WO2009157109A1 - 光ヘッド装置、光情報処理装置及び信号検出方法 - Google Patents

光ヘッド装置、光情報処理装置及び信号検出方法 Download PDF

Info

Publication number
WO2009157109A1
WO2009157109A1 PCT/JP2009/000019 JP2009000019W WO2009157109A1 WO 2009157109 A1 WO2009157109 A1 WO 2009157109A1 JP 2009000019 W JP2009000019 W JP 2009000019W WO 2009157109 A1 WO2009157109 A1 WO 2009157109A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
information recording
detection
radial direction
diffraction
Prior art date
Application number
PCT/JP2009/000019
Other languages
English (en)
French (fr)
Inventor
山本博昭
小野将之
西本雅彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2009801072911A priority Critical patent/CN101960523A/zh
Priority to EP09769819A priority patent/EP2293297A4/en
Priority to US12/919,395 priority patent/US20110176403A1/en
Publication of WO2009157109A1 publication Critical patent/WO2009157109A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/131Arrangement of detectors in a multiple array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/094Methods and circuits for servo offset compensation

Definitions

  • the present invention relates to an optical head device for recording, reproducing and erasing information stored on an optical medium such as an optical disc and an optical card, an optical information processing apparatus, and a focus error signal detection method.
  • optical information recording media such as DVD-ROM, DVD-Video and the like as a read-only medium
  • single-sided dual-layer recording is commercialized.
  • an optical information recording medium of single-sided dual-layer recording such as DVD-R DL (Dual Layer), DVD + R DL (Double Layer), etc. has been commercialized.
  • optical information recording media for reproduction and recording on one side two layers such as Blu-Ray Disc, HD-DVD, etc. have appeared.
  • optical information recording media for reproduction and recording on one side of four layers and eight layers are considered, and recording and reproduction techniques for multilayer optical recording media are becoming important.
  • the technology disclosed in Patent Document 1 is proposed.
  • a near infrared semiconductor laser having a wavelength of 780 nm to 820 nm is used as a light source for recording and reproduction of a CD.
  • a red semiconductor laser having a shorter wavelength of 635 nm to 680 nm is used as a light source for recording and reproduction of DVD in order to increase the recording density. It is preferable that the optical disk drive can perform recording and reproduction with respect to two types of disks different in these standards, and such an optical head device has been developed (for example, Patent Document 2).
  • FIG. 14 is a view showing the optical principle configuration of a general optical pickup device using a diffraction grating (hologram).
  • a semiconductor laser 1030 emits a laser beam for recording and reproduction, and a collimating lens 1011 makes the laser beam a parallel beam.
  • a diffraction grating 1024 diffracts the collimated laser beam into one main beam and two sub beams.
  • the main beam and the sub beam are not shown individually but only the paths of these lights.
  • these three beams After passing through the polarization beam splitter 1015, these three beams are directed to the optical disk 1010 by the mirror 1019, and linearly polarized light is converted into circularly polarized light by the 1 ⁇ 4 wavelength plate 1016. Further, the three beams are focused on the optical disc 1010 by the objective lens 1012. The laser beam reflected by the optical disk 1010 passes through the objective lens 1012, the 1 ⁇ 4 wavelength plate 1016, and the mirror 1019 again, and is reflected by the polarizing beam splitter 1015 in the direction of the light detector 1040. The reflected light is collected by the detection lens 1013 and further diffracted by the hologram element 1020 to reach the light detector 1040.
  • the radial direction of the optical disk 1010 is indicated as the x direction, the track direction as the y direction, and the direction orthogonal to these two directions as the z direction.
  • the hologram element 1020 has a disk shape as shown in FIG. 15, and one dividing line B12 passes through the center thereof.
  • the direction of the dividing line B12 is set to be substantially parallel to the track direction (y direction) of the optical disk 1010 in the light flux pattern of the beam reflected from the optical disk 1010.
  • two types of diffraction regions 1269A and 1269B having arc-shaped gratings are formed on both sides (left and right in FIG. 15) of the parting line B12.
  • the photodetector 1040 which receives these ⁇ first-order diffracted lights has a light receiving surface as shown in FIG.
  • FIG. 10 the case of using the spot size method (SSD method) for focus detection, the phase difference method (DPD method) and the differential push-pull method (DPP method) for tracking detection is shown.
  • SSD method spot size method
  • DPD method phase difference method
  • DPP method differential push-pull method
  • the light receiving surface includes twelve light detection areas S14 to S25 arranged in three steps of two on the left and right with the center line as a symmetry axis, each of which is a position at which the 12 ⁇ 1st order diffracted lights reach It is arranged to correspond to.
  • the four middle light detection areas S18 to S21 correspond to the spots formed by the main beam SP1, and perform focus detection and DPD detection.
  • the upper and lower photodetection regions S14 to S17 and S22 to S25 correspond to the light spots of the two sub beams SP2 and SP3, respectively, and are for performing DPP detection.
  • Each of the middle light detection areas S18 to S21 is divided into four in the horizontal direction to form four cells. Therefore, there are 24 divided areas in the entire light receiving surface.
  • light passing through one diffraction area 1269A in the hologram element 1020 is incident on the two lines of light detection areas S14, S18 and S22 outside of the four lines of light detection areas, and S17, S21 and S25.
  • the light passing through the other diffraction area 1269B is incident on the inner two rows of light detection areas S15, S19 and S23 and S16, S20 and S24, respectively.
  • the pattern is set.
  • the focus error signal of the servo error signal is detected by the SSD method FE (SSD), and the tracking error signal is detected by the DPD method TE (DPD) and the DPP method TE (DPP) (main push pull TE (MPP) It is detected by the sub push-pull TE (SPP) operation and is generated by the following operation.
  • SSD SSD method FE
  • DPD DPD method TE
  • DPP DPP method TE
  • MPP main push pull TE
  • SPP sub push-pull TE
  • TE (SSD) (B + C + F + G)-(A + D + E + H)
  • DPD phase (A + B, E + F) + phase (C + D, G + H)
  • TE (MPP) (A + B + C + D)-(E + F + G + H)
  • TE (SPP) I-J
  • DPP TE (MPP) -Gain (TE (SPP))
  • phase () represents phase comparison
  • Gain () represents a certain coefficient.
  • A, B, C, D, E, F, G, H, I, and J are intensities of light signals obtained by the light receiving surface shown in FIG. These are represented as follows using the symbols of each light detection area shown in FIG.
  • FIG. 17 shows a conventional optical head device capable of recording and reproducing with respect to CD and DVD, which are two types of discs having different standards.
  • the optical head device of FIG. 17 is an optical head device for reading information from an optical disk 1010.
  • the apparatus includes a semiconductor laser 1301 which is a first light source for emitting light of a first wavelength ⁇ 1, and a semiconductor laser 1302 which is a second light source for emitting light of a second wavelength ⁇ 2.
  • the semiconductor laser 1301 uses a red semiconductor laser with an oscillation wavelength of 635 to 680 nm for DVD, and the semiconductor laser 1302 uses a near infrared semiconductor laser for 780 nm to 820 nm for CD, corresponding to the type of optical disc 1010
  • the semiconductor laser 1030 or the semiconductor laser 1302 emits light.
  • the light beam L1 emitted from the semiconductor laser 1301 and the light beam L2 emitted from the semiconductor laser 1302 are reflected by the mirror 1019 disposed on the emission front of the semiconductor laser 1301 and the semiconductor laser 1302 so as to be incident on the optical disk 1010.
  • Light collecting means (not shown) is disposed between the mirror 1019 and the optical disk 1010, and the light beams L1 and L2 are collected on the information recording surface of the optical disk 1010 by this light collecting device.
  • the light beam L1 and the light beam L2 reflected by the optical disk 1010 are diffracted by the hologram element 1020 disposed between the focusing means and the mirror 1019, and light detectors (1401, 1402, 1403, 1404, 1405 and 1406) Detected by
  • the hologram element 1020 consists of two areas, a diffraction area 1261 and a diffraction area 1262, and diffracts incident light as follows.
  • the incident light ray L1 is divided into two at the boundary between the diffraction area 1261 and the diffraction area 1262 to generate + 1st order light and -1st order light.
  • the generated + first-order light enters the light detector 1401 and the light detector 1402, and the minus first-order light enters the light detector 1403 and the light detector 1404.
  • Focus error signal spot size detection (SSD) method
  • DPD phase difference detection
  • the incident light ray L2 is divided into two at the boundary between the diffraction area 1261 and the diffraction area 1262 to generate + 1st order light and -1st order light.
  • the generated + first-order light enters the light detector 1401 and the light detector 1402, and the ⁇ 1st-order light enters the light detector 1405 and the light detector 1406.
  • SSD method Focus error signal
  • PP push-pull
  • the two-layered optical information recording medium comprises two recording layers in the thickness direction of the medium. Also, the first recording layer closer to the optical pickup device is a semitransparent recording layer, and the optical pickup device records on both layers by changing the focus between the first recording layer and the second recording layer. Or it can be played back.
  • FIG. 18 and FIG. FIG. 20 shows a state in which the first information recording layer 1801 far from the optical pickup device is in focus among the two-layer optical information recording medium.
  • the other non-focused off-focus layer (second information recording layer 1802 Defocused light from) is incident.
  • the defocused light passes across the boundary between the recording area 1802 a and the unrecorded area 1802 b of the second information recording layer 1802, it affects the tracking error signal particularly due to the imbalance of the light amount.
  • defocused light of the main beam having a larger light quantity than the sub beam is a main factor.
  • FIG. 18 shows how defocus light of the main beam is incident to cover each light detection area.
  • Defocused light of the main beam protrudes from the light detection areas S18, S19, S20 and S21 which generate TE (MPP), and light detection areas S14, S15, S16, S17, S22, S23, which generate TE (SPP) It is incident to S24 and S25.
  • MPP TE
  • SPP TE
  • the gain of the light detection area for generating the TE (SPP) signal is set larger than the gain of the light detection area for generating the TE (MPP). For this reason, defocus light strongly affects TE (SPP).
  • FIG. 19 shows a TE (SPP) signal when defocused light passes across the recording area 1802 a and the unrecorded area 1802 b of the second information recording layer 1802. However, the case where there is no AC signal is shown.
  • SPP TE
  • the TE (SPP) signal becomes unstable, and a stable tracking error signal can not be generated. This is one of the problems.
  • the second information recording layer 1802 is focused, the same problem occurs due to the reflected light from the first information recording layer 1801.
  • the semiconductor laser 1302 is shifted from the center of the hologram element 1020.
  • imbalance occurs in the tracking error signal by the push-pull method in the semiconductor laser 1302, and a stable tracking error signal can not be obtained.
  • the semiconductor laser 1302 when the semiconductor laser 1302 is brought to the center of the hologram element, the semiconductor laser 1301 shifts from the center of the hologram. Therefore, an imbalance occurs in the tracking error signal by the DPD method in the semiconductor laser 1030, and a stable tracking error signal can not be obtained.
  • a low-cost optical head device capable of supporting at least two layers of optical information recording media and enabling detection of a focus / tracking error signal that realizes more accurate and stable recording and reproduction Explain to.
  • a first optical head device comprises a light source for emitting a light beam, a focusing optical system for focusing the light beam on the information recording medium, and a hologram element for diffracting the light beam reflected by the information recording medium
  • a light receiving element having a plurality of detection areas for receiving diffracted light diffracted by the hologram element, the hologram element having two diffraction areas divided by straight lines extending in the radial direction of the information recording medium,
  • the pattern of at least one of the two diffraction regions is a pattern that gives coma aberration in the radial direction to the diffracted light.
  • At least a pair of detection regions among the plurality of detection regions of the light receiving element are disposed so as to be opposed to each other with a dividing line extending in the radial direction, and diffracted light given coma aberration is incident on the dividing line.
  • a focus error signal is obtained based on the signals detected in the pair of detection areas.
  • the diffraction area of the hologram element is partitioned by a straight line extending in the radial direction of the information recording medium, and each diffracted light can be detected by a plurality of light receiving areas. Therefore, in the radial direction, even if the light incident on the light receiving element is changed, it can be offset. Therefore, when using an information recording medium having a plurality of information recording layers, defocus light from the information recording layer which is not focused passes through the boundary between the recording area and the unrecorded area of the information recording layer. Even if the intensity changes, the focus error signal can be stably obtained without being affected.
  • the second optical head device of the present disclosure diffracts the light beam reflected by the information recording medium, a light source for emitting the light beam, a focusing optical system for focusing the light beam on the information recording medium, and A first division comprising a hologram element and a light receiving element having a plurality of detection areas for receiving diffracted light diffracted by the hologram element, the plurality of detection areas of the light receiving element extending in the radial direction of the information recording medium
  • a first light detection area and a second light detection area arranged to face each other with a line interposed therebetween, and a third light detection area and a fourth light detection area disposed opposed to each other with a second parting line extending in the radial direction.
  • the hologram element has a first diffraction area and a second diffraction area separated by a straight line extending in the radial direction, and the pattern of the first diffraction area is a coma aberration in the radial direction.
  • the And generates diffracted light that converges on the first parting line, and the pattern of the second diffraction region generates diffracted light that has coma in the radial direction and that converges on the second parting line;
  • a focus error signal is obtained based on the difference signal between the signal in the detection region and the signal in the second detection region, and the difference signal between the signal in the third detection region and the signal in the fourth detection region.
  • the diffraction area of the hologram element is divided into two by a straight line extending in the radial direction of the information recording medium. Further, the detection regions of the light receiving elements are also arranged to face each other with the parting line extending in the radial direction interposed therebetween. Therefore, as in the first optical head device, the focus error signal can be stably obtained even when using an information recording medium having a plurality of information recording layers.
  • the third optical head device of the present disclosure comprises a light source for emitting a light beam, a diffraction grating for generating one main beam and two sub beams from the light beam, and the main beam and the sub beams on the information recording medium. And a hologram element for diffracting the main beam and the sub beam reflected by the information recording medium, and a light receiving element having a plurality of detection areas for receiving diffracted light diffracted by the hologram element.
  • the hologram element has a diffraction area divided into two by a straight line extending in the radial direction of the information recording medium, and at least one pattern of the two diffraction areas gives a diffracted light a coma aberration in the radial direction It is.
  • the plurality of detection areas of the light receiving element are opposed to the first pair of detection areas disposed facing each other across the first parting line extending in the radial direction and the second parting line extending in the radial direction.
  • the second pair of detection regions arranged in the first pair, and the diffracted light to which the coma of the main beam is given is incident on the first dividing line of the first pair of detection regions.
  • the focus error signal is obtained on the basis of the signal detected in the second detection region, and the diffracted light to which the coma of the sub beam is given is incident on the second dividing line of the second pair of detection regions, and the second pair
  • the tracking error signal is obtained based on the signal detected in the detection area of
  • the diffraction area of the hologram element is divided into two by a straight line extending in the radial direction of the information recording medium.
  • the detection regions of the light receiving elements are also arranged to face each other with the parting line extending in the radial direction interposed therebetween. Therefore, as in the first optical head device, the focus error signal can be stably obtained even when using an information recording medium having a plurality of information recording layers. Furthermore, one main beam and two sub beams can be generated from the light source and used to obtain a focus error signal and a tracking error signal, respectively.
  • the first to third optical head devices it is preferable to provide another light emitting point which is arranged in the radial direction with respect to the light emitting point of the light source and emits a light beam of a wavelength different from the light emitting point.
  • an optical head device capable of using light beams of a plurality of wavelengths is provided, and it is compatible with a plurality of types of information recording media that require light of different wavelengths for recording and reproduction such as CD and DVD. be able to.
  • the other light emitting points are aligned in the radial direction with respect to the light emitting point, light of either wavelength is used for taking a certain distance between the light emitting point and the other light emitting point It does not affect the detection of the focus error signal etc. in the case.
  • an optical information processing apparatus of the present disclosure is an optical information processing apparatus that performs recording and reproduction of information by irradiating light to an information recording medium, and includes any of the optical head devices according to the present invention.
  • the optical information processing apparatus of the present disclosure since the focus error signal and the like can be detected stably even when using a multilayer information recording medium, more stable recording and reproduction can be performed.
  • a light source for emitting a light beam, a focusing optical system for causing the light beam to converge on the information recording medium, and the light beam reflected by the information recording medium In an optical head device including a hologram element to be diffracted and a light receiving element having a plurality of detection areas for receiving diffracted light diffracted by the hologram element, the hologram element is divided by a straight line extending in the radial direction of the information recording medium And at least one pattern of the two diffraction areas is a pattern for giving coma aberration in the radial direction to the diffracted light, and at least one pair of a plurality of detection areas of the light receiving element
  • the detection region is disposed opposite to the parting line extending in the radial direction, and the diffracted light given coma aberration enters on the parting line.
  • a light source for emitting a light beam for emitting a light beam
  • a focusing optical system for causing the light beam to converge on the information recording medium, and the light beam reflected by the information recording medium
  • the plurality of detection areas of the light receiving element are in the radial direction of the information recording medium.
  • the pattern of the area generates diffracted light having coma in the radial direction and converging on the first division line, and the pattern of the second diffraction area has coma in the radial direction and the second division
  • a diffracted light converging on a line is generated, and the difference signal between the signal in the first detection area and the signal in the second detection area, and the difference between the signal in the third detection area and the signal in the fourth detection area
  • a focus error signal is obtained based on the signal.
  • the reflected light from the information recording medium is diffracted by the diffraction area divided into two by the straight line extending in the radial direction. Diffracted light from each of the diffractive regions is incident on the diffractive regions divided by the dividing lines in the radial direction. As such, as described with regard to the optical head device of the present disclosure, the focus error signal can be detected stably even when using a multilayer information recording medium.
  • the optical head device of the present invention it is possible to cope with an information recording medium having a plurality of information recording layers, and it is possible to detect a stable tracking error signal which enables more accurate and stable recording and reproduction.
  • a stable tracking error signal which enables more accurate and stable recording and reproduction.
  • an optical head device having two light sources corresponding to two wavelengths it is possible to stably detect the tracking error signal when either light source is used, and the wavelengths of light used are different from each other. It is possible to stably record and reproduce various information recording media.
  • FIG. 1 is a view showing the main configuration of an optical head device exemplified in the first embodiment.
  • FIG. 2 is a plan view showing the hologram element exemplified in the first embodiment.
  • FIG. 3 is a plan view showing the photodetector exemplified in the first embodiment.
  • 4 (a) to 4 (e) are diagrams showing pot diagrams on the photodetector exemplified in the first embodiment.
  • FIG. 5 is a diagram showing a focus error signal exemplified in the first embodiment.
  • FIG. 6 is a view showing an optical information recording medium having two information recording layers and light reflected thereby.
  • FIG. 7 is a diagram showing stray light on the photodetector exemplified in the first embodiment.
  • FIG. 1 is a view showing the main configuration of an optical head device exemplified in the first embodiment.
  • FIG. 2 is a plan view showing the hologram element exemplified in the first embodiment.
  • FIG. 8 is a diagram showing the variation of the sub push-pull signal exemplified in the first embodiment.
  • FIG. 9 is a view showing the main configuration of an optical head device exemplified in the second embodiment.
  • FIG. 10 is a plan view showing a hologram element exemplified in the second embodiment.
  • FIG. 11 is a plan view showing a photodetector exemplified in the second embodiment.
  • FIG. 12 is a view showing the main configuration of an optical head device exemplified in the second embodiment.
  • FIG. 13 is a plan view showing a photodetector exemplified in the third embodiment.
  • FIG. 14 is a diagram showing the configuration of an optical head device as a technical background.
  • FIG. 14 is a diagram showing the configuration of an optical head device as a technical background.
  • FIG. 15 is a plan view showing a hologram element as a technical background.
  • FIG. 16 is a plan view showing a light detector as a technical background.
  • FIG. 17 is a diagram showing the configuration of an optical head device as a technical background.
  • FIG. 18 is a plan view showing a hologram element as a technical background.
  • FIG. 19 is a diagram showing the fluctuation of the sub push-pull signal in the optical head device as the technical background.
  • FIG. 20 is a view showing an optical information recording medium having two information recording layers and light reflected thereby.
  • FIG. 1 is a view schematically showing the configuration of an exemplary optical head device according to a first embodiment of the present disclosure.
  • a semiconductor laser 30 having a light emitting point P0 and a photodetector 40 are fixed to a holding means 741.
  • a hologram element 20 including a diffraction grating 24 and diffraction regions 261 and 262 is provided, and the hologram element 20 is fixed to the holding means 741 in a predetermined positional relationship by another holding means (not shown). ing.
  • the other holding means may be an optical bench of an optical head device.
  • a unit that integrates the hologram element 20, the semiconductor laser 30, and the photodetector 40 may be configured using a holding member other than the optical bench. By using such a unit, the optical system can be configured more stably.
  • the optical head device comprises a collimator lens 11 and an objective lens 12, and constitutes a focusing optical system for focusing the laser beam (light beam L0) emitted by the semiconductor laser 30 onto the optical disc 10 as an information recording medium.
  • the optical head device includes a lens driving mechanism (not shown) for drivingly displacing the objective lens in the optical axis direction (Z direction) of the objective lens and the radial direction (X direction) of the optical disc 10.
  • the direction of the optical axis of the focusing optical system is Z direction
  • the radial direction of the optical disc 10 is X direction
  • the track direction of the optical disc 10 (tangential direction). )
  • the direction is defined on the basis of the optical axis and the mapping of the optical disc 10.
  • the light beam L0 emitted from the semiconductor laser 30 is diffracted to a desired ratio by the diffraction grating 24 included in the hologram element 20, and the main beam (L0a) which is zero-order light and L0b and L0c which are ⁇ first-order light Individual illustrations are omitted). These beams are transmitted through the diffraction areas 261 and 262 of the hologram element 20, and then condensed on the information recording surface of the optical disc 10 by the collimator lens 11 and the objective lens 12.
  • the reflected light reflected by the optical disk 10 is converted by the objective lens 12 and the collimator lens 11 into light which converges to the light emitting point P 0 of the semiconductor laser 30.
  • the light thus converted enters the hologram element 20 and is diffracted by the diffraction regions 261 and 262.
  • the diffracted light enters the light detector 40 and is detected as a signal.
  • the size and position of the diffraction grating 24 are set such that diffracted light from the diffraction regions 261 and 262 does not enter and is not further diffracted.
  • FIG. 2 shows the diffraction areas 261 and 262 provided in the hologram element 20
  • FIG. 3 shows the configuration of the light detector 40.
  • the X-axis, the Y-axis and the Z-axis shown in FIGS. 2 and 3 are all the same as the three axes shown in FIG.
  • the hologram element 20 is a position passing through approximately the center of the light beam L0 (the optical axis of the focusing optical system) and is divided into two by a straight line 260 parallel to the X axis.
  • a diffractive region 262 is provided. As described above, these grating patterns transmit the light emitted from the semiconductor laser 30 as it is, and diffract the return light reflected by the optical disk 10 toward the light detector 40. Furthermore, the diffraction area 261 and the diffraction area 262 have grating patterns different from each other, and the diffracted light by the diffraction areas 261 and 262 is relative to the light detector 40 on the minus side and the plus side of the X direction, respectively. It is supposed to be incident (see FIG. 1).
  • the light detector 40 has a light detection area group 451 and a light detection area group 452 aligned in the X direction. Furthermore, the light detector 40 has a light detection area group 453 and a light detection area group 454 on both sides of the light detection area groups 451 and 452 in the Y direction.
  • the light detection area groups 451 and 452 among the light detection area groups are related to the main beam (L0a) of the return light from the optical disc 10.
  • the light detection area group 451 includes a light detection area 451a and a light detection area 451b which are disposed to face each other with a first parting line 461 substantially parallel to the X axis.
  • the light detection area group 452 also includes a light detection area 452 a and a light detection area 452 b which are arranged to face each other with the second parting line 462 substantially parallel to the X axis.
  • the grating pattern is also a grating pattern that diffracts the main beam to form a spot 601 a incident on the light detection region group 451 with coma aberration in the X direction.
  • the light detected in the light detection area 451a is mainly light on the plus side of the X axis in FIG. 2, and the light detected in the light detection area 451b is mainly on the minus side of the X axis in FIG.
  • the light of Therefore, as described later, the light detection areas 451a and 451b can be used for detection of a tracking error signal by the push-pull method.
  • the main beam (L0a) of the return light from the optical disc 10 incident here crosses the second dividing line 462 in the light detection area group 452 (light detection area It is a grating
  • the grating pattern is also a grating pattern that diffracts the main beam to form a spot 602 a that is incident in the X direction and has a coma aberration opposite to the polarity of the diffraction region 261 and is incident on the light detection region group 452.
  • light detected in the light detection region 452a is mainly light on the plus side of the X axis in FIG. 2
  • light detected in the light detection region 452b is mainly light on the minus side of the X axis in FIG. It is. Therefore, the light detection regions 452a and 452b can be used for detection of a tracking error signal by the push-pull method.
  • the light detection area group 453 includes a light detection area 453a and a light detection area 453b which are arranged to face each other with the third dividing line 463 substantially parallel to the X-axis interposed therebetween.
  • the group 454 includes a light detection area 454a and a light detection area 454b which are disposed to face each other across a fourth parting line 464 substantially parallel to the X-axis.
  • the sub-beams (L0 b and L0 c) of the return light from the optical disc 10 are incident on these light detection areas.
  • the sub beam L 0 b is diffracted by the hologram element 20 and is incident on the light detection region group 453 so as to cross the third dividing line 463. At this time, the light diffracted by the diffraction area 261 of the hologram element 20 is incident as a spot 601 b, and the light diffracted by the diffraction area 262 is incident as a spot 602 b.
  • the sub-beam L 0 c is diffracted by the hologram element 20 and is incident on the light detection region group 454 so as to cross the fourth dividing line 464.
  • the light diffracted by the diffraction area 261 of the hologram element 20 is incident as a spot 601 c
  • the light diffracted by the diffraction area 262 is incident as a spot 602 c.
  • tracking error signals by the push-pull method can be obtained based on the signals in the two light detection areas where each spot is incident.
  • the focus error signal FE is calculated by the operation of Equation 1 based on the method described in detail later. Further, as the tracking error signal, the tracking signal TE DPD by the DPD method and the tracking error signal TE DPP by the DPP method are generated by the calculation of the following equations.
  • A, B, C, D, E and F correspond to signals detected in each light detection area shown in FIG.
  • A is a light detection region 451b
  • B is a light detection region 451a
  • C is a light detection region 452a
  • D is a signal detected in the light detection region 452b
  • E is the sum of the signal detected in the light detection area 453b and the signal detected in the light detection area 454b
  • F is the signal detected in the light detection area 453a and detected in the light detection area 454a.
  • TE MPP is a push-pull signal of the main beam
  • TE SPP is a push-pull signal of the sub beam
  • TE MPP (A + D)-(B + C) ... (Equation 4)
  • TE SPP E-F (Equation 5)
  • k is a constant, and is optimized so as to minimize variations in TEDPP caused by the shift of the objective lens 12.
  • a signal RF which is a signal for reading information recorded on the optical disc 10, is given by the following equation.
  • FIGS. 4A to 4E show the shapes of the spots 601a and 601b on the light detector 40 which change corresponding to the position of the optical disk 10.
  • FIG. FIG. 5 also shows the relationship between the position of the optical disk 10 and the focus error signal.
  • the state in which the minimum spot is formed on the information recording surface of the optical disc 10 that is, the in-focus state is the origin, and is called state (c).
  • state (c) the state in which the minimum spot is formed on the information recording surface of the optical disc 10
  • the shapes of the spots 601a and 601b in each state are as shown in FIG. It corresponds to (a) to (e).
  • the spots 601a are positioned so as to be distributed to the light detection area 451a and the light detection area 451b at the same degree.
  • the spot 601 b is positioned so as to extend to the light detection area 452 a and the light detection area 452 b to the same extent. Therefore, A (signal from light detection area 451b) and B (signal from light detection area 451a), and C (signal from light detection area 452a) and D (signal from light detection area 452b) are respectively The balance is maintained, and the focus error signal FE represented by (Expression 1) becomes zero.
  • the spot 601a moves so as to have a distribution biased to the side of the light detection area 451b relative to the light detection area 451a according to the approach distance.
  • the spot 601b moves so as to have a distribution biased toward the light detection area 452a than the light detection area 452b (see FIG. 4B).
  • the focus error signal FE represented by (Expression 1) has a negative value.
  • the focus error signal FE has a minimum value.
  • the spot 601a is closer to the light detection area 451a than the light detection area 451b according to the distance. It moves so as to become a biased distribution.
  • the spot 601b moves so as to have a distribution biased toward the light detection region 452b than the light detection region 452a (see FIG. 4D).
  • the focus error signal FE of (Expression 1) becomes a positive value.
  • the focus error signal FE has a maximum value.
  • the focus error signal FE can be obtained as a signal that changes according to the position of the optical disc 10 with respect to the objective lens 12.
  • the distance between the position where the focus error signal FE takes the maximum value and the position where the focus error signal FE takes the minimum value, that is, the detection range of the focus error signal FE can be set by the amount of coma of the hologram element 20.
  • the method of detecting a focus error signal as described above can cope with an optical information recording medium having a plurality of information recording layers.
  • FIG. 6 is a schematic view showing how information is recorded and reproduced using an optical disc 10 which is a two-layer optical information recording medium having information recording layers 801 and 802. As shown in FIG. Here, a state in which light is focused on the information recording layer 801 on the side far from the objective lens 12 is shown.
  • incident light is also reflected by the information recording layer 802 closer to the objective lens 12 in addition to being reflected by the information recording layer 801.
  • the light intensity distribution of the reflected light by the information recording layer 802 is modulated according to the recording state in the information recording layer 802. Further, since the light reflected by the information recording layer 802 is reflected in an out-of-focus state, it is not converted into parallel light even though it is transmitted through the objective lens 12. As a result, the light enters the light detector 40 as stray light in a spread state.
  • the reflected light from the information recording layer 802 which is in such an out-of-focus state is indicated as a defocused reflected light Ld by a broken line in FIG.
  • FIGS. 7A to 7C show a state in which the defocus reflected light Ld from the information recording layer 802 is incident on the light detector 40.
  • FIG. 7A when all the defocus reflected light Ld is reflected by the unrecorded area 802b of the information recording layer 802, in FIG. 7B, the reflected light is recorded in the recording area 802a of the information recording layer 802 and FIG. 7C shows the case where all the reflected light is reflected by the recording area 802 a of the information recording layer 802 when it is reflected by both the unrecorded areas 802 b.
  • the recording area reflected light Lda reflected by the recording area 802a has a lower intensity than the unrecorded area reflected light Ldb reflected by the unrecorded area 802b, as shown in FIGS. This corresponds to the shaded area in c).
  • stray light derived from the main beam incident on the light detection area group 453 and the light detection area group 454 is the main cause. Therefore, such stray light is shown in the figure, and stray light derived from the sub beams (L0b and L0c) is omitted. Further, illustration of light reflected by the information recording layer 801 is also omitted.
  • Stray light derived from the main beam goes out of the light detection area (light detection area group 451 and light detection area group 452) that generates TE MPP , and light detection area (light detection area group 453 and light detection area group) that generates TE SPP It is incident to 454).
  • the gain of the amplifier of the signal detected from the light detection area (light detection area groups 453 and 454) generating the TE SPP signal is the light detection area (light detection area group 451 and the light detection area group generating the TE MPP It is set larger than the gain of the amplifier of the signal detected from 452). For this reason, conventionally, stray light derived from the main beam has a great influence on TE SPP .
  • FIG. 8 shows the offset of the TE SPP signal when the non-focused spot on the information recording layer 802 passes across the boundary between the recording area and the non-recording area.
  • a conventional example and an example of the present embodiment are shown.
  • the TE SPP signal fluctuates when the spot passes across the boundary between the recording area and the non-recording area in the information recording medium. Is generating a stable tracking error signal.
  • each light detection area group (light detection area groups 453 and 454) that generates the TE SPP signal even when the defocused light crosses the boundary between the recording area and the non-recording area. It is because the change is offset.
  • the light detection areas 453a and the light detection areas 453b are arranged symmetrically with respect to a dividing line parallel to the X axis. For this reason, even if the recording area reflected light Lda whose intensity is weakened because it is reflected light by the recording area 802a is incident, the change of the signal is equal between the light detection area 453a and the light detection area 453b. Therefore, the TE SPP signal, which is a differential of those signals, does not change.
  • the light detection areas 454a and the light detection areas 454b are arranged symmetrically with respect to a dividing line parallel to the X axis. For this reason, even if the recording area reflected light Lda whose intensity is weakened because it is reflected light by the recording area is incident, the change of the signal is equal between the light detection area 454a and the light detection area 454b. Therefore, the TE SPP signal, which is a differential of those signals, does not change.
  • the recording area has been described as a recording medium having a reflectance lower than that of the unrecorded area.
  • the recording area may be a recording medium having a higher reflectance than the unrecorded area.
  • the hatched portion represents a region with high light intensity.
  • FIG. 9 is a view schematically showing the main part of the exemplary optical head device of the present embodiment.
  • the optical head device is for performing recording and reproduction on two types of optical disks of different standards such as CD and DVD.
  • the basic configuration is that in the optical head device of the first embodiment shown in FIG. 1, a semiconductor laser 301 of two wavelengths is provided instead of the semiconductor laser 30 of one wavelength.
  • the semiconductor laser 301 is a semiconductor laser in which a first light source for emitting light of a first wavelength ⁇ 1 and a second light source for emitting light of a second wavelength ⁇ 2 are monolithically integrated.
  • FIG. 9 the same components as in FIG. 1 are assigned the same reference numerals, and in the following, the semiconductor laser 301 will be mainly described.
  • a light beam L1 having an oscillation wavelength of 635 to 680 nm for DVD and an oscillation wavelength for 780 to 820 nm for CD are used as the semiconductor laser 301.
  • the one which can emit a certain light ray L2 is used.
  • recording and reproduction can be performed on a desired optical recording medium (CD or DVD).
  • the light emitting point P1 of the light beam L1 and the light emitting point P2 of the light beam L2 in the semiconductor laser 301 are arranged in the radial direction (X direction) at an interval d. Further, of the two light emitting points, the light emitting point having the shorter wavelength is disposed on the light receiving element side. This is because the light beam L1 and the light beam L2 are made to be incident on the same position of the light detector 40 by utilizing the fact that the shorter the light wavelength, the smaller the angle of diffraction by the hologram element 20.
  • a light beam L1 emitted from the semiconductor laser 301 is diffracted at a desired ratio by a diffraction grating 24 provided in the hologram element 20, and a main beam (L1a) which is zero-order light and a ⁇ 1st-order light 2 It is separated into book sub-beams L1 b and L1 c (not shown).
  • the light beam L2 is separated by the diffraction grating 24 into a main beam (L2a) which is zero-order light and two sub-beams L2b and L2c (not shown) which are ⁇ first-order light.
  • These beams are transmitted through the hologram element 20 and then condensed on the information recording surface of the optical disc 10 by the collimator lens 11 and the objective lens 12.
  • Reflected light from the optical disk 10 is converted by the objective lens 12 and the collimator lens 11 into light which converges to each light emitting point (P 1 or P 2) of the semiconductor laser 301.
  • the converted light is incident on the hologram element 20 and diffracted by the diffraction regions 261 and 262.
  • Diffracted light enters the light detector 40, and the light detector 40 detects a signal.
  • the size and position of the diffraction grating 24 are set so that diffracted light from the diffraction regions 261 and 262 does not enter and is further diffracted.
  • FIG. 10 is a view showing the positional relationship between the hologram element 20 of the present embodiment and the light beams L1 and L2 incident thereon.
  • FIG. 11 is a plan view showing the structure of the photodetector 40 and the positional relationship between the light emitting points P1 and P2 with respect to the photodetector 40 in the semiconductor laser 301. As shown in FIG.
  • the hologram element 20 is a diffraction that is divided into two by a straight line 260 that passes substantially the center of the light beam (both L1 and L2) (the optical axis of the focusing optical system) and is parallel to the X axis.
  • a region 261 and a diffractive region 262 are provided.
  • the diffraction regions 261 and 262 have grating patterns different from each other, and transmit the light emitted from the semiconductor laser 301 as it is and diffract the return light reflected by the optical disk 10 toward the light detector 40 It is configured to let you
  • the light incident positions on the hologram element 20 are also different.
  • the light emitting points P1 and P2 in the X direction, it is possible to arrange the optical axes of the light beams L1 and L2 on the straight line 260.
  • the photodetector 40 of FIG. 11 has the same structure as that of the first embodiment (FIG. 3). That is, the light detector 40 includes the light detection area groups 451, 452, 453, 454, and each of the light detection area groups is a pair of light detection areas arranged in a row substantially parallel to the X direction , Light detection areas 451a and 451b, 452a and 452b, 453a and 453b, 454a and 454b).
  • the functions of the hologram element 20 and the light detector 40 are the same as those of the first embodiment except that they are used to detect either of the two light beams L1 and L2.
  • the light detection area groups 451 and 452 are related to the main beam (L 1 a and L 2 a) of the return light from the optical disc 10, and the return light of the main beam from the optical disc 10 diffracted by the diffraction areas 261 and 262 is
  • the light beams are incident as spots 601a and 602a, respectively.
  • the spots 601a and 602a both have coma aberration in the X direction and opposite in polarity.
  • the light detection area group 453 is related to the sub-beams L1b and L2b of the return light, and the return light of the sub-beam from the optical disk 10 diffracted by the diffraction areas 261 and 262 is incident as spots 601b and 602b, respectively.
  • the light detection area group 454 is related to the sub-beams L1c and L2c of the return light, and the return light from the optical disc 10 diffracted by the diffraction areas 261 and 262 is incident as spots 601c and 602c, respectively.
  • the relationship between each spot and coma is also the same as in the first embodiment.
  • the focus error signal and the tracking error signal can be obtained in the same manner as in the first embodiment when using either of the light emitting points P1 and P2. .
  • a stable signal can be obtained even with an information recording medium having an information recording layer of two or more layers.
  • the beam is divided in the radial direction in order to perform detection by the push-pull method. Since this is performed by a dividing line extending in the X direction, light (L1 and L2) emitted from the light emitting point P1 and the light emitting point P2 arranged in the X direction at a distance d apart is similarly divided. . For this reason, in an optical head apparatus having two light sources for emitting light of two wavelengths, it becomes possible to obtain a stable tracking error signal regardless of which light source is used, and the wavelengths of light used are respectively different. Recording and reproduction of various optical disks can be performed more stably.
  • FIG. 12 is a view schematically showing the main part of an exemplary optical head device.
  • the optical head device is different in the photodetector and the semiconductor laser as compared with the optical head device of the first embodiment shown in FIG. Accordingly, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed descriptions thereof will be omitted. Hereinafter, differences from the optical head device in FIG. 1 will be described in detail.
  • a semiconductor laser 30 a is fixed to a recess provided on the upper surface of the light detector 401.
  • the concave portion is provided with a reflecting mirror 19 for reflecting the light beam L3 emitted from the semiconductor laser 30a in the optical axis direction (Z direction).
  • the diffraction grating 24, the hologram element 20 including the diffraction regions 261 and 262, the collimator lens 11, the objective lens 12, and the optical disc 10 are the same as those in the first embodiment.
  • a lens drive mechanism (not shown) for moving the objective lens 12 in the Z direction and the X direction, and a holding means (not shown) for fixing the light detector 40 and the hologram element 20 in a desired positional relationship are also provided.
  • a focusing optical system for focusing the laser light on the optical disc 10 is configured by these.
  • the light beam L3 emitted from the semiconductor laser 30a and reflected in the Z direction by the reflecting mirror 19 is separated into one main beam and two sub beams by the diffraction grating 24 provided in the hologram element 20.
  • the light passes through the diffraction areas 261 and 262 and is condensed on the information recording surface of the optical disc 10 by the collimator lens 11 and the objective lens 12.
  • the light reflected on the information recording surface passes through the objective lens 12 and the collimator lens 11 again and is incident on the hologram element 20 to be diffracted.
  • the diffraction regions 261 and 262 provided in the hologram element 20 have the same grating pattern as in the case of the first embodiment (FIG. 2).
  • the photodetector 401 detects the ⁇ 1st order light in addition to the + 1st order light.
  • the light detector 401 arranges the light detection region at a position sandwiching the light emitting point P3 of the semiconductor laser 30a. This is shown in FIG.
  • the + first-order light detection area 500 disposed on the minus side of the X axis with respect to the light emission point P3 has the same configuration as the light detector 40 (FIG. 3) in the first embodiment.
  • the detection regions are given the same reference numerals as in FIG.
  • the + first-order light of the light diffracted by the hologram element 20 is incident as spots 601a, 602a, 601b, 602b, 601c and 602c.
  • an area 501 for detecting -1st-order light is provided on the opposite side (plus side of the X axis) of the area 500 for detecting 1st-order light with the light emitting point P3 interposed therebetween.
  • the configuration is the same as that of the + first-order light detection area 500, and each has a reference numeral with 'added to the light detection area 451a like the light detection area 451a'.
  • the -1st-order light of the light diffracted by the hologram element 20 is incident as spots 601a ', 602a', 601b ', 602b', 601c 'and 602c'.
  • the same signal is obtained from each light detection area of the + first-order light detection area 500 and the -first-order light detection area 501, and should be amplified by the same amplifier or be added later by the addition amplifier. is there.
  • the focus error signal and the tracking error signal can be obtained by Equations 1 to 6 described in the first embodiment using the + first-order light detection region 500 and the ⁇ 1st-order light detection region 501.
  • the ⁇ 1st order light can be detected in addition to the + 1st order light, the light detection efficiency can be improved, and signal detection with less noise can be performed.
  • the change in the signal obtained from the + 1st order light and the change in the signal obtained from the ⁇ 1st order light cancel each other out, so that the deterioration of the signal characteristics is reduced. There is.
  • the optical head device of this embodiment has the same features as the optical head device of the first embodiment, and is an optical head device with less noise and a large assembly tolerance.
  • the optical head apparatus According to the optical head apparatus, the optical information processing apparatus, and the focus error signal detection method of the present disclosure, stable recording and reproduction are possible for an information recording medium having a plurality of information recording layers, and an optical information recording medium is used.
  • the present invention is also applicable to recording and reproduction of information, particularly, storage of computer data and programs, storage of map data of car navigation, and the like.

Abstract

 光ヘッド装置は、光ビームを出射する光源(30)と、光ビームを情報記録媒体(10)上に収束させる集光光学系と、情報記録媒体(10)により反射された光ビームを回折させるホログラム素子(20)と、ホログラム素子(20)により回折させられた回折光を受光する複数の検出領域を有する受光素子(40)とを備える。ホログラム素子(20)は、情報記録媒体(10)のラジアル方向に延びる直線(260)により区画された2つの回折領域(261及び262)を有する。2つの回折領域のうちの少なくとも一方のパターンは、ラジアル方向のコマ収差を有し、コマ収差を有する回折領域により回折させられた回折光は、ラジアル方向のコマ収差を有する。

Description

光ヘッド装置、光情報処理装置及び信号検出方法
 本発明は、光ディスク、光カード等の光媒体上に記憶される情報の記録、再生、消去を行う光ヘッド装置、光情報処理装置及びフォーカスエラー信号検出方法に関するものである。
 現在、高精細の動画や情報を記録するために、1枚の光情報記録媒体に記録できる容量を増大させる必要が生じている。そのため、光情報記録媒体に複数の記録層を設けることが考えられている。
 例えば、再生専用の媒体としては、DVD-ROM、DVD-Video等の専用光情報記録媒体があり、片面2層記録のものが商品化されている。また、記録用の媒体としてはDVD-R DL(Dual Layer)、DVD+R DL(Double Layer)等の片面2層記録の光情報記録媒体が商品化されている。更に、次世代光情報記録媒体として、Blu-Ray Disc、HD-DVD等の片面2層の再生用、記録用の光情報記録媒体が登場してきている。
 また、片面4層、8層の再生用、記録用の光情報記録媒体が考えられており、多層光記録媒体の記録再生技術は重要となってきている。このような光情報記録媒体を再生記録するために、例えば、特許文献1に開示の技術が提案されている。
 一方、広く普及しているCDの記録再生もまた重要である。CDの記録・再生用の光源には、波長780nm~820nm帯の近赤外半導体レーザが用いられている。これに対し、DVDの記録・再生用の光源には、記録密度を上げるため、より短波長である635nm~680nm帯の赤色半導体レーザが用いられている。光ディスクドライブは、これら規格の異なる2種類のディスクに対して記録・再生が行えることが好ましく、そのような光ヘッド装置が開発されている(例えば、特許文献2)。
 従来、図14に示すような光ピックアップ装置が考えられている。以下、この従来の光ピックアップ装置の動作原理を示す。図14は、回折格子(ホログラム)を用いた一般的な光ピックアップ装置について、その光学原理的構成を示す図である。
 図14に示す光ピックアップ装置において、半導体レーザ1030が記録・再生用のレーザ光線を出射し、該レーザ光線をコリメートレンズ1011が平行光束とする。平行光束となったレーザ光を、回折格子1024が1本のメインビームと2本のサブビームに回折させる。但し、図14においては、メインビーム及びサブビームを個々に示すのではなく、これらの光の経路だけを示している。
 これら3本のビームは、偏光ビームスプリッタ1015を透過した後にミラー1019により光ディスク1010の方向に向けられ、1/4波長板1016によって直線偏光を円偏光に変換される。更に、3本のビームは対物レンズ1012により光ディスク1010上に合焦させられる。光ディスク1010により反射されたレーザ光は再び対物レンズ1012、1/4波長板1016、ミラー1019を経て偏光ビームスプリッタ1015により光検出器1040の方向に反射される。反射光は検出レンズ1013により集光され、更にホログラム素子1020によって回折させられて光検出器1040に到達する。
 尚、図14において、光ディスク1010のラジアル方向をx方向、トラック方向をy方向、これら2方向に直交する方向をz方向と表す。
 ホログラム素子1020は、図15に示すように円板状であり、その中央に1本の分割線B12が通っている。分割線B12の方向は、光ディスク1010から反射されてくるビームの光束パターンにおける光ディスク1010のトラック方向(y方向)と略平行になるように設定されている。また、分割線B12の両側(図15では左右)には、それぞれ円弧状の格子を有する2種類の回折領域1269A及び1269Bが形成されている。
 従って、3つのビーム(1本のメインビームと2本のサブビーム)は、それぞれ上記分割線B12を跨ぐようにして入射し、その結果として少なくとも12本の±1次回折光が形成されるようになっている。
 これらの±1次回折光を受ける上記光検出器1040は、図16に示すような受光面を有している。この例では、フォーカス検出にスポットサイズ法(SSD法)、トラッキング検出に位相差法(DPD法)及び差動プッシュプル法(DPP法)を使用する場合を示している。
 すなわち、この受光面は、中心線を対称軸として左右に2個ずつ3段に配列した12個の光検出領域S14~S25を備え、その各々は上記12個の±1次回折光が到達する位置に対応するように配置されている。
 中段の4つの光検出領域S18~S21は、メインビームSP1によるスポットに対応しており、フォーカス検出とDPD検出とを行なう。
 上段及び下段の光検出領域S14~S17及びS22~S25は、2つのサブビームSP2、SP3による光スポットにそれぞれ対応しており、DPP検出を行なうためのものである。
 また、中段の各光検出領域S18~S21は、いずれも水平方向に4つに分割されてそれぞれ4つのセルを形成している。従って、受光面全体では24の分割領域が存在することになる。
 更に、ホログラム素子1020における一方の回折領域1269Aを通過する光は、4列ある光検出領域のうちの外側の2列の光検出領域S14、S18及びS22と、S17、S21及びS25とに入射するように、また、他方の回折領域1269Bを通過する光は、内側の2列の光検出領域S15、S19及びS23と、S16、S20及びS24とに入射するように、それぞれホログラム素子1020のピッチ及びパターンが設定されている。
 この例では、サーボエラー信号のフォーカスエラー信号はSSD法FE(SSD)により検出し、また、トラッキングエラー信号はDPD法TE(DPD)とDPP法TE(DPP)(メインプッシュプルTE(MPP)とサブプッシュプルTE(SPP)の演算)とにより検出し、次の演算によって生成される。
 FE(SSD)=(B+C+F+G)-(A+D+E+H)
 TE(DPD)=phase(A+B、E+F)+phase(C+D、G+H)
 TE(MPP)=(A+B+C+D)-(E+F+G+H)
 TE(SPP)=I-J
 TE(DPP)=TE(MPP)-Gain(TE(SPP))
 ここで、phase()は位相比較、Gain()はある係数を表す。また、A、B、C、D、E、F、G、H、I、Jは、図16に示す受光面によって得られる光信号の強度である。これらは、図16に示す各光検出領域の記号を用いて、次のように表される。つまり、A=A1+A2、B=B1+B2、C=C1+C2、D=D1+D2、E=E1+E2、F=F1+F2、G=G1+G2、H=H1+H2、I=I1+I2+I3+I4、J=J1+J2+J3+J4である。
 次に、規格の異なる2種類のディスクであるCD及びDVDに対して記録・再生が行える従来の光ヘッド装置を図17に示す。
 図17の光ヘッド装置は、光ディスク1010から情報を読みとる光ヘッド装置である。該装置は、第1の波長λ1の光を出射する第1の光源である半導体レーザ1301と、第2の波長λ2の光を出射する第2の光源である半導体レーザ1302とを有する。半導体レーザ1301にはDVD用として発振波長635~680nm帯の赤色半導体レーザを、半導体レーザ1302にはCD用として波長780nm~820nm帯の近赤外半導体レーザを使用し、光ディスク1010の種類に対応して半導体レーザ1030又は半導体レーザ1302のいずれかを発光させる。
 半導体レーザ1301から出射する光線L1及び半導体レーザ1302から出射する光線L2は、半導体レーザ1301及び半導体レーザ1302の出射前面に配置されたミラー1019により、光ディスク1010へ入射するように反射される。ミラー1019と光ディスク1010との間には集光手段(図示せず)が配置されており、光線L1及び光線L2はこの集光手段により光ディスク1010の情報記録面へ集光される。光ディスク1010にて反射された光線L1及び光線L2は、集光手段とミラー1019の間に配置されたホログラム素子1020により回折させられ、光検出器(1401、1402、1403、1404、1405及び1406)により検出される。
 ホログラム素子1020は、回折領域1261及び回折領域1262の2つの領域からなり、以下のように入射光を回折させる。
 つまり、DVD再生の場合、入射した光線L1は回折領域1261と回折領域1262との境界線を境に2分割され、+1次光及び-1次光を発生する。発生した+1次光は光検出器1401及び光検出器1402に入射し、-1次光は光検出器1403及び光検出器1404に入射する。これらの光検出器1401、1402、1403及び1404で検出された信号に基づき、DVDの再生時におけるフォーカス誤差信号(スポットサイズ検出(SSD)法)/トラッキング誤差信号(位相差検出(DPD)法)及び再生信号の検出を行う。
 一方、CDの再生の場合、入射した光線L2は、回折領域1261と回折領域1262との境界線を境に2分割され、+1次光、-1次光を発生する。発生した+1次光は光検出器1401及び光検出器1402に入射し、-1次光は光検出器1405及び光検出器1406入射する。これらの光検出器1401、1402、1405及び1406で検出された信号に基づき、CDの再生時におけるフォーカス誤差信号(SSD法)/トラッキング誤差信号(3光線法/プッシュプル(PP)法)及び再生信号の検出を行う。
特開2001-229573号公報 特開2001-176119号公報
 しかしながら、図14に示すような従来の光ピックアップ装置、つまり、一般的な回折格子(ホログラム素子)を用いた光ピックアップ装置によると、2層の記録層を有する光情報記録媒体を用いる場合に以下の問題が発生する。
 2層の光情報記録媒体は、媒体の厚さ方向に2層の記録層を備えている。また、光ピックアップ装置に近い側である第1の記録層は半透明の記録層であり、光ピックアップ装置は第1の記録層と第2の記録層とではフォーカスを変えることによって両層について記録又は再生を行なうことができる。
 このような2層の光情報記録媒体を従来の光ピックアップ装置において用いると、トラッキング信号を検出する際に問題が発生する。具体的には、トラッキング用のサブプッシュプル信号が乱れる。この原因は、合焦されていない側の記録層からの反射光がデフォーカス光として光検出器1040の検出領域に被さってしまうことである。
 図18及び図20にその様子を示す。図20は、2層光情報記録媒体のうち、光ピックアップ装置に遠い第1の情報記録層1801に合焦しているときの様子を示す。光検出器1040上の検出領域には、合焦された第1の情報記録層1801からの集光ビームの他に、合焦されていない他方であるオフフォーカス層(第2の情報記録層1802)からのデフォーカス光が入射する。デフォーカス光は、第2の情報記録層1802の記録領域1802aと未記録領域1802bとの境界を跨いで通過するとき、光量のアンバランスに起因してトラッキングエラー信号に特に影響を及ぼす。この際、3ビームのうちサブビームよりも光量の大きいメインビームのデフォーカス光が主な要因となる。
 図18に、メインビームのデフォーカス光が各光検出領域を覆うように入射している様子を示す。メインビームのデフォーカス光は、TE(MPP)を生成する光検出領域S18、S19、S20及びS21からはみ出し、TE(SPP)を生成する光検出領域S14、S15、S16、S17、S22、S23、S24及びS25にまで入射している。
 通常、TE(SPP)信号を生成する光検出領域のゲインは、TE(MPP)を生成する光検出領域のゲインよりも大きく設定されている。このため、デフォーカス光はTE(SPP)に強く影響を及ぼす。
 デフォーカス光が第2の情報記録層1802の記録領域1802aと未記録領域1802bとを跨いで通過するときのTE(SPP)信号を図19に示す。但し、AC信号のない場合を示している。
 このように、記録領域と未記録領域を跨いで通過するときTE(SPP)信号がふらついてしまい、安定したトラッキングエラー信号を生成することができない。このことが問題の一つである。尚、以上とは逆に第2の情報記録層1802に合焦している場合、第1の情報記録層1801からの反射光により同様の問題が発生する。
 更に、DVDの再生には、DPD信号とFE信号とを同時に検出するために少なくともA~Hの8個の検出領域によって受光する必要があった。そのため、各々の検出領域に対してアンプ回路が必要となり、アンプノイズの増加による再生信号の劣化、回路オフセットによるサーボ信号の劣化等が問題となる。また、使用する集積回路の回路規模も大きくなり、コストが高くなるという問題もあった。よって、これらの点の解決が課題となっている。
 また、図17に示すような従来の光ヘッド装置の場合、半導体レーザ1301と半導体レーザ1302とには発光点間隔dがある。
 このため、半導体レーザ1301をホログラム素子の中心設定をすると、半導体レーザ1302はホログラム素子1020の中心からずれてしまう。この結果、半導体レーザ1302でのプッシュプル法によるトラッキング誤差信号にアンバランスが発生し、安定したトラッキング誤差信号を得ることができない。
 同様に、半導体レーザ1302をホログラム素子の中心に持っていくと、半導体レーザ1301はホログラム中心からずれてしまう。そのため半導体レーザ1030でのDPD法によるトラッキング誤差信号にアンバランスが発生し、安定したトラッキング誤差信号を得ることができない。
 更に、光ディスクを記録するために必要な差動プッシュプル(DPP)法などによるトラッキング誤差信号を生成することが不可能である。
 以上から記録・再生装置において安定したトラッキング誤差信号の検出に対応できないという問題が生じる。この点も、解決するべき課題となっている。
 以上に鑑み、少なくとも2層の光情報記録媒体に対応可能であると共に、より正確で且つ安定した記録再生を実現するフォーカス/トラッキング誤差信号の検出を可能とする低コストな光ヘッド装置について、以下に説明する。
 本開示の第1の光ヘッド装置は、光ビームを出射する光源と、光ビームを情報記録媒体上に収束させる集光光学系と、情報記録媒体により反射された光ビームを回折させるホログラム素子と、ホログラム素子により回折させられた回折光を受光する複数の検出領域を有する受光素子とを備え、ホログラム素子は、情報記録媒体のラジアル方向に延びる直線により区画された2つの回折領域を有し、2つの回折領域のうちの少なくとも一方のパターンは、回折光に、ラジアル方向のコマ収差を与えるパターンである。
 尚、受光素子が有する複数の検出領域のうちの少なくとも一対の検出領域は、ラジアル方向に延びる分割線を挟み対向して配置され、分割線上に、コマ収差を与えられた回折光が入射し、一対の検出領域において検出した信号に基づいてフォーカスエラー信号を得ることが好ましい。
 第1の光ヘッド装置によると、ホログラム素子の回折領域は情報記録媒体のラジアル方向に延びる直線により区画されており、それぞれの回折光を複数の受光領域により検出することができる。このため、ラジアル方向については、受光素子に入射する光に変動があったとしても相殺することができる。よって、複数の情報記録層を有する情報記録媒体を用いる場合に、合焦されていない情報記録層からのデフォーカス光について、前記情報記録層の記録領域と未記録領域との境界を通過して強度が変化したとしても、その影響を受けることなく安定してフォーカスエラー信号を得ることができる。
 次に、本開示の第2の光ヘッド装置は、光ビームを出射する光源と、光ビームを情報記録媒体上に収束させる集光光学系と、情報記録媒体により反射された光ビームを回折させるホログラム素子と、ホログラム素子により回折させられた回折光を受光する複数の検出領域を有する受光素子とを備え、受光素子が有する複数の検出領域は、情報記録媒体のラジアル方向に延びる第1の分割線を挟み対向して配置された第1の光検出領域及び第2の光検出領域と、ラジアル方向に延びる第2の分割線を挟み対向して配置された第3の光検出領域及び第4の光検出領域とを含み、ホログラム素子は、ラジアル方向に延びる直線により区画された第1の回折領域及び第2の回折領域を有し、第1の回折領域のパターンは、ラジアル方向のコマ収差を有し且つ第1の分割線上に収束する回折光を発生し、第2の回折領域のパターンは、ラジアル方向のコマ収差を有し且つ第2の分割線上に収束する回折光を発生し、第1の検出領域における信号と第2の検出領域における信号との差信号、及び、第3の検出領域における信号と第4の検出領域における信号との差信号に基づいてフォーカスエラー信号を得る。
 第2の光ヘッド装置においても、ホログラム素子の回折領域は情報記録媒体のラジアル方向に延びる直線により2つに区画されている。また、受光素子の検出領域についても、ラジアル方向に延びる分割線を挟んで対向するように配置されている。よって、第1の光ヘッド装置と同様に、複数の情報記録層を有する情報記録媒体を用いる際にも、安定してフォーカスエラー信号を得ることができる。
 次に、本開示の第3の光ヘッド装置は、光ビームを出射する光源と、光ビームから1つのメインビーム及び2つのサブビームを生成する回折格子と、メインビーム及びサブビームをそれぞれ情報記録媒体上に収束させる集光光学系と、情報記録媒体により反射されたメインビーム及びサブビームを回折させるホログラム素子と、ホログラム素子により回折させられた回折光を受光する複数の検出領域を有する受光素子とを備え、ホログラム素子は、情報記録媒体のラジアル方向に延びる直線により2つに区画された回折領域を有し、2つの回折領域の少なくとも一方のパターンは、回折光に、ラジアル方向のコマ収差を与えるパターンである。
 尚、受光素子が有する複数の検出領域は、ラジアル方向に延びる第1の分割線を挟み対向して配置された第1の一対の検出領域と、ラジアル方向に延びる第2の分割線を挟み対向して配置された第2の一対の検出領域とを含み、第1の一対の検出領域の第1の分割線上に、メインビームのコマ収差を与えられた回折光が入射し、第1の一対の検出領域において検出した信号に基づいてフォーカスエラー信号を得ると共に、第2の一対の検出領域の第2の分割線上に、サブビームのコマ収差を与えられた回折光が入射し、第2の一対の検出領域において検出した信号に基づいてトラッキングエラー信号を得ることが好ましい。
 第3の光ヘッド装置においても、ホログラム素子の回折領域は情報記録媒体のラジアル方向に延びる直線により2つに区画されている。また、受光素子の検出領域についても、ラジアル方向に延びる分割線を挟んで対向するように配置されている。よって、第1の光ヘッド装置と同様に、複数の情報記録層を有する情報記録媒体を用いる際にも、安定してフォーカスエラー信号を得ることができる。更に、光源から1つのメインビーム及び2つのサブビームを生成し、それぞれフォーカスエラー信号及びトラッキングエラー信号を得るために用いることができる。
 また、第1~第3の光ヘッド装置において、光源の発光点に対してラジアル方向に並び且つ発光点とは異なる波長の光ビームを出射する他の発光点を備えることが好ましい。
 このようにすると、複数の波長の光ビームを用いることができる光ヘッド装置となり、CDとDVD等の記録・再生のために互いに異なる波長の光を必要とする複数種類の情報記録媒体に対応することができる。ここで、発光点に対して他の発光点はラジアル方向に並んでいるため、発光点と他の発光点との間に一定の距離を取っていることについては、どちらの波長の光を用いる場合におけるフォーカスエラー信号等の検出にも影響しない。
 次に、本開示の光情報処理装置は、情報記録媒体に光を照射することにより情報の記録及び再生を行なう光情報処理装置であって、本発明に係るいずれかの光ヘッド装置を備える。
 本開示のの光情報処理装置によると、多層の情報記録媒体を用いる場合にも安定してフォーカスエラー信号等の検出が行えることから、より安定した記録・再生が可能である。
 次に、本開示の第1のフォーカスエラー信号検出方法は、光ビームを出射する光源と、光ビームを情報記録媒体上に収束させる集光光学系と、情報記録媒体により反射された光ビームを回折させるホログラム素子と、ホログラム素子により回折させられた回折光を受光する複数の検出領域を有する受光素子とを備える光ヘッド装置において、ホログラム素子は、情報記録媒体のラジアル方向に延びる直線により区画された2つの回折領域を有し、2つの回折領域のうちの少なくとも一方のパターンは、回折光に、ラジアル方向のコマ収差を与えるパターンであり、受光素子が有する複数の検出領域のうちの少なくとも一対の検出領域は、ラジアル方向に延びる分割線を挟み対向して配置され、分割線上に、コマ収差を与えられた回折光が入射し、一対の検出領域において検出した信号に基づいてフォーカスエラー信号を得る。
 次に、本開示の第2のフォーカスエラー信号検出方法は、光ビームを出射する光源と、光ビームを情報記録媒体上に収束させる集光光学系と、情報記録媒体により反射された光ビームを回折させるホログラム素子と、ホログラム素子により回折させられた回折光を受光する複数の検出領域を有する受光素子とを備える光ヘッド装置において、受光素子が有する複数の検出領域は、情報記録媒体のラジアル方向に延びる第1の分割線を挟み対向して配置された第1の光検出領域及び第2の光検出領域と、ラジアル方向に延びる第2の分割線を挟み対向して配置された第3の光検出領域及び第4の光検出領域とを含み、ホログラム素子は、前記ラジアル方向に延びる直線により区画された第1の回折領域及び第2の回折領域を有し、第1の回折領域のパターンは、ラジアル方向のコマ収差を有し且つ第1の分割線上に収束する回折光を発生し、第2の回折領域のパターンは、ラジアル方向のコマ収差を有し且つ第2の分割線上に収束する回折光を発生し、第1の検出領域における信号と第2の検出領域における信号との差信号、及び、第3の検出領域における信号と第4の検出領域における信号との差信号に基づいてフォーカスエラー信号を得る。
 本開示のフォーカスエラー信号検出方法によると、ラジアル方向に延びる直線により2つに区画された回折領域によって情報記録媒体からの反射光が回折させられる。それぞれの回折領域による回折光は、それぞれ、ラジアル方向の分割線によって区画された回折領域に対して入射する。このようなことから、本開示の光ヘッド装置に関して説明したのと同様に、多層の情報記録媒体を使用する際にも安定してフォーカスエラー信号を検出することができる。
 本発明の光ヘッド装置によると、複数の情報記録層を有する情報記録媒体に対応可能であり、より正確で且つ安定した記録・再生を可能とする安定なトラッキングエラー信号を検出することができる。また、2つの波長に対応して2つの光源を有する光ヘッド装置において、どちらの光源を用いる場合にも安定してトラッキングエラー信号を検出することが可能であり、使用する光の波長がそれぞれ異なる各種の情報記録媒体についても安定して記録・再生を行なうことができる。
図1は、第1の実施形態に例示する光ヘッド装置の要部構成を示す図である。 図2は、第1の実施形態に例示するホログラム素子を示す平面図である。 図3は、第1の実施形態に例示する光検出器を示す平面図である。 図4(a)~(e)は、第1の実施形態に例示する光検出器上のポットダイアグラムを示す図である 図5は、第1の実施形態に例示するフォーカスエラー信号を示す図である。 図6は、2層の情報記録層を有する光情報記録媒体と、それにより反射される光について示す図である。 図7は、第1の実施形態に例示する光検出器上の迷光を表す図である。 図8は、第1の実施形態に例示するサブプッシュプル信号の変動を表す図である。 図9は、第2の実施形態に例示する光ヘッド装置の要部構成を示す図である。 図10は、第2の実施形態に例示するホログラム素子を示す平面図である。 図11は、第2の実施形態に例示する光検出器を示す平面図である。 図12は、第2の実施形態に例示する光ヘッド装置の要部構成を示す図である。 図13は、第3の実施形態に例示する光検出器を示す平面図である。 図14は、技術的背景としての光ヘッド装置の構成を示す図である。 図15は、技術的背景としてのホログラム素子を示す平面図である。 図16は、技術的背景としての光検出器を示す平面図である。 図17は、技術的背景としての光ヘッド装置の構成を示す図である。 図18は、技術的背景としてのホログラム素子を示す平面図である。 図19は、技術的背景としての光ヘッド装置におけるサブプッシュプル信号の変動を表す図である。 図20は、2層の情報記録層を有する光情報記録媒体と、それにより反射される光について示す図である。
符号の説明
 L0   光線
 L1   光線
 P1   発光点
 L2   光線
 P2   発光点
 L3   光線
 P3   発光点
 10   光ディスク
 11   コリメートレンズ
 12   対物レンズ
 19   反射鏡
 20   ホログラム素子
 24   回折格子
 30   半導体レーザ
 30a  半導体レーザ
 40   光検出器
 45a  光検出領域
260   直線
261、261         回折領域
301   半導体レーザ
401   光検出器
451   光検出領域群
451a  光検出領域
451b  光検出領域
452   光検出領域群
452a  光検出領域
452b  光検出領域
453   光検出領域群
453a  光検出領域
453b  光検出領域
454   光検出領域群
454a  光検出領域
454b  光検出領域
461   第1の分割線
462   第2の分割線
463   第3の分割線
464   第4の分割線
500   +1次光検出用領域
501   -1次光検出用領域
601a、602a、601b、602b、601c      スポット
601a’、602a’、601b’、602b’、601c’ スポット
741   保持手段
801   情報記録層
802   情報記録層
802a  記録領域
802b  未記録領域
 以下、本開示を実施するための例ついて、図面を参照しながら詳細に説明する。
  (第1の実施形態)
 図1は、本開示の第1の実施形態における例示的光ヘッド装置の構成を模式的に示した図である。
 該光ヘッド装置において、発光点P0を有する半導体レーザ30と、光検出器40とが保持手段741に固定されている。また、回折格子24と、回折領域261及び262とを備えるホログラム素子20が設けられ、該ホログラム素子20は、保持手段741に対し、他の保持手段(図示省略)によって所定の位置関係に固定されている。
 ここで、他の保持手段は、光ヘッド装置の光学台であっても良い。しかし、光学台とは別の保持部材を用い、ホログラム素子20、半導体レーザ30及び光検出器40を一体化するユニットを構成するのであっても良い。このようなユニットを用いると、光学系をより安定に構成することができる。
 また、光ヘッド装置はコリメートレンズ11及び対物レンズ12を備え、半導体レーザ30が出射するレーザ光(光線L0)を情報記録媒体である光ディスク10に集光させる集光光学系を構成している。更に、光ヘッド装置は、対物レンズの光軸方向(Z方向)及び光ディスク10のラジアル方向(X方向)に対物レンズを駆動変位させるレンズ駆動機構(図示省略)を備えている。
 以下、特にことわりのない限り、図1中に示す通り、集光光学系の光軸の方向をZ方向、光ディスク10の径方向(ラジアル方向)をX方向、光ディスク10のトラック方向(タンジェンシャル方向)をY方向とする。尚、光ヘッド装置の光学系において、ミラー、プリズム等を用いて光軸を折り曲げた場合にも、光軸及び光ディスク10の写像を基準に方向を定義する。
 次に、例示的光ヘッド装置において半導体レーザ30が出射するレーザ光について説明する。半導体レーザ30から出射された光線L0は、ホログラム素子20が備える回折格子24により所望の比率に回折させられ、0次光であるメインビーム(L0a)と、±1次光であるL0b及びL0c(個別の図示は省略)とに分離される。これらのビームは、ホログラム素子20の回折領域261及び262を透過した後、コリメートレンズ11及び対物レンズ12により、光ディスク10の情報記録面上に集光される。更に、光ディスク10により反射された反射光は、対物レンズ12及びコリメートレンズ11により半導体レーザ30の発光点P0に収束する光に変換される。このように変換された光は、ホログラム素子20に入射して回折領域261及び262により回折させられる。回折させられた光は光検出器40に入射し、信号として検出される。ここで、回折格子24は、回折領域261及び262による回折光が入射して更に回折を受けることの無いように大きさと位置とを設定されている。
 次に、ホログラム素子20に備えられた回折領域261及び262と、光検出器40について詳細を説明する。図2は、ホログラム素子20に備えられた回折領域261及び262を示し、図3は、光検出器40の構成を示す。また、図2及び図3に示されているX軸、Y軸及びZ軸は、いずれも図1に示す3軸と同じである。
 図2に示すように、ホログラム素子20は、光線L0のほぼ中心(集光光学系の光軸)を通る位置であり且つX軸に平行な直線260により2つに区画された回折領域261及び回折領域262を備えている。これらの格子パターンは前述のように半導体レーザ30から出射された光をそのまま透過させると共に、光ディスク10にて反射された戻り光を光検出器40に向けて回折させるものとなっている。更に、回折領域261及び回折領域262は互いに異なる格子パターンを有しており、回折領域261及び262による回折光は、光検出器40に対し、それぞれ相対的にX方向のマイナス側及びプラス側に入射するようになっている(図1を参照)。
 この一方、光検出器40は、図3に示す通り、X方向に並ぶ光検出領域群451及び光検出領域群452を有している。更に、光検出器40は、光検出領域群451及び452を挟んでY方向の両側に、光検出領域群453及び光検出領域群454を有している。
 これらの光検出領域群のうちの光検出領域群451及び452は、光ディスク10からの戻り光のうちのメインビーム(L0a)と関係する。光検出領域群451は、X軸にほぼ平行な第1の分割線461を挟んで向かい合うように配置された光検出領域451a及び光検出領域451bを備えている。また、光検出領域群452は、やはりX軸にほぼ平行な第2の分割線462を挟んで対向するように配置された光検出領域452a及び光検出領域452bを備えている。
 前述の回折領域261の格子パターンは、ここに入射する光ディスク10からの戻り光のうちのメインビーム(L0a)が、光検出領域群451における第1の分割線461を跨いで(光検出領域451a及び451bに)入射するように回折させる格子パターンである。また、該格子パターンは、メインビームを回折させて、X方向のコマ収差をもって光検出領域群451に入射するスポット601aを形成する格子パターンでもある。
 このとき、光検出領域451aにおいて検出される光は、主として図2におけるX軸のプラス側寄りの光であり、光検出領域451bにおいて検出される光は、主として図2におけるX軸のマイナス側寄りの光である。このため、光検出領域451a及び451bを、後述する通り、プッシュプル法によるトラッキングエラー信号の検出に利用することができる。
 同様に、回折領域262の格子パターンは、ここに入射する光ディスク10からの戻り光のうちのメインビーム(L0a)が、光検出領域群452における第2の分割線462を跨いで(光検出領域452a及び452bに)入射するように回折させる格子パターンである。更に、該格子パターンは、メインビームを回折させて、X方向であり且つ回折領域261の極性とは逆のコマ収差をもって光検出領域群452に入射するスポット602aを形成する格子パターンでもある。
 このとき、光検出領域452aにおいて検出される光は、主として図2におけるX軸のプラス側の光であり、光検出領域452bにおいて検出される光は、主として図2におけるX軸のマイナス側の光である。このため、光検出領域452a及び452bを、プッシュプル法によるトラッキングエラー信号の検出に利用可能である。
 次に、光検出領域群453は、X軸にほぼ平行な第3の分割線463を挟んで対向するように配置された光検出領域453a及び光検出領域453bを備え、同様に、光検出領域群454は、X軸にほぼ平行な第4の分割線464を挟んで対向するように配置された光検出領域454a及び光検出領域454bを備える。これらの各光検出領域には、光ディスク10からの戻り光のうちのサブビーム(L0b及びL0c)が入射する。
 サブビームL0bは、ホログラム素子20によって回折させられ、光検出領域群453に対して第3の分割線463を跨ぐように入射する。この際、ホログラム素子20の回折領域261により回折させられた光はスポット601bとして、回折領域262により回折させられた光はスポット602bとして入射する。
 同様に、サブビームL0cは、ホログラム素子20によって回折させられ、光検出領域群454に対して第4の分割線464を跨ぐように入射する。この際、ホログラム素子20の回折領域261により回折させられた光はスポット601cとして、回折領域262により回折させられた光はスポット602cとして入射する。
 サブビームL0b及びL0cについても、メインビームL0aと同様に、各スポットが入射する2つの光検出領域における信号に基づき、プッシュプル法によるトラッキングエラー信号を得ることができる。
 次に、フォーカスエラー信号及びトラッキングエラー信号の検出方法について説明する。例示的光ヘッド装置において、フォーカスエラー信号FEについては後に詳述する方法に基づき、式1の演算により算出する。また、トラッキングエラー信号として、DPD法によるトラッキング信号TEDPD と、DPP法によるトラッキングエラー信号TEDPP とは、次の各式の演算により生成される。
 FE  =(B+D)-(A+C)   …… (式1)
 TEDPP =TEMPP -k・TESPP    …… (式2)
 TEDPD =phase (A,B)-phase (C,D) …… (式3)
 ここで、A,B,C,D,E及びFは、図3に示す各光検出領域において検出される信号に対応する。具体的には、Aは光検出領域451b、Bは光検出領域451a、Cは光検出領域452a、Dは光検出領域452bにおいて検出される信号である。また、Eは、光検出領域453bにおいて検出される信号と光検出領域454bにおいて検出される信号との和であり、Fは、光検出領域453aにおいて検出される信号と光検出領域454aにおいて検出される信号との和である。
 更に、TEMPP はメインビームのプッシュプル信号、TESPP はサブビームのプッシュプル信号であり、それぞれ次式にて与えられる。
 TEMPP =(A+D)-(B+C)   …… (式4)
 TESPP =E-F           …… (式5)
 ここで、kは定数であり、対物レンズ12のシフトにより生じるTEDPP の変動が最小になるように最適化される。
 また、光ディスク10に記録された情報を読み取る信号である信号RFは、次式にて与えられる。
 RF=A+B+C+D         …… (式6)
 (式1)、(式3)から分かるように、DVDの再生に必要なDPD信号とFE信号とを検出するための検出領域はA~Dの4個であり、従来必要であった8個に比べて半分の領域数となっている。このため各々の検出領域に対して必要なアンプ回路が半減でき、アンプノイズを低減し且つ回路オフセットも抑えることができることになり、良好な再生信号及びサーボ信号を得ることができる。また、使用する集積回路の回路規模も小さくできるため、安価な光ヘッドを実現することができる。
 次に、例示的光ヘッド装置におけるフォーカスエラー信号の検出方法について詳細に説明する。
 まず、フォーカスエラー信号を検出するための動作について説明する。
 図4(a)~(e)は、光ディスク10の位置に対応して変化する光検出器40上のスポット601a及び601bの形状を示す。また、図5は、光ディスク10の位置とフォーカスエラー信号との関係を示す。図5において、光ディスク10の情報記録面に最小スポットが形成される状態、つまり合焦点状態を原点としており、状態(c)と呼ぶ。状態(c)を中心として、これに比べて光ディスク10の位置の近い側から遠い側へと順に状態(a)~(e)を考えるとき、それぞれの状態におけるスポット601a及び601bの形状が図4(a)~(e)に対応する。
 まず、合焦点状態である状態(c)の場合、スポット601aは光検出領域451a及び光検出領域451bに同程度に分布するように位置する。同時に、スポット601bは、光検出領域452a及び光検出領域452bに同程度に広がるように位置する。このため、A(光検出領域451bからの信号)とB(光検出領域451aからの信号)、及び、C(光検出領域452aからの信号)とD(光検出領域452bからの信号)はそれぞれバランスがとれており、(式1)で表されるフォーカスエラー信号FEは零となる。
 X方向のコマ収差をもって光検出領域威群に入射するスポットを形成する格子パターンを回折領域が備えていることから、合焦点状態(c)よりも光ディスク10が対物レンズ12に近付いた状態(b)の場合、近付いた距離に応じて、スポット601aは光検出領域451aよりも光検出領域451bの側に偏った分布となるように移動する。同時に、スポット601bは、光検出領域452bよりも光検出領域452aの側に偏った分布となるように移動する(図4(b)を参照)。
 この結果、(式1)により表されるフォーカスエラー信号FEは、マイナスの値となる。
 更に光ディスク10が対物レンズ12に近付いて状態(a)になると、図4(a)に示す通り、スポット601aの全体が光検出領域451aに、スポット601bの全体が光検出領域452aに、それぞれ移動する。この状態のとき、フォーカスエラー信号FEは最小値となる。
 逆に、合焦点状態(c)よりも光ディスク10が対物レンズ12から遠ざかった状態(d)の場合、遠ざかった距離に応じて、スポット601aは光検出領域451bよりも光検出領域451aの側に偏った分布となるように移動する。同時に、スポット601bは、光検出領域452aよりも光検出領域452bの側に偏った分布となるように移動する(図4(d)を参照)。この結果、(式1)のフォーカスエラー信号FEは、プラスの値となる。
 更に光ディスク10が対物レンズ12から離れて状態(e)になると、図4(e)に示す通り、スポット601aの全体が光検出領域451aに、スポット601bの全体が光検出領域452bに、それぞれ移動する。この状態のとき、フォーカスエラー信号FEは最大値となる。
 以上のように、光ディスク10の対物レンズ12に対する位置に応じて変化する信号として、フォーカスエラー信号FEを得ることができる。ここで、フォーカスエラー信号FEが最大値を取る位置と、最小値を取る位置との間隔、つまり、フォーカスエラー信号FEの検出範囲は、ホログラム素子20のコマ収差の量によって設定することができる。
 次に、以上のようなフォーカスエラー信号の検出方法によると、複数の情報記録層を有する光情報記録媒体にも対応可能であることを説明する。
 まず、2層の光情報記録媒体について説明する。図6は、情報記録層801及び802を有する2層光情報記録媒体である光ディスク10を用いて情報の記録・再生を行なう様子を示す模式図である。ここでは、対物レンズ12から遠い側の情報記録層801に光の焦点が合った状態を示している。
 このとき、入射光は情報記録層801によって反射されるのとは別に、対物レンズ12に近い側の情報記録層802よっても反射される。該情報記録層802による反射光の光強度分布は、情報記録層802における記録状態に応じて変調を受ける。また、情報記録層802による反射光は、非合焦状態にて反射されるものであるため、対物レンズ12を透過しても平行光には変換されない。この結果、光検出器40には、広がった状態の迷光として入射することになる。尚、このような非合焦状態である情報記録層802による反射光は、図6において破線によりデフォーカス反射光Ldとして示されている。
 次に、図7(a)~(c)は、情報記録層802からのデフォーカス反射光Ldが光検出器40に入射した状態を示している。ここで、図7(a)はデフォーカス反射光Ldが全て情報記録層802の未記録領域802bにて反射された場合、図7(b)は反射光が情報記録層802の記録領域802a及び未記録領域802bの両方にて反射された場合、図7(c)は反射光が全て情報記録層802の記録領域802aにて反射された場合を示す。尚、記録領域802aにて反射された記録領域反射光Ldaは、未記録領域802bにて反射された未記録領域反射光Ldbに比べて強度が低くなっており、これが図7(a)~(c)の斜線部に相当する。
 ここで、トラッキングエラー信号の変動に関しては、光検出領域群453及び光検出領域群454に入射するメインビーム由来の迷光が主たる原因である。そのため、このような迷光について図に示しており、サブビーム(L0b及びL0c)由来の迷光は省略している。また、情報記録層801による反射光についても図示は省略している。
 メインビーム由来の迷光は、TEMPP を生成する光検出領域(光検出領域群451及び光検出領域群452)からはみ出し、TESPP を生成する光検出領域(光検出領域群453及び光検出領域群454)にまで入射している。
 通常、TESPP 信号を生成する光検出領域(光検出領域群453及び454)から検出される信号のアンプのゲインは、TEMPP を生成する光検出領域(光検出領域群451及び光検出領域群452)から検出される信号のアンプのゲインよりも大きく設定されている。このため、従来、メインビーム由来の迷光はTESPP に大きな影響を及ぼすものとなっていた。
 これに関し、図8に、情報記録層802上において非合焦状態のスポットが記録領域と非記録領域との境界を跨いで通過する際のTESPP 信号のオフセットについて示す。ここでは、従来の例と、本実施形態の例とを示している。図8に示す通り、従来は情報記録媒体における記録領域と非記録領域との境界を跨いでスポットが通過した場合にTESPP 信号が変動したのに対し、本実施形態の場合、ほとんど変化することなく安定したトラッキングエラー信号を生成している。
 これは、本実施形態の場合、デフォーカス光が記録領域と非記録領域との境界を跨ぐ際にも、TESPP 信号を生成する各光検出領域群(光検出領域群453及び454)において、その変動が相殺されるためである。
 つまり、光検出領域群453の場合、光検出領域453aと光検出領域453bとがX軸に平行な分割線を挟んで対称に配置されている。このため、記録領域802aによる反射光であるために強度の弱まった記録領域反射光Ldaが入射したとしても、光検出領域453aと光検出領域453bとにおいて信号の変化は互いに等しい。よって、それらの信号の差動であるTESPP 信号が変化することはない。
 同様に、光検出領域群454の場合、光検出領域454aと光検出領域454bとがX軸に平行な分割線を挟んで対称に配置されている。このため、記録領域による反射光であるために強度の弱まった記録領域反射光Ldaが入射したとしても、光検出領域454aと光検出領域454bとにおいて信号の変化は互いに等しい。よって、それらの信号の差動であるTESPP 信号が変化することはない。
 以上の結果として、情報記録層802において非合焦状態のスポットが記録領域802aと未記録領域802bとの境界を跨いで通過する際にも、TESPP 信号に変動が生じることはなく、トラッキングエラー信号を安定して検出することができる。
 尚、以上では、記録領域が未記録領域に比べて低い反射率を有する記録媒体であるものとして説明した。しかし、これとは逆に、記録領域が未記録領域に比べて高い反射率を有する記録媒体であっても良い。この場合、図7(a)~(c)において、斜線部が光強度の強い領域を表すものと考えればよい。
  (第2の実施形態)
 以下に、本開示の第2の実施形態における例示的光ヘッド装置について、図面を参照して説明する。図9は、本実施形態の例示的光ヘッド装置の要部を模式的に示す図である。
 光ヘッド装置は、CD及びDVDのような規格の異なる2種類の光ディスクについて記録・再生を行なうためのものである。その基本的な構成は、図1に示す第1の実施形態の光ヘッド装置において、1波長の半導体レーザ30に代えて、2波長の半導体レーザ301を備えたものである。該半導体レーザ301は、第1の波長λ1の光を出射する第1の光源と、第2の波長λ2の光を出射する第2の光源とをモノリシックに集積化した半導体レーザである。図9において、図1と同じ構成要素には同じ符号を付しており、以下では主に半導体レーザ301に関して説明する。
 DVD及びCDの両方の規格の光ディスクを記録・再生するためには、半導体レーザ301として、DVD用の発振波長が635~680nm帯である光線L1と、CD用の発振波長が780~820nm帯である光線L2とを出射することができるものを用いる。このいずれかの波長の光を、光ディスク10の種類に応じて選択して発光することにより、所望の光記録媒体(CD又はDVD)について記録・再生することができる。
 ここで、半導体レーザ301における光線L1の発光点P1と、光線L2の発光点P2とは、間隔dをもってラジアル方向(X方向)に並んで配置されている。また、2つの発光点のうち、波長の短い方の発光点を受光素子側に配置している。これは、ホログラム素子20による回折角は光の波長の短い方が小さくなることを利用して、光線L1と光線L2とを光検出器40の同じ位置に入射させるためである。
 尚、2つの光源をモノリシックに集積化した半導体レーザに代えて、それぞれ異なる波長の光を出射する2つの半導体レーザを用いることも可能である。しかし、モノリシックな半導体レーザの方が、2つの発光点の間隔dを正確に設定することができるため、より望ましい。
 半導体レーザ301からの出射する光線L1は、ホログラム素子20に備えられた回折格子24により所望の比率にて回折させられ、0次光であるメインビーム(L1a)と、±1次光である2本のサブビームL1b及びL1c(図示せず)に分離される。同様に、光線L2は、回折格子24により0次光であるメインビーム(L2a)と、±1次光である2本のサブビームL2b及びL2c(図示せず)に分離される。
 これらのビームは、ホログラム素子20を透過した後、コリメートレンズ11及び対物レンズ12により光ディスク10の情報記録面上に集光される。光ディスク10からの反射光は、対物レンズ12及びコリメートレンズ11により、半導体レーザ301の各発光点(P1又はP2)に収束する光に変換される。変換された光は、ホログラム素子20に入射し回折領域261及び262によって回折させられる。回折光は光検出器40に入射し、光検出器40によって信号が検出される。尚、回折格子24は、回折領域261及び262による回折光が入射して更に回折を受けることのないように、大きさと位置とを設定されている。
 次に、図10は、本実施形態のホログラム素子20と、ここに入射する光線L1及びL2の位置関係を示す図である。また、図11は、光検出器40の構造と、半導体レーザ301における光検出器40に対する発光点P1及びP2の位置関係を示す平面図である。
 図10に示すように、ホログラム素子20は、光線(L1及びL2の両方)のほぼ中心(集光光学系の光軸)を通り且つX軸に平行な直線260により2つに区画された回折領域261及び回折領域262を備えている。これらの回折領域261及び262は、互いに異なる格子パターンを有しており、半導体レーザ301から出射された光をそのまま透過させると共に、光ディスク10により反射された戻り光を光検出器40に向けて回折させるように構成されている。
 尚、光線L1及びL2は発光点の位置が異なるため、ホログラム素子20に対する入射位置も異なっている。しかし、発光点P1及びP2をX方向に並べて配置することにより、光線L1及びL2の光軸をいずれも直線260上に配置することが可能である。
 更に、図11の光検出器40は、第1の実施形態の場合(図3)と同様の構造を有する。つまり、光検出器40は光検出領域群451、452、453及び454を備え、各光検出領域群は、X方向にほぼ平行な分割線を挟んで配置された各一対の光検出領域(順に、光検出領域451a及び451b、452a及び452b、453a及び453b、454a及び454b)を備えている。
 また、ホログラム素子20及び光検出器40の機能についても、2つの光線L1及びL2のいずれの検出にも用いられることを除いて第1の実施形態の場合と同様である。
 つまり、光検出領域群451及び452が光ディスク10からの戻り光のうちのメインビーム(L1a及びL2a)と関係し、回折領域261及び262により回折させられた光ディスク10からのメインビームの戻り光がそれぞれスポット601a及び602aとして入射する。スポット601aと602aとはいずれもX方向で且つ極性が逆のコマ収差を有する。
 また、光検出領域群453が戻り光のサブビームL1b及びL2bと関係し、回折領域261及び262により回折させられた光ディスク10からのサブビームの戻り光がそれぞれスポット601b及び602bとして入射する。更に、光検出領域群454が戻り光のサブビームL1c及びL2cと関係し、回折領域261及び262により回折させられた光ディスク10からの戻り光がそれぞれスポット601c及び602cとして入射する。各スポットとコマ収差の関係についても、第1の実施形態の場合と同様である。
 以上のことから、本実施形態の光ヘッド装置によると、発光点P1及びP2のどちらを用いるときも、フォーカスエラー信号及びトラッキングエラー信号について第1の実施形態の場合と同様にして求めることができる。この際、やはり2層以上の情報記録層を有する情報記録媒体であっても安定した信号を得られる。
 ここで、本実施形態の光ヘッド装置においても、プッシュプル法による検出を行なうためにビームをラジアル方向に分割する。これは、X方向に延びる分割線によって行なうものであるから、距離dだけ離れてX方向に並んで配置された発光点P1及び発光点P2が出射する光(L1及びL2)を同様に分割する。このため、2つの波長の光を出射するために2つの光源を有する光ヘッド装置において、どちらの光源を用いる場合にも安定したトラッキングエラー信号を得ることが可能となり、使用する光の波長がそれぞれ異なる各種光ディスクについての記録・再生もより安定して行なうことができる。
  (第3の実施形態)
 以下に、本開示の第3の実施形態における例示的光ヘッド装置について、図面を参照して説明する。図12は、例示的光ヘッド装置の要部を模式的に示す図である。
 該光ヘッド装置は、図1に示す第1の実施形態の光ヘッド装置と比較すると、光検出器及び半導体レーザに関して異なっている。よって、図1と同じ構成要素には同じ符号を付すことにより詳しい説明を省略し、以下では図1の光ヘッド装置との相違点に関して詳しく説明する。
 図12において、半導体レーザ30aが光検出器401の上面に設けられた凹部に固定されている。該凹部には、半導体レーザ30aから出射された光線L3を光軸方向(Z方向)に向かって反射させる反射鏡19が設けられている。
 回折格子24、回折領域261及び262を備えるホログラム素子20、コリメートレンズ11、対物レンズ12及び光ディスク10については第1の実施形態の場合と同様である。また、対物レンズ12をZ方向及びX方向に移動させるレンズ駆動機構(図示省略)、光検出器40とホログラム素子20とを所望の位置関係に固定する保持手段(図示省略)も備えられている。これらによって、光ディスク10にレーザ光を集光させる集光光学系が構成されている。
 半導体レーザ30aから出射され反射鏡19によりZ方向に反射された光線L3は、ホログラム素子20に備えられた回折格子24により一つのメインビームと2つのサブビームに分離される。次に、これらの光は回折領域261及び262を透過し、コリメートレンズ11及び対物レンズ12によって光ディスク10の情報記録面上に集光される。情報記録面において反射された光は、再び対物レンズ12及びコリメートレンズ11を経てホログラム素子20に入射し、回折させられる。
 ここで、ホログラム素子20に設けられている回折領域261及び262は、第1の実施形態の場合(図2)と同様の格子パターンを有する。但し、第1の実施形態の場合、回折領域261及び262によって回折させられた光のうち、+1次光のみが光検出器40にて検出されていた。これに対し、本実施形態の場合、+1次光に加えて、-1次光についても光検出器401により検出される。このために、光検出器401は、半導体レーザ30aの発光点P3を挟む位置に光検出領域を配置している。これを図13に示す。
 図13において、発光点P3に対してX軸のマイナス側に配置された+1次光検出用領域500は、第1の実施形態における光検出器40(図3)と同じ構成であり、各光検出領域に図3と同じ符号を付している。ここに、ホログラム素子20により回折させられた光の+1次光がスポット601a、602a、601b、602b、601c及び602cとして入射する。
 また、発光点P3を挟んで+1次光検出用領域500の反対側(X軸のプラス側)に、-1次光検出用領域501が設けられている。その構成は+1次光検出用領域500と同様であり、それぞれ、光検出領域451aに対して光検出領域451a’のように’を追加した符号を付している。ここに、ホログラム素子20により回折させられた光の-1次光がスポット601a’、602a’、601b’、602b’、601c’及び602c’として入射する。
 +1次光検出用領域500及び-1次光検出用領域501の各光検出領域からは同様の信号が得られ、同一のアンプにより増幅するか、又は、後に加算アンプにより加算されるべきものである。例えば、光検出領域451aにおける信号と、光検出領域451a’における信号とを加算する。
 フォーカスエラー信号及びトラッキングエラー信号は、+1次光検出用領域500及び-1次光検出用領域501を用いて、第1の実施形態において説明した式1~式6により求めることができる。このように、+1次光に加えて-1次光を検出することができるため、光の検出の効率が向上し、よりノイズの少ない信号検出が可能となる。また、発光点P3がY方向にずれた場合にも、+1次光から得られる信号の変化と-1次光から得られる信号の変化とが相殺するため、信号特性の劣化が少なくなるという効果がある。
 以上のように、本実施形態の光ヘッド装置は、第1の実施形態の光ヘッド装置と同じ特徴と有すると共に、よりノイズが少なく且つ組み立て公差の大きな光ヘッド装置となる。
 本開示の光ヘッド装置、光情報装処理装置及びフォーカスエラー信号検出方法によると、複数の情報記録層を有する情報記録媒体についても安定した記録・再生が可能であり、光情報記録媒体を用いた情報の記録・再生、特に、コンピュータのデータやプログラムの保存、カーナビゲーションの地図データの保存等の用途にも応用できる。

Claims (9)

  1.  光ビームを出射する光源と、
     前記光ビームを情報記録媒体上に収束させる集光光学系と、
     前記情報記録媒体により反射された前記光ビームを回折させるホログラム素子と、
     前記ホログラム素子により回折させられた回折光を受光する複数の検出領域を有する受光素子とを備え、
     前記ホログラム素子は、前記情報記録媒体のラジアル方向に延びる直線により区画された2つの回折領域を有し、
     前記2つの回折領域のうちの少なくとも一方のパターンは、前記回折光に、前記ラジアル方向のコマ収差を与えるパターンであることを特徴とする光ヘッド装置。
  2.  請求項1において、
     前記受光素子が有する前記複数の検出領域のうちの少なくとも一対の検出領域は、前記ラジアル方向に延びる分割線を挟み対向して配置され、
     前記分割線上に、前記コマ収差を与えられた回折光が入射し、
     前記一対の検出領域において検出した信号に基づいてフォーカスエラー信号を得ることを特徴とする光ヘッド装置。
  3.  光ビームを出射する光源と、
     前記光ビームを情報記録媒体上に収束させる集光光学系と、
     前記情報記録媒体により反射された前記光ビームを回折させるホログラム素子と、
     前記ホログラム素子により回折させられた回折光を受光する複数の検出領域を有する受光素子とを備え、
     前記受光素子が有する前記複数の検出領域は、前記情報記録媒体のラジアル方向に延びる第1の分割線を挟み対向して配置された第1の光検出領域及び第2の光検出領域と、前記ラジアル方向に延びる第2の分割線を挟み対向して配置された第3の光検出領域及び第4の光検出領域とを含み、
     前記ホログラム素子は、前記ラジアル方向に延びる直線により区画された第1の回折領域及び第2の回折領域を有し、
     前記第1の回折領域のパターンは、前記ラジアル方向のコマ収差を有し且つ前記第1の分割線上に収束する回折光を発生し、
     前記第2の回折領域のパターンは、前記ラジアル方向のコマ収差を有し且つ前記第2の分割線上に収束する回折光を発生し、
     前記第1の検出領域における信号と前記第2の検出領域における信号との差信号、及び、前記第3の検出領域における信号と前記第4の検出領域における信号との差信号に基づいてフォーカスエラー信号を得ることを特徴とする光ヘッド装置。
  4.  光ビームを出射する光源と、
     前記光ビームから1つのメインビーム及び2つのサブビームを生成する回折格子と、
     前記メインビーム及び前記サブビームをそれぞれ情報記録媒体上に収束させる集光光学系と、
     前記情報記録媒体により反射された前記メインビーム及び前記サブビームを回折させるホログラム素子と、
     前記ホログラム素子により回折させられた回折光を受光する複数の検出領域を有する受光素子とを備え、
     前記ホログラム素子は、前記情報記録媒体のラジアル方向に延びる直線により2つに区画された回折領域を有し、
     前記2つの回折領域の少なくとも一方のパターンは、前記回折光に、前記ラジアル方向のコマ収差を与えるパターンであることを特徴とする光ヘッド装置。
  5.  請求項4において、
     前記受光素子が有する前記複数の検出領域は、前記ラジアル方向に延びる第1の分割線を挟み対向して配置された第1の一対の検出領域と、前記ラジアル方向に延びる第2の分割線を挟み対向して配置された第2の一対の検出領域とを含み、
     前記第1の一対の検出領域の前記第1の分割線上に、前記メインビームの前記コマ収差を与えられた回折光が入射し、
     前記第1の一対の検出領域において検出した信号に基づいてフォーカスエラー信号を得ると共に、
     前記第2の一対の検出領域の前記第2の分割線上に、前記サブビームの前記コマ収差を与えられた回折光が入射し、
     前記第2の一対の検出領域において検出した信号に基づいてトラッキングエラー信号を得ることを特徴とする光ヘッド装置。
  6.  請求項1~5のいずれか1つにおいて、
     前記光源の発光点に対して前記ラジアル方向に並び且つ前記発光点とは異なる波長の光ビームを出射する他の発光点を備えることを特徴とする光ヘッド装置。
  7.  情報記録媒体に光を照射することにより情報の記録及び再生を行なう光情報処理装置であって、
     請求項1~6のいずれか1つに記載の光ヘッド装置を備えることを特徴とする光情報処理装置。
  8.  光ビームを出射する光源と、
     前記光ビームを情報記録媒体上に収束させる集光光学系と、
     前記情報記録媒体により反射された前記光ビームを回折させるホログラム素子と、
     前記ホログラム素子により回折させられた回折光を受光する複数の検出領域を有する受光素子とを備える光ヘッド装置において、
     前記ホログラム素子は、前記情報記録媒体のラジアル方向に延びる直線により区画された2つの回折領域を有し、
     前記2つの回折領域のうちの少なくとも一方のパターンは、前記回折光に、前記ラジアル方向のコマ収差を与えるパターンであり、
     前記受光素子が有する前記複数の検出領域のうちの少なくとも一対の検出領域は、前記ラジアル方向に延びる分割線を挟み対向して配置され、
     前記分割線上に、前記コマ収差を与えられた回折光が入射し、
     前記一対の検出領域において検出した信号に基づいてフォーカスエラー信号を得ることを特徴とするフォーカスエラー信号検出方法。
  9.  光ビームを出射する光源と、
     前記光ビームを情報記録媒体上に収束させる集光光学系と、
     前記情報記録媒体により反射された前記光ビームを回折させるホログラム素子と、
     前記ホログラム素子により回折させられた回折光を受光する複数の検出領域を有する受光素子とを備える光ヘッド装置において、
     前記受光素子が有する前記複数の検出領域は、前記情報記録媒体のラジアル方向に延びる第1の分割線を挟み対向して配置された第1の光検出領域及び第2の光検出領域と、前記ラジアル方向に延びる第2の分割線を挟み対向して配置された第3の光検出領域及び第4の光検出領域とを含み、
     前記ホログラム素子は、前記ラジアル方向に延びる直線により区画された第1の回折領域及び第2の回折領域を有し、
     前記第1の回折領域のパターンは、前記ラジアル方向のコマ収差を有し且つ前記第1の分割線上に収束する回折光を発生し、
     前記第2の回折領域のパターンは、前記ラジアル方向のコマ収差を有し且つ前記第2の分割線上に収束する回折光を発生し、
     前記第1の検出領域における信号と前記第2の検出領域における信号との差信号、及び、前記第3の検出領域における信号と前記第4の検出領域における信号との差信号に基づいてフォーカスエラー信号を得ることを特徴とするフォーカスエラー信号検出方法。
PCT/JP2009/000019 2008-06-27 2009-01-06 光ヘッド装置、光情報処理装置及び信号検出方法 WO2009157109A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801072911A CN101960523A (zh) 2008-06-27 2009-01-06 光学头装置、光信息处理装置以及信号检测方法
EP09769819A EP2293297A4 (en) 2008-06-27 2009-01-06 OPTICAL HEAD DEVICE, OPTICAL INFORMATION PROCESSING DEVICE, AND SIGNAL DETECTION METHOD
US12/919,395 US20110176403A1 (en) 2008-06-27 2009-01-06 Optical head device, optical information processing device, and signal detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-168479 2008-06-27
JP2008168479A JP2010009682A (ja) 2008-06-27 2008-06-27 光ヘッド装置、光情報処理装置及び信号検出方法

Publications (1)

Publication Number Publication Date
WO2009157109A1 true WO2009157109A1 (ja) 2009-12-30

Family

ID=41444182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000019 WO2009157109A1 (ja) 2008-06-27 2009-01-06 光ヘッド装置、光情報処理装置及び信号検出方法

Country Status (5)

Country Link
US (1) US20110176403A1 (ja)
EP (1) EP2293297A4 (ja)
JP (1) JP2010009682A (ja)
CN (1) CN101960523A (ja)
WO (1) WO2009157109A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131461A1 (ja) * 2009-05-15 2010-11-18 パナソニック株式会社 光ヘッド装置、受光素子、集積回路、光集積素子、光ディスク装置および信号検出方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013025828A (ja) * 2011-07-15 2013-02-04 Hitachi Media Electoronics Co Ltd フォーカスエラー信号生成方法、フォーカスエラー信号生成装置、光学ヘッド、光学ドライブ装置
CA2900017C (en) 2013-02-05 2020-06-30 University Of South Florida Minimally invasive laparoscopic tissue removal device
CN106463567B (zh) 2014-04-25 2018-06-01 浜松光子学株式会社 光学式传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176119A (ja) 1999-12-16 2001-06-29 Victor Co Of Japan Ltd 光デバイス
JP2001229573A (ja) 1999-12-10 2001-08-24 Victor Co Of Japan Ltd 光ピックアップ
JP2007018683A (ja) * 2005-06-10 2007-01-25 Sharp Corp 光ピックアップ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4223348A (en) * 1977-09-12 1980-09-16 Olympus Optical Co., Ltd. Automatic focussing device
JPH0758559B2 (ja) * 1988-09-02 1995-06-21 シャープ株式会社 光ピックアップ装置
NL8802988A (nl) * 1988-12-05 1990-07-02 Philips Nv Inrichting voor het met optische straling aftasten van een informatievlak.
JP3778316B2 (ja) * 1997-05-22 2006-05-24 パイオニア株式会社 光ピックアップ装置
US6567355B2 (en) * 1999-12-03 2003-05-20 Hitachi, Ltd. Optical detector, optical pickup and optical information reproducing apparatus using optical pickup
EP1107242A3 (en) * 1999-12-10 2001-09-26 Victor Company Of Japan, Ltd. Optical pick-up
US6512608B2 (en) * 1999-12-16 2003-01-28 Victor Company Of Japan, Limited Optical device
JP2001297459A (ja) * 2000-04-14 2001-10-26 Nec Corp 光ヘッド装置および光学式情報記録再生装置
JP2008112512A (ja) * 2006-10-31 2008-05-15 Matsushita Electric Ind Co Ltd 光ピックアップ装置
JP2010267349A (ja) * 2009-05-15 2010-11-25 Panasonic Corp 光ヘッド装置、ホログラム素子、光集積素子、光情報処理装置および信号検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229573A (ja) 1999-12-10 2001-08-24 Victor Co Of Japan Ltd 光ピックアップ
JP2001176119A (ja) 1999-12-16 2001-06-29 Victor Co Of Japan Ltd 光デバイス
JP2007018683A (ja) * 2005-06-10 2007-01-25 Sharp Corp 光ピックアップ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2293297A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131461A1 (ja) * 2009-05-15 2010-11-18 パナソニック株式会社 光ヘッド装置、受光素子、集積回路、光集積素子、光ディスク装置および信号検出方法

Also Published As

Publication number Publication date
CN101960523A (zh) 2011-01-26
EP2293297A1 (en) 2011-03-09
US20110176403A1 (en) 2011-07-21
EP2293297A4 (en) 2012-02-22
JP2010009682A (ja) 2010-01-14

Similar Documents

Publication Publication Date Title
JP4151313B2 (ja) 光再生装置
CN101471100B (zh) 光拾取器装置和光盘装置
JP4893314B2 (ja) 光ピックアップ装置
JP3897632B2 (ja) 光ピックアップ装置及び光スポットの最適集束方法
JP2009003986A (ja) 光ピックアップ装置
WO2009157109A1 (ja) 光ヘッド装置、光情報処理装置及び信号検出方法
KR100717020B1 (ko) 기록층의 두께 변화에 따른 구면 수차를 탐지하고 보상하는광픽업 장치
KR100826564B1 (ko) 광 디바이스 및 광픽업 장치
JP2002245660A (ja) 光ピックアップ装置及びそれを用いた光学的情報再生装置
JP2009015954A (ja) 光ピックアップ装置及びその調整方法
KR100694102B1 (ko) 다층 기록 매체 및 그 기록 및/또는 재생을 위한 광픽업장치
KR20080039209A (ko) 광 픽업 장치
KR100546351B1 (ko) 호환형 광픽업 및 이를 채용한 광 기록 및/또는 재생기기
JP4251524B2 (ja) 光ピックアップ装置
KR100624852B1 (ko) 광학 유닛
JP2003030892A (ja) 光ヘッドおよびそれを用いた光ディスク装置
JP2005310298A (ja) 光ピックアップおよび光情報処理装置
US20110090776A1 (en) Optical head device, optical information processing apparatus, and signal detecting method
JP4505979B2 (ja) 光ヘッド、受発光素子および光記録媒体記録再生装置
JP4770915B2 (ja) 光ピックアップヘッド装置及び光情報装置
JP4945090B2 (ja) 光検出器、光ピックアップ及びそれを用いた光学的情報再生装置
KR20080017690A (ko) 광 픽업
US20120113784A1 (en) Optical pickup
JP2008130142A (ja) 光ピックアップ装置
KR20080081727A (ko) 안정된 트랙킹 에러 신호 특성을 가지는 광픽업 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107291.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12919395

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009769819

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE