter as in Figure 2.
  • the output voltage is proportional to temperature.
  • a disclosed wearable radiometer is a wearable device similar to a wristwatch, for example, as shown in Figure 4.
  • the body of the wristwatch may contain shielding to decrease noise interference to the antenna.
  • Such a wearable radiometer may include a means for attaching to a subject's body, such as strap 100.
  • the antenna 60 may be disposed be anywhere in the "watch," in some embodiments, the antenna is positioned next to the skin directed toward e.g. the muscles of an appendage, e.g. the arm of a subject.
  • a power supply 45, measurement/calibration, and/or display/communications 50 may be disposed in the body of the "watch."
  • any display module is disposed on the side of the watch away from the body for ease of use.
  • Such a display module and "watch” may also capable of measuring and displaying current core body temperature, historic core body temperature measurements, and/or e.g., a temperature graph among other like data.
  • Such a wearable radiometer device may also have the means to function as a digital watch and other devices with functions including but not limited to time, alarm, stopwatch, GPS/mileage, pedometer, oximeter, air temperature, and timer.
  • Other sensors such as for heart rate detection may also be incorporated into the portable radiometer.
  • contemplated herein in one embodiment is an integrated device that provides for velocity, pace, and/or distance traveled information, e.g. gathered by an electronic positioning module, as well as temperature data.
  • a display interface/communications may receive temperature or other data from a microcontroller via a wired or wireless link.
  • a subject may select the type of data to be displayed or may select one or more predetermined formats for data display using input switches which may be disposed on the side of a device, e.g. as in Figure 5.
  • the display component may be programmed such that an alarm would be activated if a data value (e.g. temperature) departs from a predetermined limit or range.
  • a disclosed device such as that depicted in Figure 4 may transmit or receive data via wireless transmission module 70, which may include an antenna different that that the antenna 60.
  • wireless transmission module may use wireless protocols as know to those skilled in the art such as WIFI IEEE 802.1 la-g, Bluetooth 1, 2, 3; FM encoding (analog), AM encoding (analog) and/or IEEE 802.15.4 (Zigbee).
  • wireless transmission module 70 may receive temperature information from another device disposed on the subject's body, and/or may transmit information to a computer.
  • a disclosed device such as depicted in Figure 4 may, in some embodiments, not include microwave electronics 10, low frequency electronics 20, and/or microcontroller 30.
  • microwave electronics 10, low frequency electronics 20, and/or microcontroller 30 may instead, or additionally, be disposed on a second device disposed on the subject's body, e.g. as depicted in Figure 3
  • the display/communications module can also transmit or receive data to or from one or more other devices such as depicted in Figure 6.
  • Figure 6 depicts an accessory radiometer that may be placed in a different portion of the body (e.g. chest) for different and/or more efficient or accurate measurement of body core temperature.
  • Such accessory device may transmit temperature information to a device disposed on the subject for e.g. easy viewing, or such device may a stand alone device that in some embodiments may transmit data to a computer for viewing by the subject or third person or may display information for viewing by e.g., a third person such as a trainer or physician.
  • kits or method that includes both a wearable radiometer suitable for use, e.g. on the chest (or other radiometer sensor), and e.g. a wearable radiometer suitable for use on the wrist, and including a temperature display means.
  • a radiometer device that includes a means for transmitting core body temperature information to computer (e.g. via a wired or wireless connection.)
  • disclosed devices may include a primary wearable radiometer and one or more further wearable radiometers and/or other sensors (such as a heart rate sensor, pulse oximetry, blood pressure, pedometry, and/or galvanic response sensors).
  • a primary radiometer receives data from the other radiometers and sensors and displays and/or stores the data.
  • the wearable radiometers may transmit temperature information and may be worn or attached on a muscle or near organs of interest on a subject user.
  • Other sensors such as a heart rate monitor can be strapped to the chest or other locations.
  • Disclosed radiometers and sensors could be used to cross-validate the data coming from any sensor or filter noise by methods such as adaptive filtering.
  • disclosed devices include means for one or more alarms, (e.g. an audio (e.g., tone or beep), visual (e.g. flashing light), tactile signal (vibration) to alarm or otherwise alert the user when he or she has entered specified temperature range.
  • alarms/alerts can be programmed, for example, to incorporate temperatures from one or more radiometers or other data such as heart rate.
  • Alarms can be designed separately for each data stream or alarms can be programmed to incorporate multiple data points (e.g. alarm when heart rate > 120 beats per minute and temperature from right thigh > 40 degrees Celsius). Such alarms or alerts may be activated when temperature data provided by the radiometer meets or does not meet a predetermined target temperature.
  • an alarm or alert may be activated when the subject's speed, blood oxygen level, or heart rate exceeds or falls short of a predetermined target.
  • the radiometer or external module such as a computer
  • the system and device could provide feedback as a function of one or more radiometers and other sensors. For example, a runner using the system could program in a target comfortable training core body temperature zone specified over the entire training session or as a function of time. If the zone is 39 to 40 degrees Celsius, the radiometer could provide pacing feedback in the form of audible, visual or tactile cues for the user to increase or decrease his or her pace to stay in the zone.
  • the cue could be a beep for every step, for example. If the user's temperature exceeds 40 degrees the beeping frequency would slow. If the user's temperature dropped below 39 degrees, the beeping frequency would increase.
  • the cues could be visual (e.g. flashing light) or tactile (e.g. mechanical pulsing in the wrist band) as well.
  • distance data such as pedometer data may be utilized as a variable in programming the pacing output cues as later in a training session the user may require a much lower pace to stay in the target temperature zone.
  • this disclosure provides for non-invasive method of assessing fatigue and/or anaerobic threshold in a subject during physical exertion, comprising measuring core body or muscle temperature of said subject, for example, by measuring core body temperature comprises the using microwave radiometry.
  • a method can include having a subject wear a disclosed wearable device during physical exertion, such as for example, walking, running, swimming, bicycling, skating, skiing, climbing, wheelchairing, or snowshoeing, and/or the like.
  • a disclosed device may provide a sensory signal such as a visual, tactile, or audio detectable signal to the subject when a predetermined core body or muscle temperature is reached.
  • a sensory signal such as a visual, tactile, or audio detectable signal
  • a method of controlling a subject's physical activity comprising monitoring the subject's core body or muscle temperature. Such methods may further include adjusting said physical activity once a selected core body or muscle temperature is achieved.
  • selected temperature may be provided (e.g. as instructions), otherwise predetermined, or may be based on historical data (e.g. such as obtained in a previous physical activity by the same or different subject).
  • monitoring of core body temperature may include direct monitoring of temperature, or may include monitoring of the change in temperature over a set time (e.g. a temperature velocity, ⁇ T/dt).
  • such monitoring may include providing a device that comprises a microwave radiometer and a transducer for detecting core body or muscle microwave emissions and positioning said device on said subject at a position suitable for detecting the subject's core body or muscle temperature substantially continuously during physical exertion.
  • Such methods may include providing a display unit configured for displaying the subject's core body or muscle temperature.
  • a display unit may be positioned so that the temperature displayed by said display unit can be viewed by said subject.
  • disclosed methods and devices may provide for substantially continuous monitoring of body core temperature.
  • Such continuous monitoring refers to discrete intervals which may be closely spaced, e.g. temperature measurements using radiometry at less than or about 0.1, 1 sec, 1 min, 5 min or more intervals, e.g. while a subject is continuously wearing a disclosed device.
  • the microwave radiometer was calibrated against fixed temperature water baths at 30 and 40 0 C.
  • a radiometer antenna was affixed to the chest of the subjects using a large neoprene strap just underneath the left nipple.
  • a cord connected the antenna to the electronics and the data logging PC.
  • Figure 7 indicates change in core body temperature as measured by the radiometer device as compared to oral temperature for subjects. Correlation between the PO and radiometer temperatures were poor in part due to the difficulty in consistently positioning the thermometer as well as the inherent imprecision of thermistor temperature measurements in a dynamic environment. Average correlation coefficient of 0.11 +/- 0.25. Average R-Square 0.2 +/-0.13. Example 2
  • the microwave radiometer was calibrated against fixed temperature water baths at 30 and 40 0 C.
  • a radiometer antenna was affixed to the chest of the subjects using a large neoprene strap just underneath the left nipple.
  • a cord connected the antenna to the electronics and the data logging PC.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

La présente invention concerne des procédés et des dispositifs de surveillance, par exemple de niveaux de fatigue par la mesure de la température corporelle d’un sujet. Dans un mode de réalisation, la radiométrie dans la bande des hyperfréquences est utilisée pour mesurer une telle température.
PCT/US2009/047519 2008-06-16 2009-06-16 Dispositifs et procédés de surveillance WO2010005727A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/969,834 US8303172B2 (en) 2008-06-16 2010-12-16 Devices and methods for exercise monitoring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13233508P 2008-06-16 2008-06-16
US61/132,335 2008-06-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/969,834 Continuation US8303172B2 (en) 2008-06-16 2010-12-16 Devices and methods for exercise monitoring

Publications (2)

Publication Number Publication Date
WO2010005727A2 true WO2010005727A2 (fr) 2010-01-14
WO2010005727A3 WO2010005727A3 (fr) 2010-03-11

Family

ID=41507664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/047519 WO2010005727A2 (fr) 2008-06-16 2009-06-16 Dispositifs et procédés de surveillance

Country Status (2)

Country Link
US (1) US8303172B2 (fr)
WO (1) WO2010005727A2 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8926605B2 (en) 2012-02-07 2015-01-06 Advanced Cardiac Therapeutics, Inc. Systems and methods for radiometrically measuring temperature during tissue ablation
US8954161B2 (en) 2012-06-01 2015-02-10 Advanced Cardiac Therapeutics, Inc. Systems and methods for radiometrically measuring temperature and detecting tissue contact prior to and during tissue ablation
US9226791B2 (en) 2012-03-12 2016-01-05 Advanced Cardiac Therapeutics, Inc. Systems for temperature-controlled ablation using radiometric feedback
US9277961B2 (en) 2009-06-12 2016-03-08 Advanced Cardiac Therapeutics, Inc. Systems and methods of radiometrically determining a hot-spot temperature of tissue being treated
US20130243208A1 (en) * 2012-03-19 2013-09-19 Mark S. Fawer Computer user alertness monitoring system
US10244986B2 (en) 2013-01-23 2019-04-02 Avery Dennison Corporation Wireless sensor patches and methods of manufacturing
US10022088B2 (en) 2013-05-28 2018-07-17 Globe Holding Company, Llc Wearable sensor retaining device
WO2015048357A2 (fr) * 2013-09-28 2015-04-02 Brain Temp, Inc. Systèmes et procédés de détermination non invasive de la température interne
WO2016040281A1 (fr) 2014-09-09 2016-03-17 Torvec, Inc. Procédé et appareil pour surveiller la vigilance d'un individu au moyen d'un dispositif portable et fournir une notification
JP6673598B2 (ja) 2014-11-19 2020-03-25 エピックス セラピューティクス,インコーポレイテッド ペーシングを伴う組織の高分解能マッピング
JP6725178B2 (ja) 2014-11-19 2020-07-15 エピックス セラピューティクス,インコーポレイテッド 高分解能電極アセンブリを使用するアブレーション装置、システムおよび方法
JP6825789B2 (ja) 2014-11-19 2021-02-03 エピックス セラピューティクス,インコーポレイテッド 組織の高分解能マッピングのためのシステムおよび方法
GB201504023D0 (en) * 2015-03-10 2015-04-22 Mm Microwave Ltd Medical scanning apparatus
US9636164B2 (en) 2015-03-25 2017-05-02 Advanced Cardiac Therapeutics, Inc. Contact sensing systems and methods
US20160317062A1 (en) * 2015-05-01 2016-11-03 Mmtc, Inc. Wearable microwave radiometer
WO2016178802A1 (fr) * 2015-05-01 2016-11-10 Mmtc, Inc. Radiomètre à micro-ondes pouvant être porté
US20180315338A1 (en) * 2015-10-22 2018-11-01 Lg Electronics Inc. Watch-type mobile terminal and operating method therefor
RU2617276C1 (ru) * 2015-12-22 2017-04-24 Общество с ограниченной ответственностью "РТМ Диагностика" Радиотермометр
JP2019510550A (ja) 2016-02-18 2019-04-18 カーイージス テクノロジーズ,インコーポレイティド 注意力予測システム及び方法
JP6923549B2 (ja) 2016-03-15 2021-08-18 エピックス セラピューティクス,インコーポレイテッド 灌注式焼灼のための改良されたシステム
WO2017181196A1 (fr) 2016-04-15 2017-10-19 U.S. Government As Represented By The Secretary Of The Army Modèles de stimulation pour optimisation de performance
US11517203B2 (en) 2016-08-25 2022-12-06 The Government Of The United States, As Represented By The Secretary Of The Army Real-time estimation of human core body temperature based on non-invasive physiological measurements
RU169544U1 (ru) * 2016-08-29 2017-03-22 Общество с ограниченной ответственностью "РТМ-диагностика" (ООО "РТМ-диагностика") Миниатюрный радиотермометр для неинвазивного выявления температурных аномалий внутренних тканей
EP3614946B1 (fr) 2017-04-27 2024-03-20 EPiX Therapeutics, Inc. Détermination de la nature d'un contact entre une pointe de cathéter et un tissu
US10080524B1 (en) * 2017-12-08 2018-09-25 VivaLnk, Inc. Wearable thermometer patch comprising a temperature sensor array
US11109765B2 (en) 2018-08-20 2021-09-07 VivaLnk, Inc. Wearable thermometer patch comprising a temperature sensor array
WO2021150618A1 (fr) * 2020-01-21 2021-07-29 Brain Temp, Inc. Appareil et procédé de détermination de manière non invasive de la température de tissu profond à l'aide de la radiométrie hyperfréquences
US11737674B2 (en) * 2020-12-20 2023-08-29 Easytem Co., Ltd. RF microwave core temperature system having RF receiver module to detect core temperature

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312358A (en) * 1979-07-23 1982-01-26 Texas Instruments Incorporated Instrument for measuring and computing heart beat, body temperature and other physiological and exercise-related parameters
US5664578A (en) * 1988-04-11 1997-09-09 Boczan; Janos Method and instrument for sensing fatigue, shock and/or acute stress
WO2006131908A2 (fr) * 2005-06-05 2006-12-14 David Cohen Moniteur personnel de l'activite sportive
US20070270282A1 (en) * 2004-01-19 2007-11-22 Deolo Falcone Product for Measuring the Effectiveness and Efficiency of Warming-Up and Winding-Down Physical Exercises and Training Equipment Comprising Said Product

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138998A (en) * 1976-08-18 1979-02-13 Rca Corporation Indicating temperature within living tissue
US4129125A (en) * 1976-12-27 1978-12-12 Camin Research Corp. Patient monitoring system
DE2803480C2 (de) * 1978-01-27 1984-11-22 Philips Patentverwaltung Gmbh, 2000 Hamburg Verfahren und Anordnung zur Messung der physikalischen Objekttemperatur mittels Mikrowellen
US4312325A (en) * 1980-03-17 1982-01-26 Red Bud Industries, Inc. Solar heating system
US4488559A (en) * 1981-06-30 1984-12-18 University Of Utah Apparatus and method for measuring lung water content
US4479498A (en) * 1982-08-27 1984-10-30 Toftness Irwing N Method of spinal radiometer analysis and corrective adjustment
SU1287004A1 (ru) * 1985-03-15 1987-01-30 Институт Радиотехники И Электроники Ан Ссср Способ диагностики острых воспалительных заболеваний почек у беременных женщин
US4774961A (en) * 1985-11-07 1988-10-04 M/A Com, Inc. Multiple antennae breast screening system
US4926868A (en) * 1987-04-15 1990-05-22 Larsen Lawrence E Method and apparatus for cardiac hemodynamic monitor
FR2650390B1 (fr) * 1989-07-27 1992-10-30 Inst Nat Sante Rech Med Procede pour la mesure des temperatures par radiometrie microonde, avec calibration automatique de la mesure, et dispositif pour la mise en oeuvre de ce procede
US5284144A (en) * 1989-11-22 1994-02-08 The United States Of America As Represented By The Secretary Of The Dept. Of Health & Human Services Apparatus for hyperthermia treatment of cancer
US5688050A (en) * 1995-04-03 1997-11-18 Mmtc, Inc. Temperature-measuring microwave radiometer apparatus
US5841288A (en) * 1996-02-12 1998-11-24 Microwave Imaging System Technologies, Inc. Two-dimensional microwave imaging apparatus and methods
US5983124A (en) * 1996-04-03 1999-11-09 Microwave Medical Systems, Inc. Microwave detection of tumors, particularly breast tumors
DE10005526A1 (de) * 2000-02-08 2001-08-30 Klaschka Gmbh & Co Vorrichtung zur Überwachung von physiologischen Funktionen an einem lebenden Objekt
EP1224905A3 (fr) * 2001-01-17 2002-07-31 The Minister Of National Defence Of Her Majesty's Canadian Government Système non-invasif de thermographie intracranienne en trois dimensions
US20030045804A1 (en) * 2001-08-31 2003-03-06 G.E. Medical Systems Information Technologies Method and apparatus for generating electrocardiogram precordial leads using a precordial central terminal
US6932776B2 (en) * 2003-06-02 2005-08-23 Meridian Medicalssystems, Llc Method and apparatus for detecting and treating vulnerable plaques
DE102004032812B4 (de) * 2003-11-11 2006-07-20 Dräger Safety AG & Co. KGaA Kombinationssensor für physiologische Messgrößen
DE102004028359B4 (de) * 2004-06-11 2007-09-13 Drägerwerk AG Vorrichtung zur Messung der Körperkerntemperatur
US7769469B2 (en) * 2006-06-26 2010-08-03 Meridian Medical Systems, Llc Integrated heating/sensing catheter apparatus for minimally invasive applications
US8013745B2 (en) * 2007-06-15 2011-09-06 University Of Tennessee Research Foundation Passive microwave assessment of human body core to surface temperature gradients and basal metabolic rate
US8317720B2 (en) * 2008-12-24 2012-11-27 Herdx, Inc. Core-temperature based herd management system and method
US8939914B2 (en) * 2009-02-27 2015-01-27 Thermimage, Inc. Radiometers and related devices and methods
US8942817B2 (en) * 2009-07-28 2015-01-27 The Invention Science Fund I, Llc Broadcasting a signal indicative of a disease, disorder, or symptom determined in response to contactlessly acquired information
US9044158B2 (en) * 2010-03-31 2015-06-02 Indiana University Research And Technology Corp. Wearable microstrip antennas for skin placement for biomedical applications
DE102010018001A1 (de) * 2010-04-23 2011-10-27 Siemens Aktiengesellschaft SAR- Abschätzung bei Kernspinresonanz-Untersuchungen mittels Mikrowellenthermometrie
US8447385B2 (en) * 2010-07-28 2013-05-21 Welch Allyn, Inc. Handheld medical microwave radiometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312358A (en) * 1979-07-23 1982-01-26 Texas Instruments Incorporated Instrument for measuring and computing heart beat, body temperature and other physiological and exercise-related parameters
US5664578A (en) * 1988-04-11 1997-09-09 Boczan; Janos Method and instrument for sensing fatigue, shock and/or acute stress
US20070270282A1 (en) * 2004-01-19 2007-11-22 Deolo Falcone Product for Measuring the Effectiveness and Efficiency of Warming-Up and Winding-Down Physical Exercises and Training Equipment Comprising Said Product
WO2006131908A2 (fr) * 2005-06-05 2006-12-14 David Cohen Moniteur personnel de l'activite sportive

Also Published As

Publication number Publication date
US20110176578A1 (en) 2011-07-21
WO2010005727A3 (fr) 2010-03-11
US8303172B2 (en) 2012-11-06

Similar Documents

Publication Publication Date Title
US8303172B2 (en) Devices and methods for exercise monitoring
US10058252B1 (en) Monitoring device with a pedometer
JP6522693B2 (ja) 運動能力をモニタリングするためのシステム及び方法
US7468036B1 (en) Monitoring device, method and system
US7470234B1 (en) Monitoring device, method and system
US20060253010A1 (en) Monitoring device, method and system
US20060079794A1 (en) Monitoring device, method and system
US7887492B1 (en) Monitoring device, method and system
US8384551B2 (en) Sensor device and method for monitoring physical stresses placed on a user
US8092393B1 (en) Monitoring device with an accelerometer, method and system
US20070106132A1 (en) Monitoring device, method and system
US20200367748A1 (en) Sensor System for Measuring Physiological Activity
US8002709B1 (en) Monitoring device for an interactive game
US9039627B2 (en) Monitoring device with an accelerometer, method and system
US7229416B2 (en) Exercise expenditure monitor device and method
US11690567B2 (en) Tissue hydration monitor
US9504393B1 (en) Monitoring Device, Method and system
JP3704829B2 (ja) 携帯用小型電子機器
JP2004113821A (ja) 運動処方支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794919

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794919

Country of ref document: EP

Kind code of ref document: A2