WO2010004742A1 - 液体容器、液体噴射装置、および、液体噴射システム - Google Patents

液体容器、液体噴射装置、および、液体噴射システム Download PDF

Info

Publication number
WO2010004742A1
WO2010004742A1 PCT/JP2009/003179 JP2009003179W WO2010004742A1 WO 2010004742 A1 WO2010004742 A1 WO 2010004742A1 JP 2009003179 W JP2009003179 W JP 2009003179W WO 2010004742 A1 WO2010004742 A1 WO 2010004742A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
liquid container
liquid
memory
circuit
Prior art date
Application number
PCT/JP2009/003179
Other languages
English (en)
French (fr)
Inventor
小杉康彦
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to CN2009801269440A priority Critical patent/CN102089153A/zh
Priority to JP2010519644A priority patent/JPWO2010004742A1/ja
Publication of WO2010004742A1 publication Critical patent/WO2010004742A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17543Cartridge presence detection or type identification
    • B41J2/17546Cartridge presence detection or type identification electronically

Definitions

  • the present invention relates to a liquid container, a liquid ejecting apparatus, and a liquid ejecting system, and more particularly to a liquid container having a plurality of electric devices, a liquid ejecting apparatus using the liquid container, and a liquid ejecting system including the liquid container.
  • a liquid container that stores the liquid In order to supply a liquid to be ejected to a liquid ejecting apparatus such as an ink jet printer, a liquid container that stores the liquid is used.
  • a method for managing the remaining amount of liquid in the liquid container a method in which the liquid ejecting apparatus integrates and manages the amount of ejected liquid by software, and a method in which a liquid remaining amount sensor is provided in the liquid container are known.
  • a liquid remaining amount sensor including a piezoelectric element is known (for example, Patent Document 1). This sensor is caused by residual vibration (free vibration) of the diaphragm after forced vibration in the presence or absence of liquid in the cavity facing the diaphragm on which the piezoelectric elements are stacked. The remaining amount of liquid in the liquid container is determined using the change in the resonance frequency of the residual vibration signal.
  • the liquid container may further include a memory for holding information about the liquid such as the remaining amount of liquid and the liquid consumption.
  • a memory for holding information about the liquid such as the remaining amount of liquid and the liquid consumption.
  • the liquid ejecting apparatus and the liquid remaining amount sensor communicate with the electrical connection portion between the liquid ejecting apparatus and the liquid container.
  • a terminal for communication and a terminal for communication between the liquid ejecting apparatus and the memory are provided separately (for example, Japanese Patent Application Laid-Open No. 2007-196664).
  • the increase in the number of terminals may cause an increase in the number of parts and a decrease in the reliability of contact between terminals.
  • Such a problem is not limited to a liquid container including a sensor including a piezoelectric element and a memory, but is a problem common to a liquid container including a first electric device and a second electric device.
  • an object of the present invention is to reduce the number of terminals for accessing the first electric device and the second electric device.
  • the present invention can be realized as the following forms or application examples in order to solve at least a part of the above-described problems.
  • a liquid container attachable to the liquid ejecting apparatus An electrical circuit comprising a first electrical device and a second electrical device; A first terminal; A second terminal; With The electrical circuit uses the first terminal to communicate with the first electrical device using a potential difference between terminals of a potential input to the first terminal and a potential input to the second terminal by the liquid ejecting apparatus; The second communication with the second electric device can be executed, and the first communication and the second communication can be distinguished and executed by using the potential difference between the terminals having different sizes. , Liquid container. By so doing, the first communication and the second communication can be distinguished and executed using the first terminal and the second terminal, so that the number of terminals of the liquid container can be reduced.
  • the electric circuit is a liquid container configured such that the liquid ejecting apparatus can supply a driving power to the first electric device via the first terminal. In this way, since the driving power can be supplied to the first electric device using the first terminal and the second terminal, the number of terminals can be further reduced.
  • the liquid container according to Application Example 1 or Application Example 2 The electrical container further includes a permissible circuit that allows a variation in the potential difference between the terminals to be supplied to the first electrical device when the potential difference between the terminals exceeds a threshold value. By so doing, fluctuations in the potential difference between terminals that do not exceed the threshold value are not supplied to the first electrical device, so that the first electrical device is prevented from malfunctioning due to fluctuations in the potential difference between terminals that are lower than the threshold value. can do.
  • the liquid container according to any one of Application Example 1 to Application Example 3, The tolerance circuit includes a zener diode and a liquid container. In this way, an allowable circuit can be simply configured.
  • the liquid container according to any one of Application Example 1 to Application Example 4 includes a memory;
  • the first communication includes at least one of writing to the memory and reading from the memory,
  • the liquid container, wherein the inter-terminal potential difference for the first communication is larger than the inter-terminal potential difference for the second communication.
  • the liquid container according to any one of Application Example 1 to Application Example 5 includes an oscillation circuit;
  • the second communication includes an input of a drive signal from the liquid ejecting apparatus to the oscillation circuit, and an output of a response signal from the oscillation circuit to the liquid ejecting apparatus,
  • the liquid container, wherein the inter-terminal potential difference for the second communication is smaller than the inter-terminal potential difference for the first communication.
  • the first electrical device includes a memory;
  • the first communication includes at least one of writing to the memory and reading from the memory,
  • the second electrical device includes an oscillation circuit;
  • the second communication includes an input of a drive signal from the liquid ejecting apparatus to the oscillation circuit and an output of a response signal from the oscillation circuit to the liquid ejecting apparatus.
  • Application example 8 A liquid container according to Application Example 7, The liquid container, wherein the inter-terminal potential difference for the first communication is larger than the inter-terminal potential difference for the second communication.
  • the liquid container according to claim 7 The electrical circuit includes a regulator connected to the first terminal in parallel with the oscillating circuit, converting a voltage input to the first terminal into a driving power source for the memory and supplying the memory to the memory. container.
  • the memory can be driven using the voltage input to the first terminal as a power source.
  • the liquid container according to claim 9 The electrical circuit further includes a Zener diode disposed between the first terminal and the regulator.
  • a liquid container according to Application Example 7 The electrical circuit is A plurality of comparators to which an output is supplied to the memory; A wiring connected to the first terminal in parallel with the oscillation circuit and connected to one of the input terminals of the plurality of comparators; Including a liquid container.
  • the memory can acquire the difference in the potential difference between the terminals via the comparator.
  • data transmission to the memory using two terminals can be realized with a simple configuration.
  • the electric circuit further includes a Zener diode disposed between the first terminal and one input terminal of the plurality of comparators.
  • a liquid container according to Application Example 7 The electrical circuit is A regulator connected in parallel to the oscillation circuit to the first terminal, converting a voltage input to the first terminal into a drive power supply of the memory and supplying the memory; A plurality of comparators to which an output is supplied to the memory; A wiring connected to the first terminal in parallel with the oscillation circuit and connected to one of the input terminals of the plurality of comparators; A voltage dividing circuit that divides the voltage of the drive power supply supplied by the regulator and inputs the divided voltage to each of the other input terminals of the plurality of comparators; Including a liquid container. In this way, stable drive power can be supplied to the memory using the potential difference between the two terminals, and data transmission to the memory can be realized with a simple configuration.
  • the electrical circuit includes a transistor in which an output from a memory is input to a control electrode,
  • the liquid ejecting apparatus is configured so that the voltage of the first terminal varies between when the transistor is in an on state and when the transistor is in an off state.
  • a liquid container capable of detecting fluctuations in the memory and reading out from the memory. In this way, data reception from the memory can be realized with a simple configuration using the potential difference between the two terminals.
  • a liquid container according to Application Example 7 The electrical circuit is A liquid container including a rectifier circuit connected to the first terminal in parallel with the oscillation circuit and disposed between the first terminal and the memory. In this way, even if the potential difference between the two terminals becomes negative, for example, it is converted into a positive potential difference between the terminals by the rectifier circuit and supplied to the memory. As a result, memory damage or malfunction can be suppressed.
  • the oscillation device includes a piezoelectric element,
  • the piezoelectric element is a liquid container used for detecting the remaining amount of liquid contained in the liquid container. In this way, the remaining amount of liquid can be detected using the piezoelectric element.
  • Application example 17 A liquid container according to Application Example 6 or Application Example 7,
  • the oscillation device outputs the response signal indicating that the liquid is present in the liquid container regardless of a remaining amount of the liquid contained in the liquid container.
  • Application example 18 A liquid ejecting apparatus to which a liquid container including an electric circuit including a first electric device and a second electric device, a first terminal, and a second terminal is attached, A first communication processing unit that transmits and receives a first signal via the first terminal and the second terminal to communicate with the first device; A second communication processing unit that transmits and receives a second signal via the first terminal and the second terminal to communicate with the second device; With The liquid ejecting apparatus, wherein the voltage of the first signal and the voltage of the second signal have different magnitudes. By so doing, the first communication and the second communication can be distinguished and executed using the first terminal and the second terminal, so that the number of terminals of the liquid container can be reduced.
  • the present invention can be realized in various forms, such as a liquid supply device that supplies liquid to the liquid ejecting apparatus, a substrate that is mounted on the liquid container, an electric circuit that is mounted on the liquid container, and a liquid ejecting system. Can be realized.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of a printing system according to a first embodiment.
  • FIG. 3 is an exploded perspective view illustrating a schematic configuration of an ink cartridge.
  • FIG. 3 is an enlarged exploded perspective view of the front side of the ink cartridge. It is a figure explaining a circuit board.
  • FIG. 1 is a first explanatory diagram illustrating an electrical configuration of a printer according to a first embodiment.
  • FIG. 3 is a second explanatory diagram showing the electrical configuration of the printer in the first embodiment.
  • 6 is a timing chart of ink remaining amount determination processing in the first embodiment. 6 is a timing chart of memory access processing when data is written to a storage device. 4 is a timing chart of memory access processing when data is read from a storage device.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of a printing system according to a first embodiment.
  • FIG. 3 is an exploded perspective view illustrating a schematic configuration of an ink cartridge.
  • FIG. 10 is a first explanatory diagram illustrating an electrical configuration of a printer according to a second embodiment.
  • FIG. 6 is a second explanatory diagram illustrating an electrical configuration of a printer according to a second embodiment. The figure which shows the internal structure of a power supply circuit. Explanatory drawing which shows the electrical structure of the printer in 3rd Example. Explanatory drawing which shows the electrical structure of the printer in 4th Example.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of a printing system according to the first embodiment.
  • the printing system includes a printer 20, a computer 90, and an ink cartridge 100.
  • the printer 20 is connected to the computer 90 via the connector 80.
  • the printer 20 includes a sub-scan feed mechanism, a main scan feed mechanism, a head drive mechanism, and a main control unit 40 for controlling each mechanism.
  • the sub-scan feed mechanism includes a paper feed motor 22 and a platen 26, and conveys the paper P in the sub-scan direction by transmitting the rotation of the paper feed motor to the platen.
  • the main scanning feed mechanism includes a carriage motor 32, a pulley 38, a drive belt 36 stretched between the carriage motor 32 and the pulley 38, a sliding shaft 34 provided in parallel with the axis of the platen 26, It has. The slide shaft 34 slidably holds the carriage 30 fixed to the drive belt 36.
  • the rotation of the carriage motor 32 is transmitted to the carriage 30 via the drive belt 36, and the carriage 30 reciprocates in the axial direction (main scanning direction) of the platen 26 along the sliding shaft 34.
  • the head drive mechanism includes a print head unit 60 mounted on the carriage 30 and drives the print head to eject ink onto the paper P. As will be described later, a plurality of ink cartridges can be detachably mounted on the print head unit 60.
  • the printer 20 further includes an operation unit 70 for the user to make various printer settings and check the printer status.
  • FIG. 2 is an exploded perspective view showing a schematic configuration of the ink cartridge 100.
  • the vertical direction when the ink cartridge 100 is mounted on the carriage 30 coincides with the Z-axis direction in FIG.
  • the ink cartridge 100 includes a container body 102, a first film 104, a second film 108, and a lid 106. These members are made of, for example, a resin that can be thermally welded to each other.
  • a liquid supply unit 110 is formed on the lower surface of the container body 102. Inside the liquid supply unit 110, a seal member 114, a spring seat 112, and a closing spring 116 are accommodated in order from the lower surface side.
  • the seal member 114 has a gap between the inner wall of the liquid supply unit 110 and the outer wall of the ink supply needle when the ink supply needle (not shown) of the print head unit 60 is inserted into the liquid supply unit 110. Seal so that there is no.
  • the spring seat 112 abuts against the inner wall of the seal member 114 and closes the liquid supply unit 110 when the ink cartridge 100 is not attached to the print head unit 60.
  • the closing spring 116 biases the spring seat 112 in a direction in which the spring seat 112 abuts against the inner wall of the seal member 114.
  • FIG. 1 On the front surface (surface on the X-axis positive direction side), back surface (surface on the X-axis negative direction side), and front surface (surface on the Y-axis positive direction side) of the container main body 102, flow paths having various shapes including the rib 10a. A forming portion is formed.
  • the 1st film 104 and the 2nd film 108 are affixed on the container main body 102 so that the whole surface of the container main body 102 and the back surface may be covered.
  • the 1st film 104 and the 2nd film 108 are affixed closely so that a clearance gap may not arise between the end surfaces of the flow-path formation part formed in the container main body 102.
  • liquid flow paths such as a plurality of small chambers and narrow flow paths are defined in the ink cartridge 100.
  • a negative pressure generating valve is disposed between the valve accommodating portion 10b formed in the container main body 102 as a part of the flow path forming portion and the second film 108, in order to avoid the complexity of the drawing. The illustration is omitted.
  • the lid body 106 is attached to the back side of the container main body 102 so as to cover the first film 104.
  • the liquid flow path formed in the ink cartridge 100 has one end communicating with the atmosphere and the other end communicating with the liquid supply unit 110. That is, the ink cartridge 100 is an air communication type ink cartridge 100 in which the atmosphere is introduced into the liquid flow path as ink is supplied to the printer 20, but the details of the configuration of the liquid flow path are described below. Omitted.
  • FIG. 3 is an enlarged exploded perspective view of the front side of the ink cartridge 100.
  • a lever 120 that is engaged with a holder provided in the print head unit 60 is provided.
  • a base member accommodating portion 134 that is a part of the flow path forming portion is opened.
  • a welding rib 132 is formed around the opening of the base member accommodating portion 134.
  • a partition wall 136 is formed in the base member housing part 134 to partition the liquid channel formed by the base member housing part 134 into an upstream channel and a downstream channel.
  • a sensor base member 210, a sensor chip 220 including a piezoelectric element, a welding film 202, a cover 230, a relay terminal 240, and a circuit board 250 are arranged in this order near the base member accommodating portion 134 of the container body 102. It is installed with.
  • FIG. 4 is a diagram for explaining the circuit board 250.
  • a first terminal 251 and a second terminal 252 are disposed on the surface of the circuit board 250.
  • a memory circuit 300 and two sensor connection terminals PT and NT are arranged on the back surface of the circuit board 250.
  • the first terminal 251 is electrically connected to the first sensor connection terminal NT
  • the second terminal 252 is electrically connected to the second sensor connection terminal PT.
  • the memory circuit 300 includes a nonvolatile storage device (described later) such as an EEPROM (ElectricallyrErasable and Programmable Read Only Memory).
  • the welding film 202 holds the sensor base member 210 in the opening of the base member accommodating portion 134 and densely seals the base member accommodating portion 134 as a liquid flow path.
  • the welding film 202 is bonded to the outer peripheral edge of the surface on the Y axis positive direction side of the sensor base member 210 and is welded to the welding rib 132.
  • the cover 230 is disposed so as to hold the sensor chip 220 and the welding film 202.
  • the relay terminal 240 is accommodated in the cover 230.
  • the relay terminal 240 includes a terminal 242 that is in electrical contact with an electrode of a piezoelectric element included in the sensor chip 220 through a hole 202 a formed in the welding film 202.
  • the circuit board 250 is attached to the cover 230 and is electrically connected to the terminal 244 of the relay terminal 240.
  • FIG. 5 is a first explanatory diagram showing the electrical configuration of the printer in the first embodiment.
  • FIG. 5 is drawn paying attention to portions necessary for processing related to the ink cartridge 100.
  • the processing related to the ink cartridge 100 includes processing for determining the remaining amount of ink (hereinafter referred to as ink remaining amount determination processing) and access processing for the storage device of the memory circuit 300 (hereinafter referred to as memory access processing).
  • the main control unit 40 includes a drive signal generation circuit 42 and a first control circuit 48 including a CPU and a memory.
  • the drive signal generation circuit 42 includes a drive signal data memory 44.
  • the drive signal data memory 44 stores data indicating the drive signal DS.
  • the drive signal DS includes a sensor drive signal DS1 for driving the piezoelectric element of the sensor chip 220 and a memory drive signal DS2 for accessing the storage device 340 of the memory circuit 300.
  • the drive signal generation circuit 42 reads the data from the drive signal data memory 44 in accordance with an instruction from the first control circuit 48 and generates a drive signal DS having a desired waveform.
  • the drive signal generation circuit 42 can further generate a head drive signal supplied to the print head 68.
  • the first control circuit 48 causes the drive signal generation circuit 42 to generate the sensor drive signal DS1 and the memory drive signal DS2 when executing processing related to the ink cartridge 100, and supplies ink.
  • the drive signal generation circuit 42 When performing printing by discharging, the drive signal generation circuit 42 generates a head drive signal.
  • the first control circuit 48 includes, as functional units, an ink remaining amount determining unit M1 that executes an ink remaining amount determining process and a memory access unit M2 that executes a memory access process. Processing by these functional units will be described later.
  • the sub-control unit 50 includes three types of switches SW1 to SW3 and a second control circuit 55.
  • the second control circuit 55 includes a comparator 52, a counter 54, and a logic unit 58.
  • the logic unit 58 controls the operations of the switches SW1 to SW3 and the counter 54.
  • the logic unit 58 can communicate with the first control circuit 48 via the bus BS.
  • the logic unit 58 is composed of one chip (ASIC).
  • the first switch SW1 is a one-channel analog switch. One terminal of the first switch SW1 is connected to the drive signal generation circuit 42 of the main control unit 40 via the sensor drive signal line LDS, and to the first control circuit 48 via the memory read signal line LRD. It is connected. The other terminal of the switch SW1 is connected to the second and third switches SW2 and SW3. A resistor Rx is disposed on the sensor drive signal line LDS.
  • the first switch SW1 is set to an on state when supplying the sensor drive signal DS1 or the memory drive signal DS2 that is the drive signal DS related to the ink cartridge 100, and the response signal RS from the piezoelectric element of the sensor chip 220 is set. When detecting, it is set to an off state.
  • the second switch SW2 is a 6-channel analog switch. One terminal on one side of the second switch SW2 is connected to the first and third switches SW1 and SW3, and each of the six terminals on the other side has the ink cartridge 100 attached to the printer 20. When connected, each of the ink cartridges 100 is connected to the first terminal 251 via the wiring LSP.
  • the third switch SW3 is a one-channel analog switch. One terminal of the third switch SW3 is connected to the first and second switches SW1 and SW2, and the other terminal is connected to the comparator 52 of the second control circuit 55.
  • the third switch SW3 is set to an off state when the drive signal DS (sensor drive signal DS1 or memory drive signal DS2) is supplied to the first terminal 251 of the ink cartridge 100, and is supplied from the piezoelectric element of the sensor chip 220.
  • the response signal RS is detected, the ON state is set.
  • the sub-control unit 50 is wired so that the second terminal 252 of the ink cartridge 100 is grounded to the reference potential GND via the wiring LSN when the ink cartridge 100 is attached to the printer 20.
  • the comparator 52 includes an operational amplifier, compares the response signal RS supplied via the third switch SW3 with the reference voltage Vref in the remaining ink level determination process, and outputs a signal QC indicating the comparison result. To do. Specifically, the comparator 52 sets the output signal QC to the H level when the voltage of the response signal RS is equal to or higher than the reference voltage Vref, and outputs the output signal when the voltage of the response signal RS is lower than the reference voltage Vref. Let QC be L level.
  • the counter 54 counts the number of pulses included in the output signal QC from the comparator 52 and supplies the count value to the logic unit 58 in the ink remaining amount determination process. Note that the counter 54 performs a counting operation during a period set by the logic unit 58 to be enabled.
  • the logic unit 58 controls the second switch SW2 to select one ink cartridge 100 to be subjected to the ink remaining amount determination process or the memory access process. Then, when supplying the sensor drive signal DS1 or the memory drive signal DS2, the logic unit 58 sets the first switch SW1 to the on state and sets the third switch SW3 to the off state. In addition, when the logic unit 58 detects the response signal RS from the piezoelectric element of the sensor chip 220 in the ink remaining amount determination process, the logic unit 58 sets the first switch SW1 to the off state and turns on the third switch SW3. Set to state.
  • the logic unit 58 sets the counter 54 to the enable state during a period in which the response signal RS from the piezoelectric element of the sensor chip 220 is to be detected in the ink remaining amount determination process. Then, the logic unit 58 uses the count value of the counter 54 to measure the time (measurement period) required until a predetermined number of pulses included in the output signal QC from the comparator 52 is generated. Specifically, an oscillator (not shown) is provided inside the sub-control unit 50, and the measurement period is measured using a clock signal output from the oscillator. Then, the logic unit 58 calculates the frequency Hc of the response signal RS based on the number of pulses of the output signal QC counted by the counter and the measurement period. The frequency Hc of the response signal is equal to the frequency at which the piezoelectric element of the sensor chip 220 vibrates. The calculated frequency Hc is supplied to the first control circuit 48 of the main control unit 40.
  • the first control circuit 48 of the main control unit 40 determines whether or not the remaining amount of ink in the selected ink cartridge 100 is greater than or equal to a predetermined amount based on the calculated frequency Hc in the remaining ink amount determination process. to decide. Specifically, when the calculated frequency Hc is substantially equal to the first frequency H1, it is determined that the remaining amount of ink is equal to or greater than a predetermined amount, and when the calculated frequency Hc is approximately equal to the second frequency H2. It is determined that the remaining amount of ink is less than a predetermined amount.
  • These frequencies H1 and H2 can be experimentally determined in advance as natural frequencies corresponding to the respective remaining ink amounts.
  • the main control unit 40 and the sub control unit 50 cooperate to determine the ink remaining amount of each ink cartridge.
  • the first control circuit 48 of the main control unit 40 supplies the determination result to the computer 90.
  • the computer can notify the user of the determination result of the ink remaining amount.
  • FIG. 6 is a second explanatory diagram showing the electrical configuration of the printer in the first embodiment.
  • FIG. 6 is drawn paying attention to the electrical configuration of one ink cartridge 100.
  • the configuration of the sub-control unit 50 of the printer 20 is shown in a simplified manner in which one ink cartridge 100 is selected as a target for the ink remaining amount determination process or the memory access process. That is, in FIG. 6, the second switch SW2 and the other five ink cartridges 100 are not shown. Actually, the other five ink cartridges 100 have the same configuration as the ink cartridge 100 shown in FIG.
  • the ink cartridge 100 includes a piezoelectric element 310 included in the sensor chip 220 and the memory circuit 300 described above as an electrical configuration.
  • the piezoelectric element 310 and the memory circuit 300 correspond to the electric circuit in the claims.
  • the memory circuit 300 includes a Zener diode 320, a regulator 330, a storage device 340, first to third comparators 350, 360, and 370, an NPN-type bipolar transistor 380, and seven resistors R1 to R7. Yes.
  • the breakdown voltage ZDV of the Zener diode 320 is, for example, about 20V.
  • the regulator 330 converts the voltage input from the potential point Px into a constant voltage V reg and outputs it to the potential point Py.
  • the constant voltage V reg is, for example, about 3.3V.
  • the storage device 340 is a non-volatile memory as described above.
  • the storage device 340 is supplied with a constant voltage V reg output from the regulator 330 as a drive voltage (power supply).
  • the comparators 350, 360, and 370 compare the magnitude of the first voltage supplied to the first input terminal and the second voltage supplied to the second input terminal. When the first voltage is higher than the second voltage, the comparators 350, 360, and 370 output a high-level signal (for example, 3.3 V), and the first voltage is lower than the second voltage. Outputs a low level signal (for example, 0 V).
  • the output signals of the comparators 350, 360, and 370 are assumed to be output signals V1, V2, and V3, respectively.
  • the constant voltage V reg is supplied from the regulator 330 to the comparators 350, 360, and 370 as the drive voltage as in the storage device 340.
  • One electrode of the piezoelectric element 310 is connected to the first terminal 251 (FIG. 4A) of the circuit board 250, and the other electrode is connected to the second terminal 252.
  • the cathode electrode of the Zener diode 320 is connected to the first terminal 251 in parallel with the piezoelectric element 310.
  • the anode electrode of the Zener diode 320 is connected to the potential point Px. That is, the anode electrode of the Zener diode 320 is connected to the power input terminal of the regulator 330, one electrode of the resistor R1, and one electrode of the resistor R7.
  • a constant voltage V reg that is an output voltage of the regulator 330 is supplied to the storage device 340 as a drive voltage, and is connected to one electrode of the resistor R3.
  • the resistors R3, R4, R5, and R6 are connected in series between a potential point Py to which a constant voltage Vreg is supplied and a potential point Pv to which a reference potential GND (for example, 0 V) is supplied.
  • Reference voltages V ref0 , V ref1 , and V ref2 that are constant voltages are generated by voltage division by these resistors R3, R4, R5, and R6.
  • the generated reference voltage V ref0 is input to the first input terminal of the first comparator 350.
  • the generated reference voltage V ref1 is input to the first input terminal of the second comparator 360, and the reference voltage V ref2 is input to the first input terminal of the third comparator 370.
  • the resistors R1 and R2 are connected in series between a potential point Px connected to the anode electrode of the Zener diode 320 and a potential point Pv to which the reference potential GND is supplied.
  • the potential at the potential point Px is about 0 to 20V.
  • the voltage at the potential point Pz between the resistors R1 and R2 is adjusted to about 0.4 to 3.3 V by voltage division by the resistors R1 and R2.
  • the other electrode of the resistor R7 is connected to the collector of the bipolar transistor 380.
  • the emitter of the bipolar transistor 380 is connected to the potential point Pv to which the reference potential GND is supplied.
  • the base of the bipolar transistor 380 is connected to the storage device 340.
  • the storage device 340 outputs a data signal V4 (high level or low level) corresponding to the data stored in the storage device 340 to the base of the bipolar transistor 380.
  • V4 high level or low level
  • the voltage at the potential point Pm in the sub-control unit 50 varies, so that the main control unit 40 detects the variation in the voltage at the potential point Pm and thereby the data signal V4 output from the storage device 340.
  • the potential points Pm, Pv, Pw, Px, Py, and Pz are points on the wiring for convenience of explanation, and components corresponding to these potential points are present on the actual circuit. There is no reason.
  • FIG. 7 is a timing chart of the remaining ink level determination process in the first embodiment.
  • FIG. 7 shows the clock signal ICK, the sensor drive signal DS1, the response signal RS, the output signal QC of the comparator, and the voltage at the potential point Px shown in FIGS.
  • the clock signal ICK is an output of an oscillator (not shown) inside the sub control unit 50.
  • the sensor drive signal DS1 and the response signal RS are signals that appear at the potential point Pm shown in FIGS.
  • FIG. 7 shows a timing chart of operations of the first switch SW1 and the third switch SW3.
  • the sub control unit 50 executes a remaining ink level determination process for the ink cartridge 100.
  • the first switch SW1 is switched from the off state to the on state, and the piezoelectric element 310 of one of the ink cartridges 100 is selected by the second switch SW2. Therefore, the selected piezoelectric element 310 and the sub-control unit 50 can exchange signals via the wiring LSP. That is, it becomes possible to apply the sensor drive signal DS1 from the sub-control unit 50 to the piezoelectric element 310 and receive the response signal RS from the piezoelectric element 310 in the second control circuit 55.
  • the sensor drive signal DS1 is supplied to the piezoelectric element 310. That is, a voltage is applied to the piezoelectric element 310. Note that in the application period Dv, the third switch SW3 is set to an off state.
  • the sensor drive signal DS1 includes two pulse signals S1 and S2.
  • the two pulse signals S1, S2 are set to the same period T.
  • the first switch SW1 is switched to the OFF state, and the supply of the sensor drive signal DS1 to the piezoelectric element 310 is completed.
  • the piezoelectric element 310 vibrates at a vibration frequency corresponding to the remaining amount of ink, and a response signal RS is output from the sensor.
  • the third switch SW3 is switched to the ON state.
  • the response signal RS from the piezoelectric element 310 is supplied to the comparator 52.
  • the comparator 52 compares the response signal RS with the reference voltage Vref and outputs an H level or L level signal QC.
  • the logic unit 58 of the sub-control unit 50 sets the counter 54 to the enabled state, and determines the time (measurement period Dm) required for outputting five pulses from the comparator 52. taking measurement.
  • the logic unit 58 is in a period DM in which five pulses are counted by the counter 54, that is, from when the rising edge of the first pulse is input until the rising edge of the sixth pulse is input. The number of pulses of the clock signal ICK generated during the period DM is counted, and the measurement period Dm is measured.
  • the logic unit 58 sets the counter 54 to a disabled state.
  • the logic unit 58 then includes the first signal included in the response signal RS based on the number of pulses (5) of the output signal QC counted by the counter 54 and the measurement period Dm measured by the logic unit 58.
  • the first control circuit 48 of the main control unit 40 receives the measured frequency Hc of the first signal component, and based on the frequency Hc, determines whether or not the remaining amount of ink is a predetermined amount or more. to decide.
  • the third switch SW3 is returned from the on state to the off state.
  • the pulse signal S1, S2 included in the sensor drive signal DS1 is supplied to the potential point Px.
  • An instantaneous voltage increase MP corresponding to is observed.
  • the Zener diode 320 does not transmit a voltage smaller than the breakdown voltage ZDV of the Zener diode 320 to the storage device 340 side from the Zener diode 320.
  • the storage device 340 is designed not to operate at an instantaneous voltage such as the voltage increase MP. Thereby, malfunction of the storage device 340 during the remaining ink amount determination process can be suppressed.
  • the zener diode 320 in the present embodiment corresponds to an allowable circuit in the claims.
  • FIG. 8 is a timing chart of memory access processing when data is written to the storage device 340.
  • FIG. 8 shows the signal (voltage) at the potential point Pm, the signal (voltage) at the potential point Pz, and the contents of the signals V1, V2, and V3 that are the outputs of the first to third comparators 350, 360, and 370.
  • the operations of the storage device 340 in response to the input of the signals V1 to V3 are shown in a) to d), respectively.
  • the output signals V1, V2, and V3 of the first to third comparators 350, 360, and 370 are represented by “1” and “0”. “1” indicates a high level, and “0” indicates a low level.
  • selecting the ink cartridge 100 in this embodiment means that the wiring where the potential point Pm is located and the wiring LSP connected to the first terminal 251 of the ink cartridge 100 are connected to the second switch SW2. It is meant to be electrically connected through.
  • the memory drive signal DS2 at the time of data writing is a voltage higher than the breakdown voltage ZDV of the Zener diode 320 from the start to the end.
  • the minimum voltage of the memory drive signal DS2 is greater than the breakdown voltage ZDV by a constant voltage V reg that is the output voltage of the regulator 330. For example, when the breakdown voltage ZDV is 20V and the constant voltage Vreg is 3.3V, the minimum voltage of the memory drive signal DS2 is set to 23.3V or more.
  • the memory drive signal DS2 is also used as a drive power supply for the regulator 330.
  • the regulator 330 can stably supply the constant voltage V reg to the storage device 340.
  • the drive voltage is supplied from the regulator 330 to the storage device 340 and the first to third comparators 350, 360, and 370.
  • the storage device 340 and the first to third comparators 350, 360, and 370 are operable.
  • the maximum voltage of the memory drive signal DS2 is about 40 V in this embodiment.
  • the voltage fluctuation in the portion exceeding the breakdown voltage ZDV in the voltage at the potential point Pm (memory drive signal DS2) has four levels having substantially equal differences.
  • the voltage at the potential point Pz has four levels corresponding to the voltage at the potential point Pm, and the lowest first level L1 is located between the reference potential GND and the reference voltage Vref2. Yes. Similarly, the second lowest level L2 among the four levels of the voltage at the potential point Pz is located between the reference voltage Vref2 and the reference voltage Vref1, and is the second highest level. level L3 3 is located between the reference voltage V ref1 and the reference voltage V ref0. The highest fourth level L4 among the four levels of the voltage at the potential point Pz is larger than the reference voltage Vref0 .
  • the first control circuit 48 controls the voltage level of the memory drive signal DS2 in four steps, thereby changing the voltage at the potential point Pz to four steps between the reference potential GND and the constant voltage Vreg. L1 to L4 can be controlled.
  • the output signals V1, V2, and V3 of the first to third comparators 350, 360, and 370 are 0, 0, 0 is represented.
  • the output signals V1, V2, and V3 represent 0, 0, and 1, respectively, and when the potential point Pz is at the third level L3, output is performed.
  • the signals V1, V2, and V3 represent 0, 1, and 1, respectively.
  • the output signals V1, V2, and V3 represent 1, 1, and 1, respectively. Therefore, the storage device 340 can recognize the four levels L1 to L4 by receiving the output signals V1, V2, and V3.
  • the first control circuit 48 When writing data to the storage device 340, the first control circuit 48 starts outputting the memory drive signal DS2, and maintains the voltage at the potential point Pz at the fourth level L4 for a predetermined time. Accordingly, the supply of the constant voltage V reg from the regulator 330 to the storage device 340 is started, and the power supply of the storage device 340 is turned on.
  • the first control circuit 48 maintains the voltage at the potential point Pz at the third level L3 by controlling the voltage level of the memory drive signal DS2.
  • the storage device 340 recognizes the third level L3 immediately after the power is turned on, the storage device 340 interprets it as a reset signal and recognizes that access to itself is started.
  • the first control circuit 48 transmits the identification number (ID) of the ink cartridge 100 by a so-called self-clock type data transmission method in which the data signal and the clock signal CL appear alternately.
  • the data signal is a signal representing “1” or “0”.
  • a signal that maintains the potential point Pz at the second level L2 represents data “1”
  • a signal that maintains the potential point Pz at the first level L1 represents data “0”.
  • the clock signal CL is represented by a signal that maintains the potential point Pz at the third level L3.
  • 3-bit data “1, 0, 1” is transmitted to the storage device 340 as data representing the identification number.
  • the storage device 340 recognizes that it is an access target when it matches the received identification number with its own identification number.
  • one ink cartridge 100 is selected as an access target by the second switch SW2, and the memory drive signal DS2 is transmitted only to the access target ink cartridge 100. Accordingly, the transmission of the identification number may be omitted, and the ink cartridge 100 may recognize that all the received signals are signals for the access target itself.
  • the first control circuit 48 transmits a 1-bit read / write identification signal (R / W signal) by a self-clocked data transmission method similar to the transmission of the identification number.
  • An R / W signal of “0” indicates that the access is an access for writing data.
  • An R / W signal of “1” indicates that the access is an access for reading data. Since the example of FIG. 8 illustrates data writing, the R / W signal is “0”.
  • the storage device 340 then sequentially writes the transmitted data signal in its own memory.
  • the first control circuit 48 transmits the write data by the same self-clock type data transmission method.
  • the first control circuit 48 maintains the voltage at the potential point Pz at the third level L3 for a predetermined period longer than a single clock signal transmission time, The voltage at the potential point Pz is maintained at the fourth level L4 for a predetermined time.
  • the storage device 340 receives such a signal, the storage device 340 recognizes the end of access. Thereafter, since the supply of the memory drive signal DS2 is completed, the regulator 330 stops its operation. Accordingly, the supply of the constant voltage V reg to the storage device 340 is stopped, and the storage device 340 is turned off.
  • FIG. 9 is a timing chart of memory access processing when data is read from the storage device 340.
  • FIG. 9 shows the operation of the storage device 340 by the signal at the potential point Pm, the signal at the potential point Pz, the output signals V1, V2, and V3 of the first to third comparators 350, 360, and 370, and the storage device 340.
  • the data signals V4 output by are shown in a) to d), respectively.
  • the data signal V4 output from the storage device 340 is a signal output over a wiring connecting the storage device 340 and the control electrode (gate) of the bipolar transistor 380 (FIG. 6).
  • the process of reading data from the storage device 340 of the ink cartridge 100 to be accessed by the first control circuit 48 is the same as the process of writing data to the storage device 340 described above until the transmission of the identification signal (ID). The description is omitted.
  • the first control circuit 48 transmits a 1-bit read / write identification signal (R / W signal) by a self-clocked data transmission method similar to the transmission of the identification number.
  • the transmitted R / W signal is “1”.
  • the first control circuit 48 subsequently transmits a clock to the storage device 340.
  • the clock is a signal that repeats the voltage of the third level Q3 representing the clock signal CL (high level signal) and the voltage of the second level Q2 (low level signal).
  • the storage device 340 reads the data stored in its own memory, and outputs the read data as the data signal V4 in synchronization with the transmitted clock.
  • the storage device 340 outputs a high-level or low-level data signal V4 during a period between one clock signal CL and the next clock signal CL.
  • the high level data signal V4 represents “1”, and the low level data signal V4 represents “0”.
  • the storage device 340 maintains the data signal V4 at a low level while receiving the clock signal CL.
  • the voltage at the potential point Pm decreases due to load fluctuation. That is, even if the memory drive signal DS2 output from the first control circuit 48 is the voltage at the second level Q2, the voltage at the potential point Pm that has passed through the resistor Rx is lower than the second level Q2. This is because the high-level data signal V4 is input to the gate of the bipolar transistor 380 and the bipolar transistor 380 is turned on (a state in which the emitter and the collector are conductive), so that a current flows through the resistor Rx and the resistor R7.
  • the first control circuit 48 detects such a change in potential at the potential point Pm as a read signal RD via the signal line LRD. The detection of the read signal RD is performed in synchronization with the clock output by the first control circuit 48 itself. As described above, the first control circuit 48 can read data from the storage device 340.
  • the first control circuit 48 sets the voltage at the potential point Pz to the third level L3 over a predetermined period longer than one clock signal transmission time. Then, the voltage at the potential point Pz is maintained at the fourth level L4 for a predetermined time.
  • the storage device 340 recognizes the end of access. Thereafter, since the supply of the memory drive signal DS2 is completed, the regulator 330 stops its operation. Accordingly, the supply of the constant voltage V reg to the storage device 340 is stopped, and the storage device 340 is turned off.
  • the drive signal DS which is a potential difference between terminals between the potential input by the printer 20 to the first terminal 251 and the potential input by the printer 20 to the second terminal 252, is used.
  • signals sensor drive signal DS1 and response signal RS
  • data can be written to and read from the storage device 340 by using the memory drive signal DS2 that is the potential difference between the terminals. Communication with the sensor and communication with the storage device 340 can be performed separately.
  • the drive signal DS smaller than the breakdown voltage ZDV of the Zener diode 320 is not transmitted to the storage device 340 side, so that the storage device 340 malfunctions due to the remaining ink amount determination process. Can be suppressed.
  • the sensor drive signal DS1 and the response signal RS used during the ink remaining amount determination process are mostly signals having a voltage smaller than the breakdown voltage ZDV of the Zener diode 320, and the memory drive signal DS2 used in the memory access process is a Zener.
  • This is a signal having a voltage higher than the breakdown voltage ZDV of the diode 320. That is, the range of the magnitude of the voltage to be used (potential difference between terminals) is different between the remaining ink amount determination process and the memory access process. As a result, malfunction can be suppressed.
  • the drive voltage (constant voltage V reg ) of the storage device 340 is supplied from the regulator 330, and the power source of the regulator 330 is the memory drive signal DS2. Accordingly, the printer 20 also supplies power to the storage device 340 and the first to third comparators 350, 360, and 370 via the two terminals 251 and 252. Therefore, in addition to being able to communicate with both the piezoelectric element 310 and the storage device 340 with a small number of terminals, it is possible to supply power for operating the storage device 340. In this case, power is supplied to the storage device 340 only when accessing the storage device 340, so that power consumption can be suppressed.
  • FIG. 10 is a first explanatory diagram illustrating the electrical configuration of the printer according to the second embodiment.
  • FIG. 10 is drawn paying attention to portions necessary for processing related to the ink cartridge 100A in the second embodiment.
  • the configuration of the main control unit 40A in FIG. 10 is the same as the main control unit 40 described with reference to FIG.
  • the sub-control unit 50A according to the second embodiment includes seven switches SW1A to SW7A. These seven switches SW4A to SW7A operate under the control of the second control circuit 55A, like the switches SW1 to SW3 of the first embodiment.
  • the first switch SW1A is a one-channel analog switch. One terminal of the first switch SW1A is connected to the drive signal generation circuit 42A of the main controller 40, and the other terminal is connected to the sixth switch SW6A and the fifth switch SW5A.
  • the second switch SW2A is a one-channel analog switch. One terminal of the second switch SW2A is connected to the reference potential GND, that is, grounded. The other terminal of the second switch SW2A is connected to the seventh switch SW7A and the fifth switch SW5A.
  • the third switch SW3A is a 6-channel analog switch. One terminal on one side of the third switch SW3A is connected to one terminal on one side of the sixth switch SW6A and one terminal on one side of the seventh switch SW7A. Each of the six terminals on the side is connected to each of the six ink cartridges 100 ⁇ / b> A via the first terminal 251.
  • the fourth switch SW4A is a 6-channel analog switch. One terminal on one side of the fourth switch SW4A is connected to one terminal on one side of the sixth switch SW6A and one terminal on one side of the seventh switch SW7A. Each of the six terminals on the side is connected to each of the six ink cartridges 100 ⁇ / b> A via the second terminal 252.
  • the fifth switch SW5A is a 2-channel analog switch. One terminal on one side of the fifth switch SW5A is connected to the second control circuit 55A. Of the two terminals on the other side of the fifth switch SW5A, one is connected to the terminal on the other side of the second switch SW2A and the seventh switch SW7A, and the other is the first terminal. Are connected to terminals on the other side of the switch SW1A and the sixth switch SW6A.
  • the sixth switch SW6A is a 2-channel analog switch. One terminal on the other side of the sixth switch SW6A is connected to the first switch SW1A and the fifth switch SW5A as described above. Of the two terminals on one side of the sixth switch SW6A, one is connected to the third switch SW3A as described above, and the other is connected to the fourth switch SW4A. .
  • the seventh switch SW7A is a 2-channel analog switch. One terminal on the other side of the seventh switch SW7A is connected to the second switch SW2A and the fifth switch SW5A as described above. Of the two terminals on one side of the seventh switch SW7A, one is connected to the third switch SW3A as described above, and the other is connected to the fourth switch SW4A. .
  • the second control circuit 55A selects the first terminal 251 and the second terminal 252 of the target cartridge to be processed among the six ink cartridges 100A during the remaining ink amount determination process and the memory access process.
  • the third switches SW3A and SW4A are controlled so as to be electrically connected to the switch SW6A and the seventh switch SW7A.
  • the sensor drive signal DS1 can be supplied to the ink cartridge 100A from either the first terminal 251 or the second terminal 252, and either the first terminal 251 or the second terminal 252 can be supplied.
  • the response signal RS can be received from the ink cartridge 100A.
  • the second control circuit 55A supplies the sensor drive signal DS1 from the first terminal 251 of the target cartridge and receives the response signal RS from the second terminal 252 in the ink remaining amount determination process
  • the sixth switch SW6A and the seventh switch SW7A are controlled to electrically connect the third switch SW3A and the first switch SW1A, and to electrically connect the fourth switch SW4A and the second switch SW2A.
  • the second control circuit 55A controls the fifth switch SW5A to electrically connect the second control circuit 55A and the seventh switch SW7A.
  • the first switch SW1A and the second switch SW2A are turned on (conductive state), the sensor drive signal DS1 is supplied to the ink cartridge 100A, and the second switch SW2A is turned on when the response signal RS is received. Turn off (non-conducting state).
  • the second control circuit 55A supplies the sensor drive signal DS1 from the second terminal 252 of the target cartridge and receives the response signal RS from the same second terminal 252 in the remaining ink amount determination process.
  • the sixth switch SW6A and the seventh switch SW7A are controlled to electrically connect the fourth switch SW4A and the first switch SW1A, and to connect the third switch SW3A and the second switch SW2A. Connect electrically.
  • the first switch SW1A and the second switch SW2A are turned on (conductive state), the sensor drive signal DS1 is supplied to the ink cartridge 100A, and when the response signal RS is received, the first switch SW1A is turned on.
  • the fifth switch SW5A is controlled to electrically connect the second control circuit 55A and the sixth switch SW6A.
  • the second pattern for supplying the sensor drive signal DS1 through the second terminal 252 with the terminal 251 as the reference potential GND can be selectively used.
  • FIG. 11 is a second explanatory diagram showing the electrical configuration of the printer in the second embodiment.
  • FIG. 11 is drawn paying attention to the electrical configuration of one ink cartridge 100A.
  • the configuration of the sub-control unit 50A of the printer 20A is such that one ink cartridge 100A is selected as a target for the remaining ink level determination process and the sensor drive signal DS1 is supplied from the first terminal 251.
  • the state selected as the target of the memory access process is shown in a simplified manner. That is, in FIG. 11, the switches other than the fifth switch SW5A and the other five ink cartridges are not shown. Actually, the other five ink cartridges have the same configuration as the ink cartridge 100A shown in FIG.
  • the ink cartridge 100A has a power supply circuit 390 instead of the Zener diode 320 in the first embodiment.
  • the power supply circuit 390 has two input terminals TA and TB, and one output terminal TC.
  • the power supply circuit 390 is supplied with a reference potential GND.
  • the first input terminal TA is connected to the first terminal 251 (FIG. 4A) of the circuit board 250, and the second input terminal TB is connected to the second terminal 252.
  • the output terminal TC is connected to the input terminal of the regulator 330, the resistor R1, and the resistor R7. Since the other configuration of the ink cartridge 100A is the same as that of the ink cartridge 100 in the first embodiment shown in FIG. 6, in FIG. 11, the same components are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 12 is a diagram showing an internal configuration of the power supply circuit 390.
  • the power supply circuit 390 includes two Zener diodes 391 and 392 and a rectifier circuit SS.
  • the cathode of the first Zener diode 391 is connected to the first input terminal TA, and the anode is input to the rectifier circuit SS.
  • the cathode of the second Zener diode 392 is connected to the second input terminal TB, and the anode is input to the rectifier circuit SS.
  • the rectifier circuit SS is a general rectifier circuit using four diodes 393 to 396.
  • the output of the rectifier circuit SS is output from the output terminal TC.
  • the voltage of the second terminal 252 becomes higher than the voltage of the first terminal 251, or the voltage of the first terminal 251 becomes higher than the voltage of the second terminal 252.
  • the ink cartridge 100A includes the power supply circuit 390, whereby the voltage of the output terminal TC is maintained at a voltage higher than the reference potential GND. As a result, malfunctions of the storage device 340 and the regulator 330 can be suppressed.
  • FIG. 13 is an explanatory diagram showing the electrical configuration of the printer in the third embodiment.
  • FIG. 13 is drawn paying attention to the electrical configuration of one ink cartridge 100B.
  • the configuration of the sub-control unit 50 of the printer 20 shows a simplified state in which one ink cartridge 100B is selected as the target of the ink remaining amount determination process or the memory access process. That is, in FIG. 13, the second switch SW2 and the other five ink cartridges are not shown. Actually, the other five ink cartridges have the same configuration as the ink cartridge 100B shown in FIG.
  • the ink cartridge 100B according to the third embodiment includes a battery power source 335 instead of the regulator 330 according to the first embodiment.
  • the battery power source 335 various known batteries such as a manganese battery, an alkaline battery, a lithium battery, and a fuel battery can be used.
  • the memory drive signal DS2 is not used as the power source of the storage device 340, and the storage device 340 and the first to third comparators 350, 360, and 370 are supplied with operating power from the battery power source 335.
  • the reference voltages V ref0 , V ref1 , and V ref2 supplied to the first to third comparators 350, 360, and 370 are generated by dividing the constant voltages supplied from the battery power source 335 by the resistors R 3 to R 6. .
  • a power supply such as a battery may be provided on the storage device 340 side.
  • FIG. 14 is an explanatory diagram showing the electrical configuration of the printer in the fourth embodiment.
  • FIG. 14 is drawn paying attention to the electrical configuration of one ink cartridge 100C.
  • the configuration of the sub-control unit 50 of the printer 20 is shown in a simplified manner in which one ink cartridge 100 ⁇ / b> C is selected as the target of the ink remaining amount determination process or the memory access process. That is, in FIG. 14, the second switch SW2 and the other five ink cartridges are not shown. Actually, the other five ink cartridges have the same configuration as the ink cartridge 100C shown in FIG.
  • the configuration of the printer 20 (the main control unit 40 and the sub control unit 50) in the fourth embodiment is the same as that of the printer 20 in the first embodiment, the description thereof is omitted.
  • the ink cartridge 100C according to the fourth embodiment includes a tolerance circuit 320C including a comparator 321 and an analog switch SWx instead of the Zener diode 320 according to the first embodiment.
  • the comparator 321, the voltage of the first terminal 251 and the analog switch SWx ON state (conductive state) is greater than the allowable lower limit voltage V refx, when the voltage of the first terminal 251 is allowable lower limit voltage V refx smaller
  • the analog switch SWx is turned off (non-conducting state).
  • the allowable lower limit voltage V refx is set to a value slightly smaller than the minimum level of the memory drive signal DS2 (corresponding to the first level at the potential point Pz).
  • the allowable lower limit voltage V refx is set to the same level as the breakdown voltage ZDV of the Zener diode 320 in the first embodiment.
  • the ink cartridge 100C in the fourth embodiment includes a battery power source 335 instead of the regulator 330 in the first embodiment.
  • Drive voltages for the storage device 340 and the first to third comparators 350, 360, and 370 are supplied by a battery power source 335.
  • the battery power source 335 also outputs an allowable lower limit voltage V refx that is input as a reference voltage to the comparator 321 described above.
  • the drive signal DS smaller than the allowable lower limit voltage V refx is not transmitted to the storage device 340 side. Therefore, as in the first embodiment. The malfunction of the storage device 340 due to the remaining ink amount determination process can be suppressed.
  • the piezoelectric element 310 that is an oscillation circuit that functions as a sensor is used as the electric device driven by the sensor drive signal DS1, but instead of this, the actual remaining of the ink contained in the ink cartridge is used.
  • An oscillation circuit that outputs a response signal RS indicating that ink is present in the ink cartridge may be used regardless of the amount.
  • Such an oscillation circuit may be configured using, for example, an LC oscillation circuit including a coil and a capacitor, an RC oscillation circuit including a capacitor and a resistor, or a solid-state oscillator including a crystal or ceramic resonator. good.
  • Such an oscillation circuit (an oscillation circuit that outputs a response signal RS indicating that ink is present in the ink cartridge regardless of the actual remaining amount of ink) may be included in the circuit board 250 including the memory circuit 300. .
  • the ink end is detected based on the frequency of the response signal RS from the piezoelectric element 310.
  • a sensor of a type that detects the ink end based on the magnitude of the amplitude may be used.
  • a sensor for detecting ink temperature, resistance, and other ink characteristics may be used. Generally, it is not limited to a sensor, and any electrical device that is driven by a drive signal DS may be used.
  • the storage device 340 including a memory is used as an electric device driven by the memory drive signal DS2, but instead, a central processing unit (CPU), various logic circuits, ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array) may be used. Generally, any electrical device driven by the drive signal DS may be used.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • one ink tank is configured as one ink cartridge 100 or the like, but a plurality of ink tanks may be configured as one ink cartridge 100 or the like.
  • both writing and reading to the storage device 340 are performed using the memory drive signal DS2, but instead of this, only one of writing and reading to the storage device 340 may be performed. good.
  • the bipolar transistor 380 and the resistor R7 in FIG. 6 may be omitted.
  • the ink jet printer 20 and the ink cartridge 100 are employed.
  • a liquid ejecting apparatus that ejects or ejects liquid other than ink, a liquid container containing the liquid, May be adopted.
  • the liquid here includes a liquid body in which particles of a functional material are dispersed in a solvent, and a fluid body such as a gel.
  • liquid ejecting devices and biochips that eject liquid containing materials such as electrode materials and color materials used in the manufacture of liquid crystal displays, EL (electroluminescence) displays, surface-emitting displays, color filters, etc.
  • It may be a liquid ejecting apparatus that ejects a bio-organic matter used for manufacturing, or a liquid ejecting apparatus that ejects a liquid that is used as a precision pipette and serves as a sample.
  • transparent resin liquids such as UV curable resin to form liquid injection devices that pinpoint lubricant oil onto precision machines such as watches and cameras, and micro hemispherical lenses (optical lenses) used in optical communication elements.
  • a liquid ejecting apparatus that ejects a liquid onto the substrate or a liquid ejecting apparatus that ejects an etching solution such as an acid or an alkali to etch the substrate may be employed.
  • the present invention can be applied to any one of these ejecting apparatuses and a liquid container for the liquid.
  • the circuit board 250 including the memory circuit 300 is attached to the ink cartridge which is an ink container containing ink.
  • the ink container and the circuit board 250 are physically completely separated from each other. Separated bodies may be used.
  • the plate on which the circuit board 250 is mounted is attached to the print head unit 60 with a predetermined fixing jig and is electrically connected to the sub-control unit 50 while being placed at another position.
  • the ink container may be connected to the ink receiving needle of the print head unit 60 via a flexible tube.
  • the ink supply device is not limited to an ink container and may be any ink supply device that supplies ink to a printer.
  • a part of the configuration realized by hardware may be replaced by software, and conversely, a part of the configuration realized by software may be replaced by hardware.
  • the remaining ink level determination unit M1 and the memory access unit M2 of the main control unit 40 may be realized by software or hardware.
  • Example and modification of this invention were demonstrated, this invention is not limited to these Example and modification at all, and implementation in a various aspect is possible within the range which does not deviate from the summary. It is.

Landscapes

  • Ink Jet (AREA)

Abstract

 液体噴射装置に装着可能な液体容器は、第1の電気デバイスと第2の電気デバイスとを含む電気回路と、第1の端子と、第2の端子と、を備える。電気回路は、液体噴射装置が第1の端子に入力する電位と第2の端子に入力する電位との端子間電位差を用いて第1の電気デバイスとの第1の通信と第2の電気デバイスとの第2の通信とを実行でき、異なる大きさの前記端子間電位差を用いることにより第1の通信と第2の通信を区別して実行できるように構成されている。

Description

液体容器、液体噴射装置、および、液体噴射システム
 本願は、2008年7月11日に出願された日本出願番号2008-180997号に基づく優先権を主張しており、その開示内容は参照によりその全体が組み込まれる。
 本発明は、液体容器、液体噴射装置、および、液体噴射システムに関し、特に複数の電気デバイスを有する液体容器、該液体容器を用いる液体噴射装置、該液体容器を含む液体噴射システムに関する。
 インクジェットプリンタを始めとする液体噴射装置に対して、噴射する液体を供給するために、当該液体を収容する液体容器が用いられている。
 従来、液体容器内部の液体残量の管理方法としては、液体噴射装置が、噴射した液体の量をソフトウェアにより積算して管理する方法や、液体容器に液体残量センサを設ける方法が知られている。後者の例として、圧電素子を含む液体残量センサが知られている(例えば、特許文献1)。このセンサは、圧電素子が積層された振動板に対向するキャビティの内部に、液体が存在する場合と液体が存在しない場合とで、強制振動後の振動板の残留振動(自由振動)に起因する残留振動信号の共振周波数が変化することを利用して、液体容器内の液体残量を判定するというものである。
 また、液体容器は、さらに、液体残量や液体消費量などの液体に関する情報を保持するためのメモリを備えている場合がある。このように、液体容器が液体残量センサとメモリの両方を備えている場合、液体噴射装置と液体容器との間の電気的接続部には、液体噴射装置と液体残量センサとが通信するための端子と、液体噴射装置とメモリとが通信するための端子がそれぞれ別々に設けられるのが通例であった(例えば、特開2007-196664号公報)。
 しかしながら、端子数の増加は、部品点数の増加や端子間の接触の確実性の低下を招くおそれがあった。このような課題は、圧電素子を含むセンサとメモリを備える液体容器に限らず、第1の電気デバイスと第2の電気デバイスを備える液体容器に共通する課題であった。
 そこで、本発明は、第1の電気デバイスと第2の電気デバイスにアクセスするための端子数を減少させることを目的とする。
 本発明は、上述の課題の少なくとも一部を解決するために以下の形態または適用例として実現することが可能である。
・適用例1.液体噴射装置に装着可能な液体容器であって、
 第1の電気デバイスと第2の電気デバイスとを含む電気回路と、
 第1の端子と、
 第2の端子と、
 を備え、
 前記電気回路は、前記液体噴射装置が第1の端子に入力する電位と前記第2の端子に入力する電位との端子間電位差を用いて前記第1の電気デバイスとの第1の通信と前記第2の電気デバイスとの第2の通信とを実行でき、異なる大きさの前記端子間電位差を用いることにより前記第1の通信と前記第2の通信を区別して実行できるように構成されている、液体容器。
 こうすれば、第1の端子と第2の端子を用いて、第1の通信と第2の通信とを区別して実行できるので、液体容器の端子数を減少させることができる。
・適用例2.適用例1に記載の液体容器であって、
 前記電気回路は、さらに、前記液体噴射装置が、前記第1の端子を介して前記第1の電気デバイスに対して駆動電源を供給できるように構成されている、液体容器。
 こうすれば、第1の端子と第2の端子を用いて、第1の電気デバイスに対して駆動電源を供給できるので、さらに、端子数を減少させることができる。
・適用例3.適用例1または適用例2に記載の液体容器であって、
 前記電気回路は、さらに、前記端子間電位差がしきい値を超えた場合に、前記端子間電位差の変動が前記第1の電気デバイスに供給されることを許容する許容回路を含む、液体容器。
 こうすれば、しきい値を超えない端子間電位差の変動は、第1の電気デバイスに供給されないので、第1の電気デバイスが、しきい値より低い端子間電位差の変動により誤動作することを抑制することができる。
・適用例4.適用例1ないし適用例3のいずれかに記載の液体容器であって、
 前記許容回路は、ツェナーダイオードを含む、液体容器。
 こうすれば、簡便に許容回路を構成することができる。
・適用例5.適用例1ないし適用例4のいずれかに記載の液体容器であって、
 前記第1の電気デバイスはメモリを含み、
 前記第1の通信は、前記メモリに対する書き込みと前記メモリからの読み出しの少なくとも一方を含み、
 前記第1の通信のための前記端子間電位差は、前記第2の通信のための前記端子間電位差より大きい、液体容器。
 こうすれば、2つの端子を用いて、第1の通信と、メモリへのアクセスを区別して実現できるので、液体容器の端子数を減少することができる。
・適用例6.適用例1ないし適用例5のいずれかに記載の液体容器であって、
 前記第2の電気デバイスは発振回路を含み、
 前記第2の通信は、前記液体噴射装置から前記発振回路への駆動信号の入力と、前記発振回路から前記液体噴射装置への応答信号の出力とを含み、
 前記第2の通信のための前記端子間電位差は、前記第1の通信のための前記端子間電位差より小さい、液体容器。
 こうすれば、2つの端子を用いて、発振回路との信号の遣り取りと、第2の通信とを区別して実現できるので、液体容器の端子数を減少することができる。
・適用例7.適用例1ないし適用例4のいずれかに記載の液体容器であって、
 前記第1の電気デバイスはメモリを含み、
 前記第1の通信は、前記メモリに対する書き込みと前記メモリからの読み出しの少なくとも一方を含み、
 前記第2の電気デバイスは発振回路を含み、
 前記第2の通信は、前記液体噴射装置から前記発振回路への駆動信号の入力と、前記発振回路から前記液体噴射装置への応答信号の出力とを含む、液体容器。
 こうすれば、2つの端子を用いて、発振回路との信号の遣り取りと、メモリへのアクセスを区別して実現できるので、液体容器の端子数を減少することができる。
・適用例8.適用例7に記載の液体容器であって、
 前記第1の通信のための前記端子間電位差は、前記第2の通信のための前記端子間電位差より大きい、液体容器。
・適用例9.請求項7に記載の液体容器であって、
 前記電気回路は、前記第1の端子に前記発振回路と並列に接続され、前記第1の端子に入力された電圧を前記メモリの駆動電源に変換して前記メモリに供給するレギュレータを含む、液体容器。
 こうすれば、第1の端子に入力された電圧を電源としてメモリを駆動することができる。
・適用例10.請求項9に記載の液体容器であって、
 前記電気回路は、さらに、前記第1の端子と前記レギュレータとの間に配置されたツェナーダイオードを含む、液体容器。
 こうすれば、ツェナーダイオードの降伏電圧より小さな電圧の発振回路との通信は、レギュレータに供給されないので、レギュレータの誤動作を抑制することができる。その結果、メモリの誤動作を抑制することができる。
・適用例11.適用例7に記載の液体容器であって、
 前記電気回路は、
 前記メモリに出力が供給される複数のコンパレータと、
 前記第1の端子に前記発振回路と並列に接続され、前記複数のコンパレータの一方の入力端子のそれぞれに接続された配線と、
 を含む、液体容器。
 こうすれば、メモリは、端子間電位差の違いを、コンパレータを介して取得することができる。その結果、2端子を用いたメモリへのデータ送信を簡易な構成で実現することができる。
・適用例12.適用例11に記載の液体容器であって、
 前記電気回路は、さらに、前記第1の端子と前記複数のコンパレータの一方の入力端子との間に配置されたツェナーダイオードを含む、液体容器。
 こうすれば、ツェナーダイオードの降伏電圧より小さな電圧の発振回路との通信は、コンパレータに供給されないので、コンパレータの誤動作を抑制することができる。その結果、メモリの誤動作を抑制することができる。
・適用例13.適用例7に記載の液体容器であって、
 前記電気回路は、
 前記第1の端子に前記発振回路と並列に接続され、前記第1の端子に入力された電圧を前記メモリの駆動電源に変換して前記メモリに供給するレギュレータと、
 前記メモリに出力が供給される複数のコンパレータと、
 前記第1の端子に前記発振回路と並列に接続され、前記複数のコンパレータの一方の入力端子のそれぞれに接続された配線と、
 前記レギュレータが供給する前記駆動電源の電圧を分圧して、前記複数のコンパレータの他方の入力端子のそれぞれに入力する、分圧回路と、
 を含む、液体容器。
 こうすれば、2つの端子間電位差を用いて、安定した駆動電源をメモリに供給できると共に、メモリへのデータ送信を簡易な構成で実現することができる。
・適用例14.適用例7に記載の液体容器であって、
 前記電気回路は、メモリからの出力が制御電極に入力されるトランジスタを含み、
 前記トランジスタがオン状態にある場合と、前記トランジスタがオフ状態にある場合とで前記第1の端子の電圧が変動するように構成されることにより、前記液体噴射装置が前記第1の端子の電圧の変動を検知して前記メモリからの読み出しをできる、液体容器。
 こうすれば、2つの端子間電位差を用いて、メモリからのデータの受信を簡易な構成で実現することができる。
・適用例15.適用例7に記載の液体容器であって、
 前記電気回路は、
 前記第1の端子に前記発振回路と並列に接続され、前記第1の端子と前記メモリとの間に配置された整流回路を含む、液体容器。
 こうすれば、例えば、2つの端子間電位差がマイナスになったとしても、整流回路によりプラスの端子間電位差に変換されて、メモリに供給される。この結果、メモリの損傷あるいは誤動作を抑制することができる。
・適用例16.適用例6または適用例7に記載の液体容器であって、
 前記発振装置は、圧電素子を含み、
 前記圧電素子は、前記液体容器に収容された液体の残量の検出に用いられる、液体容器。
 こうすれば、圧電素子を用いて、液体の残量の検出を行うことができる。
・適用例17.適用例6または適用例7に記載の液体容器であって、
 前記発振装置は、前記液体容器に収容された液体の残量に関わらず、前記液体容器に前記液体が存在することを示す前記応答信号を出力する、液体容器。
・適用例18.第1の電気デバイスと第2の電気デバイスとを含む電気回路と、第1の端子と、第2の端子とを含む液体容器が装着される液体噴射装置であって、
 前記第1の端子と前記第2の端子を介して第1の信号を送受信して、前記第1のデバイスと通信する第1の通信処理部と、
 前記第1の端子と前記第2の端子を介して第2の信号を送受信して、前記第2のデバイスと通信する第2の通信処理部と、
 を備え、
 前記第1の信号の電圧と前記第2の信号の電圧は、異なる大きさを有する、液体噴射装置。
 こうすれば、第1の端子と第2の端子を用いて、第1の通信と第2の通信とを区別して実行できるので、液体容器の端子数を減少させることができる。
 本発明は、種々の形態で実現することが可能であり、液体噴射装置に液体を供給する液体供給装置、液体容器に装着される基板、液体容器に搭載される電気回路、液体噴射システムなどとして実現することができる。
第1実施例における印刷システムの概略構成を示す説明図。 インクカートリッジの概略構成を示す分解斜視図。 インクカートリッジの正面側の拡大分解斜視図。 回路基板について説明する図である。 第1実施例におけるプリンタの電気的な構成を示す第1の説明図。 第1実施例におけるプリンタの電気的な構成を示す第2の説明図。 第1実施例においてインク残量判断処理のタイミングチャート。 記憶装置にデータを書き込む場合のメモリアクセス処理のタイミングチャート。 記憶装置からデータを読み出す場合のメモリアクセス処理のタイミングチャート。 第2実施例におけるプリンタの電気的な構成を示す第1の説明図。 第2実施例におけるプリンタの電気的な構成を示す第2の説明図。 電源回路の内部構成を示す図。 第3実施例におけるプリンタの電気的な構成を示す説明図。 第4実施例におけるプリンタの電気的な構成を示す説明図。
A.第1実施例:
・印刷システムの構成:
 次に、本発明の実施の形態を実施例に基づき説明する。図1は、第1実施例における印刷システムの概略構成を示す説明図である。印刷システムは、プリンタ20と、コンピュータ90と、インクカートリッジ100を備えている。プリンタ20は、コネクタ80を介して、コンピュータ90と接続されている。
 プリンタ20は、副走査送り機構と、主走査送り機構と、ヘッド駆動機構と、各機構を制御するための主制御部40と、を備えている。副走査送り機構は、紙送りモータ22とプラテン26とを備えており、紙送りモータの回転をプラテンに伝達することによって用紙Pを副走査方向に搬送する。主走査送り機構は、キャリッジモータ32と、プーリ38と、キャリッジモータ32とプーリ38との間に張設された駆動ベルト36と、プラテン26の軸と並行に設けられた摺動軸34と、を備えている。摺動軸34は、駆動ベルト36に固定されたキャリッジ30を摺動可能に保持している。キャリッジモータ32の回転は、駆動ベルト36を介してキャリッジ30に伝達され、キャリッジ30は、摺動軸34に沿ってプラテン26の軸方向(主走査方向)に往復動する。ヘッド駆動機構は、キャリッジ30に搭載された印刷ヘッドユニット60を備えており、印刷ヘッドを駆動して用紙P上にインクを吐出させる。印刷ヘッドユニット60には、後述するように、複数のインクカートリッジを脱着自在に装着可能である。プリンタ20は、さらに、ユーザがプリンタの各種の設定を行ったり、プリンタのステータスを確認したりするための操作部70を備えている。
 図2は、インクカートリッジ100の概略構成を示す分解斜視図である。インクカートリッジ100がキャリッジ30に装着された状態での上下方向は、図2におけるZ軸方向と一致している。
 インクカートリッジ100は、容器本体102と、第1のフィルム104と、第2のフィルム108と、蓋体106とを備えている。これらの部材は、例えば、互いに熱溶着可能な樹脂で形成されている。容器本体102の下面には、液体供給部110が形成されている。液体供給部110の内部には、下面側から順に、シール部材114と、バネ座112と、閉塞バネ116とが収容されている。シール部材114は、液体供給部110に、印刷ヘッドユニット60のインク受給針(図示省略)が挿入されているときに、液体供給部110の内壁とインク受給針の外壁との間に隙間が生じないようにシールする。バネ座112は、インクカートリッジ100が印刷ヘッドユニット60に装着されていないときに、シール部材114の内壁に当接して液体供給部110を閉塞する。閉塞バネ116は、バネ座112をシール部材114の内壁に当接させる方向に付勢する。インク供給針が液体供給部110に挿入されると、インク供給針の上端がバネ座112を押し上げ、バネ座112とシール部材114との間に隙間が生じ、当該隙間からインク供給針にインクが供給される。
 容器本体102の表面(X軸正方向側の面)、裏面(X軸負方向側の面)、正面(Y軸正方向側の面)には、リブ10aを始め様々な形状を有する流路形成部が形成されている。第1のフィルム104および第2のフィルム108は、容器本体102の表面および裏面の全体を覆うように、容器本体102に貼り付けられている。第1のフィルム104および第2のフィルム108は、容器本体102に形成された流路形成部の端面との間に隙間が生じないように緻密に貼り付けられている。これらの流路形成部と第1のフィルム104および第2のフィルム108により、インクカートリッジ100の内部には、複数の小部屋や細い流動路などの液体流路が区画形成される。なお、流路形成部の一部として容器本体102に形成されたバルブ収容部10bと、第2のフィルム108との間には、負圧発生バルブが配置されるが、図の煩雑を避けるため、図示は省略する。蓋体106は、第1のフィルム104を覆うように、容器本体102の裏面側に装着される。
 インクカートリッジ100に形成される液体流路は、一端が大気に連通し、他端が液体供給部110に連通している。すなわち、インクカートリッジ100は、インクがプリンタ20に供給されるに従い、液体流路に大気が導入される大気連通型のインクカートリッジ100であるが、液体流路の構成の詳細については、その説明を省略する。
 図3は、インクカートリッジ100の正面側の拡大分解斜視図である。容器本体102の正面には、印刷ヘッドユニット60に設けられたホルダ側に係合されるレバー120が設けられている。例えばレバー120の下方位置には、流路形成部の一部であるベース部材収容部134が開口している。ベース部材収容部134の開口部の周囲には溶着リブ132が形成されている。ベース部材収容部134には、ベース部材収容部134によって形成される液体流路を上流側流路と下流側流路とに仕切る仕切壁136が形成されている。
 容器本体102のベース部材収容部134近傍には、センサベース部材210と、圧電素子を含むセンサチップ220と、溶着フィルム202と、カバー230と、中継端子240と、回路基板250とが、この順番で装着されている。
 図4は、回路基板250について説明する図である。回路基板250の表面には、第1の端子251と第2の端子252が配置されている。回路基板250の裏面には、メモリ回路300と、2つのセンサ接続用端子PT、NTが配置されている。第1の端子251は、第1のセンサ接続用端子NTと電気的に接続されており、第2の端子252は第2のセンサ接続用端子PTと電気的に接続されている。メモリ回路300は、EEPROM(Electrically Erasable and Programmable Read Only Memory)などの不揮発性の記憶装置(後述)を含んでいる。
 図3に戻って説明する。溶着フィルム202は、センサベース部材210をベース部材収容部134の開口部に保持し、かつ、ベース部材収容部134を液体流路として緻密に封止する。溶着フィルム202は、センサベース部材210のY軸正方向側の面の外周縁部に接着されると共に、溶着リブ132に溶着される。カバー230は、センサチップ220及び溶着フィルム202を押さえるように配置される。中継端子240は、カバー230に収容される。中継端子240は、溶着フィルム202に形成された孔202aを介してセンサチップ220に含まれる圧電素子の電極と電気的に接触する端子242を備えている。回路基板250は、カバー230に装着され、かつ、中継端子240の端子244と電気的に接続される。
 図5は、第1実施例におけるプリンタの電気的な構成を示す第1の説明図である。図5は、インクカートリッジ100に関連する処理に必要な部分に注目して描かれている。インクカートリッジ100に関連する処理は、インクの残量を判断する処理(以下、インク残量判断処理と呼ぶ。)と、メモリ回路300の記憶装置に対するアクセス処理(以下、メモリアクセス処理と呼ぶ)を含む。主制御部40は、駆動信号生成回路42と、CPUおよびメモリを含む第1の制御回路48と、を備えている。
 駆動信号生成回路42は、駆動信号データメモリ44を備えている。駆動信号データメモリ44には、駆動信号DSを示すデータが格納されている。駆動信号DSには、センサチップ220の圧電素子を駆動するセンサ駆動信号DS1と、メモリ回路300の記憶装置340にアクセスするためのメモリ駆動信号DS2を含む。駆動信号生成回路42は、第1の制御回路48からの指示に従って、駆動信号データメモリ44から該データを読み出して、所望の波形を有する駆動信号DSを生成する。
 なお、本実施例では、駆動信号生成回路42は、さらに、印刷ヘッド68に供給されるヘッド駆動信号を生成することができる。すなわち、本実施例では、第1の制御回路48は、インクカートリッジ100に関連する処理を実行する際には、駆動信号生成回路42にセンサ駆動信号DS1やメモリ駆動信号DS2を生成させ、インクを吐出して印刷を実行する際には、駆動信号生成回路42にヘッド駆動信号を生成させる。
 第1の制御回路48は、機能部として、インク残量判断処理を実行するインク残量判断部M1と、メモリアクセス処理を実行するメモリアクセス部M2とを含んでいる。これらの機能部による処理については後述する。
 サブ制御部50は、3種類のスイッチSW1~SW3と、第2の制御回路55とを備えている。第2の制御回路55は、比較器52と、カウンタ54と、ロジック部58と、を備えている。ロジック部58は、スイッチSW1~SW3とカウンタ54との動作を制御する。また、ロジック部58は、第1の制御回路48とバスBSを介して通信を行うことができる。なお、本実施例では、ロジック部58は、1つのチップ(ASIC)で構成されている。
 第1のスイッチSW1は、1チャネルのアナログスイッチである。第1のスイッチSW1の一方の端子は、主制御部40の駆動信号生成回路42にセンサ駆動信号線LDSを介して接続されると共に、メモリ読み出し信号線LRDを介して第1の制御回路48と接続されている。また、スイッチSW1の他方の端子は、第2および第3のスイッチSW2,SW3と接続されている。センサ駆動信号線LDS上には、抵抗Rxが配置されている。第1のスイッチSW1は、インクカートリッジ100に関連する駆動信号DSであるセンサ駆動信号DS1またはメモリ駆動信号DS2を供給する際にオン状態に設定され、センサチップ220の圧電素子からの応答信号RSを検出する際にオフ状態に設定される。
 第2のスイッチSW2は、6チャネルのアナログスイッチである。第2のスイッチSW2の一方の側の1つの端子は、第1および第3のスイッチSW1,SW3に接続されており、他方の側の6つの端子のそれぞれは、インクカートリッジ100がプリンタ20に装着されたときに、インクカートリッジ100のそれぞれの第1の端子251に配線LSPを介して接続される。
 第3のスイッチSW3は、1チャネルのアナログスイッチである。第3のスイッチSW3の一方の端子は、第1および第2のスイッチSW1、SW2と接続されており、他方の端子は、第2の制御回路55の比較器52と接続されている。第3のスイッチSW3は、インクカートリッジ100の第1の端子251に駆動信号DS(センサ駆動信号DS1またはメモリ駆動信号DS2)を供給する際にオフ状態に設定され、センサチップ220の圧電素子からの応答信号RSを検出する際にオン状態に設定される。また、サブ制御部50は、インクカートリッジ100がプリンタ20に装着されたときに、インクカートリッジ100の第2の端子252が配線LSNを介して基準電位GNDに接地されるように配線されている。
 比較器52は、オペアンプを含んでおり、インク残量判断処理において、第3のスイッチSW3を介して供給される応答信号RSと基準電圧Vref とを比較して、比較結果を示す信号QCを出力する。具体的には、比較器52は、応答信号RSの電圧が基準電圧Vref以上である場合には出力信号QCをHレベルとし、応答信号RSの電圧が基準電圧Vref未満である場合には出力信号QCをLレベルとする。
 カウンタ54は、インク残量判断処理において、比較器52からの出力信号QCに含まれるパルスの数をカウントして、カウント値をロジック部58に与える。なお、カウンタ54は、ロジック部58によってイネーブル状態に設定される期間に、カウント動作を実行する。
 ロジック部58は、第2のスイッチSW2を制御して、インク残量判断処理またはメモリアクセス処理の対象とする1つのインクカートリッジ100を選択する。そして、ロジック部58は、センサ駆動信号DS1またはメモリ駆動信号DS2を供給する際に、第1のスイッチSW1をオン状態に設定し、第3のスイッチSW3をオフ状態に設定する。また、ロジック部58は、インク残量判断処理において、センサチップ220の圧電素子からの応答信号RSを検出する際に、第1のスイッチSW1をオフ状態に設定し、第3のスイッチSW3をオン状態に設定する。
 また、ロジック部58は、インク残量判断処理において、センサチップ220の圧電素子からの応答信号RSを検出すべき期間に、カウンタ54をイネーブル状態に設定する。そして、ロジック部58は、カウンタ54のカウント値を利用して、比較器52からの出力信号QCに含まれるパルスが所定数発生するまでに要する時間(測定期間)を測定する。具体的には、サブ制御部50の内部には、発振器(図示せず)が設けられており、発振器から出力されるクロック信号を利用して、測定期間を測定する。そして、ロジック部58は、カウンタによってカウントされた出力信号QCのパルス数と、測定期間と、に基づいて、応答信号RSの周波数Hcを算出する。なお、応答信号の周波数Hcは、センサチップ220の圧電素子が振動する周波数と等しい。算出された周波数Hcは、主制御部40の第1の制御回路48に供給される。
 主制御部40の第1の制御回路48は、インク残量判断処理において、算出された周波数Hcに基づいて、選択されたインクカートリッジ100内のインク残量が所定量以上であるか否かを判断する。具体的には、算出された周波数Hcが、第1の振動数H1とほぼ等しい場合には、インク残量が所定量以上であると判断され、第2の振動数H2とほぼ等しい場合には、インク残量が所定量未満であると判断される。これらの振動数H1、H2は、それぞれのインク残量に対応する固有振動数として予め実験的に決定しておくことができる。
 以上のようにして、主制御部40とサブ制御部50とは、協働して、各インクカートリッジのインク残量を判断する。なお、主制御部40の第1の制御回路48は、判断結果をコンピュータ90に供給する。この結果、コンピュータは、インク残量の判断結果をユーザに通知することができる。
 図6は、第1実施例におけるプリンタの電気的な構成を示す第2の説明図である。図6は、1つのインクカートリッジ100の電気的構成に注目して描かれている。図6において、プリンタ20のサブ制御部50の構成は、1つのインクカートリッジ100がインク残量判断処理またはメモリアクセス処理の対象として選択されている状態が簡略化して示されている。すなわち、図6において、第2のスイッチSW2および他の5つのインクカートリッジ100は図示を省略している。実際には、他の5つのインクカートリッジ100は、図6に示されたインクカートリッジ100と同一の構成を有している。
 インクカートリッジ100は、電気的構成として、センサチップ220に含まれる圧電素子310と、上述したメモリ回路300を備えている。なお、本実施例において、圧電素子310とメモリ回路300とが、請求項における電気回路に相当する。メモリ回路300は、ツェナーダイオード320と、レギュレータ330と、記憶装置340と、第1~第3のコンパレータ350、360、370と、NPN型のバイポーラトランジスタ380と、7つの抵抗R1~R7を含んでいる。ツェナーダイオード320の降伏電圧ZDVは、例えば、20V程度である。レギュレータ330は、電位点Pxから入力される電圧を定電圧Vregに変換し電位点Pyに出力する。定電圧Vregは、例えば、3.3V程度である。記憶装置340は、上述したように不揮発性のメモリである。記憶装置340には、駆動電圧(電源)として、レギュレータ330から出力される定電圧Vregが供給される。コンパレータ350、360、370は、第1の入力端子に供給された第1の電圧と、第2の入力端子に供給された第2の電圧の大きさを比較する。コンパレータ350、360、370は、第1の電圧が第2の電圧より大きい場合には、ハイレベル(例えば、3.3V)の信号を出力し、第1の電圧が第2の電圧より小さい場合には、ローレベルの信号(例えば、0V)を出力する。コンパレータ350、360、370の出力信号をそれぞれ出力信号V1、V2、V3とする。煩雑を避けるために図示を省略しているが、コンパレータ350、360、370には、記憶装置340と同様に駆動電圧として、レギュレータ330から定電圧Vregが供給される。
 インクカートリッジ100の上述の電気的な構成要素の配線について説明する。圧電素子310の一方の電極は、回路基板250の第1の端子251(図4(A))に接続され、他方の電極は、第2の端子252に接続されている。ツェナーダイオード320のカソード電極は、圧電素子310と並列に、第1の端子251と接続されている。ツェナーダイオード320のアノード電極は、電位点Pxに接続されている。すなわち、ツェナーダイオード320のアノード電極は、レギュレータ330の電源入力端子と、抵抗R1の一方の電極と、抵抗R7の一方の電極と接続されている。レギュレータ330の出力電圧である定電圧Vregは、記憶装置340に駆動電圧として供給されると共に、抵抗R3の一方の電極に接続されている。抵抗R3、R4、R5、R6は、定電圧Vregが供給される電位点Pyと、基準電位GND(例えば、0V)が供給される電位点Pvとの間に直列に接続されている。これらの抵抗R3、R4、R5、R6による分圧により、一定の電圧である参照電圧Vref0、Vref1、Vref2が生成される。生成された参照電圧Vref0、は、第1のコンパレータ350の第1の入力端子に入力される。同様にして、生成された参照電圧Vref1、は第2のコンパレータ360の第1の入力端子に入力され、参照電圧Vref2は第3のコンパレータ370の第1の入力端子に入力される。抵抗R1と抵抗R2は、ツェナーダイオード320のアノード電極と接続された電位点Pxと、基準電位GNDが供給される電位点Pvとの間に直列に接続されている。後述するように、メモリ駆動信号DS2が第1の端子251に供給されたとき、電位点Pxの電位は0~20V程度である。このとき、抵抗R1と抵抗R2との間の電位点Pzの電圧は、抵抗R1と抵抗R2による分圧により、0.4~3.3V程度に調整される。抵抗R7の他方の電極は、バイポーラトランジスタ380のコレクタに接続されている。バイポーラトランジスタ380のエミッタは、基準電位GNDが供給される電位点Pvに接続されている。バイポーラトランジスタ380のベースは、記憶装置340と接続されている。記憶装置340は、バイポーラトランジスタ380のベースに、記憶装置340に記憶されたデータに応じたデータ信号V4(ハイレベルまたはローレベル)を出力する。後述するように、データ信号V4がハイレベルのとき、バイポーラトランジスタ380のエミッタ-コレクタ間に電流が流れる。したがって、データ信号V4がハイレベルのとき、抵抗R7に電流が流れ、メモリ回路300全体の負荷が変動する。この負荷変動の結果、サブ制御部50内の電位点Pmの電圧が変動するので、主制御部40は、電位点Pmの電圧の変動を検知することで、記憶装置340が出力するデータ信号V4の内容を認識することができる。なお、本明細書において電位点Pm、Pv、Pw、Px、Py、Pzは、説明の便宜上、配線上に点を示したもので、実際の回路上にこれらの電位点に対応する構成物があるわけではない。
・インク残量判断処理
 図7は、第1実施例においてインク残量判断処理のタイミングチャートである。図7では、クロック信号ICKと、センサ駆動信号DS1と、応答信号RSと、比較器の出力信号QCと、図5、6に示す電位点Pxの電圧が示されている。クロック信号ICKは、サブ制御部50内部の図示しない発振器の出力である。センサ駆動信号DS1と応答信号RSとは、図5、6に示す電位点Pmに表れる信号である。さらに、図7では、第1のスイッチSW1と、第3のスイッチSW3の動作のタイミングチャートが示されている。
 主制御部40からバスBSを介して送信される指示に従い、サブ制御部50はインクカートリッジ100のインク残量判断処理を実行する。まず、時刻t0では、第1のスイッチSW1がオフ状態からオン状態に切り換えられると共に、第2のスイッチSW2によっていずれかのインクカートリッジ100の圧電素子310が選択される。したがって、選択された圧電素子310とサブ制御部50は、配線LSPを介して信号の遣り取りが可能になる。すなわち、サブ制御部50から圧電素子310に対してセンサ駆動信号DS1を印加し、圧電素子310からの応答信号RSを第2の制御回路55において受信することが可能となる。
 時刻t1~t2(印加期間Dv)では、センサ駆動信号DS1が圧電素子310に供給される。すなわち、圧電素子310に電圧が印加される。なお、印加期間Dvでは、第3のスイッチSW3は、オフ状態に設定されている。
 図示するように、センサ駆動信号DS1は、2つのパルス信号S1,S2を含んでいる。2つのパルス信号S1,S2は、同じ周期Tに設定されている。なお、周期Tは、インクカートリッジ内のインク残量が所定量以上の場合における圧電素子の固有振動数H1に対応する周期(=1/H1)(例えば約33μs)に設定されている。
 時刻t2では、第1のスイッチSW1がオフ状態に切り替えられ、圧電素子310へのセンサ駆動信号DS1の供給が終了する。そして、時刻t2以降では、圧電素子310はインク残量に応じた振動周波数で振動し、センサから応答信号RSが出力される。
 時刻t2から僅かな時間を置いた後の時刻t3では、第3のスイッチSW3がオン状態に切り替えられる。このとき、圧電素子310からの応答信号RSが比較器52に供給される。比較器52は、応答信号RSと基準電圧Vref とを比較して、HレベルまたはLレベルの信号QCを出力する。
 また、時刻t3から始まる期間では、サブ制御部50のロジック部58は、カウンタ54をイネーブル状態に設定し、比較器52から5個のパルスが出力されるのに要する時間(測定期間Dm)を測定する。具体的には、ロジック部58は、カウンタ54によって5個のパルスがカウントされる期間DMに、すなわち1番目のパルスの立ち上がりエッジが入力されてから6番目のパルスの立ち上がりエッジが入力されるまでの期間DMに発生するクロック信号ICKのパルス数をカウントして、この測定期間Dmを測定する。なお、ロジック部58は、カウンタ54に6番目のパルスの立ち上がりエッジが入力されると、カウンタ54をディスエーブル状態に設定する。そして、ロジック部58は、カウンタ54によってカウントされた出力信号QCのパルス数(5個)と、ロジック部58で測定された測定期間Dmとに基づいて、応答信号RSに含まれる第1の信号成分の周波数Hc(=5/Dm)を算出する。前述したように、算出された周波数Hcは、圧電素子310の振動の周波数を示している。
 この後、主制御部40の第1の制御回路48は、測定された第1の信号成分の周波数Hcを受け取り、該周波数Hcに基づいて、インク残量が所定量以上であるか否かを判断する。なお、測定期間Dmが終了した後の時刻t4において、第3のスイッチSW3がオン状態からオフ状態に戻される。
 ここで、インク残量判断処理における電位点Pxの電位をみると、電位点Pxには、駆動信号DSが圧電素子310に供給されたときに、センサ駆動信号DS1に含まれるパルス信号S1、S2に対応する瞬間的な電圧上昇MPが見られる。しかしながら、応答信号RSやセンサ駆動信号DS1の大部分は、電位点Pxには伝達されない。これは、ツェナーダイオード320によって、ツェナーダイオード320の降伏電圧ZDVより小さい電圧は、ツェナーダイオード320より記憶装置340側に伝達されないからである。電圧上昇MPのような瞬間的な電圧では、記憶装置340は動作しないように設計されている。これにより、インク残量判断処理中における記憶装置340の誤動作を抑制することができる。本実施例におけるツェナーダイオード320は、請求項における許容回路に相当する。
・メモリアクセス処理:
 図8は、記憶装置340にデータを書き込む場合のメモリアクセス処理のタイミングチャートである。図8には、電位点Pmにおける信号(電圧)と、電位点Pzにおける信号(電圧)と、第1~第3のコンパレータ350、360、370の出力である信号V1、V2、V3の内容と、信号V1~V3の入力による記憶装置340の動作とが、それぞれa)~d)に示されている。第1~第3のコンパレータ350、360、370の出力信号V1、V2、V3は、「1」と「0」とで表されている。「1」はハイレベルを示し、「0」はローレベルを示す。
 第1の制御回路48のメモリアクセス部M2が記憶装置340にアクセスする場合、第1の制御回路48は、インク残量判断処理と同様に、第2の制御回路55を制御して、第2のスイッチSW2を切り換えて、アクセスの対象となるインクカートリッジ100を選択する。ここで、本実施例においてインクカートリッジ100を選択するとは、電位点Pmが位置する配線と、当該インクカートリッジ100の第1の端子251と接続されている配線LSPとを、第2のスイッチSW2を介して電気的に接続することを意味している。
 第1の制御回路48のメモリアクセス部M2が記憶装置340にデータを書き込む場合、第1の制御回路48は、駆動信号生成回路42を制御して、電位点Pm(=配線LSP)上に、図8(a)に示すようなメモリ駆動信号DS2を出力する。データ書き込み時のメモリ駆動信号DS2は、開始から終了まで、ツェナーダイオード320の降伏電圧ZDVより大きな電圧である。メモリ駆動信号DS2の最低電圧は、降伏電圧ZDVよりレギュレータ330の出力電圧である定電圧Vreg以上大きい。例えば、降伏電圧ZDVが20Vで、定電圧Vregが3.3Vである場合には、メモリ駆動信号DS2の最低電圧は23.3V以上に設定される。これは、メモリ駆動信号DS2が、レギュレータ330の駆動電源としても用いられるためである。こうすることにより、レギュレータ330は、安定して記憶装置340に定電圧Vregを供給することができる。換言すれば、メモリ駆動信号DS2が出力されている間は、記憶装置340および第1~第3のコンパレータ350、360、370に対して、レギュレータ330から駆動電圧の供給が行われる。この結果、メモリ駆動信号DS2が出力されている間は、記憶装置340および第1~第3のコンパレータ350、360、370は、動作可能である。なお、メモリ駆動信号DS2の最高電圧は、本実施例では、40V程度である。
 電位点Pmの電圧(メモリ駆動信号DS2)のうち降伏電圧ZDVを超える部分の電圧変動は、ツェナーダイオード320と抵抗R1および抵抗R2により、電位点Pzでは、基準電位GND(例えば、0V)と、記憶装置340の電源電圧(本実施例では、定電圧Vreg=3.3V)との間の電圧変動に変換される。電位点Pmの電圧(メモリ駆動信号DS2)のうち降伏電圧ZDVを超える部分の電圧変動は、ほぼ均等の差分を有する4段階のレベルを有している。電位点Pzの電圧は、電位点Pmの電圧に対応して4段階のレベルを有しており、最も低い第1のレベルL1は、基準電位GNDと参照電圧Vref2との間に位置している。同様にして、電位点Pzの電圧の4段階のレベルのうち2番目に低い第2のレベルL2は、参照電圧Vref2と参照電圧Vref1との間に位置しており、2番目に高い第3のレベルL3は、参照電圧Vref1と参照電圧Vref0との間に位置している。電位点Pzの電圧の4段階のレベルのうち最も高い第4のレベルL4は、参照電圧Vref0より大きい。以上から解るように、第1の制御回路48は、メモリ駆動信号DS2の電圧レベルを4段階に制御することにより、電位点Pzの電圧を基準電位GND~定電圧Vregとの間で4段階L1~L4に制御できる。図6,8から解るように、電位点Pzが第1のレベルL1にあるとき、第1~第3のコンパレータ350、360、370の出力信号V1、V2、V3は、それぞれ、0、0、0を表す。同様にして、電位点Pzが第2のレベルL2にあるとき、出力信号V1、V2、V3は、それぞれ、0、0、1を表し、電位点Pzが第3のレベルL3にあるとき、出力信号V1、V2、V3は、それぞれ、0、1、1を表し、電位点Pzが第4のレベルL4にあるとき、出力信号V1、V2、V3は、それぞれ、1、1、1を表す。したがって、記憶装置340は、出力信号V1、V2、V3を受け取ることにより、4段階のレベルL1~L4を認識できる。
 記憶装置340にデータを書き込むとき、第1の制御回路48は、メモリ駆動信号DS2の出力を開始し、電位点Pzの電圧を第4のレベルL4に所定時間維持する。これにより、記憶装置340に対するレギュレータ330からの定電圧Vregの供給が開始され、記憶装置340の電源がオン状態になる。
 次に第1の制御回路48は、メモリ駆動信号DS2の電圧レベルを制御することにより、電位点Pzの電圧を第3のレベルL3に維持する。記憶装置340は、電源がオン状態になった直後に、第3のレベルL3を認識すると、リセット信号であると解釈して、自身に対するアクセスが開始されることを認識する。
 続いて、第1の制御回路48は、データ信号とクロック信号CLが交互に表れるいわゆるセルフクロック式のデータ送信手法により、インクカートリッジ100の識別番号(ID)を送信する。データ信号は、「1」または「0」を表す信号である。本実施例では、電位点Pzを第2のレベルL2に維持する信号がデータ「1」を表し、電位点Pzを第1のレベルL1に維持する信号がデータ「0」を表す。一方、クロック信号CLは、電位点Pzを第3のレベルL3に維持する信号によって表される。図8に示す例では、識別番号を表すデータとして、“1、0、1”という3ビットのデータが記憶装置340に送信されていることが解る。記憶装置340は、受信した識別番号と、自身の識別番号と一致した場合に、自身がアクセスの対象であることを認識する。なお、本実施例では、第2のスイッチSW2により、1つのインクカートリッジ100がアクセス対象として選択されており、アクセス対象のインクカートリッジ100にのみ、メモリ駆動信号DS2が送信される。したがって、識別番号の送信は省略し、インクカートリッジ100は受信した信号は、全て自身をアクセスの対象として信号であると認識することとしても良い。
 識別番号の送信に続いて、第1の制御回路48は、識別番号の送信と同様のセルフクロック式のデータ送信手法により、1ビットの読み出し/書き込み識別信号(R/W信号)を送信する。「0」のR/W信号は、当該アクセスがデータ書き込みのためのアクセスであることを表す。「1」のR/W信号は、当該アクセスがデータ読み出しのためのアクセスであることを表す。図8の例は、データ書き込みについて図示しているため、R/W信号は「0」である。R/W信号「0」を受信すると、記憶装置340は、続いて、送信されてくるデータ信号を順次に自身のメモリに書き込む。
 R/W信号の送信に続いて、第1の制御回路48は、同様のセルフクロック式のデータ送信手法により、書き込みデータを送信する。書き込みデータの送信を終了すると、第1の制御回路48は、一回のクロック信号送信時間より長い所定の期間に亘って、電位点Pzの電圧を第3のレベルL3に維持し、続いて、電位点Pzの電圧を第4のレベルL4に所定時間に亘って維持する。このような信号を記憶装置340が受信すると、記憶装置340は、アクセスの終了を認識する。その後、メモリ駆動信号DS2の供給が終了するため、レギュレータ330は、その動作を停止する。従って、記憶装置340に対する定電圧Vregの供給が停止され、記憶装置340は電源がオフされた状態になる。
 図9は、記憶装置340からデータを読み出す場合のメモリアクセス処理のタイミングチャートである。図9には、電位点Pmにおける信号と、電位点Pzにおける信号と、第1~第3のコンパレータ350、360、370の出力信号V1、V2、V3による記憶装置340の動作と、記憶装置340が出力するデータ信号V4が、それぞれa)~d)に示されている。記憶装置340が出力するデータ信号V4は、記憶装置340とバイポーラトランジスタ380の制御電極(ゲート)とを接続する配線上に出力される信号である(図6)。
 第1の制御回路48がアクセス対象のインクカートリッジ100の記憶装置340からデータを読み出す処理は、識別信号(ID)の送信までは、上述した記憶装置340にデータを書き込む処理と同様であるので、その説明を省略する。
 識別番号の送信に続いて、第1の制御回路48は、識別番号の送信と同様のセルフクロック式のデータ送信手法により、1ビットの読み出し/書き込み識別信号(R/W信号)を送信する。読み出し処理において、送信されるR/W信号は「1」である。R/W信号を送信すると、第1の制御回路48は、続いて、クロックを記憶装置340に送信する。クロックは、クロック信号CL(ハイレベル信号)を表す第3のレベルQ3の電圧と、第2のレベルQ2の電圧(ローレベル信号)を繰り返す信号である。R/W信号「1」を受信すると、記憶装置340は、自身のメモリに格納されているデータを読み出し、送信されてくるクロックに同期して、読み出したデータをデータ信号V4として出力する。すなわち、記憶装置340は、1つのクロック信号CLと、次のクロック信号CLとの間の期間に、ハイレベルまたはローレベルのデータ信号V4を出力する。ハイレベルのデータ信号V4は、「1」を表し、ローレベルのデータ信号V4は、「0」を表す。記憶装置340は、クロック信号CLを受信している期間は、データ信号V4をローレベルに維持する。
 ハイレベルのデータ信号V4が出力されると、電位点Pmの電圧は、負荷変動により、低下する。すなわち、第1の制御回路48から出力されるメモリ駆動信号DS2が第2のレベルQ2の電圧であっても、抵抗Rxを経た電位点Pmの電圧は、第2のレベルQ2より低下する。ハイレベルのデータ信号V4がバイポーラトランジスタ380のゲートに入力され、バイポーラトランジスタ380がオン状態(エミッタ-コレクタ間が導通した状態)になるため、抵抗Rxおよび抵抗R7に電流が流れるからである。ここで、抵抗Rxおよび抵抗R7の大きさを適切に選択することにより、本実施例では、ハイレベルのデータ信号V4が出力されると、電位点Pmの電圧が第2のレベルQ2から第1のレベルQ1に低下する。第1の制御回路48は、このような電位点Pmの電位の変動を、信号線LRDを介して、読み出し信号RDとして検出する。読み出し信号RDの検出は、第1の制御回路48が自ら出力するクロックと同期して行われる。以上のようにして、第1の制御回路48は、記憶装置340からデータを読み出すことができる。
 読み出し信号RDを検出することによるデータの読み出しが終了すると、第1の制御回路48は、一回のクロック信号送信時間より長い所定の期間に亘って、電位点Pzの電圧を第3のレベルL3に維持し、続いて、電位点Pzの電圧を第4のレベルL4に所定時間に亘って維持する。このような信号を記憶装置340が受信すると、記憶装置340は、アクセスの終了を認識する。その後、メモリ駆動信号DS2の供給が終了するため、レギュレータ330は、その動作を停止する。従って、記憶装置340に対する定電圧Vregの供給が停止され、記憶装置340は電源がオフされた状態になる。
 以上説明した第1実施例によれば、第1の端子251にプリンタ20が入力する電位と、第2の端子252にプリンタ20が入力する電位との端子間電位差である駆動信号DSを用いて、圧電素子310を含むセンサと信号(センサ駆動信号DS1および応答信号RS)の遣り取りができる。さらに、当該端子間電位差であるメモリ駆動信号DS2を用いて、記憶装置340に対するデータの書き込み、および、記憶装置340からのデータの読み出しを実行できる。センサとの通信と記憶装置340との通信は、区別して実行できる。この結果、2つの端子251,252のみを用いて、圧電素子310との通信と、記憶装置340との通信をするので、インクカートリッジ100が備えるべき端子数を減少することができる。したがって、部品点数を抑制すると共に、端子間の確実な接触による安定した通信が可能になる。
 さらに、ツェナーダイオード320が配置されていることにより、ツェナーダイオード320の降伏電圧ZDVより小さな駆動信号DSは、記憶装置340側に伝達されないので、記憶装置340がインク残量判断処理により誤動作することを抑制することができる。
 さらに、インク残量判断処理時に用いられるセンサ駆動信号DS1および応答信号RSは、大部分がツェナーダイオード320の降伏電圧ZDVより小さい電圧の信号であり、メモリアクセス処理に用いられるメモリ駆動信号DS2はツェナーダイオード320の降伏電圧ZDVより大きな電圧の信号である。すなわち、インク残量判断処理とメモリアクセス処理とで、使用する電圧(端子間電位差)の大きさの範囲を異ならせている。この結果、誤動作を抑制することができる。
 さらに、メモリアクセス処理において、記憶装置340の駆動電圧(定電圧Vreg)は、レギュレータ330から供給しているが、レギュレータ330の電源は、メモリ駆動信号DS2である。したがって、プリンタ20から2つの端子251,252を介して、記憶装置340や第1~第3のコンパレータ350、360、370の電源も供給していることになる。したがって、少ない端子で、圧電素子310と記憶装置340の両方と通信できることに加えて、記憶装置340が動作する電源を供給することができる。この場合、記憶装置340にアクセスする場合に限り、記憶装置340に電源を供給することになるので、消費電力を抑制することができる。
B.第2実施例:
 図10は、第2実施例におけるプリンタの電気的な構成を示す第1の説明図である。図10は、第2実施例にインクカートリッジ100Aに関連する処理に必要な部分に注目して描かれている。図10における主制御部40Aの構成について、図5を参照して説明した主制御部40と同一の構成には、図5における符号の末尾にAを付した符合を付している。
 第2実施例に係るサブ制御部50Aは、7つのスイッチSW1A~SW7Aを備える。これら7つのスイッチSW4A~SW7Aは、第1実施例のスイッチSW1~SW3と同様に、第2の制御回路55Aの制御により動作する。
 第1のスイッチSW1Aは、1チャネルのアナログスイッチである。第1のスイッチSW1Aの一方の端子は、主制御部40の駆動信号生成回路42Aと接続されており、他方の端子は、第6のスイッチSW6Aおよび第5のスイッチSW5Aと接続されている。
 第2のスイッチSW2Aは、1チャネルのアナログスイッチである。第2のスイッチSW2Aの一方の端子は、基準電位GNDと接続、すなわち、接地されている。第2のスイッチSW2Aの他方の端子は、第7のスイッチSW7Aおよび第5のスイッチSW5Aと接続されている。
 第3のスイッチSW3Aは、6チャネルのアナログスイッチである。第3のスイッチSW3Aの一方の側の1つの端子は、第6のスイッチSW6Aの一方の側の1つの端子と第7のスイッチSW7Aの一方の側の1つの端子と接続されており、他方の側の6つの端子のそれぞれは、第1の端子251を介して、6つのインクカートリッジ100Aとそれぞれ接続されている。
 第4のスイッチSW4Aは、6チャネルのアナログスイッチである。第4のスイッチSW4Aの一方の側の1つの端子は、第6のスイッチSW6Aの一方の側の1つの端子と第7のスイッチSW7Aの一方の側の1つの端子と接続されており、他方の側の6つの端子のそれぞれは、第2の端子252を介して、6つのインクカートリッジ100Aとそれぞれ接続されている。
 第5のスイッチSW5Aは、2チャネルのアナログスイッチである。第5のスイッチSW5Aの一方の側の1つの端子は、第2の制御回路55Aと接続されている。第5のスイッチSW5Aの他方の側の2つの端子のうち、1つは、第2のスイッチSW2Aおよび第7のスイッチSW7Aの他方の側の端子と接続されており、もう一つは、第1のスイッチSW1Aおよび第6のスイッチSW6Aの他方の側の端子と接続されている。
 第6のスイッチSW6Aは、2チャネルのアナログスイッチである。第6のスイッチSW6Aの他方の側の1つの端子は、上述したように第1のスイッチSW1Aと第5のスイッチSW5Aと接続されている。第6のスイッチSW6Aの一方の側の2つの端子のうち、1つは、上述したように第3のスイッチSW3Aと接続されており、もう一つは、第4のスイッチSW4Aと接続されている。
 第7のスイッチSW7Aは、2チャネルのアナログスイッチである。第7のスイッチSW7Aの他方の側の1つの端子は、上述したように第2のスイッチSW2Aと第5のスイッチSW5Aと接続されている。第7のスイッチSW7Aの一方の側の2つの端子のうち、1つは、上述したように第3のスイッチSW3Aと接続されており、もう一つは、第4のスイッチSW4Aと接続されている。
 第2の制御回路55Aは、インク残量判断処理およびメモリアクセス処理の際、6つのインクカートリッジ100Aのうち、処理の対象となる対象カートリッジの第1の端子251および第2の端子252を第6のスイッチSW6Aおよび第7のスイッチSW7Aと電気的に接続するように、第3のスイッチSW3AおよびSW4Aを制御する。
 第2実施例では、第1の端子251および第2の端子252のどちらからでもインクカートリッジ100Aに対して、センサ駆動信号DS1を供給できると共に、第1の端子251および第2の端子252のどちらからでも、インクカートリッジ100Aから応答信号RSを受け付けることができる。
 例えば、第2の制御回路55Aは、インク残量判断処理において、対象カートリッジの第1の端子251からセンサ駆動信号DS1を供給し、第2の端子252から応答信号RSを受信する場合には、第6のスイッチSW6Aおよび第7のスイッチSW7Aを制御して、第3のスイッチSW3Aと第1のスイッチSW1Aとを電気的に接続すると共に、第4のスイッチSW4Aと第2のスイッチSW2Aとを電気的に接続する。また、第2の制御回路55Aは、第5のスイッチSW5Aを制御して、第2の制御回路55Aと第7のスイッチSW7Aとを電気的に接続する。そして、第1のスイッチSW1Aおよび第2のスイッチSW2Aをオン状態(導通状態)にして、センサ駆動信号DS1をインクカートリッジ100Aに供給して、応答信号RSを受信するときに第2のスイッチSW2Aをオフ状態(非導通状態)にする。
 一方、第2の制御回路55Aは、インク残量判断処理において、対象カートリッジの第2の端子252からセンサ駆動信号DS1を供給し、同じ第2の端子252から応答信号RSを受信する場合には、第6のスイッチSW6Aおよび第7のスイッチSW7Aを制御して、第4のスイッチSW4Aと第1のスイッチSW1Aとを電気的に接続すると共に、第3のスイッチSW3Aと第2のスイッチSW2Aとを電気的に接続する。そして、第1のスイッチSW1Aおよび第2のスイッチSW2Aをオン状態(導通状態)にして、センサ駆動信号DS1をインクカートリッジ100Aに供給して、応答信号RSを受信するときに第1のスイッチSW1Aをオフ状態(非導通状態)にすると共に、第5のスイッチSW5Aを制御して、第2の制御回路55Aと第6のスイッチSW6Aとを電気的に接続する。
 このように、第2実施例のインク残量判断処理では、第2の端子252を基準電位GNDとして第1の端子251を介してセンサ駆動信号DS1を供給する第1のパターンと、第1の端子251を基準電位GNDとして第2の端子252を介してセンサ駆動信号DS1を供給する第2のパターンとを選択的に使い分けることができる。
 図11は、第2実施例におけるプリンタの電気的な構成を示す第2の説明図である。図11は、1つのインクカートリッジ100Aの電気的構成に注目して描かれている。図11において、プリンタ20Aのサブ制御部50Aの構成は、1つのインクカートリッジ100Aがインク残量判断処理の対象として選択され、第1の端子251からセンサ駆動信号DS1が供給される状態、あるいは、メモリアクセス処理の対象として選択されている状態が簡略化して示されている。すなわち、図11において、第5のスイッチSW5A以外のスイッチおよび他の5つのインクカートリッジは図示を省略している。実際には、他の5つのインクカートリッジは、図11に示されたインクカートリッジ100Aと同一の構成を有している。
 インクカートリッジ100Aは、第1実施例におけるツェナーダイオード320に代えて、電源回路390を有している。電源回路390は、2つの入力端子TA、TBを有し、1つの出力端子TCを有している。また、電源回路390には、基準電位GNDが供給されている。第1の入力端子TAは、回路基板250の第1の端子251(図4(A))に接続され、第2の入力端子TBは、第2の端子252に接続されている。出力端子TCは、レギュレータ330の入力端子と、抵抗R1と、抵抗R7と接続されている。インクカートリッジ100Aのその他の構成は、図6に示す第1実施例におけるインクカートリッジ100と同一であるので、図11において、同一の構成要素については同一の符号を付し、その説明を省略する。
 図12は、電源回路390の内部構成を示す図である。電源回路390は、2つのツェナーダイオード391、392と、整流回路SSとを含んでいる。第1のツェナーダイオード391のカソードは、第1の入力端子TAと接続され、アノードは、整流回路SSに入力されている。第2のツェナーダイオード392のカソードは、第2の入力端子TBと接続され、アノードは、整流回路SSに入力されている。整流回路SSは、4つのダイオード393~396を用いた一般的な整流回路である。整流回路SSの出力は、出力端子TCから出力される。
 以上説明した第2実施例によれば、第1実施例と同様の作用・効果を生じる。さらに、第2実施例のインク残量判断処理では、第2の端子252を基準電位GNDとして第1の端子251を介してセンサ駆動信号DS1を供給する第1のパターンと、第1の端子251を基準電位GNDとして第2の端子252を介してセンサ駆動信号DS1を供給する第2のパターンがある。この時、第2の端子252の電圧が第1の端子251の電圧より高くなったり、第1の端子251の電圧が第2の端子252の電圧より高くなったりする。この場合であっても、インクカートリッジ100Aは、電源回路390を備えることにより、出力端子TCの電圧は、基準電位GNDより高い電圧に維持される。この結果、記憶装置340やレギュレータ330の誤動作を抑制することができる。
C.第3実施例:
 図13は、第3実施例におけるプリンタの電気的な構成を示す説明図である。図13は、1つのインクカートリッジ100Bの電気的構成に注目して描かれている。図13において、プリンタ20のサブ制御部50の構成は、1つのインクカートリッジ100Bがインク残量判断処理またはメモリアクセス処理の対象として選択されている状態が簡略化して示されている。すなわち、図13において、第2のスイッチSW2および他の5つのインクカートリッジは図示を省略している。実際には、他の5つのインクカートリッジは、図13に示されたインクカートリッジ100Bと同一の構成を有している。
 第3実施例におけるプリンタ20(主制御部40およびサブ制御部50)の構成は、第1実施例におけるプリンタ20の構成と同一であるので、その説明を省略する。第3実施例におけるインクカートリッジ100Bは、第1実施例におけるレギュレータ330に代えて、電池電源335を備えている。電池電源335は、例えば、マンガン電池、アルカリ電池、リチウム電池、燃料電池など、周知の様々な電池を用いることができる。
 第3実施例では、メモリ駆動信号DS2を、記憶装置340の電源として利用せず、記憶装置340や第1~第3のコンパレータ350、360、370は、電池電源335から動作電源を供給される。また、第1~第3のコンパレータ350、360、370にそれぞれ供給される参照電圧Vref0、Vref1、Vref2は、電池電源335が供給する定電圧を抵抗R3~R6によって分圧して作られる。
 以上の説明から解るように、プリンタ20側から記憶装置340の駆動電源を供給することは必須ではなく、記憶装置340側で電池などの電源を備えても良い。
D.第4実施例:
 図14は、第4実施例におけるプリンタの電気的な構成を示す説明図である。図14は、1つのインクカートリッジ100Cの電気的構成に注目して描かれている。図14において、プリンタ20のサブ制御部50の構成は、1つのインクカートリッジ100Cがインク残量判断処理またはメモリアクセス処理の対象として選択されている状態が簡略化して示されている。すなわち、図14において、第2のスイッチSW2および他の5つのインクカートリッジは図示を省略している。実際には、他の5つのインクカートリッジは、図14に示されたインクカートリッジ100Cと同一の構成を有している。
 第4実施例におけるプリンタ20(主制御部40およびサブ制御部50)の構成は、第1実施例におけるプリンタ20の構成と同一であるので、その説明を省略する。
 第4実施例におけるインクカートリッジ100Cは、第1実施例におけるツェナーダイオード320に代えて、コンパレータ321とアナログスイッチSWxを含む許容回路320Cを備えている。コンパレータ321は、第1の端子251の電圧が許容下限電圧Vrefxより大きい場合にアナログスイッチSWxをオン状態(導通状態)にし、第1の端子251の電圧が許容下限電圧Vrefxより小さい場合にアナログスイッチSWxをオフ状態(非導通状態)にする。ここで、許容下限電圧Vrefxは、メモリ駆動信号DS2の最小レベル(電位点Pzにおける第1のレベルに対応する)より少し小さい値に設定される。具体的には、許容下限電圧Vrefxは、第1実施例におけるツェナーダイオード320の降伏電圧ZDVと同じ程度に設定される。
 第4実施例におけるインクカートリッジ100Cは、第3実施例と同様に、第1実施例におけるレギュレータ330に代えて、電池電源335を備えている。記憶装置340および第1~第3のコンパレータ350、360、370の駆動電圧は、電池電源335により供給される。電池電源335は、また、上述したコンパレータ321に参照電圧として入力される許容下限電圧Vrefxを出力する。
 以上説明した第4実施例によれば、許容回路320Cが配置されていることにより、許容下限電圧Vrefxより小さな駆動信号DSは、記憶装置340側に伝達されないので、第1実施例と同様に、記憶装置340がインク残量判断処理により誤動作することを抑制することができる。
E.変形例:
・第1変形例:
 上記実施例では、センサ駆動信号DS1により駆動される電気デバイスとして、センサとして機能する発振回路である圧電素子310を用いているが、これに代えて、インクカートリッジに収容されたインクの現実の残量に関わらず、インクカートリッジにインクが存在することを示す応答信号RSを出力する発振回路を用いても良い。このような発振回路は、例えば、コイルとコンデンサを含むLC発振回路や、コンデンサと抵抗を含むRC発振回路や、水晶やセラミックの振動子を含む固体振動子発振回路を用いて、構成されても良い。このような発振回路(インクの現実の残量に関わらずインクカートリッジにインクが存在することを示す応答信号RSを出力する発振回路)は、メモリ回路300を含む回路基板250に含まれてもよい。
・第2変形例:
 上記実施例では、圧電素子310からの応答信号RSの周波数に基づいて、インクエンドを検出しているが、振幅の大きさに基づいてインクエンドを検出するタイプのセンサを用いても良い。また、インクエンドセンサーに限らず、インクの温度、抵抗、その他のインクの特性を検出するためのセンサを用いても良い。一般的には、センサに限らず、駆動信号DSにより駆動される電気デバイスであれば良い。
・第3変形例:
 上記実施例では、メモリ駆動信号DS2により駆動される電気デバイスとして、メモリを含む記憶装置340を用いているが、これに代えて、中央演算装置(CPU)、各種のロジック回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)を用いても良い。一般的には、駆動信号DSにより駆動される電気デバイスであれば良い。
・第4変形例:
 上記実施例では、1つのインクタンクを1つのインクカートリッジ100等として構成しているが、複数のインクタンクを1つのインクカートリッジ100等として構成しても良い。
・第5変形例:
 上記実施例では、メモリ駆動信号DS2を用いて、記憶装置340に対する書き込みおよび読み出しの両方を行っているが、これに代えて、記憶装置340に対する書き込みおよび読み出しのいずれか一方のみを行うこととしても良い。例えば、記憶装置340に対する書き込みのみを行う場合には、図6におけるバイポーラトランジスタ380および抵抗R7は省略されても良い。
・第6変形例:
 上記実施例は、インクジェット式のプリンタ20と、インクカートリッジ100が採用されているが、インク以外の他の液体を噴射したり吐出したりする液体噴射装置と、その液体を収容した液体容器と、を採用しても良い。ここでいう液体は、溶媒に機能材料の粒子が分散されている液状体、ジェル状のような流状体を含む。例えば、液晶ディスプレイ、EL(エレクトロルミネッセンス)ディスプレイ、面発光ディスプレイ、カラーフィルタの製造などに用いられる電極材や色材などの材料を分散または溶解のかたちで含む液体を噴射する液体噴射装置、バイオチップ製造に用いられる生体有機物を噴射する液体噴射装置、精密ピペットとして用いられ試料となる液体を噴射する液体噴射装置であっても良い。さらに、時計やカメラ等の精密機械にピンポイントで潤滑油を噴射する液体噴射装置、光通信素子等に用いられる微小半球レンズ(光学レンズ)などを形成するために紫外線硬化樹脂等の透明樹脂液を基板上に噴射する液体噴射装置、基板などをエッチングするために酸又はアルカリ等のエッチング液を噴射する液体噴射装置を採用しても良い。そして、これらのうちいずれか一種の噴射装置、該液体のための液体容器に本発明を適用することができる。
・第7変形例:
 変形例を含む上記実施例では、インクが収容されたインク容器であるインクカートリッジにメモリ回路300を含む回路基板250が装着されているが、インク容器と、回路基板250とは、物理的に完全に分離された別体であっても良い。例えば、回路基板250が装着されたプレートを、印刷ヘッドユニット60に、所定の固定治具によって印刷ヘッドユニット60に取り付け、サブ制御部50と電気的に接続する一方で、別の位置に置かれたインク容器を、可撓性のチューブを介して印刷ヘッドユニット60のインク受給針に接続しても良い。一般的には、インク容器に限らず、インクをプリンタに供給するインク供給装置であれば良い。
・第8変形例:
 上記実施例において、ハードウエアによって実現されていた構成の一部をソフトウエアに置き換えても良く、逆にソフトウエアによって実現されていた構成の一部をハードウエアに置き換えても良い。例えば、主制御部40のインク残量判断部M1やメモリアクセス部M2は、ソフトウエアによって実現されても、ハードウエアによって実現されても構わない。
 以上、本発明の実施例および変形例について説明したが、本発明はこれらの実施例および変形例になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々の態様での実施が可能である。

Claims (19)

  1.  液体噴射装置に装着可能な液体容器であって、
     第1の電気デバイスと第2の電気デバイスとを含む電気回路と、
     第1の端子と、
     第2の端子と、
     を備え、
     前記電気回路は、前記液体噴射装置が第1の端子に入力する電位と前記第2の端子に入力する電位との端子間電位差を用いて前記第1の電気デバイスとの第1の通信と前記第2の電気デバイスとの第2の通信とを実行でき、異なる大きさの前記端子間電位差を用いることにより前記第1の通信と前記第2の通信を区別して実行できるように構成されている、液体容器。
  2.  請求項1に記載の液体容器であって、
     前記電気回路は、さらに、前記液体噴射装置が、前記第1の端子を介して前記第1の電気デバイスに対して駆動電源を供給できるように構成されている、液体容器。
  3.  請求項1または2に記載の液体容器であって、
     前記電気回路は、さらに、前記端子間電位差がしきい値を超えた場合に、前記端子間電位差の変動が前記第1の電気デバイスに供給されることを許容する許容回路を含む、液体容器。
  4.  請求項1ないし請求項3のいずれかに記載の液体容器であって、
     前記許容回路は、ツェナーダイオードを含む、液体容器。
  5.  請求項1ないし請求項4のいずれかに記載の液体容器であって、
     前記第1の電気デバイスはメモリを含み、
     前記第1の通信は、前記メモリに対する書き込みと前記メモリからの読み出しの少なくとも一方を含み、
     前記第1の通信のための前記端子間電位差は、前記第2の通信のための前記端子間電位差より大きい、液体容器。
  6.  請求項1ないし請求項5いずれかに記載の液体容器であって、
     前記第2の電気デバイスは発振回路を含み、
     前記第2の通信は、前記液体噴射装置から前記発振回路への駆動信号の入力と、前記発振回路から前記液体噴射装置への応答信号の出力とを含み、
     前記第2の通信のための前記端子間電位差は、前記第1の通信のための前記端子間電位差より小さい、液体容器。
  7.  請求項1ないし請求項4のいずれかに記載の液体容器であって、
     前記第1の電気デバイスはメモリを含み、
     前記第1の通信は、前記メモリに対する書き込みと前記メモリからの読み出しの少なくとも一方を含み、
     前記第2の電気デバイスは発振回路を含み、
     前記第2の通信は、前記液体噴射装置から前記発振回路への駆動信号の入力と、前記発振回路から前記液体噴射装置への応答信号の出力とを含む、液体容器。
  8.  請求項7に記載の液体容器であって、
     前記第1の通信のための前記端子間電位差は、前記第2の通信のための前記端子間電位差より大きい、液体容器。
  9.  請求項7に記載の液体容器であって、
     前記電気回路は、前記第1の端子に前記発振回路と並列に接続され、前記第1の端子に入力された電圧を前記メモリの駆動電源に変換して前記メモリに供給するレギュレータを含む、液体容器。
  10.  請求項9に記載の液体容器であって、
     前記電気回路は、さらに、前記第1の端子と前記レギュレータとの間に配置されたツェナーダイオードを含む、液体容器。
  11.  請求項7に記載の液体容器であって、
     前記電気回路は、
     前記メモリに出力が供給される複数のコンパレータと、
     前記第1の端子に前記発振回路と並列に接続され、前記複数のコンパレータの一方の入力端子のそれぞれに接続された配線と、
     を含む、液体容器。
  12.  請求項11に記載の液体容器であって、
     前記電気回路は、さらに、前記第1の端子と前記複数のコンパレータの一方の入力端子との間に配置されたツェナーダイオードを含む、液体容器。
  13.  請求項7に記載の液体容器であって、
     前記電気回路は、
     前記第1の端子に前記発振回路と並列に接続され、前記第1の端子に入力された電圧を前記メモリの駆動電源に変換して前記メモリに供給するレギュレータと、
     前記メモリに出力が供給される複数のコンパレータと、
     前記第1の端子に前記発振回路と並列に接続され、前記複数のコンパレータの一方の入力端子のそれぞれに接続された配線と、
     前記レギュレータが供給する前記駆動電源の電圧を分圧して、前記複数のコンパレータの他方の入力端子のそれぞれに入力する、分圧回路と、
     を含む、液体容器。
  14.  請求項7に記載の液体容器であって、
     前記電気回路は、メモリからの出力が制御電極に入力されるトランジスタを含み、
     前記トランジスタがオン状態にある場合と、前記トランジスタがオフ状態にある場合とで前記第1の端子の電圧が変動するように構成されることにより、前記液体噴射装置が前記第1の端子の電圧の変動を検知して前記メモリからの読み出しをできる、液体容器。
  15.  請求項7に記載の液体容器であって、
     前記電気回路は、
     前記第1の端子に前記発振回路と並列に接続され、前記第1の端子と前記メモリとの間に配置された整流回路を含む、液体容器。
  16.  請求項6または請求項7に記載の液体容器であって、
     前記発振装置は、圧電素子を含み、
     前記圧電素子は、前記液体容器に収容された液体の残量の検出に用いられる、液体容器。
  17.  請求項6または請求項7に記載の液体容器であって、
     前記発振装置は、前記液体容器に収容された液体の残量に関わらず、前記液体容器に前記液体が存在することを示す前記応答信号を出力する、液体容器。
  18.  第1の電気デバイスと第2の電気デバイスとを含む電気回路と、第1の端子と、第2の端子とを含む液体容器が装着される液体噴射装置であって、
     前記第1の端子と前記第2の端子を介して第1の信号を送受信して、前記第1のデバイスと通信する第1の通信処理部と、
     前記第1の端子と前記第2の端子を介して第2の信号を送受信して、前記第2のデバイスと通信する第2の通信処理部と、
     を備え、
     前記第1の信号の電圧と前記第2の信号の電圧は、異なる大きさを有する、液体噴射装置。
  19.  液体噴射システムであって、
     液体噴射装置と、
     前記液体噴射装置に装着可能な液体容器と、
     を備え、
     前記液体容器は、
     第1の電気デバイスと第2の電気デバイスとを含む電気回路と、
     第1の端子と、
     第2の端子と、
     を備え、
     前記電気回路は、前記液体噴射装置が第1の端子に入力する電位と前記第2の端子に入力する電位との端子間電位差を用いて前記第1の電気デバイスとの第1の通信と前記第2の電気デバイスとの第2の通信とを実行でき、異なる大きさの前記端子間電位差を用いることにより前記第1の通信と前記第2の通信を区別して実行できるように構成されている、液体噴射システム。
PCT/JP2009/003179 2008-07-11 2009-07-08 液体容器、液体噴射装置、および、液体噴射システム WO2010004742A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801269440A CN102089153A (zh) 2008-07-11 2009-07-08 液体容器、液体喷射装置以及液体喷射系统
JP2010519644A JPWO2010004742A1 (ja) 2008-07-11 2009-07-08 液体容器、液体噴射装置、および、液体噴射システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-180997 2008-07-11
JP2008180997 2008-07-11

Publications (1)

Publication Number Publication Date
WO2010004742A1 true WO2010004742A1 (ja) 2010-01-14

Family

ID=41504765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003179 WO2010004742A1 (ja) 2008-07-11 2009-07-08 液体容器、液体噴射装置、および、液体噴射システム

Country Status (4)

Country Link
US (1) US20100007685A1 (ja)
JP (1) JPWO2010004742A1 (ja)
CN (1) CN102089153A (ja)
WO (1) WO2010004742A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884408B2 (ja) * 2011-10-28 2016-03-15 セイコーエプソン株式会社 印刷装置及び印刷装置用回路基板
JP6823384B2 (ja) * 2016-05-27 2021-02-03 キヤノン株式会社 記録ヘッド、及び記録装置
JP7230234B2 (ja) 2019-04-19 2023-02-28 ヒューレット-パッカード デベロップメント カンパニー エル.ピー. 第1のメモリと第2のメモリを含む流体吐出デバイス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107000A (ja) * 1986-10-23 1988-05-12 Nec Corp プログラマブル・リ−ド・オンリ−・メモリ
JP2007326287A (ja) * 2006-06-08 2007-12-20 Seiko Epson Corp 液体消費装置および液体量判定方法
JP2007326298A (ja) * 2006-06-08 2007-12-20 Seiko Epson Corp 印刷装置、印刷材量検出方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6799820B1 (en) * 1999-05-20 2004-10-05 Seiko Epson Corporation Liquid container having a liquid detecting device
US7113547B2 (en) * 2001-08-24 2006-09-26 Matsushita Electric Industrial Co., Ltd. Data communication system, controller device and data communication method
JP4263023B2 (ja) * 2003-06-02 2009-05-13 パナソニック株式会社 2線式データ通信方法、システム、コントロール装置およびデータ記憶装置
KR100667761B1 (ko) * 2004-08-18 2007-01-11 삼성전자주식회사 화상 형성장치를 이용한 프린터 헤드의 구동신호 결정방법
JP4144637B2 (ja) * 2005-12-26 2008-09-03 セイコーエプソン株式会社 印刷材収容体、基板、印刷装置および印刷材収容体を準備する方法
JP4799292B2 (ja) * 2006-06-28 2011-10-26 キヤノン株式会社 記録ヘッド、ヘッドカートリッジ及びこれらのいずれかを用いた記録装置
JPWO2010004743A1 (ja) * 2008-07-11 2011-12-22 セイコーエプソン株式会社 液体容器、液体噴射装置、および、液体噴射システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107000A (ja) * 1986-10-23 1988-05-12 Nec Corp プログラマブル・リ−ド・オンリ−・メモリ
JP2007326287A (ja) * 2006-06-08 2007-12-20 Seiko Epson Corp 液体消費装置および液体量判定方法
JP2007326298A (ja) * 2006-06-08 2007-12-20 Seiko Epson Corp 印刷装置、印刷材量検出方法

Also Published As

Publication number Publication date
JPWO2010004742A1 (ja) 2011-12-22
US20100007685A1 (en) 2010-01-14
CN102089153A (zh) 2011-06-08

Similar Documents

Publication Publication Date Title
WO2010004743A1 (ja) 液体容器、液体噴射装置、および、液体噴射システム
US8177319B2 (en) Liquid jetting apparatus, liquid delivery system, and circuit board
KR20040010223A (ko) 카트리지 및 인쇄 장치
JP2009241591A (ja) 装着装置、基板、液体情報を変更する方法
US10996611B2 (en) Chip and replaceable unit of image forming apparatus
EP1389531A1 (en) Container for printing material, technique of detecting information on printing material in container, and technique of allowing for transmission of information between container and printing device
WO2010004742A1 (ja) 液体容器、液体噴射装置、および、液体噴射システム
KR20190110462A (ko) 액체 토출 장치
JP5176690B2 (ja) 液体供給装置、電気回路、および、液体噴射システム
JP2009196201A (ja) 液体噴射装置、液体容器、および、複数の液体容器の制御方法
WO2009113728A1 (ja) 液体容器、基板、液体情報を変更する方法
JP5146365B2 (ja) 液体容器、基板、液体情報を変更する方法
JP2010221484A (ja) 液体噴射装置、液体収容容器、及び、端子間の接続状態を検査する方法
JP2015020315A (ja) 印刷装置
JP4259059B2 (ja) カートリッジおよび印刷装置
JP2017136853A (ja) インクカートリッジ
JP2004050541A (ja) カートリッジおよび印刷装置
WO2008018176A1 (fr) Réservoir de liquide et dispositif consommateur de liquide
JP2006231631A (ja) 液体収納容器および記録装置
JP2012071615A (ja) 回路基板
JP2009101683A (ja) 液体噴射装置、および、液体噴射装置の制御方法
JP2010208271A (ja) 半導体装置、液体噴霧装置、液体噴霧システム
JP4488095B2 (ja) Icチップおよび印刷装置
JP2004090638A (ja) 印刷材の収容容器、収容容器において印刷材に関する検出を行なう装置および収容容器と印刷装置との間で情報をやりとりする方法
JP2015157442A (ja) 液体消費装置及び液体消費装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126944.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794190

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519644

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794190

Country of ref document: EP

Kind code of ref document: A1