WO2010004819A1 - 逆浸透膜を用いた塩水の淡水化装置、および、この淡水化装置を用いた淡水の製造方法 - Google Patents

逆浸透膜を用いた塩水の淡水化装置、および、この淡水化装置を用いた淡水の製造方法 Download PDF

Info

Publication number
WO2010004819A1
WO2010004819A1 PCT/JP2009/060313 JP2009060313W WO2010004819A1 WO 2010004819 A1 WO2010004819 A1 WO 2010004819A1 JP 2009060313 W JP2009060313 W JP 2009060313W WO 2010004819 A1 WO2010004819 A1 WO 2010004819A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
salt water
pipe
osmosis membrane
energy recovery
Prior art date
Application number
PCT/JP2009/060313
Other languages
English (en)
French (fr)
Inventor
綿花 朴
雅英 谷口
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2009530721A priority Critical patent/JPWO2010004819A1/ja
Publication of WO2010004819A1 publication Critical patent/WO2010004819A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/12Addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/18Details relating to membrane separation process operations and control pH control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/162Use of acids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a desalination apparatus for producing fresh water from salt water using a reverse osmosis membrane. More specifically, the present invention relates to a desalination apparatus using a method for sterilizing a membrane surface of a reverse osmosis membrane with a chemical agent, and a desalination device in which damage to members in the device due to the chemical agent is reduced as much as possible. The present invention relates to a method for producing fresh water.
  • the salt water desalination apparatus using a reverse osmosis membrane can separate and remove salt and harmful substances from salt water without phase change. Operation and management of the device is easier than other desalination devices. Less energy is required to operate the device compared to other desalination devices. Therefore, salt water desalination apparatuses using reverse osmosis membranes are widely used for the production of beverage or industrial fresh water.
  • reverse osmosis membranes In order to prevent deterioration of permeation performance or separation performance of reverse osmosis membranes in continuous use of reverse osmosis membranes, usually salt water is subjected to sand filtration, coagulation sedimentation, pressurized flotation, microfiltration before being supplied to the reverse osmosis membrane. It is pretreated by a technique such as filtration of a membrane and an ultrafiltration membrane. Further, the surface of the reverse osmosis membrane itself is cleaned with a chemical periodically or as necessary.
  • the osmotic pressure is related to the salinity of the feed water. For example, when seawater is desalinated with a reverse osmosis membrane, a pressure of about 30 atm or more in principle and a pressure of about 50 atm or more are necessary in practice. Even in the case of irrigation, a pressure of about 1 atm or more is required.
  • a portion through which a high-pressure liquid passes that is, a high-pressure pump, a pipe from the high-pressure pump to the reverse osmosis membrane module, a valve existing therebetween, and a concentration derived from the reverse osmosis membrane module.
  • Pressure resistant stainless steel is used for the water pipes and the valves existing between them.
  • stainless steel has a passive film formed on its surface against concentrated sulfuric acid, concentrated nitric acid, or fresh water, neutral solution, or alkaline solution that does not contain chlorine ions. Become.
  • Non-Patent Document 1 Non-Patent Document 1
  • Non-Patent Document 2 It has been reported that crevice corrosion occurs even in the case of stainless steel 904L, which was developed with the intention of withstanding dilute sulfuric acid and has stronger corrosion resistance
  • the price of these highly corrosion-resistant stainless steels is usually 2 to 3 times the price of stainless steels 316L and 317L, so the facilities of the desalination equipment using these highly corrosion-resistant stainless steels
  • the cost is high, and therefore the water production cost is also high.
  • the breakdown of equipment costs for desalination equipment is super austenitic stainless steel or duplex stainless steel because high pressure pumps account for about 10 to 20% of the total equipment costs and high pressure piping accounts for more than 10%.
  • the equipment cost is about 1.5 times that of a normal desalination apparatus.
  • the price of fresh water produced by a desalination apparatus using a reverse osmosis membrane is more than twice the price of tap water treated by the conventional method. Absent.
  • Patent Document 3 As another attempt to suppress corrosion of piping, it has been proposed to add an organic acid such as polycarboxylic acid to treated water (feed water) (Patent Document 3).
  • organic acid such as polycarboxylic acid
  • feed water treated water
  • An object of the present invention is to reduce the number of high-pressure pumps and high-pressure valves intervening in a pipe that is corroded by a chemical used for sterilization of a reverse osmosis membrane in a salt water desalination apparatus using a reverse osmosis membrane. Therefore, it is possible to form pipes that do not suffer from corrosion, high-pressure pumps and high-pressure valves that are interposed in the pipes from materials that are not highly corrosion resistant but relatively inexpensive, such as stainless steel. It is providing the desalination apparatus which becomes.
  • the salt water desalination apparatus using the reverse osmosis membrane of the present invention for achieving the above object is as follows.
  • a reverse osmosis membrane module Including a reverse osmosis membrane module, a high pressure pump, and an energy recovery booster; and (A) a salt water supply pipe having one end coupled to the salt water supply unit and a pipe branch at the other end; (B) a first pipe having one end coupled to the pipe branch and the other coupled to the high-pressure pump; (C) a second pipe having one end coupled to the high pressure pump and the other end coupled to the salt water supply unit of the reverse osmosis membrane module; (D) a third pipeline having one end coupled to the pipeline branch and the other coupled to the energy recovery booster; (E) one end coupled to the energy recovery booster, the other end coupled to the second conduit, and the energy recovery booster connected to the third conduit in the fourth Pipeline, (F) a fifth pipe having one end coupled to the concentrated water container of the reverse osmosis membrane module and the other end coupled to the energy recovery booster; (G) Concentrated water outlet pipe connected at one end to the energy recovery booster and at the other end to the concentrated water
  • a booster pump for increasing the pressure of salt water flowing in the fourth pipeline is provided in the fourth pipeline.
  • the other end of the medicine supply pipe is coupled to the third pipe, and the energy recovery booster is a pressure energy exchange type device, and further the energy recovery It is preferable that the salt water flow path that connects the third pipe line and the fourth pipe line in the booster is formed of ceramics or a highly acid-resistant material.
  • the method for producing fresh water of the present invention comprises producing fresh water from salt water using the above desalination apparatus.
  • FIG. 1 is a flowchart of one embodiment of the desalination apparatus of the present invention.
  • FIG. 2 is a flowchart of another embodiment of the desalination apparatus of the present invention.
  • FIG. 3 is a flowchart of a desalination apparatus (comparative example) that is an object of improvement in the development of the desalination apparatus of the present invention.
  • FIG. 3 shows a desalination apparatus 300 using a reverse osmosis membrane of a comparative example of the present invention.
  • the desalination apparatus 300 includes a reverse osmosis membrane module 2, a high-pressure pump 1, and an energy recovery booster 3.
  • the desalination apparatus 300 has the following pipelines (a)-(h) coupled to the reverse osmosis membrane module 2, the high-pressure pump 1, or the energy recovery booster 3.
  • A a salt water supply line 5 having one end coupled to the salt water supply unit SW and having a pipe branch BP at the other end;
  • B a first pipeline 6 having one end coupled to the pipeline branch BP and the other coupled to the high-pressure pump 1;
  • C a second pipe line 9 having one end coupled to the high-pressure pump 1 and the other end coupled to the salt water supply unit 2s of the reverse osmosis membrane module 2;
  • D a third pipeline 7 having one end coupled to the pipeline branch BP and the other coupled to the energy recovery booster 3;
  • E A fourth end that is coupled to the energy recovery booster 3 and has the other end coupled to the second conduit 9 and that is electrically connected to the third conduit 7 in the energy recovery booster 3.
  • Pipeline 10 (F) a fifth pipe 8 having one end coupled to the concentrated water storage portion 2c of the reverse osmosis membrane module 2 and the other end coupled to the energy recovery booster 3; (G) Concentrated water outlet pipe having one end coupled to the energy recovery booster 3 and the other end coupled to the concentrated water collecting unit CW, and conducting to the fifth pipe 8 in the energy recovery booster 3 Road 14 and (H) A permeated water lead-out conduit 13 having one end coupled to the permeated water accommodating portion 2p of the reverse osmosis membrane module 2 and the other end coupled to the permeated water collecting unit PW.
  • the desalination apparatus 300 includes a pretreatment unit PT that pretreats salt water provided in the salt water supply pipe 5.
  • the fourth pipeline 10 is provided with a booster pump 4 for further boosting the salt water.
  • a portion of the pipeline from the coupling portion 9 a where the fourth pipeline 10 is coupled to the second pipeline 9 to the reverse osmosis membrane module 2 is referred to as a sixth pipeline 11.
  • a portion of the pipeline from the energy recovery booster 3 to the booster pump 4 is referred to as a seventh pipeline 12.
  • FIG. 3 illustration of valves and pipe joints provided in each pipe line as necessary is omitted.
  • the salt water supplied from the salt water supply unit SW to the pretreatment unit PT is pretreated in the unit.
  • the pretreated salt water passes through the salt water supply pipe 5 and reaches the pipe branch BP.
  • part of the salt water flows to the first pipe line 6 and the remaining part of the salt water flows to the third pipe line 7.
  • the salt water flowing through the first pipe 6 is pressurized by the high-pressure pump 1 and flows into the salt water supply unit 2 s of the reverse osmosis membrane module 2 through the second pipe 9.
  • the reverse osmosis membrane module 2 a part of the salt water permeates through the reverse osmosis membrane 2 m of the reverse osmosis membrane module 2 to become permeated water (fresh water) and reaches the permeated water accommodation portion 2 c of the reverse osmosis membrane module 2.
  • the permeated water (fresh water) in the permeated water storage part 2c is led out to the permeated water collecting unit PW via the permeated water lead-out line 13.
  • the salt water that has not permeated the reverse osmosis membrane 2 m passes from the concentrated water storage part 2 c of the reverse osmosis membrane module 2 as concentrated water via the fifth pipe 8 to the energy recovery booster 3.
  • the energy recovery booster 3 the pressure energy that the concentrated water has is recovered.
  • the concentrated water that has received the pressure energy flows out to the concentrated water collecting unit CW through the concentrated water outlet line 14.
  • the salt water (the remaining salt water) that has not flowed into the first pipe 6 passes through the third pipe 7 and reaches the energy recovery booster 3.
  • the salt water that has reached the energy recovery booster 3 is pressurized by the pressure energy recovered from the concentrated water in the energy recovery booster 3 and then flows into the second pipeline 9 via the fourth pipeline 10. .
  • the salt water is further pressurized by the booster pump 4 provided in the fourth pipeline 10.
  • the desalination apparatus 300 is further coupled to a drug supply unit CT for a drug whose one end is in contact with the reverse osmosis membrane 2m in the reverse osmosis membrane module 2 and has a hydrogen ion index (pH) of salt water of 4 or less.
  • a drug supply line 16 coupled to the salt water supply line 5 between the pretreatment unit PT and the line branch BP.
  • a drug supply pump 15 is provided in the drug supply line 16.
  • the drug prepared in the drug supply unit CT is injected continuously or intermittently into the salt water flowing through the salt water supply line 5 by the drug supply pump 15 through the drug supply line 16.
  • the salt water containing the medicine injected from the medicine supply line 16 into the salt water supply line 5 flows through the first line 6, the second line 9, the third line 7, and the fourth line 4. .
  • members interposed in these pipe lines that is, the high-pressure pump 1, the energy recovery booster 3, and the valve (not shown) are also in contact with the salt water containing the drug.
  • the booster 3 and the valve need to be made of a highly acid-resistant material.
  • the pipelines (high-pressure pipelines) through which high-pressure salt water flows are the second pipeline 9, the fifth pipeline 8, and the fourth pipeline 10.
  • the members in contact with the flow of the high-pressure salt water are the high-pressure pump 1 provided between the first pipeline 6 and the second pipeline 9 and the booster pump 4 provided in the fourth pipeline 10.
  • these pipe lines and these members need to be formed of a material that can withstand high pressure (high pressure material).
  • the pipe line (low pressure pipe line) through which the low-pressure salt water or permeate flows is the salt water supply pipe line 5, the first pipe line 6, the permeate lead-out pipe line 13, and the concentrated water lead-out line.
  • This is the conduit 14.
  • the member which contacts the flow of low-pressure salt water is a valve or a pipe joint attached to these pipe lines. Therefore, it is sufficient that these pipe lines and these members are made of a material that can withstand low pressure (low pressure material).
  • FIG. 1 shows a desalination apparatus 100 which is an embodiment of a desalination apparatus using the reverse osmosis membrane of the present invention.
  • the desalination apparatus 100 shown in FIG. 1 and the desalination apparatus 300 shown in FIG. 3 are common to each other in the majority of apparatus constituent members. Therefore, in FIG. 1, the same member code as the member code used in FIG. 3 is given to the same member as the component member of the desalination apparatus 300 among the members of the desalination apparatus 100.
  • the difference between the desalination apparatus 100 and the desalination apparatus 300 is that, in the desalination apparatus 300, the drug supply pipe 16 is coupled to the salt water supply pipe 5, but in the desalination apparatus 100, the drug supply pipe is A drug supply line 116 corresponding to the line 16 is connected to the third line 7.
  • the medicine prepared in the medicine supply unit CT is continuously or intermittently injected into the salt water flowing through the third line 7 by the medicine supply pump 15 through the medicine supply line 116. .
  • the salt water containing the medicine injected from the medicine supply pipe 116 into the third pipe 7 flows through the third pipe 7, the fourth pipe 10, and the sixth pipe 11.
  • members interposed in these pipe lines, that is, the energy recovery booster 3 and the valve (not shown) are also in contact with the salt water containing the drug.
  • the third pipeline 7, the fourth pipeline 10, the sixth pipeline 11, and the members interposed in these pipelines, that is, the energy recovery booster 3 and the valve, have high acid resistance. It must be made of a material.
  • FIG. 2 shows a desalination apparatus 200 which is another embodiment of the desalination apparatus using the reverse osmosis membrane of the present invention.
  • the desalination apparatus 200 shown in FIG. 2 and the desalination apparatus 300 shown in FIG. 3 are common to each other in the majority of apparatus constituent members. Therefore, in FIG. 2, the same member code as the member code used in FIG. 3 is given to the same member as the constituent member of the desalination apparatus 300 in the constituent member of the desalination apparatus 200.
  • the difference between the desalination apparatus 200 and the desalination apparatus 300 is that, in the desalination apparatus 300, the drug supply pipe 16 is coupled to the salt water supply pipe 5, but in the desalination apparatus 200, the drug supply pipe is A drug supply pipe 216 corresponding to the path 16 is connected to the first pipe 6.
  • the medicine prepared in the medicine supply unit CT is injected continuously or intermittently into the salt water flowing through the first pipe 6 through the medicine supply line 216 by the medicine supply pump 15. .
  • the salt water containing the medicine injected into the first pipe 6 from the medicine supply pipe 216 flows through the first pipe 6 and the second pipe 9. Further, members intervening in these pipelines, that is, the high-pressure pump 1 and a valve (not shown) are also in contact with the salt water containing the drug.
  • the first pipe line 6, the second pipe line 9, and the members interposed in these pipe lines, that is, the high-pressure pump 1 and the valve, need to be formed of a highly acid-resistant material. .
  • the pipes and members that need to be formed of a highly acid-resistant material in order to come into contact with salt water containing a drug are compared with the desalination apparatus 100 and Example of Example 1.
  • the number is less.
  • the number of constituent members of the apparatus that must use an expensive high-acid resistant high-pressure material can be reduced, and the manufacturing cost of the desalination apparatus can be reduced.
  • the desalination apparatus 100 of Example 1 and the desalination apparatus 200 of Example 2 were actually operated with various operating conditions, fresh water was produced, and the bactericidal effect on the reverse osmosis membrane by the drug was investigated. It was confirmed that the same sterilizing effect of the reverse osmosis membrane with the drug as in the desalination apparatus 300 of Comparative Example 1 was obtained.
  • High acid resistance means that the material forming the pipeline is subjected to appearance changes including corrosion for at least 3 years in contact with salt water having a chloride ion concentration of about 300 to 40,000 mg / l.
  • the initial shape, properties, and strength are maintained.
  • the evaluation criteria for the acid resistance of stainless steel stipulated in Japanese Industrial Standards (JIS) include oxalic acid etching test method (JIS-G0571), sulfuric acid / ferric sulfate corrosion test method (JIS-G0572), 65% nitric acid corrosion There are a test method (JIS-G0573), a nitric acid / hydrofluoric acid corrosion test method (JIS-G0574), and a sulfuric acid / copper sulfate corrosion test method (JIS-G0575).
  • the corrosiveness of chemicals to stainless steel is related to the chemical concentration and temperature. Corrosivity is determined by the state of general corrosion, pitting corrosion or crevice corrosion of stainless steel with an arbitrary concentration of chemical at a temperature of 0 to 50 ° C.
  • Agents that are susceptible to corrosion of stainless steel include ferric chloride, aluminum chloride, ammonium chloride, sodium chloride, metal salts containing halogen ions such as chloride ions, sodium hypochlorite, calcium hypochlorite, etc.
  • Examples include hypochlorites, hydrochloric acid, sulfuric acid, chromic acid, concentrated sulfuric acid, inorganic acids other than nitric acid, organic acids such as acetic acid, succinic acid, tartaric acid, and lactic acid, and aqueous solutions thereof.
  • the term “drug” refers to a drug that can be added to salt water to make the hydrogen ion concentration (pH) of the salt water 4 or less when contacting the reverse osmosis membrane.
  • examples of such agents include inorganic acids such as sulfuric acid, nitric acid, and hydrochloric acid, and organic acids such as oxalic acid and citric acid.
  • the surface of the reverse osmosis membrane can be sterilized and washed by bringing the salt water to which the drug is added into contact with the reverse osmosis membrane.
  • the pH of the salt water at the time of contact with the reverse osmosis membrane is set to 4 or less by appropriately changing and adjusting the type, addition amount, concentration, etc. of the drug in consideration of the flow rate of the salt water and the salt concentration of the salt water. Achieved.
  • the pipelines (high-pressure pipelines) through which high-pressure salt water flows are the second pipeline 9, the fifth pipeline 8, and the fourth pipeline 10.
  • the members in contact with the flow of the high-pressure salt water are the high-pressure pump 1 provided between the first pipeline 6 and the second pipeline 9 and the booster pump 4 provided in the fourth pipeline 10.
  • these pipe lines and these members need to be formed of a material that can withstand high pressure (high pressure material).
  • a pipe line (low pressure pipe line) through which low-pressure salt water or permeate flows flows is a salt water supply pipe 5, a first pipe 6, a permeate outlet pipe 13, And a concentrated water outlet pipe 14.
  • the member which contacts the flow of low-pressure salt water is a valve or a pipe joint attached to these pipe lines. Therefore, it is sufficient that these pipe lines and these members are made of a material that can withstand low pressure (low pressure material).
  • Stainless steel is an alloy steel in which chromium, nickel, molybdenum, nitrogen, copper, or the like is included in iron in order to improve acid resistance in addition to pressure resistance.
  • Stainless steel is classified into austenitic (eg, 304, 304L, 316, 316L, 317, 317L, 904L) and austenitic ferrite (eg, 254SMO, 2205, 2507, Zeron 100, 329) according to the metal structure. Yes.
  • austenitic eg, 304, 304L, 316, 316L, 317, 317L, 904L
  • austenitic ferrite eg, 254SMO, 2205, 2507, Zeron 100, 329
  • the high-pressure pump 1 is a pump made using the high-pressure material, and has various types.
  • the high pressure pump 1 in the desalination apparatus according to the present invention is not particularly limited to that type as long as desired pressure and flow rate can be obtained.
  • a reciprocating pump such as a plunger pump, a swirl pump, a centrifugal pump, a rotary pump such as a multistage centrifugal pump, or the like can be used depending on the purpose.
  • Salt water is a general term for water containing salt.
  • Salt water having a chloride ion concentration of about 300 to 15,000 mg / l is a relatively low concentration salt water and is generally called brine.
  • Salt water having a chloride ion concentration of about 15,000 to 40,000 mg / l is a relatively high concentration salt water and is generally called seawater.
  • the reverse osmosis membrane module includes one or a plurality of reverse osmosis membrane elements and a pressure vessel in which these are accommodated.
  • One reverse osmosis membrane module is used, or a plurality of reverse osmosis membrane modules are arranged in parallel or in series.
  • the reverse osmosis membrane element is a reverse osmosis membrane housed in an element that supports the reverse osmosis membrane.
  • the reverse osmosis membrane is a flat membrane, there is a configuration in which the flat membrane is incorporated in a spiral, tubular, or plate-and-frame element.
  • the reverse osmosis membrane is a hollow fiber, there is a form in which a bundle of hollow fibers composed of a large number of hollow fibers is incorporated in an element. Any of these reverse osmosis membrane elements can be used in the desalination apparatus according to the present invention.
  • the reverse osmosis membrane is formed of, for example, a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer.
  • the membrane form include a flat membrane and a hollow fiber membrane.
  • a reverse osmosis membrane made of any material and any membrane form can be used.
  • a reverse osmosis membrane made of a material having low chlorine resistance such as polyamide, the above-described effects of the present invention are preferably exhibited.
  • a disinfectant and a flocculant are usually added to the salt water. If necessary, a reducing agent, a pH adjuster, a scale inhibitor, and the like may be added. Further, in the pretreatment unit, salt water is filtered by sand filtration, precision membrane filtration, ultramembrane filtration, activated carbon filtration, or filtration with a safety filter in order to remove turbid components of the salt water.
  • the energy recovery booster converts the pressure of the high-pressure concentrated water discharged from the reverse osmosis membrane module into, for example, mechanical energy, and this mechanical energy is supplied to the reverse osmosis membrane module.
  • This device is used for boosting salt water.
  • Various energy recovery boosters are known, and some of them are actually used in desalination equipment.
  • the salt water that has flowed into the third pipe line 7 from the pipe branch BP flows into the energy recovery booster 3 and is subjected to a pressurizing action in the energy recovery booster 3, and then the fourth pipe. It is fed to the second pipeline 9 via the route 10.
  • the material forming the member of the energy recovery booster 3 there are various stainless steels and / or ceramics.
  • the stainless steel used here is the same as the high-pressure material described above.
  • the ceramic used here include alumina, aluminum oxide, silicon carbide, silicon nitride, zirconia, and aluminum nitride.

Abstract

 逆浸透膜モジュール、高圧ポンプ、および、エネルギー回収昇圧装置とこれらの装置要素を結合する管路からなる塩水の淡水化装置において、前記高圧ポンプへと向かう塩水の供給管路が分岐部を有し、該分岐部から前記エネルギー回収昇圧装置に向かう塩水の供給管路に、あるいは、前記分岐部から前記高圧ポンプに向かう塩水の供給管路に、前記逆浸透膜モジュールにおける逆浸透膜に接触する際の前記塩水の水素イオン指数(pH)を4以下とする薬剤を注入してなる逆浸透膜を用いた塩水の淡水化装置。

Description

逆浸透膜を用いた塩水の淡水化装置、および、この淡水化装置を用いた淡水の製造方法
 本発明は、逆浸透膜を用いた塩水から淡水を製造する淡水化装置に関する。詳しくは、本発明は、薬剤で逆浸透膜の膜表面を殺菌する方法を用いる淡水化装置において、当該薬剤による装置内の部材の損傷を極力減少させた淡水化装置、および、この淡水化装置を用いた淡水の製造方法に関する。
 逆浸透膜を用いた塩水の淡水化装置によれば、相変化無しに、塩水から塩分や有害物質を分離除去することができる。その装置の運転、管理は、他の淡水化装置に比べ、容易である。装置の運転に要するエネルギーも、他の淡水化装置に比べ、少なくて済む。そのため、逆浸透膜を用いた塩水の淡水化装置は、飲料用あるいは工業用の淡水の製造に、広く用いられている。
 逆浸透膜の継続使用において、逆浸透膜の透過性能あるいは分離性能の低下を防ぐために、通常、塩水は、逆浸透膜に供給される前に、砂ろ過、凝集沈殿、加圧浮上、精密ろ過膜と限外ろ過膜のろ過などの手法により、前処理される。更に、逆浸透膜の表面自体が、定期的、あるいは、必要に応じて、薬剤により洗浄される。
 逆浸透膜の表面の洗浄方法としては、例えば、亜硫酸水素ナトリウム、あるいは、特殊な殺菌剤を用いた間欠的な殺菌洗浄がある。亜硫酸水素ナトリウムによる殺菌洗浄は、従来から用いられているが、状況によっては、微生物の繁殖を促進する場合がある。また、これらの殺菌洗浄は、逆浸透膜への供給水側で実施されるため、殺菌剤が逆浸透膜を透過することは、原則的にはあり得ない。
 しかし、逆浸透膜が損傷した場合は、殺菌剤が透過水側に漏れてくる危険性がある。そのため、殺菌剤が透過水側に漏れても安全であるとの観点から、また、殺菌剤のコストが安価であるとの観点から、硫酸などの酸性液を、殺菌剤として、逆浸透膜の表面に間欠的に供給する殺菌方法が開発されている(特許文献1)。しかしながら、この酸性液による逆浸透膜の表面の殺菌方法は、安全安価でかつ殺菌効果も優れているものの、場合によっては、淡水化装置内の高圧配管や高圧ポンプの腐食をもたらす恐れがある。
 逆浸透膜の透過原理から、海水またはかん水など、ある程度の塩分を含んだ供給水が逆浸透膜を透過するには、高圧ポンプなどを用いて供給水の圧力を浸透圧以上にする必要がある。浸透圧は、供給水の塩分濃度と関係するが、例えば、海水を逆浸透膜で淡水化する場合、原理的には30atm程度以上、実用的には50atm程度以上の圧力が必要である。かん水の場合でも、1atm程度以上の圧力が必要である。
 従って、淡水化装置において、圧力の高い液体が通る部分、すなわち、高圧ポンプと、高圧ポンプから逆浸透膜モジュールに至る配管と、その間に存在するバルブ、ならびに、逆浸透膜モジュールから導出される濃縮水の配管と、その間に存在するバルブには、耐圧性のステンレス鋼が使用されている。
 しかし、ステンレス鋼の耐腐食性には限界がある。金属の腐食に影響する因子は様々であるが、根本的には金属が持つ電位と関係する。環境によって金属表面には異なる皮膜が生成されるが、その皮膜の性質によって電位は影響を受ける。ステンレス鋼は、濃硫酸、濃硝酸、あるいは、塩素イオンを含まない淡水、中性溶液、あるいは、アルカリ性溶液に対しては、その表面に不動態皮膜が形成され、性質が安定となり、腐食し難くなる。
 しかし、塩酸、希硫酸、あるいは、海水に対しては、不動態皮膜が形成されない、あるいは、その形成が不安定となるため、腐食が発生する。塩素イオンを含む海水が酸性である環境では、ステンレス鋼の腐食は、更に促進する。実際の海水淡水化プラントで、高圧配管に一番多く使われるステンレス鋼316Lと317Lが使用開始から数ヶ月で腐食し始めたという実例が、多数報告されている(例えば、非特許文献1)。希硫酸に耐えることを意図して開発された、耐腐食性のより強いステンレス鋼904Lの場合でも、隙間腐食が起きることが報告されている(非特許文献2)。電位の異なる金属同士の接触も腐食に大きく影響する。淡水化装置には、配管と配管、配管とポンプの接続部分や溶接部分が多く存在するが、これらの部位で隙間腐食や孔食がよく発生する。
 配管やポンプが腐食すると、前処理後の逆浸透膜への供給水の水質に悪影響を与えるだけでなく、場合によっては、プラントを停止して、プラントの補修を行う必要が生じる。プラントの補修作業を減少させるため、あるいは、不要にするために、耐腐食性の極めて高い、ASTM-A31254あるいはUNS-S31254の規格に相当する254SMOのようなスーパー・オーステナイト・ステンレス鋼や二相ステンレス鋼などの高価なステンレス鋼を採用するプラントが、1990年代中半から建設されている。
 しかし、これらの耐腐食性の高いステンレス鋼の価格は、通常、ステンレス鋼316Lや317Lの価格の2乃至3倍であるため、これらの耐腐食性の高いステンレス鋼を採用した淡水化装置の設備費は高くなり、従って、それによる造水コストも高くなる。通常、淡水化装置の設備費の内訳は、高圧ポンプが全体の設備費の約10乃至20%、高圧配管が10%以上を占めることから、スーパー・オーステナイト・ステンレス鋼や二相ステンレス鋼を採用すると、設備費は、通常の淡水化装置のそれの約1.5倍になる。一般的に、逆浸透膜を用いた淡水化装置により製造される淡水の価格が、従来法で処理された水道水の価格の2倍以上である現状において、造水の更なるコストアップは好ましくない。
 このような現状において、造水コストの低減が可能な淡水化装置の新たな運転方法や設計が求められている。また、ステンレス鋼316Lや317Lが用いられている多くの既設の淡水化プラントでは、装置における腐食し易い部分に対する対策が求められている。
 淡水化装置において、ステンレス鋼からなる配管の腐食を抑制しようとする試みは、いくつか行われている。例えば、スーパー・オーステナイト・ステンレス鋼またはチタンなどの耐食性材料からなる内側管と、この内側管を覆って設けられた耐圧性を有する金属製の外側管と、この外側管の内周と前記内側管の外周との間の間隙に充填されたプラスチック・セメント材などからなるシーリング材とからなるコンポジット構造の管を用いた配管が提案されている(特許文献2)。この配管は、安価で堅牢と言えるが、管の製造工程が複雑であり、かつ、配管性能の安定性を評価する必要があるなど、実用化までに解決すべき課題は多い。
 もう一つ配管の腐食を抑制しようとする試みとして、ポリカルボン酸などの有機酸を被処理水(供給水)に添加することが提案されている(特許文献3)。しかし、有機酸を被処理水に添加することにより配管の腐食はある程度抑制されるとしても、薬品使用費がかかり、造水のコストアップになること、また、淡水化装置からの廃水中の有機物濃度が上昇するため、環境への影響を考慮して、廃水の再処理が必要となる場合があり、これも造水のコストアップの要因となる。
JP2000-237555A JP2001-137671A WO2002/080671A1
Fayyaz Muddassir Mubeen、IDA World Congress(2005):SP05-001 Jan O.Olsson、Malin M.Snis、IDA World Congress(2005):SP05-036
 本発明の目的は、逆浸透膜を用いた塩水の淡水化装置において、逆浸透膜の殺菌に用いられる薬剤により腐食を受ける管路、当該管路に介在する高圧ポンプや高圧バルブを極力少なくして、腐食を受けなくて済む管路、当該管路に介在する高圧ポンプや高圧バルブを、耐腐食性は高くないが比較的に廉価である材料、例えば、ステンレス鋼により形成することが可能となる淡水化装置を提供することにある。
 上記目的を達成するための本発明の逆浸透膜を用いた塩水の淡水化装置は、次の通りである。
 逆浸透膜モジュール、高圧ポンプ、および、エネルギー回収昇圧装置を含み、かつ、
 (a)一端が塩水供給ユニットに結合し、他端に管路分岐部を有する塩水供給管路、
 (b)一端が前記管路分岐部に結合し、他端が前記高圧ポンプに結合された第1の管路、
 (c)一端が前記高圧ポンプに結合され、他端が前記逆浸透膜モジュールの塩水供給部に結合された第2の管路、
 (d)一端が前記管路分岐部に結合され、他端が前記エネルギー回収昇圧装置に結合された第3の管路、
 (e)一端が前記エネルギー回収昇圧装置に結合され、他端が前記第2の管路に結合され、かつ、前記エネルギー回収昇圧装置において、前記第3の管路に導通している第4の管路、
 (f)一端が前記逆浸透膜モジュールの濃縮水収容部に結合され、他端が前記エネルギー回収昇圧装置に結合された第5の管路、
 (g)一端が前記エネルギー回収昇圧装置に結合され、他端が濃縮水収集ユニットに結合され、かつ、前記エネルギー回収昇圧装置において、前記第5の管路に導通している濃縮水導出管路、および、
 (h)一端が前記逆浸透膜モジュールの透過水収容部に結合され、他端が透過水収集ユニットに結合された透過水導出管路を含み、更に、
 (i)一端が前記逆浸透膜モジュールにおける逆浸透膜に接触する際の前記塩水の水素イオン指数(pH)を4以下とする薬剤の薬剤供給ユニットに結合され、他端が前記第3の管路、あるいは、前記第1の管路に結合された薬剤供給管路を含む逆浸透膜を用いた塩水の淡水化装置。
 この淡水化装置において、前記第4の管路に、当該管路を流れる塩水を昇圧するためのブースターポンプが設けられていることが好ましい。
 この淡水化装置において、前記薬剤供給管路の前記他端が、前記第3の管路に結合され、かつ、前記エネルギー回収昇圧装置が、圧力エネルギー交換型の装置であり、更に、前記エネルギー回収昇圧装置における前記第3の管路と前記第4の管路とを結合する塩水流路が、セラミックスもしくは高耐酸性材質で形成されていることが好ましい。
 本発明の淡水の製造方法は、上記淡水化装置により塩水から淡水を製造することからなる。
 本発明によれば、逆浸透膜モジュールにおける逆浸透膜に接触する際の塩水の水素イオン指数(pH)を4以下とするために用いられる薬剤が、多くの管路、当該管路に介在するいくつかの高圧ポンプや高圧バルブを経て逆浸透膜モジュールに到達することが回避される。従って、薬剤が流通しない管路、当該管路に介在する高圧ポンプや高圧バルブは、前記薬剤に対する耐食性が良好な高価な材料をもって形成する必要がなくなり、淡水化装置の全体の製造コストの大幅な削減効果がもたらされる。前記薬剤は、必要最小限の管路、当該管路に介在する高圧ポンプや高圧バルブを経て逆浸透膜モジュールに到達するので、これらの管路、当該管路に介在する高圧ポンプや高圧バルブについてのみ、前記薬剤に対する耐食性が良好な高価な材料をもって形成すれば足りる。
図1は、本発明の淡水化装置の一つの実施例のフローチャートである。 図2は、本発明の淡水化装置の他の一つの実施例のフローチャートである。 図3は、本発明の淡水化装置の開発において、改良の対象とした淡水化装置(比較例)のフローチャートである。
 先ず、本発明の淡水化装置の開発において、改良の対象とした淡水化装置を比較例1として説明し、次いで、本発明の淡水化装置の一実施例を実施例1として、更に、本発明の淡水化装置の他の一実施例を実施例2として説明する。
比較例1
 図3に、本発明の比較例の逆浸透膜を用いた淡水化装置300が示される。淡水化装置300は、逆浸透膜モジュール2、高圧ポンプ1、および、エネルギー回収昇圧装置3を有する。
 淡水化装置300は、逆浸透膜モジュール2、高圧ポンプ1、あるいは、エネルギー回収昇圧装置3に結合された次の管路(a)-(h)を有する。
 (a)一端が塩水供給ユニットSWに結合し、他端に管路分岐部BPを有する塩水供給管路5、
 (b)一端が管路分岐部BPに結合し、他端が高圧ポンプ1に結合された第1の管路6、
 (c)一端が高圧ポンプ1に結合され、他端が逆浸透膜モジュール2の塩水供給部2sに結合された第2の管路9、
 (d)一端が管路分岐部BPに結合され、他端がエネルギー回収昇圧装置3に結合された第3の管路7、
 (e)一端がエネルギー回収昇圧装置3に結合され、他端が第2の管路9に結合され、かつ、エネルギー回収昇圧装置3において、第3の管路7に導通している第4の管路10、
 (f)一端が逆浸透膜モジュール2の濃縮水収容部2cに結合され、他端がエネルギー回収昇圧装置3に結合された第5の管路8、
 (g)一端がエネルギー回収昇圧装置3に結合され、他端が濃縮水収集ユニットCWに結合され、かつ、エネルギー回収昇圧装置3において、第5の管路8に導通している濃縮水導出管路14、および、
 (h)一端が逆浸透膜モジュール2の透過水収容部2pに結合され、他端が透過水収集ユニットPWに結合された透過水導出管路13。
 淡水化装置300は、塩水供給管路5に設けられた塩水を前処理する前処理ユニットPTを有する。第4の管路10には、塩水を更に昇圧するためのブースターポンプ4が設けられている。第2の管路9に第4の管路10が結合する結合部9aから逆浸透膜モジュール2に至る部分の管路を、第6の管路11と呼称する。また、第4の管路10において、エネルギー回収昇圧装置3からブースターポンプ4に至る部分の管路を、第7の管路12と呼称する。図3において、各管路に必要に応じて設けられているバルブや管継ぎ手の図示は、省略されている。
 淡水化装置300において、塩水供給ユニットSWから前処理ユニットPTに供給された塩水は、当該ユニットにおいて前処理される。前処理された塩水は、塩水供給管路5を通り、管路分岐部BPに至る。管路分岐部BPにおいて、塩水の一部は、第1の管路6へと流れ、塩水の残りの部分は、第3の管路7へと流れる。第1の管路6を流れる塩水は、高圧ポンプ1により加圧され、第2の管路9を経て、逆浸透膜モジュール2の塩水供給部2sに流入する。
 逆浸透膜モジュール2において、塩水の一部は、逆浸透膜モジュール2の逆浸透膜2mを透過し、透過水(淡水)となり、逆浸透膜モジュール2の透過水収容部2cに至る。透過水収容部2cの透過水(淡水)は、透過水導出管路13を経て、透過水収集ユニットPWへと導出される。
 逆浸透膜モジュール2において、逆浸透膜2mを透過しなかった塩水は、逆浸透膜モジュール2の濃縮水収容部2cから、濃縮水として、第5の管路8を経て、エネルギー回収昇圧装置3に至る。エネルギー回収昇圧装置3において、濃縮水が有している圧力エネルギーが回収される。圧力エネルギーの回収を受けた濃縮水は、濃縮水導出管路14を経て、濃縮水収集ユニットCWへと流出する。
 管路分岐部BPにおいて、第1の管路6へ流入しなかった塩水(残りの塩水)は、第3の管路7を経て、エネルギー回収昇圧装置3に至る。エネルギー回収昇圧装置3に至った塩水は、エネルギー回収昇圧装置3において濃縮水から回収された圧力エネルギーにより加圧された後、第4の管路10を経て、第2の管路9に流入する。塩水は、第4の管路10に設けられたブースターポンプ4により、更に昇圧される。
 淡水化装置300は、更に、一端が逆浸透膜モジュール2における逆浸透膜2mに接触する際の塩水の水素イオン指数(pH)を4以下とする薬剤の薬剤供給ユニットCTに結合され、他端が前処理ユニットPTと管路分岐部BPとの間において塩水供給管路5に結合された薬剤供給管路16を有する。薬剤供給管路16には、薬剤供給ポンプ15が設けられている。
 薬剤供給ユニットCTに用意された前記薬剤が、薬剤供給ポンプ15により、薬剤供給管路16を経て、塩水供給管路5を流れる塩水に、連続的に、あるいは、間欠的に、注入される。薬剤供給管路16から塩水供給管路5に注入された薬剤を含む塩水は、第1の管路6、第2の管路9、第3の管路7、第4の管路4を流れる。また、これらの管路に介在する部材、すなわち、高圧ポンプ1、エネルギー回収昇圧装置3、バルブ(図示は、省略されている)も、当該薬剤を含む塩水に接触する。
 その結果、第1の管路6、第2の管路9、第3の管路7、第4の管路4、ならびに、これらの管路に介在する部材、すなわち、高圧ポンプ1、エネルギー回収昇圧装置3、バルブは、高耐酸性の材料により形成されている必要がある。
 淡水化装置300において、高圧の塩水が流れる管路(高圧管路)は、第2の管路9、第5の管路8、および、第4の管路10である。また、高圧の塩水の流れに接触する部材は、第1の管路6と第2の管路9との間に設けられた高圧ポンプ1、第4の管路10に設けられたブースターポンプ4、これらの管路に取り付けられたバルブや管継ぎ手、ならびに、エネルギー回収昇圧装置3である。従って、これらの管路、ならびに、これらの部材は、高圧に耐え得る材料(高圧材料)で形成されている必要がある。
 一方、淡水化装置300において、低圧の塩水あるいは透過水が流れる管路(低圧管路)は、塩水供給管路5、第1の管路6、透過し導出管路13、および、濃縮水導出管路14である。また、低圧の塩水の流れに接触する部材は、これらの管路に取り付けられたバルブや管継ぎ手である。従って、これらの管路、ならびに、これらの部材は、低圧に耐え得る材料(低圧材料)で形成されていれば十分である。
 図1に、本発明の逆浸透膜を用いた淡水化装置の一実施例である淡水化装置100が示される。図1に示される淡水化装置100と図3に示される淡水化装置300とは、大多数の装置構成部材において、互いに共通している。従って、淡水化装置100の構成部材で、淡水化装置300の構成部材と同じ部材には、図1において、図3に用いられている部材符号と同じ部材符号が付与されている。
 淡水化装置100と淡水化装置300との相違は、淡水化装置300においては、薬剤供給管路16が、塩水供給管路5に結合されているが、淡水化装置100においては、薬剤供給管路16に相当する薬剤供給管路116が、第3の管路7に結合されている点である。
 薬剤供給ユニットCTに用意された前記薬剤が、薬剤供給ポンプ15により、薬剤供給管路116を経て、第3の管路7を流れる塩水に、連続的に、あるいは、間欠的に、注入される。薬剤供給管路116から第3の管路7に注入された薬剤を含む塩水は、第3の管路7、第4の管路10、第6の管路11を流れる。また、これらの管路に介在する部材、すなわち、エネルギー回収昇圧装置3、バルブ(図示は、省略されている)も、当該薬剤を含む塩水に接触する。
 その結果、第3の管路7、第4の管路10、第6の管路11、ならびに、これらの管路に介在する部材、すなわち、エネルギー回収昇圧装置3、バルブは、高耐酸性の材料により形成されている必要がある。
 図2に、本発明の逆浸透膜を用いた淡水化装置の他の一実施例である淡水化装置200が示される。図2に示される淡水化装置200と図3に示される淡水化装置300とは、大多数の装置構成部材において、互いに共通している。従って、淡水化装置200の構成部材で、淡水化装置300の構成部材と同じ部材には、図2において、図3に用いられている部材符号と同じ部材符号が付与されている。
 淡水化装置200と淡水化装置300との相違は、淡水化装置300においては、薬剤供給管路16が、塩水供給管路5に結合されているが、淡水化装置200においては、薬剤供給管路16に相当する薬剤供給管路216が、第1の管路6に結合されている点である。
 薬剤供給ユニットCTに用意された前記薬剤が、薬剤供給ポンプ15により、薬剤供給管路216を経て、第1の管路6を流れる塩水に、連続的に、あるいは、間欠的に、注入される。薬剤供給管路216から第1の管路6に注入された薬剤を含む塩水は、第1の管路6、第2の管路9を流れる。また、これらの管路に介在する部材、すなわち、高圧ポンプ1、バルブ(図示は、省略されている)も、当該薬剤を含む塩水に接触する。
 その結果、第1の管路6、第2の管路9、ならびに、これらの管路に介在する部材、すなわち、高圧ポンプ1、バルブは、高耐酸性の材料により形成されている必要がある。
 薬剤を含む塩水に接触するため、高耐酸性の材料により形成する必要がある管路および部材は、比較例1の淡水化装置300の場合に比べ、実施例1の淡水化装置100および実施例2の淡水化装置200の場合の方が、少なくて済む。高耐酸性の材料の中でも特に、高価な高耐酸性の高圧材料を使用しなければならない装置の構成部材数が少なくて済み、淡水化装置の製造コストの低減が図られる。
 この点が、比較例1の淡水化装置300に対する、実施例1の淡水化装置100および実施例2の淡水化装置200の特徴であり、改良点である。更に、エネルギー回収昇圧装置3の塩水の接触部分の素材がセラミックスの場合は、薬剤を含む塩水が接触しても、当該部分における腐食の問題は発生しない。
 実施例1の淡水化装置100および実施例2の淡水化装置200を、運転条件を種々変えて、実際に運転し、淡水の製造を行い、薬剤による逆浸透膜における殺菌効果を調べたが、比較例1の淡水化装置300の場合と同様の逆浸透膜の薬剤による殺菌効果が得られていることが確認された。
 高耐酸性とは、管路などを形成する素材が、塩素イオン濃度300乃至40,000mg/l程度の塩水と接触した状態で、少なくとも3年の間、腐食を含む外観上の変質を受けることなく、当初の形状、性状、強度が維持されている状態を云う。日本工業規格(JIS)に定められたステンレス鋼の耐酸性の評価基準には、蓚酸エッチング試験方法(JIS-G0571)、硫酸・硫酸第二鉄腐食試験方法(JIS-G0572)、65%硝酸腐食試験方法(JIS-G0573)、硝酸・フッ化水素酸腐食試験方法(JIS-G0574)、硫酸・硫酸銅腐食試験方法(JIS-G0575)がある。
 薬剤のステンレス鋼に対する腐食性は、薬剤の濃度と温度に関係する。腐食性は、温度0乃至50℃において、任意濃度の薬剤のステンレス鋼に対する全面腐食、孔食あるいは隙間腐食の状態をもって判定される。
 ステンレス鋼が腐食され易い薬剤としては、塩化第二鉄、塩化アルミニウム、塩化アンモニウム、塩化ナトリウムなど、塩化物イオンなどのハロゲンイオンを含む金属塩類、次亜塩素酸ナトリウム、次亜塩素酸カルシウムなどの次亜塩素酸塩類、塩酸、硫酸、クロム酸など、濃硫酸、硝酸以外の無機酸、酢酸、蓚酸、酒石酸、乳酸などの有機酸、および、それらの水溶液が挙げられる。
 この明細書において、薬剤とは、塩水に添加し逆浸透膜と接触する際の塩水の水素イオン濃度(pH)を4以下にすることができる薬剤を云う。このような薬剤として、例えば、硫酸、硝酸、塩酸などの無機酸や、蓚酸、クエン酸などの有機酸がある。この薬剤が添加された塩水を逆浸透膜と接触させることで、逆浸透膜の表面を殺菌洗浄することができる。逆浸透膜との接触時の塩水のpHを4以下とすることは、塩水の流速や塩水の塩濃度などを考慮し、前記薬剤の種類や添加量、濃度などを適宜変更、調節することで達成される。
 図1乃至3に示す淡水化装置において、高圧の塩水が流れる管路(高圧管路)は、第2の管路9、第5の管路8、および、第4の管路10である。また、高圧の塩水の流れに接触する部材は、第1の管路6と第2の管路9との間に設けられた高圧ポンプ1、第4の管路10に設けられたブースターポンプ4、これらの管路に取り付けられたバルブや管継ぎ手、ならびに、エネルギー回収昇圧装置3である。従って、これらの管路、ならびに、これらの部材は、高圧に耐え得る材料(高圧材料)で形成されている必要がある。
 一方、図1乃至3に示す淡水化装置において、低圧の塩水あるいは透過水が流れる管路(低圧管路)は、塩水供給管路5、第1の管路6、透過水導出管路13、および、濃縮水導出管路14である。また、低圧の塩水の流れに接触する部材は、これらの管路に取り付けられたバルブや管継ぎ手である。従って、これらの管路、ならびに、これらの部材は、低圧に耐え得る材料(低圧材料)で形成されていれば十分である。
 高圧材料としては、各種のステンレス鋼がある。ステンレス鋼は、耐圧性に加えて耐酸性を向上させるために、鉄に、クロム、ニッケル、モリブデン、窒素、銅などを含ませた合金鋼である。ステンレス鋼は、その金属組織により、オーステナイト系(例えば、304、304L、316、316L、317、317L、904L)とオーステナイト・フェライト系(例えば、254SMO、2205、2507、Zeron100、329)に区分されている。本発明に係る淡水化装置においては、前記合金鋼のいずれを使用しても良い。
 高圧ポンプ1は、前記高圧材料を用いて作られたポンプで、様々な形式がある。本発明に係る淡水化装置における高圧ポンプ1は、所望とする圧力と流量が得られるものであれば、特にその形式に限定されない。例えば、プランジャーポンプのような往復動形式のポンプ、渦巻ポンプ、遠心ポンプ、多段遠心ポンプのような回動形式のポンプなどを、適宜目的に応じて、用いることができる。
 塩水は、塩分を含む水の総称である。塩素イオン濃度が300乃至15,000mg/l程度の塩水は、比較的低濃度の塩水であり、一般的に、かん水と呼称されている。塩素イオン濃度が15,000乃至40,000mg/l程度の塩水は、比較的高濃度の塩水であり、一般的に、海水と呼称されている。
 逆浸透膜を用いた塩水の淡水化装置における逆浸透膜モジュールには、加圧された塩水が供給される。逆浸透膜モジュールは、一つあるいは複数の逆浸透膜エレメントとこれらが収納された耐圧容器からなる。逆浸透膜モジュールは、一つで、あるいは、複数を並列あるいは直列に配列されて、用いられる。
 逆浸透膜エレメントは、逆浸透膜を、逆浸透膜を支持するエレメントに収納したものである。例えば、逆浸透膜が平膜の場合は、平膜をスパイラル、チューブラー、あるいは、プレート・アンド・フレーム状のエレメントに組み込んだ形態のものがある。逆浸透膜が中空糸の場合は、多数本の中空糸からなる中空糸の束をエレメントに組み込んだ形態のものがある。本発明に係る淡水化装置においては、これらの逆浸透膜エレメントのいずれも使用することができる。
 逆浸透膜は、例えば、酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子材料により形成されている。膜形態には、例えば、平膜、中空糸膜がある。本発明に係る淡水化装置においては、いずれの材料からなる逆浸透膜、いずれの膜形態をも使用することができる。特にポリアミドなど耐塩素性の弱い材料からなる逆浸透膜を用いることにより、前述の本発明の効果が好ましく発揮される。
 前処理ユニットにおいて、通常、塩水に対し、殺菌剤、凝集剤が添加される。必要に応じて、還元剤、pH調整剤、スケール防止剤などが、添加される場合がある。また、前処理ユニットにおいて、塩水の濁質成分の除去のために、砂ろ過、精密膜ろ過、限外膜ろ過、活性炭ろ過、あるいは、保安フィルターによるろ過などによる塩水のろ過が行われる。
 エネルギー回収昇圧装置は、逆浸透膜モジュールから排出される高圧の濃縮水が有している圧力を、例えば、機械的なエネルギーに変換し、この機械的なエネルギーを、逆浸透膜モジュールに供給される塩水の昇圧に利用するための装置である。このようなエネルギー回収昇圧装置は、種々知られており、それらのいくつかは、淡水化装置において、実際に使用されている。
 淡水化装置においては、管路分岐部BPから第3の管路7に流入した塩水がエネルギー回収昇圧装置3に流入し、エネルギー回収昇圧装置3において加圧作用を受けた後、第4の管路10を経て、第2の管路9に送給される。
 エネルギー回収昇圧装置3の部材を形成する材料としては、各種のステンレス鋼および/またはセラミックスがある。ここに用いられるステンレス鋼としては、前述の高圧材料と同じものがある。ここに用いられるセラミックスとしては、アルミナ、酸化アルミ、炭化珪素、窒化珪素、ジルコニア、窒化アルミなどがある。
 本発明によれば、逆浸透膜モジュールにおける逆浸透膜に接触する際の塩水の水素イオン指数(pH)を4以下とするために用いられる薬剤が、多くの管路、当該管路に介在するいくつかの高圧ポンプや高圧バルブを経て逆浸透膜モジュールに到達することが回避される。従って、薬剤が流通しない管路、当該管路に介在する高圧ポンプや高圧バルブは、前記薬剤に対する耐食性が良好な高価な材料をもって形成する必要がなくなり、淡水化装置の全体の製造コストの大幅な低減が図られる。
 1:高圧ポンプ
 2:逆浸透膜モジュール
 2c:濃縮水収容部
 2m:逆浸透膜
 2p:透過水収容部
 2s:塩水供給部
 3:エネルギー回収昇圧装置
 4:ブースターポンプ
 5:塩水供給管路
 6:第1の管路
 7:第3の管路
 8:第5の管路
 9:第2の管路
 9a:結合部
 10:第4の管路
 11:第6の管路
 12:第7の管路
 13:透過水導出管路
 14:濃縮水導出管路
 15:薬剤供給ポンプ
 16:薬剤供給管路
 100:実施例1の淡水化装置
 116:薬剤供給管路
 200:実施例2の淡水化装置
 216:薬剤供給管路
 300:比較例1の淡水化装置
 BP:管路分岐部
 CT:薬剤供給ユニット
 CW:濃縮水収集ユニット
 PT:前処理ユニット
 PW:透過水収集ユニット
 SW:塩水供給ユニット

Claims (4)

  1.  逆浸透膜モジュール、高圧ポンプ、および、エネルギー回収昇圧装置を含み、かつ、
     (a)一端が塩水供給ユニットに結合し、他端に管路分岐部を有する塩水供給管路、
     (b)一端が前記管路分岐部に結合し、他端が前記高圧ポンプに結合された第1の管路、
     (c)一端が前記高圧ポンプに結合され、他端が前記逆浸透膜モジュールの塩水供給部に結合された第2の管路、
     (d)一端が前記管路分岐部に結合され、他端が前記エネルギー回収昇圧装置に結合された第3の管路、
     (e)一端が前記エネルギー回収昇圧装置に結合され、他端が前記第2の管路に結合され、かつ、前記エネルギー回収昇圧装置において、前記第3の管路に導通している第4の管路、
     (f)一端が前記逆浸透膜モジュールの濃縮水収容部に結合され、他端が前記エネルギー回収昇圧装置に結合された第5の管路、
     (g)一端が前記エネルギー回収昇圧装置に結合され、他端が濃縮水収集ユニットに結合され、かつ、前記エネルギー回収昇圧装置において、前記第5の管路に導通している濃縮水導出管路、および、
     (h)一端が前記逆浸透膜モジュールの透過水収容部に結合され、他端が透過水収集ユニットに結合された透過水導出管路を含み、更に、
     (i)一端が前記逆浸透膜モジュールにおける逆浸透膜に接触する際の前記塩水の水素イオン指数(pH)を4以下とする薬剤の薬剤供給ユニットに結合され、他端が前記第3の管路、あるいは、前記第1の管路に結合された薬剤供給管路を含む逆浸透膜を用いた塩水の淡水化装置。
  2.  前記第4の管路に、当該管路を流れる塩水を昇圧するためのブースターポンプが設けられている請求項1に記載の淡水化装置。
  3.  前記薬剤供給管路の前記他端が、前記第3の管路に結合され、かつ、前記エネルギー回収昇圧装置が、圧力エネルギー交換型の装置であり、更に、前記エネルギー回収昇圧装置における前記第3の管路と前記第4の管路とを結合する塩水流路が、セラミックスもしくは高耐酸性材料で形成されている請求項1に記載の淡水化装置。
  4.  請求項1に記載の淡水化装置により塩水から淡水を製造する淡水の製造方法。
PCT/JP2009/060313 2008-07-09 2009-06-05 逆浸透膜を用いた塩水の淡水化装置、および、この淡水化装置を用いた淡水の製造方法 WO2010004819A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009530721A JPWO2010004819A1 (ja) 2008-07-09 2009-06-05 逆浸透膜を用いた塩水の淡水化装置、および、この淡水化装置を用いた淡水の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-178690 2008-07-09
JP2008178690 2008-07-09

Publications (1)

Publication Number Publication Date
WO2010004819A1 true WO2010004819A1 (ja) 2010-01-14

Family

ID=41506941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060313 WO2010004819A1 (ja) 2008-07-09 2009-06-05 逆浸透膜を用いた塩水の淡水化装置、および、この淡水化装置を用いた淡水の製造方法

Country Status (2)

Country Link
JP (1) JPWO2010004819A1 (ja)
WO (1) WO2010004819A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190381A (zh) * 2010-03-12 2011-09-21 株式会社东芝 海水淡化系统
JP2016215179A (ja) * 2015-05-26 2016-12-22 株式会社日立製作所 逆浸透膜を用いた脱塩システムおよびその運転方法
KR101837230B1 (ko) * 2011-01-19 2018-03-09 도레이 카부시키가이샤 염수 담수화 장치
KR20190053000A (ko) * 2017-11-09 2019-05-17 (주)팀코스파 역삼투압 해수 담수화 장치
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207518A (en) * 1981-06-15 1982-12-20 Kuraray Co Ltd Liquid filtering device
JPH01123605A (ja) * 1987-11-06 1989-05-16 Nkk Corp 逆浸透膜を用いた塩水淡水化設備のエネルギー回収方法
JPH06143237A (ja) * 1990-12-27 1994-05-24 Kubota Corp セラミックベンド管の製造方法
JPH07124559A (ja) * 1993-11-08 1995-05-16 Toyobo Co Ltd 海水淡水化プロセスにおける被処理水の殺菌方法
JPH0938671A (ja) * 1995-07-31 1997-02-10 Japan Organo Co Ltd 水処理方法及び水処理装置
JP2000354744A (ja) * 1999-04-14 2000-12-26 Toray Ind Inc 膜の殺菌方法および造水方法
JP2004081913A (ja) * 2002-08-23 2004-03-18 Hitachi Zosen Corp 逆浸透法による海水淡水化方法
JP2005040661A (ja) * 2003-07-23 2005-02-17 Toray Ind Inc 淡水またはかん水の処理方法および処理装置
JP2007186730A (ja) * 2006-01-11 2007-07-26 Toshiba Corp 耐食性部材及びその製造方法
JP2008039024A (ja) * 2006-08-04 2008-02-21 Hitachi Plant Technologies Ltd 圧力変換器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207518A (en) * 1981-06-15 1982-12-20 Kuraray Co Ltd Liquid filtering device
JPH01123605A (ja) * 1987-11-06 1989-05-16 Nkk Corp 逆浸透膜を用いた塩水淡水化設備のエネルギー回収方法
JPH06143237A (ja) * 1990-12-27 1994-05-24 Kubota Corp セラミックベンド管の製造方法
JPH07124559A (ja) * 1993-11-08 1995-05-16 Toyobo Co Ltd 海水淡水化プロセスにおける被処理水の殺菌方法
JPH0938671A (ja) * 1995-07-31 1997-02-10 Japan Organo Co Ltd 水処理方法及び水処理装置
JP2000354744A (ja) * 1999-04-14 2000-12-26 Toray Ind Inc 膜の殺菌方法および造水方法
JP2004081913A (ja) * 2002-08-23 2004-03-18 Hitachi Zosen Corp 逆浸透法による海水淡水化方法
JP2005040661A (ja) * 2003-07-23 2005-02-17 Toray Ind Inc 淡水またはかん水の処理方法および処理装置
JP2007186730A (ja) * 2006-01-11 2007-07-26 Toshiba Corp 耐食性部材及びその製造方法
JP2008039024A (ja) * 2006-08-04 2008-02-21 Hitachi Plant Technologies Ltd 圧力変換器

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190381A (zh) * 2010-03-12 2011-09-21 株式会社东芝 海水淡化系统
JP2011189253A (ja) * 2010-03-12 2011-09-29 Toshiba Corp 海水淡水化システム
US8834712B2 (en) 2010-03-12 2014-09-16 Kabushiki Kaisha Toshiba Seawater desalination system
KR101837230B1 (ko) * 2011-01-19 2018-03-09 도레이 카부시키가이샤 염수 담수화 장치
JP2016215179A (ja) * 2015-05-26 2016-12-22 株式会社日立製作所 逆浸透膜を用いた脱塩システムおよびその運転方法
KR102018617B1 (ko) * 2017-11-09 2019-11-14 (주)팀코스파 역삼투압 해수 담수화 장치
KR20190053000A (ko) * 2017-11-09 2019-05-17 (주)팀코스파 역삼투압 해수 담수화 장치
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Also Published As

Publication number Publication date
JPWO2010004819A1 (ja) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5880432B2 (ja) 塩水淡水化装置
WO2010004819A1 (ja) 逆浸透膜を用いた塩水の淡水化装置、および、この淡水化装置を用いた淡水の製造方法
Shahid et al. A brief review of anaerobic membrane bioreactors emphasizing recent advancements, fouling issues and future perspectives
JP5549591B2 (ja) 淡水製造方法及び淡水製造装置
Ray et al. Urea recovery from fresh human urine by forward osmosis and membrane distillation (FO–MD)
CN102985373B (zh) 淡水制造装置及其运转方法
JP6762258B2 (ja) 逆浸透処理システム及び逆浸透処理方法
US9833743B2 (en) Reverse osmosis treatment device and method for cleaning reverse osmosis treatment device
WO2011028859A1 (en) Water purification system
Gurreri et al. Coupling of electromembrane processes with reverse osmosis for seawater desalination: Pilot plant demonstration and testing
JP6505504B2 (ja) 逆浸透膜を用いた脱塩システムおよびその運転方法
KR20180017149A (ko) 살생물제 조성물 및 방법
JP2011115704A (ja) 塩水淡水化装置
Polasek et al. Conversion from hollow fiber to spiral technology in large seawater RO systems—Process design and economics
JP2006122787A (ja) 海水淡水化方法
JP4765913B2 (ja) 皮膜つきノズルを有する逆浸透膜モジュール
CN207596603U (zh) 一种预处理及软化一级反渗透装置
Ghomshe Cleaning strategy of fouled reverse osmosis membrane: direct osmosis at high salinities (DO-HS) as on-line technique without interruption of RO operation
Manalo et al. Long-term pilot plant study using direct chlorination for biofouling control of a chlorine-resistant polyamide reverse osmosis membrane
Sommariva et al. Matching hollow-fiber with spiral-wound membranes: Process compatibility and optimization
JP5092587B2 (ja) 皮膜つきノズルを有する逆浸透膜モジュール
Strohwald Pilot scale desalination of sea-water by reverse osmosis
CN212315811U (zh) 净水系统及净水机
Hamad et al. Materials and Corrosion in Seawater Reverse Osmosis Plants: A Review
JP2020104038A (ja) 水処理システム運転方法及び水処理システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009530721

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794266

Country of ref document: EP

Kind code of ref document: A1