WO2010001840A1 - X線ct装置 - Google Patents

X線ct装置 Download PDF

Info

Publication number
WO2010001840A1
WO2010001840A1 PCT/JP2009/061818 JP2009061818W WO2010001840A1 WO 2010001840 A1 WO2010001840 A1 WO 2010001840A1 JP 2009061818 W JP2009061818 W JP 2009061818W WO 2010001840 A1 WO2010001840 A1 WO 2010001840A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
time resolution
resolution rate
imaging
data
Prior art date
Application number
PCT/JP2009/061818
Other languages
English (en)
French (fr)
Inventor
博人 國分
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to US12/999,175 priority Critical patent/US8442292B2/en
Priority to JP2010519052A priority patent/JP5132774B2/ja
Priority to CN200980123670XA priority patent/CN102065770B/zh
Publication of WO2010001840A1 publication Critical patent/WO2010001840A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval

Definitions

  • the present invention relates to an X-ray CT (Computed Tomography) apparatus, and more particularly to an X-ray CT apparatus for cardiovascular imaging.
  • X-ray CT Computed Tomography
  • a biosensor such as an electrocardiograph or a respiration sensor
  • measurement by a device that converts physiological periodic motion into an electrical signal is performed.
  • photographing and image reconstruction are performed using the obtained electrical signal.
  • a reconstruction method targeting the heart is called an electrocardiographic synchronization reconstruction method.
  • the electrical signals measured by the electrocardiograph are added to the imaging data and collected, and image reconstruction is performed based on the obtained electrocardiographic information, and a cardiac tomogram at an arbitrary cardiac phase is obtained.
  • imaging data with different scans or views in the same cardiac time phase (hereinafter referred to as “division imaging data”) is collected from a plurality of heartbeats using an R wave of an electrocardiographic waveform as a reference. To do. It is possible to improve time resolution by reconstructing an image by combining the captured data thus collected.
  • the time resolution varies because the collection pattern of the divided shooting data differs depending on the heart rate and the shooting conditions.
  • the temporal resolution varies depending on the heart rate, scan speed, and bed movement speed. For example, as the bed moving speed is decreased, the number of pieces of divided photographing data that can be collected increases, so that the time resolution increases.
  • the time resolution of the divided reconstruction is affected by the heart rate of the patient and the imaging conditions. In actual imaging, it is necessary to determine imaging conditions so that the image quality necessary for diagnosis can be obtained in consideration of the breath holding time and the exposure dose.
  • first method for determining shooting conditions using the number of divided shooting data collected to create one image as an index.
  • an optimal shooting condition is selected to collect the number of divided shooting data specified by the operator.
  • the higher the number of divided image data to be collected the higher the time resolution can be obtained, but the exposure amount increases because the bed moving speed needs to be slowed down.
  • the amount of exposure can be reduced because the bed moving speed can be set faster as the number of divided photographing data is reduced, but the time resolution is deteriorated.
  • second method there is a method of determining shooting conditions using a bed moving speed as an index (hereinafter referred to as “second method”).
  • shooting is performed at a couch moving speed designated by the operator, and image reconstruction is performed using collectable shooting data that can be collected.
  • the slower the bed moving speed the higher the time resolution because more divided projection data can be collected.
  • the faster the bed moving speed the less the divided projection data that can be collected and the lower the time resolution.
  • the imaging conditions such as the number of divided imaging data or the bed moving speed must be adjusted according to the heart rate of the patient.
  • the heart rate of the patient When the heart rate of the patient is large, that is, when the heart beat period is short, the time for which the heart is at rest is also shortened.
  • the heart rate of the patient is small, that is, when the heart beat period is long, the time during which the heart is stationary also becomes long. Therefore, it is necessary to adjust the parameters to lower the time resolution and optimize the exposure dose.
  • the operator Since the heart rate fluctuates under the influence of imaging conditions such as the patient's health condition and breath holding time, the operator must carefully adjust the imaging parameters according to the heart rate. This operation requires a great amount of labor for the operator, which complicates the photographing operation and deteriorates the inspection efficiency.
  • the present invention has been made in view of the problems of the above-described divided reconstruction, and an object thereof is an X-ray CT capable of efficiently setting imaging conditions in imaging of a periodically moving organ such as the heart. Is to provide a device.
  • the first invention is an X-ray source that irradiates X-rays, and an X-ray that is disposed facing the X-ray source with the subject interposed therebetween and detects an X-ray dose transmitted through the subject.
  • a gantry that is equipped with a line detector, the X-ray source, and the X-ray detector, can rotate around the subject, a bed that can be moved by placing the subject, the X-ray source, and the X-ray detection
  • An arbitrary phase of the periodic motion based on the X-ray dose data and the periodic motion data
  • the control device for controlling the vessel, the gantry and the bed, the periodic motion measuring device for measuring the periodic motion of the subject
  • An X-ray CT apparatus comprising: an image processing device that generates a reconstructed image of a subject in the computer; and a display device that displays the reconstructed image, wherein the period of the periodic motion is calculated from the data of the periodic motion And time resolution which is a ratio between the time resolution of the reconstructed image and the period
  • the rate as an indicator, shooting condition calculating means for calculating a photographing condition
  • an X-ray CT apparatus comprising: a.
  • the first invention further comprises means for an operator to input the time resolution rate, and the imaging condition calculation means satisfies the time resolution rate input by the operator based on the data of the periodic motion. In this way, the shooting conditions may be calculated. In this way, by using the time resolution rate as an input value, the operator can set the shooting conditions using the time resolution rate that directly indicates good image quality as an index.
  • the first invention further comprises means for dividing the range of the time resolution rate into a plurality, and displaying the shooting mode for each of the divided ranges of the time resolution rate on the display device, the shooting condition
  • the calculation means may calculate the imaging condition so as to be within the range of the time resolution rate corresponding to the imaging mode selected by the operator based on the data of the periodic motion.
  • the first invention calculates the variation of the time resolution rate based on the data of the periodic motion for a certain period measured by the periodic motion measuring device, and displays the calculated variation of the time resolution rate in the display Means for displaying on the apparatus may be further provided. As a result, it is possible to visually confirm a change in the time resolution rate that is expected when shooting is performed under the desired shooting conditions, and the operator can efficiently determine the shooting conditions.
  • the first invention further includes means for displaying on the display device a rectangle for designating and inputting the time resolution rate, superimposed on a waveform indicating the data of the periodic motion measured by the periodic motion measuring device. It may be provided. By adjusting the position and width of the rectangle on the waveform in this way, it is possible to obtain a tomographic image with little motion artifacts with high accuracy and without depending on individual differences between subjects.
  • the periodic motion is a heartbeat of a subject
  • the imaging condition calculation means calculates imaging conditions based on a time from a T wave to an R wave in one cycle. May be. By using the time from the T wave to the R wave as a reference, it is possible to set shooting conditions linked to the heart rate, and to set shooting conditions with higher accuracy.
  • the first invention may further comprise means for displaying a sample image corresponding to the time resolution rate on the display device. As a result, the operator can determine shooting conditions efficiently.
  • an X-ray CT apparatus in which imaging conditions can be set efficiently in imaging of organs that periodically move, such as the heart.
  • FIG. 21 Hardware configuration of X-ray CT system Flow chart showing cardiac image reconstruction processing Diagram showing an example of an electrocardiogram waveform Diagram explaining the subject's one heartbeat cycle and expected time resolution
  • the figure which shows an example of the cardiac imaging condition setting screen 21 The figure which shows an example of the electrocardiogram synchronous image reconstruction method
  • FIG. 1 is a hardware configuration diagram of an X-ray CT apparatus.
  • the X-ray CT apparatus includes a scanner gantry 2, a bed 3, a display device 5, a periodic motion measuring device 6, an image processing device 7, a computer 12, an input device 13, and the like.
  • the scanner gantry 2 includes an X-ray tube 1, an X-ray detector 4, a rotating disk 8, a collimator 9, a rotation driving device 10, a measurement control device 11, and the like.
  • the X-ray tube 1 is an X-ray source and irradiates a subject with X-rays.
  • the X-ray detector 4 detects X-rays emitted from the X-ray tube 1 and transmitted through the subject.
  • the rotating disk 8 is rotated by the rotation driving device 10.
  • the measurement control device 11 controls the rotary drive device 10, controls the X-ray intensity generated from the X-ray tube 1, and detects measurement data. Further, the measurement control device 11 receives a control command from the computer 12. The operator inputs various data to the computer 12 via the input device 13.
  • the periodic motion measuring device 6 measures the periodic motion of the subject.
  • the subject to be imaged is described as a heart, and the periodic motion measuring device 6 is described as an electrocardiograph.
  • the present invention is not limited to these.
  • the imaging target is the lung
  • the periodic motion measuring device 6 may be a respirometer or the like.
  • the image processing device 7 creates imaging data from the measurement data detected by the scanner gantry 2, and processes the imaging data into a CT image signal.
  • the display device 5 displays a CT image, an imaging condition setting screen, and the like.
  • FIG. 2 is a flowchart showing a heart image reconstruction process. As shown in FIG. 2, the X-ray CT apparatus collects electrocardiographic information using the periodic motion measuring apparatus 6 (S1).
  • FIG. 3 is a diagram showing an example of an electrocardiogram waveform.
  • the position of the R wave which makes it easy to identify the peak position, is usually used as the reference signal.
  • the position of the P wave, Q wave, S wave, and T wave may be used as the reference signal.
  • the time resolution rate is a ratio between the time resolution of the image created by the image processing device 7 and the heartbeat cycle calculated based on the data of the periodic motion measured by the periodic motion measuring device 6.
  • the time resolution rate is handled as the input value. For example, (1) An image with 1 heartbeat cycle of 0.8 s and temporal resolution of 0.2 s and (2) An image with 1 heartbeat cycle of 1.0 s and temporal resolution of 0.2 s The image quality is inferior.
  • an image with a heart rate cycle of 0.8 s and a time resolution rate of 20% and (2) an image with a heart rate cycle of 1.0 s and a time resolution rate of 20% have the same image quality. Obviously, as in the embodiment of the present invention, by using the time resolution rate as an input value, the operator can set shooting conditions using the time resolution rate that directly indicates the quality of the image as an index. it can.
  • FIG. 4 is a diagram for explaining one heartbeat cycle and the expected time resolution of the subject.
  • one heartbeat cycle of the subject is 1.0 s.
  • the expected time resolution in the target examination is 0.2 s.
  • FIG. 5 is a diagram showing an example of the cardiac imaging condition setting screen 21.
  • the cardiac imaging condition setting screen 21 includes screen items such as an electrocardiogram display unit 22, a scan type display unit 23, a scan time display unit 24, a bed moving speed display unit 25, and a time resolution rate input unit 26.
  • the electrocardiogram information collected in S1 is displayed on the electrocardiogram display unit 22, and the electrocardiogram information is updated at regular intervals.
  • the scan type display unit 23, the scan time display unit 24, and the bed movement speed display unit 25 are boxes that display the calculation results of the computer 12, and the like.
  • the time resolution rate input unit 26 is an input box.
  • the time resolution rate input unit 26 may be a text box or a selection format such as a pull-down menu.
  • the set values displayed in FIG. 5 are set values corresponding to the one heartbeat cycle and the expected time resolution of the subject shown in FIG.
  • the electrocardiogram display unit 22 displays a waveform having a heart rate of “60 bpm”. That is, one heartbeat cycle of the subject is 1.0 s. Further, “20%” is input to the time resolution rate input unit 26 as described above with reference to FIG.
  • the scan type display unit 23 displays “heart”, the scan time display unit 24 displays “0.5 s”, and the couch moving speed display unit 25 displays “10.0 mm / rot”.
  • an average value of a plurality of heartbeats may be used as one heartbeat period used for calculation.
  • the imaging condition calculation unit 12a calculates imaging conditions necessary for realizing the calculated time resolution. Typical parameters for adjusting the time resolution include a scan speed and a bed moving speed. The calculated shooting conditions are displayed on the display device 5 as shown in FIG.
  • the relationship between time resolution and imaging conditions is determined depending on the specifications of the X-ray CT apparatus, imaging method, electrocardiographic synchronization reconstruction method, and the like. Therefore, for example, in accordance with the specifications of the X-ray CT apparatus, the imaging method, the electrocardiogram synchronization reconstruction method, etc., an imaging condition table in which the time resolution rate is associated with the imaging conditions is created in advance, and the measurement control apparatus 11 or the computer 12 may store the photographing condition table. Then, the imaging condition calculation unit 12a may acquire the imaging condition corresponding to the time resolution rate input in S2 from the imaging condition table.
  • the X-ray CT apparatus images the heart according to the imaging conditions calculated in S3 (S4). At this time, the X-ray CT apparatus acquires imaging data and also acquires electrocardiographic information by the periodic motion measuring apparatus 6.
  • the X-ray CT apparatus performs electrocardiogram synchronization image reconstruction using the imaging data and electrocardiogram information acquired in S4 (S5).
  • FIG. 6 is a diagram showing an example of an electrocardiogram-synchronized image reconstruction method.
  • a tomographic image of the relative position 80% of adjacent R waves is created.
  • the image processing device 7 collects divided shooting data having different shooting angles at the same time phase from the shooting data shot during three heartbeats by the shooting angle required for reconstruction (about 180 degrees). .
  • the shooting angle required for reconstruction about 180 degrees.
  • the X-ray CT apparatus displays the ECG synchronized image reconstructed in S5 on the display apparatus 5 (S6). Then, the operator refers to the electrocardiogram synchronization image displayed on the display device 5 and performs diagnosis.
  • the X-ray CT apparatus calculates the period of the periodic motion from the data of the periodic motion, and the ratio between the time resolution and the period of the reconstructed image generated by the image processing device 7.
  • An imaging condition calculation unit 12a that calculates imaging conditions using a certain time resolution rate as an index is provided.
  • the X-ray CT apparatus includes a means for an operator to input a time resolution rate as shown in FIG.
  • the time resolution rate input (S2) shown in FIG. 2 may be divided into several ranges and the operator may select the divided range as a shooting mode.
  • the time resolution rate is divided into ranges of 10 to 15%, 15 to 20%, and 20 to 25%, and the operator selects the divided range as a photographing mode.
  • the shooting condition calculation means 12a of the computer 12 calculates the shooting conditions so that the time resolution rate of the shooting data is within the range of the time resolution rate of the selected shooting mode.
  • the X-ray CT apparatus divides the range of the time resolution rate into a plurality, displays the imaging mode for each divided range of the time resolution rate on the display device 5, and the computer
  • the twelve shooting condition calculation means 12a may calculate the shooting conditions so as to be within the range of the time resolution rate corresponding to the shooting mode selected by the operator based on the data of the periodic motion.
  • the fluctuation of the heart rate during imaging occurs due to various factors such as breath holding and contrast medium administration, and affects the calculation of imaging conditions based on the time resolution rate. In order to suppress this influence, it is conceivable to perform a breath-holding exercise that simulates actual photographing before photographing, and to grasp the fluctuation tendency of the heart rate in advance. In this case, the imaging conditions are calculated using the average heart rate during breath holding practice as a parameter. However, when the heart rate fluctuates abruptly or when the imaging time is long, the optimal imaging condition may not be calculated even if the average heart rate is used.
  • the imaging time takes a long time
  • sudden cardiac motion such as extrasystole occurs, even if the average heart rate is calculated, it is not always possible to calculate correct imaging conditions.
  • the operator may manually determine the shooting conditions. Therefore, in order for the operator to determine the photographing conditions efficiently, a fluctuation graph of the time resolution rate during the breath holding practice may be provided.
  • FIG. 8 is a diagram showing an example of a cardiac imaging condition setting screen 21b that displays a fluctuation graph of a temporal resolution rate for a certain period.
  • the cardiac imaging condition setting screen 21b includes screen items such as a temporal resolution rate variation graph display unit 28, a scan time input unit 24b, and a bed moving speed input unit 25b.
  • the temporal resolution rate variation graph display unit 28 displays the heart rate during breath holding practice and the temporal change of the temporal resolution rate as a graph.
  • the scan time input unit 24b and the bed movement speed input unit 25b are input boxes.
  • the scan time input unit 24b and the bed movement speed input unit 25b may be a text box or a selection format such as a pull-down menu.
  • the computer 12 calculates a time resolution rate when shooting is performed according to the input shooting conditions.
  • the calculated time resolution rate is displayed on the display device 5. That is, the temporal resolution rate variation graph display unit 28 displays a temporal change in the temporal resolution rate (based on the temporal change in the heart rate) when photographing under the inputted photographing conditions. As a result, it is possible to visually confirm a change in the time resolution rate that is expected when shooting is performed under the desired shooting conditions, and the operator can efficiently determine the shooting conditions.
  • the X-ray CT apparatus calculates the variation of the time resolution rate based on the periodic motion data measured by the periodic motion measurement device 6 for a certain period, and calculates the calculated time.
  • the change in the resolution rate may be displayed on the display device 5.
  • FIG. 9 is a diagram showing an example of the time resolution rate & reconstructed cardiac phase setting screen 31.
  • the operator may set the time resolution rate and the position of the reconstructed cardiac phase using the screen shown in FIG.
  • the time resolution rate & reconstructed cardiac time phase setting screen 31 has screen items such as a heart rate display unit 32, a reconstructed cardiac time phase display unit 34, and a time resolution rate display unit 35.
  • a rectangle 33 is displayed so as to be superimposed on the waveform of an arbitrary one heartbeat.
  • the width of the rectangle 33 indicates the time resolution rate, and the time resolution rate is adjusted by changing the width of the rectangle 33 using the input device 13 such as a mouse.
  • the center position of the rectangle 33 indicates a reconstructed cardiac phase that is a cardiac phase in which reconstruction is performed.
  • the reconstructed cardiac phase is adjusted by moving the position of the rectangle 33.
  • the reconstructed cardiac phase display unit 34 and the time resolution rate display unit 35 values recalculated in accordance with the change of the rectangle 33 are displayed.
  • the operator can move the rectangle 33 by, for example, aligning the displayed pointer with the vicinity of the center line of the rectangle 33 and performing a drag and drop operation.
  • the operator for example, extends the rectangle 33 to the left and right by the same width from the center line by performing a drag and drop operation with the displayed pointer positioned near the left or right end of the rectangle 33. It can be narrowed.
  • the computer 12 inputs the width of the designated rectangle 33 and the position of the center line. Further, the computer 12 calculates values to be displayed on the reconstructed cardiac time phase display unit 34 and the time resolution rate display unit 35 from the horizontal width of the input rectangle 33 and the position of the center line.
  • the rectangle 33 is displayed so as to be superimposed on the electrocardiogram waveform, and by inputting the reconstructed cardiac time phase and the time resolution rate from the width and position of the rectangle 33, the imaging condition in consideration of the physiological information of the subject can be obtained.
  • Decisions can be made. For example, it is known that the contraction movement of the heart starts with the P wave as the starting point, and by setting the time resolution rate and the reconstructed cardiac time phase so that the right side of the rectangle does not overlap the P wave, It is possible to remove the influence of the contraction motion on the reconstructed image.
  • the X-ray CT apparatus displays a rectangle for designating and inputting a time resolution rate on the waveform indicating the data of the periodic motion measured by the periodic motion measuring device 6. 5 may be displayed.
  • the value displayed on the reconstruction cardiac time phase display unit 34 and the time resolution rate display unit 35 is calculated from the width and position of the rectangle 33
  • the input and output may be reversed. That is, numerical values are input to the reconstructed cardiac time phase display unit 34 and the temporal resolution rate display unit 35, the width and position of the rectangle 33 are calculated, and the rectangle 33 is displayed on the heart rate display unit 32 based on the calculated values. You may do it.
  • the imaging conditions are set so that the time resolution rate specified by the operator can be obtained in one heartbeat cycle.
  • the imaging conditions may be selected based on the time between the feature points of the electrocardiogram.
  • the time from the T wave to the R wave may be used as the time between the feature points of the electrocardiogram.
  • the operator designates the time from the T wave to the R wave and the desired time resolution rate, and the computer 12 sets the imaging conditions based on the time from the T wave to the R wave.
  • the heart rate fluctuates it is generally known that the time from the R wave to the T wave does not change greatly, but changes from the T wave to the next R wave.
  • the imaging condition calculation means 12a included in the computer 12 may calculate the imaging conditions based on the time from the T wave to the R wave in one cycle.
  • FIG. 10 is a diagram showing an example of the cardiac imaging condition setting screen 21c. Note that the same screen items as those of the cardiac imaging condition setting screen 21 shown in FIG. As shown in FIG. 10, the cardiac imaging condition setting screen 21c includes an electrocardiogram display unit 22, a scan type display unit 23, a scan time display unit 24, a bed movement speed display unit 25, a time resolution rate input unit 26, and a sample image display unit. It has 29 screen items.
  • the cardiac imaging condition setting screen 21c may display a sample image corresponding to the time resolution rate designated by the operator so that the operator can easily determine the time resolution rate.
  • the image quality differs depending on the heart rate of the subject even with the same time resolution, so it is necessary to prepare as many sample images as the number of combinations of time resolution and heart rate. It was not right.
  • it is only necessary to prepare a sample image based on the time resolution rate For example, when inputting the time resolution rate at 5% intervals, it is sufficient to prepare 20 sample images, which can be easily realized.
  • the sample image displayed on the sample image display unit 29 is updated each time the operator changes the value of the time resolution rate input unit 26.
  • the X-ray CT apparatus displays the sample image corresponding to the time resolution rate on the display device 5. Thereby, the operator can adjust the time resolution rate while confirming the image quality of the sample image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Physiology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 心臓など周期的に運動する臓器の撮影において、効率的に撮影条件が設定可能なX線CT装置を提供する。  X線CT装置は、周期運動計測装置6を用いて、心電情報を収集する(S1)。次に、操作者は、対象検査において期待する時間分解能に応じた時間分解能率を入力する(S2)。次に、X線CT装置は、S2で入力された時間分解能率が実現できるような撮影条件を算出する(S3)。次に、X線CT装置は、S3で算出した撮影条件によって心臓を撮影する(S4)。次に、X線CT装置は、S4で取得した撮影データ及び心電情報を用いて、心電同期画像再構成を行う(S5)。次に、X線CT装置は、S5で再構成した心電同期画像を表示装置5に表示する(S6)。

Description

X線CT装置
 本発明は、X線CT(Computed Tomography)装置に関し、特に心血管の撮影を目的としたX線CT装置に関する。
 運動する身体部位をX線CT装置で撮影した場合、得られた断層像には動きに起因するアーチファクトが発生する。このアーチファクトを低減するためには、一般的には心電計や呼吸センサなどの生体センサを用い、生理的な周期運動を電気信号に変換する機器による計測を合わせて行う。そして、得られた電気信号を用いて撮影、および画像再構成を行う。特に、心臓を対象とする再構成方法は、心電同期再構成方法と呼ばれている。この方法によれば、心電計によって計測された電気信号を撮影データに付加して収集し、得られた心電情報を基に画像再構成を行い、任意の心時相における心臓断層像を得ることができる。
 例えば、特許文献1の仕組みでは、複数の心拍から、心電波形のR波を基準として、同一の心時相におけるスキャンまたはビューの異なる撮影データ(以下、「分割撮影データ」という。)を収集する。こうして収集された撮影データを組み合わせて、画像を再構成することによって、時間分解能を向上させることが可能となる。
 しかし、特許文献1の仕組みなどによる分割式再構成は、心拍数と撮影条件によって分割撮影データの収集パターンが異なるため、時間分解能が変動する。時間分解能は、心拍数、スキャン速度、寝台移動速度に依存して変動する。例えば、寝台移動速度を小さくするほど、収集可能な分割撮影データ数が増えるため、時間分解能は高くなる。この様に分割式再構成の時間分解能は、患者の心拍数と撮影条件の影響を受ける。実際の撮影では、息止め時間や被曝量を考慮しながら、診断に必要な画質が得られるように撮影条件を決定する必要がある。
 例えば、一つの画像を作成するために収集する分割撮影データ数を指標として撮影条件を決定する方法(以下、「第1の方法」という。)がある。第1の方法では、操作者が指定した分割撮影データ数を収集するために最適な撮影条件を選択する。一般に、収集する分割撮影データ数を増やすほど高い時間分解能が得られるが、寝台移動速度を遅くする必要があるため被曝量が増加する。逆に、分割撮影データ数を減らすほど寝台移動速度を早く設定できるため被曝量は減少するが、時間分解能が悪くなる。
 また、例えば、寝台移動速度を指標として撮影条件を決定する方法(以下、「第2の方法」という。)がある。第2の方法では、操作者が指定した寝台移動速度で撮影を行い、収集可能な分割撮影データを用いて画像再構成を行う。一般に、寝台移動速度を遅くするほど、分割投影データを多く収集できるため時間分解能が高くなる。逆に、寝台移動速度を速くするほど、収集可能な分割投影データが少なくなり時間分解能が低くなる。
特開2000-107174号公報
 しかしながら、前述の第1の方法、または第2の方法では、患者の心拍数によって、分割撮影データ数、または寝台移動速度などの撮影条件を調整しなければならない。患者の心拍数が大きい場合、すなわち心臓の拍動周期が短い場合、心臓が静止する時間も短くなるため、診断に必要な断層像を作成するには、パラメータを調整して時間分解能を上げる必要がある。逆に患者の心拍数が小さい場合、すなわち心臓の拍動周期が長い場合、心臓が静止する時間も長くなるため、パラメータを調整して時間分解能を下げ、被曝量を最適化する必要がある。心拍数は、患者の健康状態、息止め時間などの撮影条件などの影響を受けて変動するため、操作者は心拍数に応じて、撮影パラメータを注意深く調整しなければならない。この作業は操作者の労力が大きく、撮影業務の煩雑化、検査効率の悪化を招いていた。
 また、前述の第1の方法、または第2の方法では、分割撮影データ数、寝台移動速度などの撮影パラメータが、最終的に得られる断層像に与える影響を操作者が把握することが困難である。操作者が撮影パラメータを決定するには、まず任意のパラメータを設定した場合の時間分解能を把握しなければならない。この作業を行う為には、心臓撮影手法を十分に学習するとともに、装置固有の撮影機能を理解することが必要である。また得られる時間分解能が検査目的に沿うものであるかどうかは、患者の心拍数を考慮した上で、注意深く検討しなければならない。これらの作業を行う為には、操作者の撮影技術の熟練が必要である。また、撮影技術に熟練した操作者であっても、負荷が大きく、撮影業務の煩雑化、検査効率の悪化を招いていた。
 本発明は、前述の分割式再構成が抱える問題点に鑑みてなされたもので、その目的は、心臓など周期的に運動する臓器の撮影において、効率的に撮影条件が設定可能なX線CT装置を提供することである。
 前述した目的を達成するために第1の発明は、X線を照射するX線源と、被検体を挟んで前記X線源と対向して配置され被検体を透過したX線量を検出するX線検出器と、前記X線源及び前記X線検出器を搭載し、被検体の周囲を回転可能なガントリと、被検体を乗せて移動可能な寝台と、前記X線源、前記X線検出器、前記ガントリ及び前記寝台を制御する制御装置と、被検体の周期運動を計測する周期運動計測装置と、前記X線量のデータ及び前記周期運動のデータを基に、前記周期運動の任意の位相における被検体の再構成画像を生成する画像処理装置と、前記再構成画像を表示する表示装置と、を具備するX線CT装置であって、前記周期運動のデータから前記周期運動の周期を算出し、前記再構成画像の時間分解能と前記周期との比である時間分解能率を指標として、撮影条件を算出する撮影条件算出手段、を備えることを特徴とするX線CT装置である。
 第1の発明は、操作者が前記時間分解能率を入力する手段、を更に具備し、前記撮影条件算出手段は、前記周期運動のデータを基に、操作者が入力した前記時間分解能率を満たすように撮影条件を算出しても良い。このように、時間分解能率を入力値とすることで、操作者は、画質の良さを直接的に示す時間分解能率を指標として、撮影条件の設定を行うことができる。
 また、第1の発明は、前記時間分解能率の範囲を複数に分割し、分割された前記時間分解能率の範囲ごとの撮影モードを前記表示装置に表示する手段、を更に具備し、前記撮影条件算出手段は、前記周期運動のデータを基に、操作者が選択した前記撮影モードに対応する前記時間分解能率の範囲に納まるように撮影条件を算出しても良い。これによって、実現可能な撮影条件が限定されている場合であっても、効率的に撮影条件を設定することができる。
 また、第1の発明は、前記周期運動計測装置が計測した一定期間の前記周期運動のデータを基に、前記時間分解能率の変動を算出し、算出された前記時間分解能率の変動を前記表示装置に表示する手段、を更に具備しても良い。これによって、希望する撮影条件によって撮影するときに予想される時間分解能率の変化を視覚的に確認することができ、操作者は効率良く撮影条件を決定することが可能となる。
 また、第1の発明は、前記周期運動計測装置が計測した前記周期運動のデータを示す波形に重ねて、前記時間分解能率を指定入力するための矩形を前記表示装置に表示する手段、を更に具備しても良い。このように波形上で矩形の位置と幅を調整すれば、精度良く、更には被検体の個体差に依らず、動きアーチファクトの少ない断層像を得ることが可能となる。
 また、第1の発明は、前記周期運動が、被検体の心拍動であって、前記撮影条件算出手段が、1周期中のT波からR波までの時間を基準として、撮影条件を算出しても良い。T波からR波までの時間を基準とすることで、心拍数に連動した撮影条件の設定を行うことが可能となり、より精度良く撮影条件を設定することができる。
 また、第1の発明は、前記時間分解能率に応じたサンプル画像を前記表示装置に表示する手段、を更に具備しても良い。これによって、操作者は効率良く撮影条件を決定することが可能となる。
 本発明により、心臓など周期的に運動する臓器の撮影において、効率的に撮影条件が設定可能なX線CT装置を提供することができる。
X線CT装置のハードウェア構成図 心臓画像の再構成処理を示すフローチャート 心電波形の一例を示す図 被検体の1心拍周期と期待する時間分解能を説明する図 心臓撮影条件設定画面21の一例を示す図 心電同期画像再構成方法の一例を示す図 時間分解能率を撮影モードとして入力する心臓撮影条件設定画面21aの一例を示す図 一定期間の時間分解能率の変動グラフを表示する心臓撮影条件設定画面21bの一例を示す図 時間分解能率&再構成心時相設定画面31の一例を示す図 心臓撮影条件設定画面21cの一例を示す図
 以下図面に基づいて、本発明の実施形態を詳細に説明する。
 (1.X線CT装置の構成)
 図1は、X線CT装置のハードウェア構成図である。X線CT装置は、スキャナガントリ2、寝台3、表示装置5、周期運動計測装置6、画像処理装置7、コンピュータ12、入力装置13等から構成される。
 スキャナガントリ2は、X線管1、X線検出器4、回転円盤8、コリメータ9、回転駆動装置10、測定制御装置11等を備える。X線管1は、X線源であり被検体にX線を照射するものである。X線検出器4は、X線管1から放射されて被検体を透過したX線を検出するものである。回転円盤8は、回転駆動装置10によって回転する。測定制御装置11は、回転駆動装置10を制御し、X線管1から発生するX線強度を制御し、計測データを検出する。また、測定制御装置11は、コンピュータ12から制御命令を受信する。操作者は、入力装置13を介して、コンピュータ12に各種データを入力する。
 周期運動計測装置6は、被検体の周期運動を計測する。以下では、撮影対象を心臓、周期運動計測装置6を心電計として説明するが、これらに限定されるものではない。例えば、撮影対象が肺の場合、周期運動計測装置6は、呼吸計などでも良い。画像処理装置7は、スキャナガントリ2で検出された計測データから撮影データを作成し、その撮影データをCT画像信号に処理する。表示装置5は、CT画像や撮影条件の設定画面などを表示する。
 (2.X線CT装置の処理内容)
 図2は、心臓画像の再構成処理を示すフローチャートである。図2に示すように、X線CT装置は、周期運動計測装置6を用いて、心電情報を収集する(S1)。
 図3は、心電波形の一例を示す図である。心拍周期を算出する場合、通常はピーク位置の特定が容易であるR波の位置を基準信号として用いる。しかし、P波、Q波、S波、T波の位置を基準信号として用いても構わない。
 次に、操作者は、対象検査において期待する時間分解能率を入力する(S2)。具体的には、操作者が入力装置13を介してコンピュータ12に時間分解能率を入力する。時間分解能率とは、画像処理装置7が作成する画像の時間分解能と、周期運動計測装置6が計測した周期運動のデータを基に算出した心拍周期との比である。本発明の実施の形態では、時間分解能ではなく、時間分解能率を入力値として取り扱う。例えば、(1)1心拍周期が0.8s、時間分解能が0.2sの画像と、(2)1心拍周期が1.0s、時間分解能が0.2sの画像とでは、(1)の画像の方が画質は劣る。一方、(1)心拍周期が0.8s、時間分解能率が20%の画像と、(2)心拍周期が1.0s、時間分解能率が20%の画像とでは、両者の画質が同程度になる。従って、本発明の実施の形態のように、時間分解能率を入力値とすることで、操作者は、画質の良さを直接的に示す時間分解能率を指標として、撮影条件の設定を行うことができる。
 図4は、被検体の1心拍周期と期待する時間分解能を説明する図である。図4に示すように、被検体の1心拍周期は1.0sである。また、対象検査において期待する時間分解能は0.2sである。この場合、操作者は、0.2/1.0=0.2(20%)を時間分解能率としてコンピュータ12に入力すれば良い。
 図5は、心臓撮影条件設定画面21の一例を示す図である。心臓撮影条件設定画面21は、心電図表示部22、スキャンタイプ表示部23、スキャン時間表示部24、寝台移動速度表示部25、時間分解能率入力部26等の画面項目を有する。心電図表示部22には、S1で収集された心電情報が表示され、心電情報は一定時間ごとに更新される。スキャンタイプ表示部23、スキャン時間表示部24、寝台移動速度表示部25は、コンピュータ12の算出結果などを表示するボックスである。時間分解能率入力部26は、入力用のボックスである。時間分解能率入力部26は、テキストボックスとしても良いし、プルダウンメニューなどの選択形式としても良い。
 図5に表示されている設定値は、図4に示した被検体の1心拍周期と期待する時間分解能に対応する設定値である。心電図表示部22には、心拍数が「60bpm」の波形が表示されている。すなわち、被検体の1心拍周期は、1.0sである。また、時間分解能率入力部26には、図4の説明にて前述したように、「20%」が入力されている。そして、スキャンタイプ表示部23には「心臓」、スキャン時間表示部24には「0.5s」、寝台移動速度表示部25には「10.0mm/rot」が表示されている。
 次に、X線CT装置は、S2で入力された時間分解能率が実現できるような撮影条件を算出する(S3)。具体的には、最初に、コンピュータ12の撮影条件算出手段12aは、S1で計測した1心拍周期において、目標とする時間分解能率を得るために必要な時間分解能を算出する。この時間分解能は、1心拍周期×時間分解能率によって算出される。例えば、被検体の1心拍周期が1.0sの場合、時間分解能率が0.2(20%)を得るための時間分解能は、1.0×0.2=0.2sと算出される。ここで、算出に用いられる1心拍周期は、複数心拍の平均値を使用しても良い。一般的に心拍数は様々な要因に依って変動するため、複数心拍の平均値を用いることで、時間分解能の算出精度の向上が期待できる。次に、撮影条件算出手段12aは、算出した時間分解能を実現するために必要な撮影条件を算出する。時間分解能を調整するための代表的なパラメータとしては、スキャン速度と寝台移動速度がある。算出した撮影条件は、図5に示したように、表示装置5に表示される。
 時間分解能と撮影条件の関係は、X線CT装置の仕様、撮影方法、心電同期再構成方法等に依存して決まる。そこで、例えば、X線CT装置の仕様、撮影方法、心電同期再構成方法等に応じて、時間分解能率と撮影条件とを対応付けた撮影条件テーブルを事前に作成しておき、測定制御装置11、またはコンピュータ12が撮影条件テーブルを記憶しておくようにしても良い。そして、撮影条件算出手段12aは、撮影条件テーブルから、S2で入力された時間分解能率に対応する撮影条件を取得するようにしても良い。
 次に、X線CT装置は、S3で算出した撮影条件によって心臓を撮影する(S4)。このとき、X線CT装置は、撮影データを取得するとともに、周期運動計測装置6による心電情報の取得も行う。
 次に、X線CT装置は、S4で取得した撮影データ及び心電情報を用いて、心電同期画像再構成を行う(S5)。
 図6は、心電同期画像再構成方法の一例を示す図である。図6に示す例では、隣接するR波の相対位置80%の断層像を作成する。具体的には、画像処理装置7は、3心拍中に撮影された撮影データから、同じ時相で撮影角度の異なる分割撮影データを再構成に必要な撮影角度分(約180度)だけ収集する。図6に示す例では、R0~R1の間の撮影データから0π~π/3の撮影角度の分割撮影データ、R1~R2の間の撮影データからπ/3~2π/3(X線管1の位置では7π/3~8π/3)の撮影角度の分割撮影データ、R2~R3の間の撮影データから2π/3~π(X線管1の位置では14π/3~5π)の撮影角度の分割撮影データを収集している。そして、画像処理装置7は、収集した分割撮影データを組み合わせて得られた必要な撮影角度分の撮影データに対して画像再構成を行う。また、任意のスライス位置における断層像を作成するためには、X線検出器4の列から得られた撮影データ間で補間処理を施すことによって同一スライス位置のデータセットを作成し、画像再構成を行う。
 次に、X線CT装置は、S5で再構成した心電同期画像を表示装置5に表示する(S6)。そして、操作者は、表示装置5に表示された心電同期画像を参照し、診断を行う。
 このように、本発明の実施の形態に係るX線CT装置は、周期運動のデータから周期運動の周期を算出し、画像処理装置7が生成する再構成画像の時間分解能と周期との比である時間分解能率を指標として、撮影条件を算出する撮影条件算出手段12aを具備する。また、X線CT装置は、図5に示すような操作者が時間分解能率を入力する手段、を具備する。
 (3.時間分解能率の撮影モードとしての入力)
 前述したX線CT装置の処理では、操作者が入力した時間分解能率に応じた撮影条件を算出する。しかし、実際の撮影では、選択可能な撮影条件は限定されており、厳密に期待する時間分解能率を実現する撮影条件を操作者に対して提案することは難しい。そこで、図2に示す時間分解能率の入力(S2)は、時間分解能率を幾つかの範囲に分割し、操作者は分割した範囲を撮影モードとして選択する方法を取ってもよい。
 図7は、時間分解能率を撮影モードとして入力する心臓撮影条件設定画面21aの一例を示す図である。尚、図5に示す心臓撮影条件設定画面21と同様の画面項目は、同様の番号を付して説明を省略する。図7に示すように、心臓撮影条件設定画面21aは、心電図表示部22、スキャンタイプ表示部23、スキャン時間表示部24、寝台移動速度表示部25、撮影モード入力部27等の画面項目を有する。図7の例では、撮影モード入力部27の選択肢は、高画質モード(=時間分解能率が10~15%)、標準モード(=時間分解能率が15~20%)、高速モード(=時間分解能率が20~25%)の3つである。すなわち、時間分解能率を10~15%、15~20%、20~25%の範囲に分割し、操作者は分割した範囲を撮影モードとして選択する。そして、コンピュータ12の撮影条件算出手段12aは、選択された撮影モードの時間分解能率の範囲内に、撮影データの時間分解能率が収まるように撮影条件を算出する。このように、本発明の実施の形態に係るX線CT装置は、時間分解能率の範囲を複数に分割し、分割された時間分解能率の範囲ごとの撮影モードを表示装置5に表示し、コンピュータ12の撮影条件算出手段12aが、周期運動のデータを基に、操作者が選択した撮影モードに対応する時間分解能率の範囲に納まるように撮影条件を算出するようにしても良い。
 (4.時間分解能率の息止め練習中の表示)
 撮影中の心拍数の変動は、息止めや造影剤投与などの様々な要因に依って発生し、時間分解能率に基づいた撮影条件の算出に影響を与える。この影響を抑えるために、撮影前に実際の撮影を模擬した息止め練習を行い、心拍数の変動傾向を予め把握することが考えられる。この場合、息止め練習中の平均心拍数をパラメータとして、撮影条件を算出する。ただし、心拍数が急激に変動する場合や、撮影時間が長時間に及ぶ場合は、平均心拍数を使用しても最適な撮影条件が算出できない可能性がある。例えば撮影時間が長時間に及ぶ場合は、診断の重要性が高い身体部位で最も高い時間分解能が得られるように撮影条件を設定する必要がある。また期外収縮などの突発的な心運動が発生する場合は、平均心拍数を算出したとしても、正しい撮影条件を算出できるとは限らない。このような場合、操作者は撮影条件を手動にて決定しても良い。そこで、操作者が効率よく撮影条件を決定するために、息止め練習中の時間分解能率の変動グラフを提供しても良い。
 図8は、一定期間の時間分解能率の変動グラフを表示する心臓撮影条件設定画面21bの一例を示す図である。尚、図5に示す心臓撮影条件設定画面21と同様の画面項目は、同様の番号を付して説明を省略する。図8に示すように、心臓撮影条件設定画面21bは、時間分解能率の変動グラフ表示部28、スキャン時間入力部24b、寝台移動速度入力部25b等の画面項目を有する。時間分解能率の変動グラフ表示部28には、息止め練習中の心拍数と、時間分解能率の時間変化がグラフとして表示されている。スキャン時間入力部24b、寝台移動速度入力部25bは、入力用のボックスである。スキャン時間入力部24b、寝台移動速度入力部25bは、テキストボックスとしても良いし、プルダウンメニューなどの選択形式としても良い。
 操作者が入力装置13を介してスキャン時間入力部24b、寝台移動速度入力部25bに希望する撮影条件を入力すると、コンピュータ12は、入力された撮影条件によって撮影したときの時間分解能率を算出し、表示装置5に算出した時間分解能率を表示する。すなわち、時間分解能率の変動グラフ表示部28には、入力された撮影条件によって撮影したときの時間分解能率の時間変化(心拍数の時間変化に基づく。)がグラフとして表示される。これによって、希望する撮影条件によって撮影するときに予想される時間分解能率の変化を視覚的に確認することができ、操作者は効率良く撮影条件を決定することが可能となる。このように、本発明の実施の形態に係るX線CT装置は、周期運動計測装置6が計測した一定期間の周期運動のデータを基に、時間分解能率の変動を算出し、算出された時間分解能率の変動を表示装置5に表示するようにしても良い。
 (5.時間分解能率と心時相位置の入力)
 図9は、時間分解能率&再構成心時相設定画面31の一例を示す図である。操作者は、図9に示す画面を用いて、時間分解能率と再構成心時相の位置を設定しても良い。図9に示すように、時間分解能率&再構成心時相設定画面31は、心拍表示部32、再構成心時相表示部34、時間分解能率表示部35等の画面項目を有する。心拍表示部32には、任意の1心拍の波形に重ねて、矩形33が表示される。矩形33の幅が時間分解能率を示しており、矩形33の幅をマウス等の入力装置13を用いて変更することによって時間分解能率を調整する。矩形33の中心位置が再構成を行う心時相である再構成心時相を示しており、矩形33の位置を移動することにより、再構成心時相を調整する。再構成心時相表示部34、時間分解能率表示部35には、矩形33の変化に応じて再計算された値が表示される。
 操作者は、例えば、表示されているポインタを矩形33の中心線付近に合わせて、ドラッグ&ドロップ操作を行うことによって、矩形33を移動させることができる。また、操作者は、例えば、表示されているポインタを矩形33の左右のいずれかの端付近に合わせて、ドラッグ&ドロップ操作を行うことによって、中心線から同じ幅だけ左右に矩形33を広げることや狭めることができる。コンピュータ12は、指定された矩形33の横幅及び中心線の位置を入力する。また、コンピュータ12は、入力した矩形33の横幅及び中心線の位置から、再構成心時相表示部34、時間分解能率表示部35に表示する値を算出する。
 このように、心電波形に重ねて矩形33を表示し、矩形33の横幅及び位置から再構成心時相及び時間分解能率を入力することで、被検体の生理的情報を考慮した撮影条件の決定が可能となる。例えば、心臓の収縮運動はP波を始点として開始されることが知られており、矩形の右辺がP波に重ならないように時間分解能率と再構成心時相を設定することで、心臓の収縮運動が再構成画像に与える影響を取り除くことが可能となる。このように心電波形上で矩形の位置と幅を調整すれば、精度良く、更には被検体の個体差に依らず、動きアーチファクトの少ない断層像を得ることが可能となる。このように、本発明の実施の形態に係るX線CT装置は、周期運動計測装置6が計測した周期運動のデータを示す波形に重ねて、時間分解能率を指定入力するための矩形を表示装置5に表示しても良い。
 尚、矩形33の横幅及び位置から、再構成心時相表示部34、時間分解能率表示部35に表示する値を算出するとしたが、入力と出力が逆であっても良い。すなわち、再構成心時相表示部34、時間分解能率表示部35に数値を入力し、矩形33の横幅及び位置を算出して、算出した値に基づいて矩形33を心拍表示部32に表示するようにしても良い。
 (6.波形の一部を用いた時間分解能率の入力)
 これまでの説明では、1心拍周期において、操作者が指定した時間分解能率が得られるように撮影条件を設定したが、心電図の特徴点間の時間を基準に撮影条件を選択してもよい。例えば、心電図の特徴点間の時間としてT波からR波までの時間としても良い。この場合、操作者は、T波からR波までの時間および希望する時間分解能率を指定し、コンピュータ12は、T波からR波までの時間を基準として撮影条件を設定する。心拍数が変動する場合、一般的にR波からT波までの時間は大きく変わらず、T波から次のR波までの時間に変化することが知られている。つまり、T波からR波までの時間を基準とすることで、心拍数に連動した撮影条件の設定を行うことが可能となり、より精度良く撮影条件を設定することができる。このように、コンピュータ12が具備する撮影条件算出手段12aは、1周期中のT波からR波までの時間を基準として、撮影条件を算出するようにしても良い。
 (7.時間分解能率を指標としたサンプル画像の表示)
 図10は、心臓撮影条件設定画面21cの一例を示す図である。尚、図5に示す心臓撮影条件設定画面21と同様の画面項目は、同様の番号を付して説明を省略する。図10に示すように、心臓撮影条件設定画面21cは、心電図表示部22、スキャンタイプ表示部23、スキャン時間表示部24、寝台移動速度表示部25、時間分解能率入力部26、サンプル画像表示部29等の画面項目を有する。
 心臓撮影条件設定画面21cには、操作者が時間分解能率を容易に決定できるように、操作者が指定した時間分解能率に相当するサンプル画像を表示しても良い。従来の時間分解能を基準とした撮影条件の選択方法では、同じ時間分解能でも被検体の心拍数によって画質が異なるため、時間分解能と心拍数の組み合わせの数だけサンプル画像を用意する必要があり、現実的ではなかった。しかし、本発明の実施の形態における時間分解能率を基準とした撮影条件の決定方法では、時間分解能率に基づくサンプル画像だけを用意すればよい。例えば、時間分解能率を5%間隔で入力する場合、サンプル画像は20個用意すれば良く、容易に実現可能である。
 図10に示す例では、操作者が時間分解能率入力部26の数値を変更するたびに、サンプル画像表示部29に表示されるサンプル画像が更新される。このように、本発明の実施の形態に係るX線CT装置は、時間分解能率に応じたサンプル画像を表示装置5に表示する。これによって、操作者は、サンプル画像の画質を確認しながら時間分解能率を調整できる。
 以上、添付図面を参照しながら、本発明に係るX線CT装置等の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 1 X線管、2 スキャナガントリ、3 寝台、4 X線検出器、5 表示装置、6 周期運動計測装置、7 画像処理装置、8 回転円盤、9 コリメータ、10 回転駆動装置、11 測定制御装置、12 コンピュータ、12a 撮影条件算出手段、13 入力装置

Claims (7)

  1.  X線を照射するX線源と、被検体を挟んで前記X線源と対向して配置され被検体を透過したX線量を検出するX線検出器と、前記X線源及び前記X線検出器を搭載し、被検体の周囲を回転可能なガントリと、被検体を乗せて移動可能な寝台と、前記X線源、前記X線検出器、前記ガントリ及び前記寝台を制御する制御装置と、被検体の周期運動を計測する周期運動計測装置と、前記X線量のデータ及び前記周期運動のデータを基に、前記周期運動の任意の位相における被検体の再構成画像を生成する画像処理装置と、前記再構成画像を表示する表示装置と、を具備するX線CT装置であって、
     前記周期運動のデータから前記周期運動の周期を算出し、前記再構成画像の時間分解能と前記周期との比である時間分解能率を指標として、撮影条件を算出する撮影条件算出手段、を備えることを特徴とするX線CT装置。
  2.  操作者が前記時間分解能率を入力する手段、を更に具備し、
     前記撮影条件算出手段は、前記周期運動のデータを基に、操作者が入力した前記時間分解能率を満たすように撮影条件を算出することを特徴とする請求項1に記載のX線CT装置。
  3.  前記時間分解能率の範囲を複数に分割し、分割された前記時間分解能率の範囲ごとの撮影モードを前記表示装置に表示する手段、を更に具備し、
     前記撮影条件算出手段は、前記周期運動のデータを基に、操作者が選択した前記撮影モードに対応する前記時間分解能率の範囲に納まるように撮影条件を算出することを特徴とする請求項1に記載のX線CT装置。
  4.  前記周期運動計測装置が計測した一定期間の前記周期運動のデータを基に、前記時間分解能率の変動を算出し、算出された前記時間分解能率の変動を前記表示装置に表示する手段、を更に具備することを特徴とする請求項1に記載のX線CT装置。
  5.  前記周期運動計測装置が計測した前記周期運動のデータを示す波形に重ねて、前記時間分解能率を指定入力するための矩形を前記表示装置に表示する手段、を更に具備することを特徴とする請求項1に記載のX線CT装置。
  6.  前記周期運動は、被検体の心拍動であって、
     前記撮影条件算出手段は、1周期中のT波からR波までの時間を基準として、撮影条件を算出することを特徴とする請求項1に記載のX線CT装置。
  7.  前記時間分解能率に応じたサンプル画像を前記表示装置に表示する手段、を更に具備することを特徴とする請求項1に記載のX線CT装置。
PCT/JP2009/061818 2008-07-01 2009-06-29 X線ct装置 WO2010001840A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/999,175 US8442292B2 (en) 2008-07-01 2009-06-29 X-ray CT apparatus
JP2010519052A JP5132774B2 (ja) 2008-07-01 2009-06-29 X線ct装置
CN200980123670XA CN102065770B (zh) 2008-07-01 2009-06-29 X射线ct装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008172067 2008-07-01
JP2008-172067 2008-07-01

Publications (1)

Publication Number Publication Date
WO2010001840A1 true WO2010001840A1 (ja) 2010-01-07

Family

ID=41465935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061818 WO2010001840A1 (ja) 2008-07-01 2009-06-29 X線ct装置

Country Status (4)

Country Link
US (1) US8442292B2 (ja)
JP (1) JP5132774B2 (ja)
CN (1) CN102065770B (ja)
WO (1) WO2010001840A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009043633A1 (de) * 2009-09-29 2011-03-31 Siemens Aktiengesellschaft Verbesserte Abtastung eines zyklisch bewegten Untersuchungsobjektes unter Einsatz eines Kontrastmittels im Rahmen einer Voruntersuchung mittels eines CT-Gerätes
CN103257836B (zh) * 2013-04-19 2016-08-03 深圳市科曼医疗设备有限公司 分配的输出装置与输出方法
KR101797042B1 (ko) * 2015-05-15 2017-11-13 삼성전자주식회사 의료 영상 합성 방법 및 장치
US10475216B2 (en) * 2018-02-26 2019-11-12 General Electric Company Imaging system and method using learned phase acquisition to acquire images
CN109602437A (zh) * 2018-12-06 2019-04-12 宁波耀通管阀科技有限公司 可控型纳米焦点ct机
JP7308694B2 (ja) * 2019-08-27 2023-07-14 キヤノン株式会社 放射線撮像装置の制御装置及び制御方法並びに放射線撮像システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275440A (ja) * 2003-03-14 2004-10-07 Toshiba Corp X線コンピュータ断層撮影装置
JP2005168948A (ja) * 2003-12-15 2005-06-30 Hitachi Medical Corp X線ct装置
WO2006018763A1 (en) * 2004-08-12 2006-02-23 Philips Intellectual Property & Standards Gmbh Computer tomography scanner having an adjustable rotational speed
JP2006150033A (ja) * 2004-03-09 2006-06-15 Toshiba Corp X線曝射報告システム、医用装置及び検査プロトコル配信システム
JP2007000408A (ja) * 2005-06-24 2007-01-11 Ge Medical Systems Global Technology Co Llc X線ct装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1560722A (en) * 1975-04-23 1980-02-06 Jeol Ltd Scanning electron microscope
US4812996A (en) * 1986-11-26 1989-03-14 Tektronix, Inc. Signal viewing instrumentation control system
US5155836A (en) * 1987-01-27 1992-10-13 Jordan Dale A Block diagram system and method for controlling electronic instruments with simulated graphic display
US5939877A (en) * 1997-05-27 1999-08-17 Hewlett-Packard Company Graphical system and method for automatically scaling waveforms in a signal measurement system
US7209779B2 (en) * 2001-07-17 2007-04-24 Accuimage Diagnostics Corp. Methods and software for retrospectively gating a set of images
US7006593B2 (en) * 2001-11-30 2006-02-28 Hitachi Medical Corporation Method of producing cardiac tomogram and tomograph using x-ray ct apparatus
JP4157302B2 (ja) * 2002-01-10 2008-10-01 株式会社日立メディコ X線ct装置
US6904118B2 (en) * 2002-07-23 2005-06-07 General Electric Company Method and apparatus for generating a density map using dual-energy CT
WO2004071301A1 (ja) * 2003-02-14 2004-08-26 Hitachi Medical Corporation X線ct装置
US7343193B2 (en) * 2003-06-16 2008-03-11 Wisconsin Alumni Research Foundation Background suppression method for time-resolved magnetic resonance angiography
JP4889482B2 (ja) * 2004-03-19 2012-03-07 株式会社日立メディコ 画像データ収集制御方法、画像データ収集装置、及び画像データ収集装置の制御装置
CN100515341C (zh) 2004-03-19 2009-07-22 株式会社日立医药 图像数据收集控制方法以及图像数据收集装置
US7505550B2 (en) * 2004-06-16 2009-03-17 Hitachi Medical Corporation Radiotomography apparatus
JP2007175258A (ja) * 2005-12-28 2007-07-12 Ge Medical Systems Global Technology Co Llc 放射線断層撮影装置及び放射線断層撮影方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275440A (ja) * 2003-03-14 2004-10-07 Toshiba Corp X線コンピュータ断層撮影装置
JP2005168948A (ja) * 2003-12-15 2005-06-30 Hitachi Medical Corp X線ct装置
JP2006150033A (ja) * 2004-03-09 2006-06-15 Toshiba Corp X線曝射報告システム、医用装置及び検査プロトコル配信システム
WO2006018763A1 (en) * 2004-08-12 2006-02-23 Philips Intellectual Property & Standards Gmbh Computer tomography scanner having an adjustable rotational speed
JP2007000408A (ja) * 2005-06-24 2007-01-11 Ge Medical Systems Global Technology Co Llc X線ct装置

Also Published As

Publication number Publication date
CN102065770A (zh) 2011-05-18
JP5132774B2 (ja) 2013-01-30
US20110164800A1 (en) 2011-07-07
CN102065770B (zh) 2013-03-27
US8442292B2 (en) 2013-05-14
JPWO2010001840A1 (ja) 2011-12-22

Similar Documents

Publication Publication Date Title
RU2550542C2 (ru) Способ и устройство для формирования компьютерных томографических изображений с использованием геометрий со смещенным детектором
JP4777007B2 (ja) X線コンピュータ断層撮影装置
US7668286B2 (en) X-ray CT apparatus
JP6233980B2 (ja) X線ct装置及び画像再構成方法
JP6027546B2 (ja) 医用画像診断装置及び医用画像診断装置を用いた位相決定方法
JP6618900B2 (ja) X線ct装置及び画像再構成方法
JP5643218B2 (ja) X線ct装置及びx線ct装置による画像表示方法
CN102335004B (zh) 用于进行血管造影检查的方法和计算机断层造影设备
US7620443B2 (en) X-ray CT imaging method and X-ray CT device
US20090028289A1 (en) X-ray ct apparatus
JP5132774B2 (ja) X線ct装置
JP6509131B2 (ja) X線ct装置、画像処理装置、及び画像再構成方法
WO2004071301A1 (ja) X線ct装置
JP2010246958A (ja) X線断層撮影装置
JP4448654B2 (ja) X線ctシステムおよびその操作コンソールおよびその制御方法
JP2007068726A (ja) 心機能診断装置
JP2004313513A (ja) X線ct装置
WO2013187461A1 (ja) X線ct装置及び画像再構成方法
JP2013046774A (ja) X線断層撮影装置
WO2014024857A1 (ja) X線ct装置およびx線ct装置の撮影方法
JP2005013378A (ja) X線ct装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123670.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773418

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12999175

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010519052

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773418

Country of ref document: EP

Kind code of ref document: A1