WO2009157360A1 - リレーズーム系 - Google Patents

リレーズーム系 Download PDF

Info

Publication number
WO2009157360A1
WO2009157360A1 PCT/JP2009/061079 JP2009061079W WO2009157360A1 WO 2009157360 A1 WO2009157360 A1 WO 2009157360A1 JP 2009061079 W JP2009061079 W JP 2009061079W WO 2009157360 A1 WO2009157360 A1 WO 2009157360A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
zoom system
magnification end
focal length
Prior art date
Application number
PCT/JP2009/061079
Other languages
English (en)
French (fr)
Inventor
健司 山田
Original Assignee
株式会社ニコンビジョン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコンビジョン filed Critical 株式会社ニコンビジョン
Priority to US12/992,981 priority Critical patent/US8797646B2/en
Priority to JP2010517956A priority patent/JP5380444B2/ja
Priority to EP09770070.2A priority patent/EP2293130B1/en
Publication of WO2009157360A1 publication Critical patent/WO2009157360A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • G02B15/1421Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only the first group being positive

Definitions

  • the present invention relates to a relay zoom system.
  • Patent Document 1 Conventionally, as an imaging optical system for photographing an object image with an objective lens such as a telescope or a microscope, there is an optical system disclosed in Patent Document 1, for example.
  • the present invention has been made in view of such problems, and an object thereof is to provide a relay zoom system capable of realizing an imaging optical system having different magnifications with the same imaging optical system.
  • a relay zoom system includes, in order from the object side, a first lens group having a positive refractive power and a second lens group having a positive refractive power, Furthermore, each of the first lens group and the second lens group has at least two positive lenses and one negative lens, and when zooming from the low magnification end state to the high magnification end state, The first lens group and the second lens group are configured to move along the optical axis.
  • the first lens group includes a cemented lens in which a positive lens and a negative lens are cemented, and a positive single lens, and the focal length of the cemented lens is f11.
  • the focal length of the positive single lens is f12
  • the following formula 1 ⁇ f11 / f12 ⁇ 2 It is preferable to satisfy the following conditions.
  • the lenses of the second lens group are arranged in the order of positive, negative, and positive.
  • the second lens group further includes at least one negative lens
  • the negative lens includes at least one of the two positive lenses included in the second lens group. It is preferable that it is joined.
  • the first lens group when zooming from the low magnification end state to the high magnification end state, is on the object side or the image side from the low magnification end state to a predetermined focal length state. It is preferable to be configured to move in one direction and move in the other direction from a predetermined focal length state to a high magnification end state.
  • Such a relay zoom system preferably has a zoom ratio of 2 or more.
  • Such a relay zoom system preferably forms a secondary image by relaying the primary image by the objective lens.
  • relay zoom system according to the present invention is configured as described above, an object can be photographed at different magnifications without replacing the relay optical system.
  • FIG. 1 is a lens configuration diagram of a telescope optical system including a relay optical system according to a first example, where (a) shows a low magnification end state, (b) shows an intermediate focal length state, and (c) shows a high magnification end state.
  • FIG. 4 is a diagram showing various aberrations in the first example, where (a) shows a low magnification end state, (b) shows an intermediate focal length state, and (c) shows a high magnification end state.
  • It is a lens block diagram of the telescope optical system containing the relay optical system concerning 2nd Example, (a) shows a low magnification end state, (b) shows an intermediate focal length state, (c) is a high magnification end state Indicates.
  • FIG. 4 is a diagram showing various aberrations in the first example, where (a) shows a low magnification end state, (b) shows an intermediate focal length state, and (c) shows a high magnification end state.
  • It is a lens block diagram of
  • FIG. 5A is a diagram illustrating various aberrations in the second example, where (a) illustrates a low magnification end state, (b) illustrates an intermediate focal length state, and (c) illustrates a high magnification end state.
  • FIG. 6 is a lens configuration diagram of a telescope optical system including a relay optical system according to a third example, where (a) shows a low magnification end state, (b) shows an intermediate focal length state, and (c) shows a high magnification end state. Indicates.
  • FIG. 6 is a diagram illustrating various aberrations in the third example, in which (a) illustrates a low magnification end state, (b) illustrates an intermediate focal length state, and (c) illustrates a high magnification end state.
  • FIG. 6 is a diagram illustrating various aberrations in the third example, in which (a) illustrates a low magnification end state, (b) illustrates an intermediate focal length state, and (c) illustrates a high magnification end
  • FIG. 7 is a lens configuration diagram of a telescope optical system including a relay optical system according to a fourth example, where (a) shows a low magnification end state, (b) shows an intermediate focal length state, and (c) shows a high magnification end state.
  • FIG. 5A is a diagram illustrating various aberrations in the fourth example, where FIG. 5A illustrates a low magnification end state, FIG. 5B illustrates an intermediate focal length state, and FIG. 5C illustrates a high magnification end state.
  • FIG. 5A is a diagram illustrating various aberrations in the fourth example, where FIG. 5A illustrates a low magnification end state, FIG. 5B illustrates an intermediate focal length state, and FIG. 5C illustrates a high magnification end state.
  • FIG. 6 is a lens configuration diagram of a telescope optical system including a relay optical system according to a fifth example, where (a) shows a low magnification end state, (b) shows an intermediate focal length state, and (c) shows a high magnification end state. Indicates.
  • FIG. 10 is a diagram illustrating various aberrations in the fifth example, in which (a) illustrates a low magnification end state, (b) illustrates an intermediate focal length state, and (c) illustrates a high magnification end state.
  • the telescope optical system shown in FIG. 1 includes, in order from the object side, an objective lens OL, an erecting prism Pr, and a relay zoom system ZL.
  • the objective lens OL has a function of forming an object image as a primary image I1
  • the erecting prism Pr has a function of converting an image formed by the objective lens OL into an erect image. .
  • the relay zoom system ZL relays the primary image I1 converted into an erect image by the erecting prism Pr, and forms an image again as the secondary image I2 by changing the magnification.
  • the relay zoom system ZL includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power, from the low magnification end state to the high magnification end state.
  • the first lens group G1 and the second lens group G2 are configured to move along the optical axis.
  • the first lens group G1 includes at least two positive lenses (a biconvex lens L9 and a planoconvex lens L10 in FIG. 1) arranged in the order of positive / negative or positive / negative in order from the object side. ) And one negative lens (plano-concave lens L8 in FIG. 1), and collects the light from the primary image I1 formed by the objective lens OL and guides it to the second lens group G2. It is configured.
  • the first lens group G1 is configured to correct chromatic aberration with a positive lens and a negative lens.
  • the first lens group G1 is configured as a cemented lens in which the positive lens and the negative lens are cemented. Thus, manufacturing can be facilitated.
  • the second lens group G2 includes at least two positive lenses (biconvex lens L11 and positive meniscus lens L13 in FIG. 1), one negative lens (biconcave lens L12), arranged in order of positive and negative. And the light guided by the first lens group G1 is condensed to form a secondary image I2.
  • the second lens group G2 is configured to correct chromatic aberration by the second lens group G2 alone by using the positive lens and the negative lens. Further, by providing a negative lens (biconcave lens L12) having a strong refractive power in the second lens group G2, the Petzval sum is corrected to ensure the flatness of the image surface. As shown in FIG. 5, in the second lens group G2, another negative lens (biconcave lens L13 in FIG.
  • a cemented lens cemented with the biconvex lens L14) is preferable. With such a configuration, the degree of freedom of the second lens group G2 is increased, the aberration correction capability of the entire optical system is improved, and high performance can be realized.
  • such a relay zoom system ZL preferably has a zoom ratio of 2 or more.
  • the first lens group G1 when zooming from the low magnification end state to the high magnification end state, the first lens group G1 is moved to the object side along the optical axis from the low magnification end state to a predetermined intermediate focal length state, By moving from the intermediate focal length state to the high magnification end state to the image side along the optical axis (that is, moving so that the moving direction is reversed during zooming), the position of the image plane is not changed. A multiplication ratio can be ensured.
  • the second lens group G2 moves in the same direction from the low magnification end state to the high magnification end state.
  • the relay zoom system ZL satisfies the following conditional expression (1) when the focal length of the first lens group G1 is f1 and the focal length of the second lens group G2 is f2.
  • Conditional expression (1) is a condition that defines an appropriate power distribution for the first lens group G1 and the second lens group G2. Below the lower limit of conditional expression (1), the focal length of the first lens group G1 becomes relatively short. Therefore, even if the Petzval sum generated in the first lens group G1 is reduced in the second lens group G2, the sum is too large, and the field curvature cannot be corrected. On the other hand, if the upper limit of conditional expression (1) is exceeded, the focal length of the second lens group G2 becomes relatively short, the respective radii of curvature of the lenses constituting the second lens group G2 become smaller, and the refractive surfaces become smaller. The amount of aberration that occurs increases, which makes it difficult to correct spherical aberration and coma aberration.
  • the relay zoom system ZL determines the focal length of a cemented lens (a cemented lens of the plano-concave lens L8 and the biconvex lens L9 in FIG. 1) among the lenses constituting the first lens group G1.
  • a cemented lens a cemented lens of the plano-concave lens L8 and the biconvex lens L9 in FIG. 1
  • the focal length of the positive single lens plane-convex lens L10 in FIG. 1
  • Conditional expression (2) is a condition that prescribes appropriate power distribution of the cemented lens and the positive single lens in the first lens group G1. If the lower limit of the conditional expression (2) is not reached, the refractive power of the cemented lens becomes too large, and chromatic aberration cannot be corrected. On the other hand, if the upper limit of conditional expression (2) is exceeded, the refractive power of the positive single lens becomes too large, and it becomes impossible to correct distortion.
  • the relay zoom system ZL is used for the telescope optical system.
  • the relay zoom system ZL is limited to the telescope optical system. It can be applied to a microscope optical system.
  • the telescope optical system includes the objective lens OL, the erecting prism Pr, and the relay zoom system ZL (ZL1 to ZL5) in order from the object side as described above.
  • the objective lens OL has a cemented lens in which a plano-concave lens L1 having a plane facing the object side and a biconvex lens L2 are cemented, a plano-convex lens L3 having a convex surface facing the object side, and a concave surface on the object side.
  • the erecting prism Pr is composed of three glass blocks.
  • Table 1 below shows the specifications of the objective lens OL and the erecting prism Pr described above.
  • the first column m is the number of each optical surface from the object side
  • the second column r is the radius of curvature of each optical surface
  • the third column d is the light from each optical surface to the next optical surface.
  • the distance on the axis indicates the refractive index with respect to the d-line
  • the fifth column ⁇ d indicates the Abbe number. Note that the radius of curvature of 0.000 indicates a plane, and the refractive index of air of 1.0000 is omitted.
  • the description of the specification table is the same in the following examples.
  • mm is generally used as the unit of length of curvature, surface separation, focal length, and other lengths published in all the following specifications, but the optical system is proportionally expanded or contracted. However, since the same optical performance can be obtained, the unit is not limited to “mm”, and other appropriate units can be used.
  • FIG. 1 described above shows a telescope optical system including the relay zoom system ZL1 according to the first embodiment.
  • the relay zoom system ZL1 according to the first embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power.
  • the first lens group G1 includes, in order from the object side, a cemented lens in which a plano-concave lens L8 having a plane facing the object side and a biconvex lens L9 are cemented, and a plano-convex lens L10 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconvex lens L11, a biconcave lens L12, and a positive meniscus lens L13 having a concave surface facing the object side.
  • Table 2 below shows specifications of the relay zoom system ZL1 according to the first embodiment shown in FIG.
  • f indicates the focal length of the entire system in the low magnification end state, the intermediate focal length state, and the high magnification end state.
  • F1 is the focal length of the first lens group G1
  • f11 is the focal length of the cemented lens in the first lens group G1
  • f12 is the focal length of the positive single lens in the first lens group G1
  • f2 is the second.
  • the focal length of the lens group G2 is shown respectively.
  • the surface number is indicated from the primary image surface I1 (18th surface) of the objective lens OL.
  • the relay zoom system ZL1 has an interval d1 between the primary image plane I1 and the first lens group G1, and the first lens group G1 and the second lens group G2 when zooming from the low magnification end state to the high magnification end state.
  • the distance d2 between the second lens group G2 and the secondary image plane I2 (back focus) Bf change. Therefore, the variable surface interval in Table 2 shows the values of the variable surface intervals d1, d2, and Bf in the low magnification end state, the intermediate focal length state, and the high magnification end state. Further, Table 2 also shows values corresponding to the conditional expressions (1) and (2), that is, condition corresponding values.
  • FIG. 2 shows a spherical surface of the relay zoom system ZL1 according to the first embodiment for the rays of the d-line, C-line, F-line, and g-line in the low magnification end state, the intermediate focal length state, and the high magnification end state.
  • the aberration diagrams of aberration, astigmatism, distortion, and lateral chromatic aberration are shown.
  • the spherical aberration diagram shows the aberration amount with respect to the height H from the optical axis
  • the astigmatism diagram, the distortion aberration diagram, and the magnification chromatic aberration diagram show the aberration amount with respect to the half angle of view ⁇ .
  • the solid line indicates the sagittal image plane for each wavelength
  • the broken line indicates the meridional image plane for each wavelength.
  • FIG. 3 shows a telescope optical system including the relay zoom system ZL2 according to the second embodiment.
  • the relay zoom system ZL2 according to the second embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power.
  • the first lens group G1 includes, in order from the object side, a cemented lens in which a plano-concave lens L8 having a plane facing the object side and a biconvex lens L9 are cemented, and a plano-convex lens L10 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconvex lens L11, a biconcave lens L12, and a positive meniscus lens L13 having a concave surface facing the object side.
  • Table 3 below shows specifications of the relay zoom system ZL2 according to the second embodiment shown in FIG.
  • FIG. 4 shows a spherical surface of the relay zoom system ZL2 according to the second embodiment for the rays of the d-line, C-line, F-line, and g-line in the low magnification end state, the intermediate focal length state, and the high magnification end state.
  • the aberration diagrams of aberration, astigmatism, distortion, and lateral chromatic aberration are shown.
  • various aberrations are satisfactorily corrected from the low magnification end state to the high magnification end state, and excellent imaging performance is obtained. You can see that it is secured.
  • FIG. 5 shows a telescope optical system including the relay zoom system ZL3 according to the third embodiment.
  • the relay zoom system ZL3 according to the third embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power.
  • the first lens group G1 includes, in order from the object side, a cemented lens in which a biconcave lens L8 and a biconvex lens L9 are cemented, and a positive meniscus lens L10 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconvex lens L11, a biconcave lens L12, and a cemented lens in which the biconcave lens L13 and the biconvex lens L14 are cemented.
  • Table 4 below shows specifications of the relay zoom system ZL3 according to the third embodiment shown in FIG.
  • FIG. 6 shows the spherical surfaces of the relay zoom system ZL3 according to the third embodiment for the rays of the d-line, C-line, F-line, and g-line in the low magnification end state, the intermediate focal length state, and the high magnification end state.
  • the aberration diagrams of aberration, astigmatism, distortion, and lateral chromatic aberration are shown.
  • the relay zoom system ZL3 according to the third embodiment has various aberrations corrected well from the low magnification end state to the high magnification end state, and has excellent imaging performance. You can see that it is secured.
  • FIG. 7 shows a telescope optical system including a relay zoom system ZL4 according to the fourth embodiment.
  • the relay zoom system ZL4 according to the fourth example includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power.
  • the first lens group G1 includes, in order from the object side, a cemented lens in which a biconcave lens L8 and a biconvex lens L9 are cemented, and a biconvex lens L10.
  • the second lens group G2 includes, in order from the object side, a biconvex lens L11, a biconcave lens L12, and a cemented lens in which the biconcave lens L13 and the biconvex lens L14 are cemented.
  • Table 5 below shows specifications of the relay zoom system ZL4 according to the fourth embodiment shown in FIG.
  • FIG. 8 shows the spherical surface of the relay zoom system ZL4 according to the fourth embodiment for the rays of the d-line, C-line, F-line, and g-line in the low magnification end state, the intermediate focal length state, and the high magnification end state.
  • the aberration diagrams of aberration, astigmatism, distortion, and lateral chromatic aberration are shown.
  • the relay zoom system ZL4 according to the fourth embodiment has various aberrations well corrected from the low magnification end state to the high magnification end state, and has excellent imaging performance. You can see that it is secured.
  • FIG. 9 shows a telescope optical system including a relay zoom system ZL5 according to the fifth embodiment.
  • the relay zoom system ZL5 according to the fifth example includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power.
  • the first lens group G1 includes, in order from the object side, a cemented lens in which a plano-concave lens L8 having a plane facing the object side and a biconvex lens L9 are cemented, and a plano-convex lens L10 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconvex lens L11, a biconcave lens L12, and a cemented lens in which the biconcave lens L13 and the biconvex lens L14 are cemented.
  • Table 6 below shows specifications of the relay zoom system ZL5 according to the fifth embodiment shown in FIG.
  • FIG. 10 shows the spherical surface of the relay zoom system ZL5 according to the fifth embodiment for the rays of the d-line, C-line, F-line, and g-line in the low magnification end state, the intermediate focal length state, and the high magnification end state.
  • the aberration diagrams of aberration, astigmatism, distortion, and lateral chromatic aberration are shown.
  • the relay zoom system ZL5 according to the fifth example has various aberrations corrected well from the low magnification end state to the high magnification end state, and has excellent imaging performance. You can see that it is secured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 リレーズーム系ZLは、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、を有して構成される。さらに、このリレーズーム系ZLにおいて、第1レンズ群G1及び第2レンズ群G2の各々は、少なくとも、2枚の正レンズと、1枚の負レンズと、を有して構成される。そして、低倍端状態から高倍端状態まで変倍する際に、このリレーズーム系ZLの第1レンズ群G1及び第2レンズ群G2は、光軸に沿って移動するように構成される。

Description

リレーズーム系
 本発明は、リレーズーム系に関する。
 従来、望遠鏡や顕微鏡のような対物レンズによる物体像の撮影を行うための結像光学系としては、例えば特許文献1に示された光学系がある。
特公昭61-061364号公報
 しかしながら、従来の結像光学系では、倍率が固定であり、この倍率を変更するには、異なる倍率の結像光学系を装着し直さなければならないという課題があった。
 本発明はこのような課題に鑑みてなされたものであり、同一の結像光学系で、異なる倍率の結像光学系が実現できるリレーズーム系を提供することを目的とする。
 前記課題を解決するために、本発明に係るリレーズーム系は、物体側から順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、を有し、さらに、第1レンズ群及び第2レンズ群の各々は、少なくとも、2枚の正レンズと、1枚の負レンズと、を有し、低倍端状態から高倍端状態まで変倍する際に、第1レンズ群及び第2レンズ群は、光軸に沿って移動するように構成される。
 このようなリレーズーム系は、第1レンズ群の焦点距離をf1とし、第2レンズ群の焦点距離をf2としたとき、次式
1 < f1/f2 < 1.5
の条件を満足することが好ましい。
 また、このようなリレーズーム系において、第1レンズ群は、正レンズ及び負レンズを接合した接合レンズと、正の単レンズと、を有して構成され、接合レンズの焦点距離をf11とし、正の単レンズの焦点距離をf12としたとき、次式
1 < f11/f12 < 2
の条件を満足することが好ましい。
 また、このようなリレーズーム系において、第2レンズ群のレンズは、正、負、正の順で配置されていることが好ましい。
 また、このようなリレーズーム系において、第2レンズ群は、少なくとも1枚の負レンズを更に有し、この負レンズは、第2レンズ群に含まれる2枚の正レンズのうち、すくなくとも一方と接合されていることが好ましい。
 また、このようなリレーズーム系において、低倍端状態から高倍端状態まで変倍する際に、第1レンズ群は、低倍端状態から所定の焦点距離状態までは、物体側若しくは像側のいずれか一方の方向に移動し、所定の焦点距離状態から高倍端状態までは、他方の方向に移動するように構成されることが好ましい。
 また、このようなリレーズーム系は、変倍比が2以上であることが好ましい。
 また、このようなリレーズーム系は、対物レンズによる一次像をリレーして二次像を形成することが好ましい。
 本発明に係るリレーズーム系を以上のように構成すると、このリレー光学系を交換することなく、異なる倍率での物体の撮影が可能となる。
第1実施例に係るリレー光学系を含む望遠鏡光学系のレンズ構成図であり、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。 上記第1実施例における諸収差図であり、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。 第2実施例に係るリレー光学系を含む望遠鏡光学系のレンズ構成図であり、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。 上記第2実施例における諸収差図であり、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。 第3実施例に係るリレー光学系を含む望遠鏡光学系のレンズ構成図であり、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。 上記第3実施例における諸収差図であり、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。 第4実施例に係るリレー光学系を含む望遠鏡光学系のレンズ構成図であり、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。 上記第4実施例における諸収差図であり、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。 第5実施例に係るリレー光学系を含む望遠鏡光学系のレンズ構成図であり、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。 上記第5実施例における諸収差図であり、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。
 以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて、本実施形態に係るリレーズーム系を望遠鏡光学系に用いた場合について説明する。図1に示す望遠鏡光学系は、物体側から順に、対物レンズOLと、正立プリズムPrと、リレーズーム系ZLと、から構成される。対物レンズOLは、物体の像を一次像I1として結像させる機能を有し、また、正立プリズムPrは、対物レンズOLで結像された像を正立像に変換する機能を有している。そして、リレーズーム系ZLは、正立プリズムPrで正立像に変換された一次像I1を、リレーすると共にその倍率を変化させて二次像I2として再び結像する。この二次像I2が形成される位置に撮像素子の撮像面を配置することにより、物体の像をデジタル画像として取得することが可能である。
 リレーズーム系ZLは、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、を有し、低倍端状態から高倍端状態まで変倍する際に、これらの第1レンズ群G1及び第2レンズ群G2は光軸に沿って移動するように構成されている。
 このリレーズーム系ZLにおいて、第1レンズ群G1は、物体側から順に、負正正、若しくは、正正負の順で並んだ、少なくとも2枚の正レンズ(図1における両凸レンズL9及び平凸レンズL10)と、1枚の負レンズ(図1における平凹レンズL8)と、を有し、対物レンズOLで結像された一次像I1からの光を集光して第2レンズ群G2に導くように構成されている。この第1レンズ群G1は、正レンズと負レンズとで色収差を補正するように構成されており、特に、図1に示すように、この正レンズと負レンズとを接合した接合レンズとして構成することにより、製造を容易にすることができる。
 また、第2レンズ群G2は、正負正の順で並んだ、少なくとも2枚の正レンズ(図1における両凸レンズL11及び正メニスカスレンズL13)と、1枚の負レンズ(両凹レンズL12)と、を有し、第1レンズ群G1により導かれた光を集光して二次像I2を結像するように構成されている。この第2レンズ群G2は、これらの正レンズ及び負レンズにより、第2レンズ群G2単体で色収差を補正するように構成されている。さらに、この第2レンズ群G2に屈折力の強い負レンズ(両凹レンズL12)を設けることにより、ペッツバール和を補正して像面の平坦性を確保するように構成されている。なお、図5に示すように、この第2レンズ群G2において、更にもう一枚の負レンズ(図5における両凹レンズL13)を設け、2枚の正レンズのうち、少なくとも1枚(図5における両凸レンズL14)と接合した接合レンズとすることが好ましい。このような構成とすることで、第2レンズ群G2の自由度が増加し、光学系全体としての収差の補正能力が向上し、高性能を実現できるようになるからである。
 また、このようなリレーズーム系ZLは、変倍比が2倍以上であることが好ましい。特に、低倍端状態から高倍端状態まで変倍する際に、第1レンズ群G1を、低倍端状態から所定の中間焦点距離状態までは光軸に沿って物体側に移動させ、所定の中間焦点距離状態から高倍端状態までは光軸に沿って像側に移動させる(すなわち、変倍途中で移動方向が反転するように移動させる)ことにより、像面の位置を変えずにより大きな変倍比を確保することができる。また、このとき第2レンズ群G2は低倍端状態から高倍端状態まで移動方向は同じ方向にしている。
 それでは、このリレーズーム系ZLを構成するための条件について説明する。まず、このリレーズーム系ZLは、第1レンズ群G1の焦点距離をf1とし、第2レンズ群G2の焦点距離をf2としたとき、次に示す条件式(1)を満足することが好ましい。
1 < f1/f2 < 1.5              (1)
 条件式(1)は、第1レンズ群G1及び第2レンズ群G2の適切なパワー配分を規定する条件である。この条件式(1)の下限を下回ると、第1レンズ群G1の焦点距離が相対的に短くなる。そこで第2レンズ群G2で、第1レンズ群G1で生じたペッツバール和を減らすようにしても、その和が大きすぎてしまい、像面湾曲の補正ができなくなり好ましくない。反対に条件式(1)の上限を上回ると、第2レンズ群G2の焦点距離が相対的に短くなり、この第2レンズ群G2を構成するレンズの各曲率半径が小さくなって各屈折面で発生する収差量が増大し、球面収差とコマ収差の補正が十分にできなくなり好ましくない。
 また、このリレーズーム系ZLは、第1レンズ群G1を構成するレンズのうち、正レンズ及び負レンズからなる接合レンズ(図1における平凹レンズL8と両凸レンズL9との接合レンズ)の焦点距離をf11とし、正の単レンズ(図1における平凸レンズL10)の焦点距離をf12としたとき、次に示す条件式(2)を満足することが好ましい。
1 < f11/f12 < 2              (2)
 条件式(2)は、第1レンズ群G1における接合レンズ及び正の単レンズの適切なパワー配分を規定する条件である。この条件式(2)の下限を下回ると、接合レンズの屈折力が大きくなりすぎ、色収差の補正ができなくなり好ましくない。反対に条件式(2)の上限を上回ると、正の単レンズの屈折力が大きくなりすぎ、歪曲収差の補正ができなくなり好ましくない。
 なお、以上の実施の形態、及び、以降の実施例においては、リレーズーム系ZLを望遠鏡光学系に用いた場合について説明しているが、このリレーズーム系ZLは望遠鏡光学系に限定されることはなく、顕微鏡光学系等にも適用可能である。
 それでは、望遠鏡光学系に適用した上述のリレー光学系ZLについて、以下に5つの実施例を示す。なお、以下の実施例において、この望遠鏡光学系は上述のように、物体側から順に対物レンズOLと、正立プリズムPrと、リレーズーム系ZL(ZL1~ZL5)と、から構成されている。ここで、対物レンズOLは、物体側から順に、物体側に平面を向けた平凹レンズL1と両凸レンズL2とを接合した接合レンズ、物体側に凸面を向けた平凸レンズL3、物体側に凹面を向けた正メニスカスレンズL4と両凹レンズL5とを接合した接合レンズ、及び、両凸レンズL6と物体側に凹面を向けた負メニスカスレンズL7とを接合した接合レンズから構成されている。また、正立プリズムPrは、3個のガラスブロックから構成されている。
 以下の表1に、上述の対物レンズOL及び正立プリズムPrの諸元を示す。この表1において、第1欄mは物体側からの各光学面の番号を、第2欄rは各光学面の曲率半径を、第3欄dは各光学面から次の光学面までの光軸上の距離を、第4欄ndはd線に対する屈折率を、そして、第5欄νdはアッベ数をそれぞれ示している。なお、曲率半径0.000は平面を示し、また、空気の屈折率1.00000は省略してある。また、この諸元表の説明は以降の実施例においても同様である。
 なお、以下の全ての諸元において掲載される曲率半径、面間隔、焦点距離その他の長さの単位は、特記の無い場合、一般に「mm」が使われるが、光学系は比例拡大または比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることはなく、他の適当な単位を用いることもできる。
(表1)
m    r    d   nd   νd
 1    0.000   4.500  1.73350  51.1
 2   154.115   12.000  1.49782  82.5
 3  -333.000   0.500
 4   150.348   9.500  1.49782  82.5
 5    0.000  195.137
 6  -135.380   4.000  1.72825  28.3
 7   -43.874   2.000  1.62374  47.1
 8   90.100   27.977
 9   99.350   4.500  1.51823  58.9
10   -82.480   2.000  1.64769  33.9
11  -310.750   24.621
12    0.000   57.370  1.51680  64.1
13    0.000   2.000
14    0.000  107.720  1.51680  64.1
15    0.000   3.000
16    0.000   3.000  1.51680  64.1
17    0.000   31.400
[第1実施例]
 上述した図1は、第1実施例に係るリレーズーム系ZL1を含む望遠鏡光学系を示している。この第1実施例に係るリレーズーム系ZL1は、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とを有している。第1レンズ群G1は、物体側から順に、物体側に平面を向けた平凹レンズL8と両凸レンズL9とを接合した接合レンズ、及び、物体側に凸面を向けた平凸レンズL10から構成される。また、第2レンズ群G2は、物体側から順に、両凸レンズL11、両凹レンズL12、及び、物体側に凹面を向けた正メニスカスレンズL13から構成される。
 以下の表2に、この図1に示した第1実施例に係るリレーズーム系ZL1の諸元を示す。この表2における全体諸元において、fは、低倍端状態、中間焦点距離状態、及び、高倍端状態における全系の焦点距離を示し、FNo.は、上記焦点距離に対応するFナンバーを示す。また、f1は第1レンズ群G1の焦点距離を、f11は第1レンズ群G1における接合レンズの焦点距離を、f12は第1レンズ群G1における正の単レンズの焦点距離を、f2は第2レンズ群G2の焦点距離をそれぞれ示す。また、レンズデータにおいて、面番号は対物レンズOLの一次像面I1(第18面)から示す。
 また、このリレーズーム系ZL1は、低倍端状態から高倍端状態まで変倍する際に、一次像面I1と第1レンズ群G1との間隔d1、第1レンズ群G1と第2レンズ群G2との間隔d2、及び、第2レンズ群G2と二次像面I2との間隔(バックフォーカス)Bfが変化する。そのため、表2における可変面間隔に、低倍端状態、中間焦点距離状態、及び、高倍端状態における可変面間隔d1,d2,Bfの値を示す。さらに、この表2には、上記条件式(1)及び(2)に対応する値、すなわち、条件対応値も示している。なお、これらの説明は以降の実施例においても同様である。
(表2)
[全体諸元]
       低倍端  中間焦点距離  高倍端
  f =   500     1000    1500
FNo.=   5.88     11.76    17.65
 f1 = 65.0
 f11=139.1
 f12=122.2
 f2 = 50.0

[レンズデータ]
m    r    d   nd   νd
18    0.000   d1
19    0.000   2.500  1.69895  30.0
20   75.816   8.000  1.62041  60.1
21   -75.816   0.500
22   75.816   5.000  1.62041  60.1
23    0.000   d2
24   20.550   3.200  1.62041  60.1
25   -45.850   3.200
26   -17.400   1.600  1.62004  36.3
27   20.550   5.400
28  -112.200   4.300  1.62280  57.0
29   -16.000   Bf

[可変面間隔]
       低倍端  中間焦点距離  高倍端
  f =   500     1000    1500
  d1=   32.186     14.905   20.799
  d2=   67.890     40.925   16.396
  Bf=   62.822    107.071   125.704

[条件対応値]
(1)f1/f2  =1.30
(2)f11/f12=1.138
 このように、第1実施例では上記条件式(1)及び(2)はすべて満たされていることが分かる。図2に、この第1実施例に係るリレーズーム系ZL1の、低倍端状態、中間焦点距離状態、及び、高倍端状態におけるd線、C線、F線、及び、g線の光線に対する球面収差、非点収差、歪曲収差、及び、倍率色収差の諸収差図を示す。これらの収差図のうち、球面収差図は光軸からの高さHに対する収差量を示し、非点収差図、歪曲収差図、及び、倍率色収差図は半画角ωに対する収差量を示す。また、非点収差図においては、実線は各波長に対するサジタル像面を示し、破線は各波長に対するメリジオナル像面を示している。これらの諸収差図の説明は以降の実施例においても同様である。この図2に示す各収差図から明らかなように、本第1実施例に係るリレーズーム系ZL1は、低倍端状態から高倍端状態まで諸収差が良好に補正され、優れた結像性能が確保されていることが分かる。
[第2実施例]
 図3は、第2実施例に係るリレーズーム系ZL2を含む望遠鏡光学系を示している。この第2実施例に係るリレーズーム系ZL2は、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とを有している。第1レンズ群G1は、物体側から順に、物体側に平面を向けた平凹レンズL8と両凸レンズL9とを接合した接合レンズ、及び、物体側に凸面を向けた平凸レンズL10から構成される。また、第2レンズ群G2は、物体側から順に、両凸レンズL11、両凹レンズL12、及び、物体側に凹面を向けた正メニスカスレンズL13から構成される。
 以下の表3に、この図3に示した第2実施例に係るリレーズーム系ZL2の諸元を示す。
(表3)
[全体諸元]
       低倍端  中間焦点距離  高倍端
  f =   500     1000    1500
FNo.=   5.88     11.76    17.65
 f1 = 63.0
 f11=155.0
 f12=106.7
 f2 = 50.0

[レンズデータ]
m    r    d   nd   νd
18    0.000   d1
19    0.000   2.500  1.75520  27.6
20   76.100   8.000  1.62041  60.1
21   -76.100   0.500
22   76.100   5.000  1.71300  53.9
23    0.000   d2
24   23.700   3.200  1.71300  53.9
25   -52.767   3.200
26   -18.140   1.600  1.64769  33.9
27   23.900   5.400
28   -59.500   4.300  1.71300  53.9
29   -16.702   Bf

[可変面間隔]
       低倍端  中間焦点距離  高倍端
  f =   500     1000    1500
  d1=   32.564     14.098   19.874
  d2=   69.710     42.666   18.434
  Bf=   61.454    106.965   125.419

[条件対応値]
(1)f1/f2  =1.26
(2)f11/f12=1.453
 このように、第2実施例では上記条件式(1)及び(2)はすべて満たされていることが分かる。図4に、この第2実施例に係るリレーズーム系ZL2の、低倍端状態、中間焦点距離状態、及び、高倍端状態におけるd線、C線、F線、及び、g線の光線に対する球面収差、非点収差、歪曲収差、及び、倍率色収差の諸収差図を示す。この図4に示す各収差図から明らかなように、本第2実施例に係るリレーズーム系ZL2は、低倍端状態から高倍端状態まで諸収差が良好に補正され、優れた結像性能が確保されていることが分かる。
[第3実施例]
 図5は、第3実施例に係るリレーズーム系ZL3を含む望遠鏡光学系を示している。この第3実施例に係るリレーズーム系ZL3は、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とを有している。第1レンズ群G1は、物体側から順に、両凹レンズL8と両凸レンズL9とを接合した接合レンズ、及び、物体側に凸面を向けた正メニスカスレンズL10から構成される。また、第2レンズ群G2は、物体側から順に、両凸レンズL11、両凹レンズL12、及び、両凹レンズL13と両凸レンズL14とを接合した接合レンズから構成される。
 以下の表4に、この図5に示した第3実施例に係るリレーズーム系ZL3の諸元を示す。
(表4)
[全体諸元]
       低倍端  中間焦点距離  高倍端
  f =   500     1000    1500
FNo.=    5.88     11.76    17.65
 f1 = 56.7
 f11=138.8
 f12= 98.0
 f2 = 45.0

[レンズデータ]
m    r    d   nd   νd
18    0.000   d1
19  -365.288   2.500  1.71736  29.5
20   59.000   8.800  1.62230  53.1
21   -59.000   0.500
22   59.000   5.000  1.71300  53.9
23   365.288   d2
24   18.600   3.000  1.71300  53.9
25   -39.000   2.600
26   -15.300   1.500  1.64769  33.9
27   15.300   5.000
28   -33.600   1.500  1.61772  49.8
29   33.600   3.600  1.71300  53.9
30   -14.020   Bf

[可変面間隔]
       低倍端  中間焦点距離  高倍端
  f =   500     1000    1500
  d1=   27.832     11.193   16.388
  d2=   60.330     35.995   14.185
  Bf=   56.067     97.042   113.658

[条件対応値]
(1)f1/f2  =1.26
(2)f11/f12=1.416
 このように、第3実施例では上記条件式(1)及び(2)はすべて満たされていることが分かる。図6に、この第3実施例に係るリレーズーム系ZL3の、低倍端状態、中間焦点距離状態、及び、高倍端状態におけるd線、C線、F線、及び、g線の光線に対する球面収差、非点収差、歪曲収差、及び、倍率色収差の諸収差図を示す。この図6に示す各収差図から明らかなように、本第3実施例に係るリレーズーム系ZL3は、低倍端状態から高倍端状態まで諸収差が良好に補正され、優れた結像性能が確保されていることが分かる。
[第4実施例]
 図7は、第4実施例に係るリレーズーム系ZL4を含む望遠鏡光学系を示している。この第4実施例に係るリレーズーム系ZL4は、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とを有している。第1レンズ群G1は、物体側から順に、両凹レンズL8と両凸レンズL9とを接合した接合レンズ、及び、両凸レンズL10から構成される。また、第2レンズ群G2は、物体側から順に、両凸レンズL11、両凹レンズL12、及び、両凹レンズL13と両凸レンズL14とを接合した接合レンズから構成される。
 以下の表5に、この図7に示した第4実施例に係るリレーズーム系ZL4の諸元を示す。
(表5)
[全体諸元]
       低倍端  中間焦点距離  高倍端
  f =   500     1000    1500
FNo.=   5.88     11.76    17.65
 f1 = 63.0
 f11=174.4
 f12= 99.9
 f2 = 50.0

[レンズデータ]
m    r    d   nd   νd
18    0.000   d1
19  -400.000   2.500  1.71736  29.5
20   71.000   8.000  1.62041  60.1
21   -71.000   0.500
22   86.166   5.000  1.71300  53.9
23  -400.000   d2
24   20.120   3.200  1.71300  53.9
25   -42.730   3.200
26   -16.780   1.600  1.64769  33.9
27   17.200   5.400
28   -36.000   1.500  1.61772  49.8
29   40.000   4.000  1.71300  53.9
30   -15.716   Bf

[可変面間隔]
       低倍端  中間焦点距離  高倍端
  f =   500     1000    1500
  d1=   31.674     13.208   18.984
  d2=   69.650     42.605   18.372
  Bf=   60.083    105.593   124.049

[条件対応値]
(1)f1/f2  =1.26
(2)f11/f12=1.746
 このように、第4実施例では上記条件式(1)及び(2)はすべて満たされていることが分かる。図8に、この第4実施例に係るリレーズーム系ZL4の、低倍端状態、中間焦点距離状態、及び、高倍端状態におけるd線、C線、F線、及び、g線の光線に対する球面収差、非点収差、歪曲収差、及び、倍率色収差の諸収差図を示す。この図8に示す各収差図から明らかなように、本第4実施例に係るリレーズーム系ZL4は、低倍端状態から高倍端状態まで諸収差が良好に補正され、優れた結像性能が確保されていることが分かる。
[第5実施例]
 図9は、第5実施例に係るリレーズーム系ZL5を含む望遠鏡光学系を示している。この第5実施例に係るリレーズーム系ZL5は、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とを有している。第1レンズ群G1は、物体側から順に、物体側に平面を向けた平凹レンズL8と両凸レンズL9とを接合した接合レンズ、及び、物体側に凸面を向けた平凸レンズL10から構成される。また、第2レンズ群G2は、物体側から順に、両凸レンズL11、両凹レンズL12、及び、両凹レンズL13と両凸レンズL14とを接合した接合レンズから構成される。
 以下の表6に、この図9に示した第5実施例に係るリレーズーム系ZL5の諸元を示す。
(表6)
[全体諸元]
       低倍端  中間焦点距離  高倍端
  f =   500     1000    1500
FNo.=   5.88     11.76    17.65
 f1 = 63.0
 f11=155.0
 f12=106.7
 f2 = 50.0

[レンズデータ]
m    r    d   nd   νd
18    0.000   d1
19    0.000   2.500  1.75520  27.6
20   76.100   8.000  1.62041  60.1
21   -76.100   0.500
22   76.100   5.000  1.71300  53.9
23    0.000   d2
24   20.690   3.200  1.71300  53.9
25   -45.072   3.200
26   -16.370   1.600  1.64769  33.9
27   17.160   5.400
28   -36.450   1.500  1.61772  49.8
29   40.000   4.000  1.71300  53.9
30   -15.080   Bf

[可変面間隔]
       低倍端  中間焦点距離  高倍端
  f =   500     1000    1500
  d1=   32.564     14.098   19.874
  d2=   67.013     39.973   15.741
  Bf=   62.039    107.548   126.001

[条件対応値]
(1)f1/f2  =1.26
(2)f11/f12=1.453
 このように、第5実施例では上記条件式(1)及び(2)はすべて満たされていることが分かる。図10に、この第5実施例に係るリレーズーム系ZL5の、低倍端状態、中間焦点距離状態、及び、高倍端状態におけるd線、C線、F線、及び、g線の光線に対する球面収差、非点収差、歪曲収差、及び、倍率色収差の諸収差図を示す。この図10に示す各収差図から明らかなように、本第5実施例に係るリレーズーム系ZL5は、低倍端状態から高倍端状態まで諸収差が良好に補正され、優れた結像性能が確保されていることが分かる。
ZL(ZL1~ZL5) リレーズーム系
G1 第1レンズ群  G2 第2レンズ群

Claims (8)

  1.  物体側から順に、
     正の屈折力を有する第1レンズ群と、
     正の屈折力を有する第2レンズ群と、を有し、
     前記第1レンズ群及び前記第2レンズ群の各々は、少なくとも、2枚の正レンズと、1枚の負レンズと、を有し、
     低倍端状態から高倍端状態まで変倍する際に、前記第1レンズ群及び前記第2レンズ群は、光軸に沿って移動することを特徴とするリレーズーム系。
  2.  前記第1レンズ群の焦点距離をf1とし、前記第2レンズ群の焦点距離をf2としたとき、次式
    1 < f1/f2 < 1.5
    の条件を満足することを特徴とする請求項1に記載のリレーズーム系。
  3.  前記第1レンズ群は、正レンズ及び負レンズを接合した接合レンズと、正の単レンズと、を有し、
     前記接合レンズの焦点距離をf11とし、前記正の単レンズの焦点距離をf12としたとき、次式
    1 < f11/f12 < 2
    の条件を満足することを特徴とする請求項1または2に記載のリレーズーム系。
  4.  前記第2レンズ群の前記レンズは、正、負、正の順で配置されていることを特徴とする請求項1~3いずれか一項に記載のリレーズーム系。
  5.  前記第2レンズ群は、少なくとも1枚の負レンズを更に有し、前記負レンズは、前記第2レンズ群に含まれる2枚の前記正レンズのうち、すくなくとも一方と接合されていることを特徴とする請求項1~4いずれか一項に記載のリレーズーム系。
  6.  低倍端状態から高倍端状態まで変倍する際に、
     前記第1レンズ群は、前記低倍端状態から所定の焦点距離状態までは、物体側若しくは像側のいずれか一方の方向に移動し、前記所定の焦点距離状態から前記高倍端状態までは、他方の方向に移動することを特徴とする請求項1~5いずれか一項に記載のリレーズーム系。
  7.  変倍比が2以上であることを特徴とする請求項1~6いずれか一項に記載のリレーズーム系。
  8.  対物レンズによる一次像をリレーして二次像を形成することを特徴する請求項1~7いずれか一項に記載のリレーズーム系。
PCT/JP2009/061079 2008-06-25 2009-06-18 リレーズーム系 WO2009157360A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/992,981 US8797646B2 (en) 2008-06-25 2009-06-18 Relay zoom system
JP2010517956A JP5380444B2 (ja) 2008-06-25 2009-06-18 リレーズーム系
EP09770070.2A EP2293130B1 (en) 2008-06-25 2009-06-18 Relay zoom system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-165599 2008-06-25
JP2008165599 2008-06-25

Publications (1)

Publication Number Publication Date
WO2009157360A1 true WO2009157360A1 (ja) 2009-12-30

Family

ID=41444428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061079 WO2009157360A1 (ja) 2008-06-25 2009-06-18 リレーズーム系

Country Status (4)

Country Link
US (1) US8797646B2 (ja)
EP (1) EP2293130B1 (ja)
JP (1) JP5380444B2 (ja)
WO (1) WO2009157360A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152890A (ja) * 2014-02-19 2015-08-24 キヤノン株式会社 ズーム光学系及びそれを有する画像投射装置
CN109143569A (zh) * 2017-06-16 2019-01-04 阿瓦特拉医药有限公司 用于内窥镜的相机物镜和内窥镜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184917A (ja) * 1982-04-23 1983-10-28 Konishiroku Photo Ind Co Ltd 小型ズ−ムレンズ
JPS6161364A (ja) 1984-09-03 1986-03-29 Matsushita Electric Ind Co Ltd アルカリ電池
JPH0511184A (ja) * 1991-04-19 1993-01-19 Olympus Optical Co Ltd 大口径変倍レンズ
JPH05273465A (ja) * 1992-03-26 1993-10-22 Nikon Corp 有限距離用変倍光学系
JP2000275516A (ja) * 1999-03-25 2000-10-06 Tochigi Nikon Corp 撮像レンズ
JP2004246139A (ja) * 2003-02-14 2004-09-02 Tochigi Nikon Corp 可変倍率撮像レンズ及びこれを用いた画像読取装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313857A (en) 1976-07-23 1978-02-07 Nec Corp Variable beat amplitude generating circuit
JPS63210907A (ja) * 1987-02-27 1988-09-01 Asahi Optical Co Ltd コンパクトで明るい広角ズ−ムレンズ
JP2683133B2 (ja) * 1990-01-31 1997-11-26 キヤノン株式会社 撮影レンズ
JP3042007B2 (ja) * 1991-04-01 2000-05-15 株式会社ニコン ズームレンズ
US5959772A (en) * 1996-02-06 1999-09-28 Nikon Corporation Relay variable power optical system and a microscope equipped with the optical system
JP3726275B2 (ja) 1996-02-06 2005-12-14 株式会社ニコン リレー変倍光学系および該光学系を備えた顕微鏡
DE19837135C5 (de) * 1997-09-29 2016-09-22 Carl Zeiss Meditec Ag Afokales Zoomsystem
JP2001255464A (ja) 2000-03-10 2001-09-21 Olympus Optical Co Ltd 顕微鏡光学系
US6362923B1 (en) * 2000-03-10 2002-03-26 Kla-Tencor Lens for microscopic inspection
JP4160270B2 (ja) 2001-03-14 2008-10-01 オリンパス株式会社 撮影光学系および鏡筒
AU2003252012B2 (en) * 2002-07-22 2006-08-17 Panavision, Inc. Zoom lens system
US7227682B2 (en) * 2005-04-08 2007-06-05 Panavision International, L.P. Wide-range, wide-angle compound zoom with simplified zooming structure
US7224535B2 (en) * 2005-07-29 2007-05-29 Panavision International, L.P. Zoom lens system
WO2008103851A1 (en) * 2007-02-21 2008-08-28 Theia Technologies, Llc Whole system zoom and varifocal lens with intermediate image

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184917A (ja) * 1982-04-23 1983-10-28 Konishiroku Photo Ind Co Ltd 小型ズ−ムレンズ
JPS6161364A (ja) 1984-09-03 1986-03-29 Matsushita Electric Ind Co Ltd アルカリ電池
JPH0511184A (ja) * 1991-04-19 1993-01-19 Olympus Optical Co Ltd 大口径変倍レンズ
JPH05273465A (ja) * 1992-03-26 1993-10-22 Nikon Corp 有限距離用変倍光学系
JP2000275516A (ja) * 1999-03-25 2000-10-06 Tochigi Nikon Corp 撮像レンズ
JP2004246139A (ja) * 2003-02-14 2004-09-02 Tochigi Nikon Corp 可変倍率撮像レンズ及びこれを用いた画像読取装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2293130A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152890A (ja) * 2014-02-19 2015-08-24 キヤノン株式会社 ズーム光学系及びそれを有する画像投射装置
CN109143569A (zh) * 2017-06-16 2019-01-04 阿瓦特拉医药有限公司 用于内窥镜的相机物镜和内窥镜

Also Published As

Publication number Publication date
US20110109963A1 (en) 2011-05-12
EP2293130A1 (en) 2011-03-09
EP2293130A4 (en) 2012-08-29
JPWO2009157360A1 (ja) 2011-12-15
US8797646B2 (en) 2014-08-05
EP2293130B1 (en) 2019-02-27
JP5380444B2 (ja) 2014-01-08

Similar Documents

Publication Publication Date Title
US7227700B2 (en) Wide zoom lens system
JP5766798B2 (ja) 投写用変倍光学系および投写型表示装置
JP4687194B2 (ja) ズームレンズ
US7359125B2 (en) Two-lens-group zoom lens system
US20020015235A1 (en) Zoom lens system
WO2013061535A1 (ja) 投写用ズームレンズおよび投写型表示装置
CN204945481U (zh) 投射用变焦镜头以及投射型显示装置
CN103154800B (zh) 变焦透镜和图像拾取设备
JP5632714B2 (ja) 接眼ズーム光学系及び光学機器
JP2016050989A (ja) 投写用ズームレンズおよび投写型表示装置
WO2013061536A1 (ja) 投写用ズームレンズおよび投写型表示装置
JP5777182B2 (ja) 投写用変倍光学系および投写型表示装置
JP2004333768A (ja) ズームレンズ及びそれを有する撮像装置
JP2018040948A (ja) ズームレンズ
JP2016061948A (ja) 投写用ズームレンズおよび投写型表示装置
JP5642903B2 (ja) 投写用ズームレンズおよび投写型表示装置
JPH1152236A (ja) リヤーフォーカス式のズームレンズ
JP5380444B2 (ja) リレーズーム系
CN116338917A (zh) 变倍光学系统、光学设备以及变倍光学系统的制造方法
JP5611901B2 (ja) 投写用変倍光学系および投写型表示装置
JP2016009122A (ja) インナーフォーカシングタイプのズームレンズ
JPH08211290A (ja) 高変倍率ズームレンズ
JP2007003774A (ja) ズームレンズ
JP4923499B2 (ja) ズームレンズ
JP2006106117A (ja) ズームレンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517956

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009770070

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12992981

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE