WO2009150969A1 - 車両および車両の制御方法 - Google Patents

車両および車両の制御方法 Download PDF

Info

Publication number
WO2009150969A1
WO2009150969A1 PCT/JP2009/060125 JP2009060125W WO2009150969A1 WO 2009150969 A1 WO2009150969 A1 WO 2009150969A1 JP 2009060125 W JP2009060125 W JP 2009060125W WO 2009150969 A1 WO2009150969 A1 WO 2009150969A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
rotating electrical
electrical machine
vehicle
Prior art date
Application number
PCT/JP2009/060125
Other languages
English (en)
French (fr)
Inventor
真士 市川
石川 哲浩
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US12/996,462 priority Critical patent/US8473132B2/en
Priority to EP09762399.5A priority patent/EP2295279B1/en
Priority to CN2009801216528A priority patent/CN102056762B/zh
Publication of WO2009150969A1 publication Critical patent/WO2009150969A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a vehicle and a vehicle control method, and more particularly, to a vehicle configured to be able to supply power from the outside of the vehicle and a control method thereof.
  • Patent Document 1 discloses a non-contact power feeding system using such a microwave.
  • the vehicle is equipped with a power storage device, and the power to be transmitted from the road surface side to the vehicle is determined based on the torque command value, the state of charge of the power storage device, and the power that can be received by the microwave.
  • the resonance method is a method of transmitting power by utilizing resonance of an electromagnetic field, and can transmit a large amount of power of several kW for a relatively long distance (for example, several meters) (see Non-Patent Document 1).
  • JP 2006-174676 A Japanese Utility Model Publication No. 4-21102 JP 2001-197736 A
  • a vehicle that can charge the power storage device of such a hybrid vehicle from the outside of the vehicle has also been proposed.
  • the hybrid vehicle can also reduce the battery capacity to be mounted by enabling power supply from the outside during traveling.
  • An object of the present invention is to provide a vehicle and a vehicle control method capable of appropriately performing power management with respect to external power supply while traveling.
  • the present invention is a vehicle that is driven by a power storage device, a power receiving unit that receives power from a power transmission unit outside the vehicle, power supplied from the power storage device, and power supplied from the power receiving unit.
  • a power receiving unit that receives power from a power transmission unit outside the vehicle, power supplied from the power storage device, and power supplied from the power receiving unit.
  • 1 rotary electric machine and a control device for controlling the drive of the first rotary electric machine.
  • the control device calculates first power that can be output from the power storage device based on the state of the power storage device, and can charge from the outside based on power that can be transmitted from the power transmission unit and chargeable power from the power reception unit.
  • the power of 2 is calculated, the sum of the first and second powers is obtained as power outputable power, and drive control of the first rotating electrical machine is performed based on the power outputable power.
  • the vehicle further includes a voltage converter that converts the first voltage output from the power storage device, and a rotating electrical machine drive unit that receives the voltage converted by the voltage converter and drives the first rotating electrical machine.
  • the power reception unit is connected to a power transfer path that connects the voltage conversion unit and the rotating electrical machine drive unit.
  • the control device performs voltage conversion control on the voltage conversion unit based on the maximum voltage among the first voltage output from the power storage device, the second voltage requested by the rotating electrical machine drive unit, and the third voltage requested by the power receiving unit. Do.
  • the vehicle further includes an internal combustion engine and a second rotating electrical machine that receives power from the internal combustion engine and generates electric power used by the first rotating electrical machine.
  • the rotating electrical machine drive unit drives the second rotating electrical machine in addition to the first rotating electrical machine, and requests a second voltage determined based on the operations of the first and second rotating electrical machines.
  • the vehicle receives an internal combustion engine, a second rotating electrical machine that receives power from the internal combustion engine and generates electric power used by the first rotating electrical machine, and a voltage conversion that converts the first voltage output from the power storage device.
  • a rotating electrical machine drive unit that receives the voltage converted by the voltage converter and drives the first and second rotating electrical machines.
  • the rotating electrical machine drive unit requests a second voltage determined based on the operations of the first and second rotating electrical machines.
  • the power receiving unit is connected to a neutral point of the stator coil of the second rotating electrical machine and a neutral point of the stator coil of the first rotating electrical machine.
  • the control device converts the voltage to the voltage conversion unit based on the first voltage output from the power storage device, the maximum voltage among the second voltages requested by the rotating electrical machine drive unit, and the third voltage requested by the power receiving unit. Take control.
  • a method for controlling a vehicle including an electric machine comprising: calculating a first power that can be output from a power storage device based on a state of the power storage device; and transmitting power of a power transmission unit and chargeable power of a power receiving unit Calculating the second electric power that can be charged from the outside, obtaining the sum of the first and second electric powers as the power that can be output from the power source, and the first rotating electric machine based on the power that can be output from the power source Performing the drive control.
  • the vehicle further includes a voltage converter that converts the first voltage output from the power storage device, and a rotating electrical machine drive unit that receives the voltage converted by the voltage converter and drives the first rotating electrical machine.
  • the power reception unit is connected to a power transfer path that connects the voltage conversion unit and the rotating electrical machine drive unit.
  • the control method performs voltage conversion control on the voltage conversion unit based on the maximum voltage among the first voltage output from the power storage device, the second voltage requested by the rotating electrical machine drive unit, and the third voltage requested by the power receiving unit. The step of performing further is provided.
  • the vehicle further includes an internal combustion engine and a second rotating electrical machine that receives power from the internal combustion engine and generates electric power used by the first rotating electrical machine.
  • the rotating electrical machine drive unit drives the second rotating electrical machine in addition to the first rotating electrical machine, and requests a second voltage determined based on the operations of the first and second rotating electrical machines.
  • the vehicle receives an internal combustion engine, a second rotating electrical machine that receives power from the internal combustion engine and generates electric power used by the first rotating electrical machine, and a voltage conversion that converts the first voltage output from the power storage device.
  • a rotating electrical machine drive unit that receives the voltage converted by the voltage converter and drives the first and second rotating electrical machines.
  • the rotating electrical machine drive unit requests a second voltage determined based on the operations of the first and second rotating electrical machines.
  • the power receiving unit is connected to a neutral point of the stator coil of the second rotating electrical machine and a neutral point of the stator coil of the first rotating electrical machine.
  • the control method includes voltage conversion for the voltage conversion unit based on the first voltage output from the power storage device, the maximum voltage among the second voltages required by the rotating electrical machine drive unit, and the third voltage required by the power receiving unit.
  • the method further includes a step of performing control.
  • the present invention particularly in a hybrid vehicle, it is possible to appropriately perform power management for power supply from the outside during traveling.
  • FIG. 1 is a diagram showing a main configuration of a vehicle 100 according to an embodiment of the present invention. It is a circuit diagram which shows the detailed structure of the inverters 14 and 22 of FIG. Boost converters 12.1 and 12. of FIG. It is a circuit diagram which shows the detailed structure of n. It is a figure for demonstrating a mode that energy is contactlessly fed between a road surface installation and a vehicle. It is a figure for demonstrating the principle of the power transmission by the resonance method. It is the figure which showed schematically the structure shown in FIG. 1 in order to demonstrate electric power feeding. It is a flowchart which shows the outline
  • FIG. 5 is a diagram illustrating a schematic configuration of a vehicle according to a second embodiment.
  • 9 is a flowchart for explaining a system voltage determination process in step S4 of FIG. 7 in the second embodiment.
  • FIG. 12 is a first waveform diagram for illustrating determination of a boost voltage command value in step S51 of FIG.
  • FIG. 12 is a second waveform diagram for illustrating determination of a boost voltage command value in step S51 of FIG.
  • FIG. 1 is a diagram showing a main configuration of a vehicle 100 according to an embodiment of the present invention.
  • vehicle 100 includes a battery B.I. 1-B. n and boost converters 12.1-12. n, smoothing capacitors C1, C2, CH, and voltage sensors 10.1 to 10. n, 13, 21.1 to 21. n, inverters 14 and 22, engine 4, motor generators MG 1 and MG 2, power split mechanism 3, wheels 2, and control device 30.
  • Inverters 14 and 22 may be integrated as an IPM (intelligent power module) and operate as a drive unit that drives motor generators MG1 and MG2.
  • IPM integerlligent power module
  • the sub power storage device (B.n) and the main power storage device (B.1) can output the maximum power allowed to the electric load (inverter 22 and MG2) connected to the power supply line when used simultaneously.
  • the chargeable capacity is set so that As a result, traveling at maximum power is possible in EV (Electric Vehicle) traveling without using the engine. If the power storage state of the sub power storage device deteriorates, the sub power storage device may be replaced and run further. If the power of the sub power storage device is consumed, the maximum power can be traveled without using the sub power storage device by using the engine in addition to the main power storage device.
  • the battery B In order to further extend the EV travel distance, the battery B.
  • a battery may be added in parallel with n.
  • vehicle 100 further includes, for example, a power receiving unit 28 that receives power from road surface facility 102 by a resonance method, and a power feeding rectifier circuit 26 that rectifies the power received by power receiving unit 28.
  • the voltage rectified by the power supply rectifier circuit 26 is supplied to the power supply lines PL2 and SL2.
  • the road surface facility 102 includes a power transmission power source 40 and a power transmission unit 42 that receives power from the power transmission power source 40 and transmits power toward the power receiving unit 28 by a resonance method.
  • Smoothing capacitor C1 is connected between power supply line PL1.1 and ground line SL2.
  • the voltage sensor 21.1 has a voltage VL. Between both ends of the smoothing capacitor C1. 1 is detected and output to the control device 30.
  • Boost converter 12.1 boosts the voltage across terminals of smoothing capacitor C1.
  • Smoothing capacitor C2 is a power supply line PL1. n and ground line SL2. Voltage sensor 21. n is a voltage VL. between both ends of the smoothing capacitor C2. n is detected and output to the control device 30. Boost converter 12. n boosts the inter-terminal voltage of the smoothing capacitor C2.
  • Smoothing capacitor CH is a boost converter 12.1,12.
  • the voltage boosted by n is smoothed.
  • the voltage sensor 13 detects the inter-terminal voltage VH of the smoothing capacitor CH and outputs it to the control device 30.
  • the inverter 14 is a boost converter 12.1 or 12.
  • the DC voltage given from n is converted into a three-phase AC voltage and output to motor generator MG1.
  • the inverter 22 is connected to the boost converter 12.1 or 12.
  • the DC voltage given from n is converted into a three-phase AC voltage and output to motor generator MG2.
  • the power split mechanism 3 is a mechanism that is coupled to the engine 4 and the motor generators MG1 and MG2 and distributes power between them.
  • a planetary gear mechanism having three rotating shafts of a sun gear, a planetary carrier, and a ring gear can be used.
  • rotation of two of the three rotation shafts is determined, rotation of the other one rotation shaft is forcibly determined.
  • the rotating shaft of motor generator MG2 is coupled to wheel 2 by a reduction gear and a differential gear (not shown). Further, a reduction gear for the rotation shaft of motor generator MG2 may be further incorporated in power split device 3.
  • the vehicle 100 further includes a battery B.I.
  • System main relay SMR2 connected between the positive electrode of the power supply line PL1.1 and the battery B.1.
  • System main relay SMR3 connected between the negative electrode (ground line SL1) of node 1 and node N2, system main relay SMR1 connected in series with system main relay SMR3, and limiting resistor R. 1 is included.
  • the system main relays SMR1 to SMR3 are controlled to be in a conductive / non-conductive state in accordance with a control signal supplied from the control device 30.
  • Voltage sensor 10.1 is battery B. 1 voltage VB. 1 is measured. Although not shown, the battery B.I. 1 to monitor the state of charge of battery B.1. A current sensor is provided for detecting the current flowing through 1.
  • Battery B For example, a secondary battery such as a lead storage battery, a nickel-metal hydride battery, or a lithium ion battery, or a large-capacity capacitor such as an electric double layer capacitor can be used as 1.
  • the vehicle 100 further includes a battery B.I. n positive electrode and feed line PL1. n, a relay SR2 connected between the battery B. relay SR3 connected between the negative electrode of n and ground line SL2, relay SR1 connected in series with relay SR3 and limiting resistor R.R. n.
  • Relays SR1 to SR3 are controlled to be in a conductive / non-conductive state according to a control signal given from control device 30.
  • Ground line SL2 is connected to boost converters 12.1, 12.. n extends to the inverters 14 and 22 side.
  • Voltage sensor 10. n is the battery B. n voltage VB. Measure n. Although not shown, the voltage sensor 10. n and battery B. In order to monitor the charging state of n, a current sensor for detecting a current flowing through each battery is provided. Battery B. As n, for example, a secondary battery such as a lead storage battery, a nickel metal hydride battery, or a lithium ion battery, or a large-capacity capacitor such as an electric double layer capacitor can be used.
  • the inverter 14 is connected to the power supply line PL2 and the ground line SL2.
  • Inverter 14 includes boost converters 12.1 and 12.2.
  • the motor generator MG1 is driven to start the engine 4, for example.
  • inverter 14 converts electric power generated by motor generator MG1 by the power transmitted from engine 4 to boost converters 12.1 and 12.2.
  • the boost converters 12.1 and 12. n is controlled by the control device 30 so as to operate as a step-down circuit.
  • Current sensor 24 detects the current flowing through motor generator MG1 as motor current value MCRT1, and outputs motor current value MCRT1 to control device 30.
  • the inverter 22 is connected in parallel with the inverter 14 to the power supply line PL2 and the ground line SL2. Inverter 22 provides boost converters 12.1 and 12. to motor generator MG2 driving wheel 2. The DC voltage output by n is converted into a three-phase AC voltage and output. Further, inverter 22 converts the electric power generated in motor generator MG2 in accordance with regenerative braking to boost converters 12.1 and 12.2. Return to n. At this time, the boost converters 12.1 and 12. n is controlled by the control device 30 so as to operate as a step-down circuit.
  • Current sensor 25 detects the current flowing through motor generator MG2 as motor current value MCRT2, and outputs motor current value MCRT2 to control device 30.
  • Control device 30 includes motor generators MG1 and MG2, torque command values, rotational speed, voltage VB. 1 to VB. n, VL. 1 to VL. Each value of n, VH, motor current values MCRT1, MCRT2, and start signal IGON are received. Then, control device 30 includes boost converter 12. A control signal PWUB for instructing boosting to n, a control signal PWDB for instructing stepping down, and a shutdown signal for instructing prohibition of operation are output.
  • control device 30 controls the boost converters 12.1, 12.
  • Step-up converter 12 converts the AC voltage generated by motor generator MG1 into a DC voltage and a control signal PWMI1 for instructing driving to convert the DC voltage output from n into an AC voltage for driving motor generator MG1. .1,12.
  • a control signal PWMC1 for instructing regeneration to return to the n side is output.
  • control device 30 converts control signal PWMI2 for instructing inverter 22 to drive to convert DC voltage into AC voltage for driving motor generator MG2, and AC voltage generated by motor generator MG2 to DC voltage. Convert to boost converter 12.1, 12. A control signal PWMC2 for instructing regeneration to return to the n side is output.
  • FIG. 2 is a circuit diagram showing a detailed configuration of inverters 14 and 22 in FIG.
  • inverter 14 includes a U-phase arm 15, a V-phase arm 16, and a W-phase arm 17.
  • U-phase arm 15, V-phase arm 16, and W-phase arm 17 are connected in parallel between power supply line PL2 and ground line SL2.
  • U-phase arm 15 includes IGBT elements Q3 and Q4 connected in series between power supply line PL2 and ground line SL2, and diodes D3 and D4 connected in parallel with IGBT elements Q3 and Q4, respectively.
  • the cathode of diode D3 is connected to the collector of IGBT element Q3, and the anode of diode D3 is connected to the emitter of IGBT element Q3.
  • the cathode of diode D4 is connected to the collector of IGBT element Q4, and the anode of diode D4 is connected to the emitter of IGBT element Q4.
  • V-phase arm 16 includes IGBT elements Q5 and Q6 connected in series between feed line PL2 and ground line SL2, and diodes D5 and D6 connected in parallel with IGBT elements Q5 and Q6, respectively.
  • the cathode of diode D5 is connected to the collector of IGBT element Q5, and the anode of diode D5 is connected to the emitter of IGBT element Q5.
  • the cathode of diode D6 is connected to the collector of IGBT element Q6, and the anode of diode D6 is connected to the emitter of IGBT element Q6.
  • W-phase arm 17 includes IGBT elements Q7 and Q8 connected in series between power supply line PL2 and ground line SL2, and diodes D7 and D8 connected in parallel with IGBT elements Q7 and Q8, respectively.
  • the cathode of diode D7 is connected to the collector of IGBT element Q7, and the anode of diode D7 is connected to the emitter of IGBT element Q7.
  • the cathode of diode D8 is connected to the collector of IGBT element Q8, and the anode of diode D8 is connected to the emitter of IGBT element Q8.
  • each phase arm is connected to each phase end of each phase coil of motor generator MG1. That is, motor generator MG1 is a three-phase permanent magnet synchronous motor, and one end of each of three coils of U, V, and W phases is connected to the midpoint.
  • the other end of the U-phase coil is connected to a line UL drawn from the connection node of IGBT elements Q3 and Q4.
  • the other end of the V-phase coil is connected to a line VL drawn from the connection node of IGBT elements Q5 and Q6.
  • the other end of the W-phase coil is connected to a line WL drawn from the connection node of IGBT elements Q7 and Q8.
  • inverter 22 in FIG. 1 is also different in that it is connected to motor generator MG2, but since the internal circuit configuration is the same as that of inverter 14, detailed description thereof will not be repeated.
  • FIG. 2 shows that the control signals PWMI and PWMC are given to the inverter, but this is for avoiding complicated description. As shown in FIG. 1, separate control signals PWMI1 are used. , PWMC1 and control signals PWMI2 and PWMC2 are input to inverters 14 and 22, respectively.
  • FIG. 3 shows the boost converters 12.1 and 12. It is a circuit diagram which shows the detailed structure of n.
  • boost converter 12.1 includes a reactor L1 having one end connected to power supply line PL1.1, and an IGBT connected in series between power supply line PL2 and ground line SL2. Elements Q1 and Q2 and diodes D1 and D2 connected in parallel to IGBT elements Q1 and Q2, respectively.
  • reactor L1 The other end of reactor L1 is connected to the emitter of IGBT element Q1 and the collector of IGBT element Q2.
  • the cathode of diode D1 is connected to the collector of IGBT element Q1, and the anode of diode D1 is connected to the emitter of IGBT element Q1.
  • the cathode of diode D2 is connected to the collector of IGBT element Q2, and the anode of diode D2 is connected to the emitter of IGBT element Q2.
  • boost converter 12 of FIG. n the power supply line PL1.
  • boost converter 12 of FIG. n the power supply line PL1.
  • FIG. 3 shows that the control signals PWU and PWD are given to the boost converter, but this is for the purpose of avoiding complicated description.
  • PWUA, PWDA and control signals PWUB, PWDB are respectively supplied to boost converters 12.1, 12. n.
  • FIG. 4 is a diagram for explaining how energy is contactlessly fed between the road surface equipment and the vehicle.
  • power transmission unit 42 installed on the road surface includes a high-frequency power driver, a primary coil, and a primary self-resonant coil, which are not shown.
  • the power transmission power source 40 is a power source outside the vehicle, for example, a system power source.
  • the high-frequency power driver converts the power received from the power transmission power source 40 into high-frequency power that can be transmitted from the primary self-resonant coil to the secondary self-resonant coil on the vehicle side by resonating the magnetic field, and the converted high-frequency power is converted into the primary power Supply to coil.
  • the primary coil is configured to be able to transmit power to the primary self-resonant coil by electromagnetic induction, and is preferably arranged coaxially with the primary self-resonant coil. The primary coil then outputs the power received from the high frequency power driver to the primary self-resonant coil.
  • the primary self-resonant coil is disposed near the ground.
  • This primary self-resonant coil is an LC resonant coil with both ends open.
  • the vehicle 100 receives electric power from the power receiving unit 28 installed on the floor underside of the vehicle body.
  • the power receiving unit 28 includes a secondary self-resonant coil.
  • the primary self-resonant coil is magnetically coupled to the secondary self-resonant coil by magnetic field resonance, and is configured to transmit power to the secondary self-resonant coil.
  • the power transmission unit 42 installed on the road surface may be a power transmission antenna that radiates radio waves such as microwaves.
  • the power receiving unit 28 may be a microwave power receiving antenna, for example.
  • a plurality of power transmission units 42 are provided along the traveling direction of the road surface so that power can be continuously supplied even while the vehicle is traveling. Note that a single power transmission unit 42 may be used as long as power can be received only at a predetermined stop position.
  • FIG. 5 is a diagram for explaining the principle of power transmission by the resonance method.
  • two LC resonant coils having the same natural frequency resonate via a magnetic field, thereby causing one coil to another. Power is transmitted wirelessly to the coil.
  • the primary self-resonant coil 330 functions as an LC resonator due to the inductance of the coil itself and the stray capacitance between the conductors, and also functions as an LC resonator and has the same resonance frequency as the primary self-resonant coil 330.
  • Power is transmitted to the secondary self-resonant coil 340 by being magnetically coupled to the self-resonant coil 340 by magnetic field resonance.
  • high-frequency power due to electromagnetic induction is generated in the secondary coil 350 by the magnetic field generated in the secondary self-resonant coil 340 by receiving power from the primary self-resonant coil 330, and power is supplied to the load 360.
  • the power transmission power source 40 in FIG. 1 corresponds to the high frequency power source 310 in FIG.
  • the power transmission unit 42 in FIG. 1 corresponds to the primary coil 320 and the primary self-resonant coil 330 in FIG.
  • the power receiving unit 28 in FIG. 1 corresponds to the secondary self-resonant coil 340 and the secondary coil 350 in FIG.
  • the power supply rectifier circuit 26 in FIG. 1 corresponds to the load 360 in FIG.
  • FIG. 6 is a diagram schematically showing the configuration shown in FIG. 1 for explaining power feeding.
  • the transmittable power Wout_s of the road surface equipment based on the transmittable power Wout_s of the road surface equipment, the receivable power Wout_r on the power receiving side, and the output powers Wout1 to Woutn of a plurality of batteries.
  • the maximum power Wout that can be output as the vehicle power supply is calculated.
  • the transmittable power Wout_s of the road surface facility varies depending on the place where the vehicle travels, the information is received from the road surface side by radio or the like.
  • Receivable power Wout_r on the power receiving side is determined by the capability of the device mounted on each vehicle.
  • the smaller of the transmittable power Wout_s and the receivable power Wout_r is the power Wout_ex that can be supplied from the power supply rectifier circuit.
  • the output powers Wout1 to Woutn of the battery can be obtained from, for example, a map or the like using the battery temperature, the state of charge SOC, aging deterioration, etc. as parameters.
  • the boosted voltage VH is used to maintain the controllability of the motor and prevent reverse current flow, the voltages of a plurality of batteries, the motor voltages (back electromotive force) calculated from the motor generators MG1 and MG2, and the requirements of the power receiving unit.
  • a voltage higher than any of the voltages is set as the target voltage.
  • boost converter 12.1 is controlled to maintain this target voltage, and the remaining boost converters 12.2-12. n is current controlled so as to output the allocated powers Wout2 to Woutn, respectively.
  • FIG. 7 is a flowchart showing an outline of vehicle control executed by the control device 30 of FIG. The process of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.
  • step S1 a driver torque request is detected.
  • the amount of depression of the accelerator pedal is detected by an accelerator opening sensor, and the required torque of the driver may be obtained based on this by using a map or the like.
  • the vehicle speed is detected in step S2.
  • the vehicle speed can be detected, for example, by detecting the rotational speed of the propeller shaft or the rotational speed of the wheels with a sensor.
  • step S3 the motor torque is determined based on the required torque obtained in step S1 and the vehicle speed detected in step S2.
  • step S4 a control target value of the voltage VH, which is a system voltage, is determined.
  • step S5 how to distribute the power supply from each battery and the power supply from the outside is determined.
  • step S6 step-up converters 12.1-12.12 so as to realize system voltage and power distribution. Control of n and inverters 14 and 22 is executed, and control is transferred to the main routine in step S7.
  • FIG. 8 is a diagram showing a system voltage determination process executed in step S4 of FIG. Referring to FIG. 8, when the process is started, boosted voltage command value Vcr is determined in step S11 based on the following equation (1).
  • Vcr MAX (Vm1, Vm2, Vb1, Vb2, Vex) (1)
  • Vm1 indicates a voltage required for operating motor generator MG1
  • Vm2 indicates a voltage required for operating motor generator MG2.
  • Vb1 and Vb2 indicate battery voltages, respectively.
  • Vex indicates a voltage required when power is transferred by the external power supply unit.
  • MAX () indicates that the maximum value is selected.
  • step S12 it is determined whether or not the boosted voltage command value Vcr obtained in step S11 is smaller than the minimum boosted voltage Vth.
  • the minimum boost voltage Vth is a value determined by the performance of the boost converter, and is a lower limit voltage at which the boost converter can maintain the boost operation in a controllable manner.
  • step S12 if Vcr ⁇ Vth is established, the process proceeds to step S13, the boosted voltage command value Vcr is set to the minimum boosted voltage Vth, and the process proceeds to step S14. If Vcr ⁇ Vth is not established in step S12, step S13 is not executed and the process proceeds to step S14, and the boosted voltage command value Vcr calculated in step S11 is used as it is.
  • FIG. 9 is a diagram showing details of the power distribution process in step S5 of FIG.
  • battery output possible power Wout_b is calculated based on the following equation (2) in step S20.
  • Wout_b Wout1 +... + Woutn (2)
  • Wout1 and Woutn are respectively the battery B. 1
  • B. n represents the power that can be output.
  • Wout1 and Woutn are obtained from a map and the like, respectively.
  • step S22 the power supply unit power Wout_ex is calculated based on the following equation (3).
  • Wout_ex MIN (Wout_s, Wout_r) (3) Since it is conceivable that the transmittable power Wout_s of the road surface equipment varies depending on the travel location, the information is received from the road surface side by radio or the like. Receivable power Wout_r on the power receiving side is a constant because it is determined by the capability of the device mounted on each vehicle.
  • MIN () indicates that the smaller of the transmittable power Wout_s and the receivable power Wout_r is set as the power Wout_ex that can be supplied from the power supply rectifier circuit.
  • the vehicle can supply the largest power that can be fed in each place where the vehicle runs. Can receive.
  • step S23 the system output possible power Wout is calculated based on the following equation (4).
  • Wout Wout_b + Wout_ex (4)
  • step S24 the required power Wref and the system output possible power Wout are compared.
  • the required power Wref is the power determined based on the information obtained in steps S1 to S3 in FIG. 7, and is the power required for the power supply device of the vehicle in order to realize the driver's request.
  • step S24 If Wref> Wout is satisfied in step S24, the required power exceeds the outputable power, so the process proceeds to step S25 and the output power W is limited.
  • W Wout is set, and the output power W1 to Wn output from each battery is set to the output power Wout1 to Woutn, respectively. Then, the electric power Wex fed from the outside is set to the feedable power Wout_ex.
  • step S24 if Wref> Wout is not established, the process proceeds to step S26, and the power as requested power Wref is set as output power W.
  • step S25 When the power distribution is determined in either step S25 or S26, the process proceeds to step S27, and the boost converter and inverter control in step S6 of FIG. 7 is executed based on the determined power distribution.
  • power management is appropriately performed in a vehicle that is equipped with a plurality of batteries and travels while receiving power from the outside.
  • FIG. 10 is a diagram illustrating a schematic configuration of the vehicle according to the second embodiment.
  • the electric power fed from the power transmission power source 40 on the road surface equipment side to the power receiving unit via the power transmission unit 42 in a non-contact manner is the neutral point of the stator coil of the motor generator MG1 and the motor generator MG2. It is added between the neutral point of the stator coil.
  • FIG. 11 is a flowchart for explaining the system voltage determination process in step S4 of FIG. 7 in the second embodiment.
  • Vcr MAX (Vm1, Vm2, Vb1, Vb2) + Vex (5)
  • Vm1 indicates a voltage required for operating motor generator MG1
  • Vm2 indicates a voltage required for operating motor generator MG2.
  • Vb1 and Vb2 indicate battery voltages, respectively.
  • Vex indicates a voltage required when power is transferred by the external power supply unit.
  • MAX () indicates that the maximum value is selected.
  • step S52 it is determined whether or not the boosted voltage command value Vcr obtained in step S51 is smaller than the minimum boosted voltage Vth.
  • the minimum boost voltage Vth is a value determined by the performance of the boost converter, and is a lower limit voltage at which the boost converter can maintain the boost operation in a controllable manner.
  • step S52 if Vcr ⁇ Vth is established, the process proceeds to step S53, the boosted voltage command value Vcr is set to the minimum boosted voltage Vth, and the process proceeds to step S54. If Vcr ⁇ Vth is not satisfied in step S52, step S53 is not executed and the process proceeds to step S54, and the boosted voltage command value Vcr calculated in step S51 is used as it is.
  • FIG. 12 is a first waveform diagram for explaining the determination of the boost voltage command value in step S51 of FIG.
  • FIG. 13 is a second waveform diagram for explaining the determination of the boost voltage command value in step S51 of FIG.
  • FIG. 12 shows a case where power is not supplied from the outside, and the voltage at the neutral point of the stator coil of motor generator MG1 and the voltage at the neutral point of the stator coil of motor generator MG1 are the same.
  • boosted voltage command value Vcr is determined so as to cover the larger one of voltage Vm1 of motor generator MG1 and voltage Vm2 of motor generator MG2.
  • FIG. 13 shows a case where an external supply voltage Vex is applied between the neutral point voltage of motor generator MG1 and the neutral point voltage of motor generator MG2.
  • the boost voltage command value Vcr is set to a voltage obtained by adding the power supply voltage Vex to a voltage having a larger amplitude of the voltage Vm1 of the motor generator MG1 and the voltage Vm2 of the motor generator MG2, the motor control is executed well. it can.
  • the vehicle 100 includes a battery B.I. 1, a power receiving unit 28 that receives power from a power transmission unit 42 outside the vehicle, and a first rotating electrical machine (motor generator MG2) that is driven by the power supplied from the power storage device and the power supplied from the power receiving unit 28. And a control device 30 that performs drive control of the first rotating electrical machine. As shown in FIG. 6 and FIG. 9, the control device 30 calculates the first power Wout_b that can be output from the power storage device based on the state of the power storage device, and can receive the transmittable power Wout_s of the power transmission unit and the power receiving unit.
  • the second power Wout_ex that can be charged from the outside is calculated based on the power Wout_r, the sum of the first and second powers is obtained as the power output possible power Wout, and the first power is output based on the power output possible power Wout.
  • the drive control of the rotating electric machine is performed.
  • vehicle 100 receives the voltage converted by the voltage converter (boost converter 12.1) for converting the first voltage output from the power storage device and the voltage converter, and drives the first rotating electrical machine.
  • a rotating electrical machine drive unit (inverters 14 and 22) is further provided.
  • the power receiving unit 28 is connected to a power transfer path (PL2, SL2) that connects the voltage converter and the rotating electrical machine drive unit.
  • the control device 30 requests the first voltage (Vb1, Vb2) output from the power storage device, the second voltage (Vm1, Vm2) requested by the rotating electrical machine drive unit, and the power receiving unit 28. Based on the maximum voltage among the third voltages (Vex), voltage conversion control is performed on the voltage conversion unit.
  • vehicle 100 receives an internal combustion engine (engine 4) and a second rotating electrical machine (motor generator MG1) that receives power from the internal combustion engine and generates electric power used by the first rotating electrical machine (motor generator MG2). And further comprising.
  • the rotating electrical machine drive unit (inverters 14 and 22) drives the second rotating electrical machine in addition to the first rotating electrical machine, and the second voltage (Vm1, Vm2) determined based on the operation of the first and second rotating electrical machines. ).
  • vehicle 100 includes an internal combustion engine (engine 4) and a second rotating electrical machine (motor generator MG1) that receives power from the internal combustion engine and generates electric power used by the first rotating electrical machine (motor generator MG2).
  • a voltage converter boost converter 12.1 that converts the first voltage output from the power storage device, and a rotating electrical machine drive that receives the voltage converted by the voltage converter and drives the first and second rotating electrical machines.
  • a unit inverters 14 and 22). The rotating electrical machine drive unit requests a second voltage (Vm1, Vm2) determined based on the operations of the first and second rotating electrical machines. As shown in FIG.
  • the power receiving unit is connected to a neutral point N1 of the stator coil of the second rotating electrical machine and a neutral point N2 of the stator coil of the first rotating electrical machine.
  • the control device 30 has a maximum voltage among the first voltage (Vb1, Vb2) output from the power storage device and the second voltage (Vm1, Vm2) required by the rotating electrical machine drive unit, Based on the third voltage (Vex) required by the power receiving unit, voltage conversion control is performed on the voltage conversion unit.
  • the resonance method is used as a power transmission method.
  • the method is not limited to this as long as it is a method capable of transmitting power wirelessly.
  • a method using radio waves such as waves may be used.
  • n Battery C1, C2, CH Smoothing capacitor, D1 to D8 diode, L1 reactor, MG1, MG2 motor generator, PL2 power supply line, Q1 to Q8 IGBT element, R limiting resistor, SL1, SL2 ground line, SMR1 to SMR3 system Main relay, SR1-SR3 relay.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 車両(100)は、バッテリ(B.1)と、車両外部の送電ユニット(42)から電力を受ける受電ユニット(28)と、バッテリ(B.1)から供給される電力と受電ユニット(28)から供給される電力とによって駆動されるモータジェネレータ(MG2)とを備える。制御装置(30)は、バッテリ(B.1)から出力可能な第1の電力を算出し、送電ユニット(42)の送電可能電力と受電ユニット(28)の充電可能電力に基づいて外部から充電することが可能な第2の電力を算出し、第1、第2の電力の合計を電源出力可能電力として求め、電源出力可能電力に基づいてモータジェネレータ(MG2)の駆動制御を行なう。

Description

車両および車両の制御方法
 この発明は、車両および車両の制御方法に関し、特に、車両外部から電力が供給可能に構成された車両およびその制御方法に関する。
 電車では、架線から電気エネルギが供給されるが、同様に自動車においても、路面設備からマイクロ波を介して車両に電気エネルギを供給することが提案されている。
 特開2006-174676号公報(特許文献1)は、このようなマイクロ波を用いた非接触給電システムを開示する。このシステムでは、車両は蓄電装置を搭載し、トルク指令値、蓄電装置の充電状態、マイクロ波による受電可能電力に基づいて路面設備側から車両に送電する電力を決定する。
 また、マイクロ波のような電波を用いた送電の他にも、ワイヤレス送電技術としては、有力なものとして、電磁誘導を用いた送電、および共鳴法による送電の3つの技術が知られている。
 このうち、共鳴法は、電磁場の共鳴を利用して送電する手法であり、数kWの大電力を比較的長距離(たとえば数m)送電することも可能である(非特許文献1参照)。
特開2006-174676号公報 実開平4-21102号公報 特開2001-197736号公報
アンドレ・クルス(Andre Kurs)、他5名、"ワイヤレス パワー トランスファー バイア ストロングリィ カップルド マグネティック レゾナンス(Wireless Power Transfer via Strongly Coupled Magnetic Resonances)"、[online]、2007年7月6日、サイエンス(SCIENCE)、第317巻、p.83-86、[平成2007年9月12日検索]、インターネット<URL:http://www.sciencemag.org/cgi/reprint/317/5834/83.pdf>
 近年、二酸化炭素の排出量を抑える等の地球環境への配慮から、燃費が改善されたハイブリッド自動車の開発が盛んになっている。
 このようなハイブリッド自動車の蓄電装置に車両外部から充電を行なうことができる車両も提案されている。ハイブリッド自動車も、走行中に外部から給電可能とすることで、搭載するバッテリ容量を小さくすることができる。
 しかし、走行中に給電することについては、走行中に給電する電力のマネジメントを明確に示したものは無く、上記の特開2006-174676号公報に開示される技術を単純に適用すると、適切な制御ができず過電圧などが生じる恐れがある。
 この発明の目的は、走行中の外部からの給電に対するパワーマネジメントが適切に行なえる車両および車両の制御方法を提供することである。
 この発明は、要約すると、車両であって、蓄電装置と、車両外部の送電ユニットから電力を受ける受電ユニットと、蓄電装置から供給される電力と受電ユニットから供給される電力とによって駆動される第1の回転電機と、第1の回転電機の駆動制御を行なう制御装置とを備える。制御装置は、蓄電装置の状態に基づいて蓄電装置から出力可能な第1の電力を算出し、送電ユニットの送電可能電力と受電ユニットの充電可能電力に基づいて外部から充電することが可能な第2の電力を算出し、第1、第2の電力の合計を電源出力可能電力として求め、電源出力可能電力に基づいて第1の回転電機の駆動制御を行なう。
 好ましくは、車両は、蓄電装置から出力される第1電圧を変換する電圧変換部と、電圧変換部によって変換された電圧を受けて第1の回転電機を駆動する回転電機駆動ユニットとをさらに備える。受電ユニットは、電圧変換部と回転電機駆動ユニットとの間を接続する電力授受経路に接続される。制御装置は、蓄電装置から出力される第1電圧、回転電機駆動ユニットが要求する第2電圧、受電ユニットが要求する第3電圧のうち最大となる電圧に基づいて電圧変換部に対する電圧変換制御を行なう。
 より好ましくは、車両は、内燃機関と、内燃機関から動力を受けて、第1の回転電機で用いる電力を発電する第2の回転電機とをさらに備える。回転電機駆動ユニットは、第1の回転電機に加えて第2の回転電機を駆動し、第1、第2の回転電機の動作に基づいて定まる第2電圧を要求する。
 好ましくは、車両は、内燃機関と、内燃機関から動力を受けて、第1の回転電機で用いる電力を発電する第2の回転電機と、蓄電装置から出力される第1電圧を変換する電圧変換部と、電圧変換部によって変換された電圧を受けて第1、第2の回転電機を駆動する回転電機駆動ユニットとをさらに備える。回転電機駆動ユニットは、第1、第2の回転電機の動作に基づいて定まる第2電圧を要求する。受電ユニットは、第2の回転電機のステータコイルの中性点と、第1の回転電機のステータコイルの中性点とに接続される。制御装置は、蓄電装置から出力される第1電圧、回転電機駆動ユニットが要求する第2電圧のうち最大となる電圧と、受電ユニットが要求する第3電圧とに基づいて電圧変換部に対する電圧変換制御を行なう。
 この発明の他の局面に従うと、蓄電装置と、車両外部の送電ユニットから電力を受ける受電ユニットと、蓄電装置から供給される電力と受電ユニットから供給される電力とによって駆動される第1の回転電機とを含む車両の制御方法であって、蓄電装置の状態に基づいて蓄電装置から出力可能な第1の電力を算出するステップと、送電ユニットの送電可能電力と受電ユニットの充電可能電力に基づいて外部から充電することが可能な第2の電力を算出するステップと、第1、第2の電力の合計を電源出力可能電力として求めるステップと、電源出力可能電力に基づいて第1の回転電機の駆動制御を行なうステップとを備える。
 好ましくは、車両は、蓄電装置から出力される第1電圧を変換する電圧変換部と、電圧変換部によって変換された電圧を受けて第1の回転電機を駆動する回転電機駆動ユニットとをさらに含む。受電ユニットは、電圧変換部と回転電機駆動ユニットとの間を接続する電力授受経路に接続される。制御方法は、蓄電装置から出力される第1電圧、回転電機駆動ユニットが要求する第2電圧、受電ユニットが要求する第3電圧のうち最大となる電圧に基づいて電圧変換部に対する電圧変換制御を行なうステップをさらに備える。
 より好ましくは、車両は、内燃機関と、内燃機関から動力を受けて、第1の回転電機で用いる電力を発電する第2の回転電機とをさらに含む。回転電機駆動ユニットは、第1の回転電機に加えて第2の回転電機を駆動し、第1、第2の回転電機の動作に基づいて定まる第2電圧を要求する。
 好ましくは、車両は、内燃機関と、内燃機関から動力を受けて、第1の回転電機で用いる電力を発電する第2の回転電機と、蓄電装置から出力される第1電圧を変換する電圧変換部と、電圧変換部によって変換された電圧を受けて第1、第2の回転電機を駆動する回転電機駆動ユニットとをさらに含む。回転電機駆動ユニットは、第1、第2の回転電機の動作に基づいて定まる第2電圧を要求する。受電ユニットは、第2の回転電機のステータコイルの中性点と、第1の回転電機のステータコイルの中性点とに接続される。制御方法は、蓄電装置から出力される第1電圧、回転電機駆動ユニットが要求する第2電圧のうち最大となる電圧と、受電ユニットが要求する第3電圧とに基づいて電圧変換部に対する電圧変換制御を行なうステップをさらに備える。
 本発明によれば、特にハイブリッド車両において、走行中の外部からの給電に対するパワーマネジメントが適切に行なえる。
本発明の実施の形態に係る車両100の主たる構成を示す図である。 図1のインバータ14および22の詳細な構成を示す回路図である。 図1の昇圧コンバータ12.1および12.nの詳細な構成を示す回路図である。 路面設備と車両との間でエネルギが非接触給電される様子を説明するための図である。 共鳴法による送電の原理を説明するための図である。 給電の説明をするために図1に示した構成を概略的に示した図である。 図1の制御装置30が実行する車両制御の概要を示すフローチャートである。 図7のステップS4で実行されるシステム電圧の決定処理を示した図である。 図7のステップS5の電力配分処理の詳細を示した図である。 実施の形態2の車両の概略構成を示した図である。 実施の形態2において図7のステップS4のシステム電圧の決定処理を説明するためのフローチャートである。 図11のステップS51における昇圧電圧指令値の決定について説明するための第1の波形図である。 図11のステップS51における昇圧電圧指令値の決定について説明するための第2の波形図である。
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 [実施の形態1]
 図1は、本発明の実施の形態に係る車両100の主たる構成を示す図である。
 図1を参照して、車両100は、蓄電装置であるバッテリB.1~B.nと、昇圧コンバータ12.1~12.nと、平滑用コンデンサC1,C2,CHと、電圧センサ10.1~10.n,13,21.1~21.nと、インバータ14,22と、エンジン4と、モータジェネレータMG1,MG2と、動力分割機構3と、車輪2と、制御装置30とを含む。インバータ14,22は、IPM(インテリジェントパワーモジュール)として一体化されていても良く、モータジェネレータMG1,MG2を駆動する駆動ユニットとして動作する。
 副蓄電装置(B.n)と主蓄電装置(B.1)とは、たとえば、同時使用することにより給電ラインに接続される電気負荷(インバータ22およびMG2)に許容された最大パワーを出力可能であるように蓄電可能容量が設定される。これによりエンジンを使用しないEV(Electric Vehicle)走行において最大パワーの走行が可能である。副蓄電装置の蓄電状態が悪化したら、副蓄電装置を交換してさらに走行させればよい。そして副蓄電装置の電力が消費されてしまったら、主蓄電装置に加えてエンジンを使用することによって、副蓄電装置を使用しないでも最大パワーの走行を可能とすることができる。
 EV走行距離をさらに伸ばすには、バッテリB.nに並列にさらにバッテリを追加すればよい。
 好ましくは、この車両には外部から給電が可能である。このために、車両100は、さらに、たとえば路面設備102から共鳴法で電力を受ける受電ユニット28と、受電ユニット28が受けた電力を整流する給電用整流回路26とを含む。給電用整流回路26で整流された電圧は、給電ラインPL2およびSL2に供給される。
 路面設備102は、送電用電源40と、送電用電源40から電力を受けて共鳴法によって受電ユニット28に向けて電力を送電する送電ユニット42とを含む。
 平滑用コンデンサC1は、給電ラインPL1.1と接地ラインSL2間に接続される。電圧センサ21.1は、平滑用コンデンサC1の両端間の電圧VL.1を検出して制御装置30に対して出力する。昇圧コンバータ12.1は、平滑用コンデンサC1の端子間電圧を昇圧する。
 平滑用コンデンサC2は、給電ラインPL1.nと接地ラインSL2間に接続される。電圧センサ21.nは、平滑用コンデンサC2の両端間の電圧VL.nを検出して制御装置30に対して出力する。昇圧コンバータ12.nは、平滑用コンデンサC2の端子間電圧を昇圧する。
 平滑用コンデンサCHは、昇圧コンバータ12.1,12.nによって昇圧された電圧を平滑化する。電圧センサ13は、平滑用コンデンサCHの端子間電圧VHを検知して制御装置30に出力する。
 インバータ14は、昇圧コンバータ12.1または12.nから与えられる直流電圧を三相交流電圧に変換してモータジェネレータMG1に出力する。インバータ22は、昇圧コンバータ12.1または12.nから与えられる直流電圧を三相交流電圧に変換してモータジェネレータMG2に出力する。
 動力分割機構3は、エンジン4とモータジェネレータMG1,MG2とに結合されてこれらの間で動力を分配する機構である。たとえば動力分割機構としてはサンギヤ、プラネタリキャリヤ、リングギヤの3つの回転軸を有する遊星歯車機構を用いることができる。遊星歯車機構は、3つの回転軸のうち2つの回転軸の回転が定まれば、他の1つの回転軸の回転は強制的に定まる。この3つの回転軸がエンジン4、モータジェネレータMG1,MG2の各回転軸にそれぞれ接続される。なおモータジェネレータMG2の回転軸は、図示しない減速ギヤや差動ギヤによって車輪2に結合されている。また動力分割機構3の内部にモータジェネレータMG2の回転軸に対する減速機をさらに組み込んでもよい。
 車両100は、さらに、バッテリB.1の正極と給電ラインPL1.1との間に接続されるシステムメインリレーSMR2と、バッテリB.1の負極(接地ラインSL1)とノードN2との間に接続されるシステムメインリレーSMR3と、システムメインリレーSMR3と並列接続される直列に接続されたシステムメインリレーSMR1および制限抵抗R.1とを含む。
 システムメインリレーSMR1~SMR3は、制御装置30から与えられる制御信号に応じて導通/非導通状態が制御される。
 電圧センサ10.1は、バッテリB.1の端子間の電圧VB.1を測定する。図示しないが、電圧センサ10.1とともにバッテリB.1の充電状態を監視するために、バッテリB.1に流れる電流を検知する電流センサが設けられている。バッテリB.1としては、たとえば、鉛蓄電池、ニッケル水素電池、リチウムイオン電池等の二次電池や、電気二重層コンデンサ等の大容量キャパシタなどを用いることができる。
 車両100は、さらに、バッテリB.nの正極と給電ラインPL1.nとの間に接続されるリレーSR2と、バッテリB.nの負極と接地ラインSL2との間に接続されるリレーSR3と、リレーSR3と並列接続される直列に接続されたリレーSR1および制限抵抗R.nとを含む。
 リレーSR1~SR3は、制御装置30から与えられる制御信号に応じて導通/非導通状態が制御される。接地ラインSL2は、後に説明するように昇圧コンバータ12.1,12.nの中を通ってインバータ14および22側に延びている。
 電圧センサ10.nは、バッテリB.nの端子間の電圧VB.nを測定する。図示しないが、電圧センサ10.nとともにバッテリB.nの充電状態を監視するために、各バッテリに流れる電流を検知する電流センサが設けられている。バッテリB.nとしては、たとえば、鉛蓄電池、ニッケル水素電池、リチウムイオン電池等の二次電池や、電気二重層コンデンサ等の大容量キャパシタなどを用いることができる。
 インバータ14は、給電ラインPL2と接地ラインSL2に接続されている。インバータ14は、昇圧コンバータ12.1および12.nから昇圧された電圧を受けて、たとえばエンジン4を始動させるために、モータジェネレータMG1を駆動する。また、インバータ14は、エンジン4から伝達される動力によってモータジェネレータMG1で発電された電力を昇圧コンバータ12.1および12.nに戻す。このとき昇圧コンバータ12.1および12.nは、降圧回路として動作するように制御装置30によって制御される。
 電流センサ24は、モータジェネレータMG1に流れる電流をモータ電流値MCRT1として検出し、モータ電流値MCRT1を制御装置30へ出力する。
 インバータ22は、インバータ14と並列的に、給電ラインPL2と接地ラインSL2に接続されている。インバータ22は車輪2を駆動するモータジェネレータMG2に対して昇圧コンバータ12.1および12.nの出力する直流電圧を三相交流電圧に変換して出力する。またインバータ22は、回生制動に伴い、モータジェネレータMG2において発電された電力を昇圧コンバータ12.1および12.nに戻す。このとき昇圧コンバータ12.1および12.nは、降圧回路として動作するように制御装置30によって制御される。
 電流センサ25は、モータジェネレータMG2に流れる電流をモータ電流値MCRT2として検出し、モータ電流値MCRT2を制御装置30へ出力する。
 制御装置30は、モータジェネレータMG1,MG2の各トルク指令値および回転速度、電圧VB.1~VB.n,VL.1~VL.n,VHの各値、モータ電流値MCRT1,MCRT2および起動信号IGONを受ける。そして制御装置30は、昇圧コンバータ12.nに対して昇圧指示を行なう制御信号PWUB,降圧指示を行なう制御信号PWDBおよび動作禁止を指示するシャットダウン信号を出力する。
 さらに、制御装置30は、インバータ14に対して昇圧コンバータ12.1,12.nの出力である直流電圧を、モータジェネレータMG1を駆動するための交流電圧に変換する駆動指示を行なう制御信号PWMI1と、モータジェネレータMG1で発電された交流電圧を直流電圧に変換して昇圧コンバータ12.1,12.n側に戻す回生指示を行なう制御信号PWMC1とを出力する。
 同様に制御装置30は、インバータ22に対してモータジェネレータMG2を駆動するための交流電圧に直流電圧を変換する駆動指示を行なう制御信号PWMI2と、モータジェネレータMG2で発電された交流電圧を直流電圧に変換して昇圧コンバータ12.1,12.n側に戻す回生指示を行なう制御信号PWMC2とを出力する。
 図2は、図1のインバータ14および22の詳細な構成を示す回路図である。
 図1、図2を参照して、インバータ14は、U相アーム15と、V相アーム16と、W相アーム17とを含む。U相アーム15,V相アーム16,およびW相アーム17は、給電ラインPL2と接地ラインSL2との間に並列に接続される。
 U相アーム15は、給電ラインPL2と接地ラインSL2との間に直列接続されたIGBT素子Q3,Q4と、IGBT素子Q3,Q4とそれぞれ並列に接続されるダイオードD3,D4とを含む。ダイオードD3のカソードはIGBT素子Q3のコレクタと接続され、ダイオードD3のアノードはIGBT素子Q3のエミッタと接続される。ダイオードD4のカソードはIGBT素子Q4のコレクタと接続され、ダイオードD4のアノードはIGBT素子Q4のエミッタと接続される。
 V相アーム16は、給電ラインPL2と接地ラインSL2との間に直列接続されたIGBT素子Q5,Q6と、IGBT素子Q5,Q6とそれぞれ並列に接続されるダイオードD5,D6とを含む。ダイオードD5のカソードはIGBT素子Q5のコレクタと接続され、ダイオードD5のアノードはIGBT素子Q5のエミッタと接続される。ダイオードD6のカソードはIGBT素子Q6のコレクタと接続され、ダイオードD6のアノードはIGBT素子Q6のエミッタと接続される。
 W相アーム17は、給電ラインPL2と接地ラインSL2との間に直列接続されたIGBT素子Q7,Q8と、IGBT素子Q7,Q8とそれぞれ並列に接続されるダイオードD7,D8とを含む。ダイオードD7のカソードはIGBT素子Q7のコレクタと接続され、ダイオードD7のアノードはIGBT素子Q7のエミッタと接続される。ダイオードD8のカソードはIGBT素子Q8のコレクタと接続され、ダイオードD8のアノードはIGBT素子Q8のエミッタと接続される。
 各相アームの中間点は、モータジェネレータMG1の各相コイルの各相端に接続されている。すなわち、モータジェネレータMG1は、三相の永久磁石同期モータであり、U,V,W相の3つのコイルは各々一方端が中点に共に接続されている。そして、U相コイルの他方端がIGBT素子Q3,Q4の接続ノードから引出されたラインULに接続される。またV相コイルの他方端がIGBT素子Q5,Q6の接続ノードから引出されたラインVLに接続される。またW相コイルの他方端がIGBT素子Q7,Q8の接続ノードから引出されたラインWLに接続される。
 なお、図1のインバータ22についても、モータジェネレータMG2に接続される点が異なるが、内部の回路構成についてはインバータ14と同様であるので詳細な説明は繰返さない。また、図2には、インバータに制御信号PWMI,PWMCが与えられることが記載されているが、記載が複雑になるのを避けるためであり、図1に示されるように、別々の制御信号PWMI1,PWMC1と制御信号PWMI2,PWMC2がそれぞれインバータ14,22に入力される。
 図3は、図1の昇圧コンバータ12.1および12.nの詳細な構成を示す回路図である。
 図1、図3を参照して、昇圧コンバータ12.1は、一方端が給電ラインPL1.1に接続されるリアクトルL1と、給電ラインPL2と接地ラインSL2との間に直列に接続されるIGBT素子Q1,Q2と、IGBT素子Q1,Q2にそれぞれ並列に接続されるダイオードD1,D2とを含む。
 リアクトルL1の他方端はIGBT素子Q1のエミッタおよびIGBT素子Q2のコレクタに接続される。ダイオードD1のカソードはIGBT素子Q1のコレクタと接続され、ダイオードD1のアノードはIGBT素子Q1のエミッタと接続される。ダイオードD2のカソードはIGBT素子Q2のコレクタと接続され、ダイオードD2のアノードはIGBT素子Q2のエミッタと接続される。
 なお、図1の昇圧コンバータ12.nについても、給電ラインPL1.1に代えて給電ラインPL1.nに接続される点が昇圧コンバータ12.1と異なるが、内部の回路構成については昇圧コンバータ12.1と同様であるので詳細な説明は繰返さない。また、図3には、昇圧コンバータに制御信号PWU,PWDが与えられることが記載されているが、記載が複雑になるのを避けるためであり、図1に示されるように、別々の制御信号PWUA,PWDAと制御信号PWUB,PWDBがそれぞれ昇圧コンバータ12.1,12.nに入力される。
 図4は、路面設備と車両との間でエネルギが非接触給電される様子を説明するための図である。
 図4を参照して、路面に設置された送電ユニット42は、図示しないが、高周波電力ドライバと、一次コイルと、一次自己共振コイルとを含む。
 送電用電源40は、車両外部の電源であり、たとえば系統電源である。高周波電力ドライバは、送電用電源40から受ける電力を、磁場を共鳴させて一次自己共振コイルから車両側の二次自己共振コイルへ送電可能な高周波の電力に変換し、その変換した高周波電力を一次コイルへ供給する。
 一次コイルは、電磁誘導によって一次自己共振コイルへ送電可能に構成され、好ましくは一次自己共振コイルと同軸上に配設される。そして、一次コイルは、高周波電力ドライバから受電した電力を一次自己共振コイルへ出力する。
 一次自己共振コイルは、地面近傍に配設される。この一次自己共振コイルは、両端がオープンのLC共振コイルである。
 車両100は、車体の床裏面に設置された受電ユニット28で電力を受ける。受電ユニット28は、二次自己共振コイルを含む。
 一次自己共振コイルは、二次自己共振コイルと磁場の共鳴により磁気的に結合され、二次自己共振コイルへ電力を送電可能に構成される。
 なお、路面に設置された送電ユニット42は、たとえばマイクロ波等の電波を放射する送電アンテナであってもよい。また、受電ユニット28は、たとえば、マイクロ波受電アンテナであってもよい。
 車両が走行中にも給電が継続して可能であるように、送電ユニット42は、路面の進行方向に沿って複数個設けられる。なお、所定の停車位置のみで受電ができればよいのであれば送電ユニット42は単数でも良い。
 図5は、共鳴法による送電の原理を説明するための図である。
 図5を参照して、この共鳴法は、2つの音叉が共鳴するのと同様に、同じ固有振動数を有する2つのLC共振コイルが磁場を介して共鳴することによって、一方のコイルから他方のコイルへワイヤレスで電力が伝送される。
 高周波電源310によって一次コイル320に高周波電力が流されると、一次コイル320に磁界が発生し、電磁誘導により一次自己共振コイル330に高周波電力が発生する。一次自己共振コイル330は、コイル自身のインダクタンスと導線間の浮遊容量とによるLC共振器として機能し、同様にLC共振器として機能し、かつ、一次自己共振コイル330と同じ共振周波数を有する二次自己共振コイル340と磁場共鳴により磁気的に結合することによって、二次自己共振コイル340へ電力を伝送する。
 そして、一次自己共振コイル330からの受電により二次自己共振コイル340に発生する磁界によって二次コイル350に電磁誘導による高周波電力が発生し、負荷360に電力が供給される。
 なお、図1との対応関係について説明すると、図1の送電用電源40は、図5の高周波電源310に相当する。また、図1の送電ユニット42は、図5の一次コイル320および一次自己共振コイル330に相当する。図1の受電ユニット28は、図5の二次自己共振コイル340および二次コイル350に相当する。そして、図1の給電用整流回路26は、図2の負荷360に相当する。
 図6は、給電の説明をするために図1に示した構成を概略的に示した図である。
 図6に示すように、走行中に外部から電力を供給可能なシステムにおいて、路面設備の送電可能電力Wout_s、受電側の受電可能電力Wout_r、複数のバッテリの出力可能電力Wout1~Woutnに基づいて、車両電源として出力可能な最大電力Woutを算出する。
 路面設備の送電可能電力Wout_sは、走行する場所によって異なることが考えられるので、無線などでその情報を路面設備側から受信する。受電側の受電可能電力Wout_rは、車両ごとに搭載される装置の能力で定まる。
 送電可能電力Wout_s、受電可能電力Wout_rのうち小さいほうが給電用整流回路から給電可能な電力Wout_exである。
 バッテリの出力可能電力Wout1~Woutnは、それぞれバッテリの温度、充電状態SOC、経年劣化などをパラメータとしてたとえばマップ等から取得できる。
 また、昇圧電圧VHは、モータの制御性を維持し、かつ電流の逆流を防ぐために、複数のバッテリの電圧、モータジェネレータMG1、MG2から算出されるモータ電圧(逆起電力)、受電ユニットの要求電圧のいずれよりも高い電圧を目標電圧として設定する。
 たとえば、昇圧コンバータ12.1がこの目標電圧を維持するように制御され、残りの昇圧コンバータ12.2~12.nは、割り当てられた電力Wout2~Woutnをそれぞれ出力するように電流制御される。
 図7は、図1の制御装置30が実行する車両制御の概要を示すフローチャートである。このフローチャートの処理は所定のメインルーチンから一定時間ごとまたは所定の条件が成立するごとに呼び出されて実行される。
 図1、図7を参照して、まずステップS1において、ドライバのトルク要求が検出される。たとえば、アクセルペダルの踏み込み量をアクセル開度センサで検出し、これに基づいてマップ等でドライバの要求トルクを求めればよい。
 続いて、ステップS2において車速の検出が行なわれる。車速の検出は、たとえばプロペラシャフトの回転速度や、車輪の回転速度をセンサで検出し求めることができる。
 ステップS3では、ステップS1で求めた要求トルクとステップS2で検出した車速とに基づいてモータトルクが決定される。
 そして、ステップS4においてシステム電圧である電圧VHの制御目標値が決定される。ステップS5では各バッテリからの給電と外部からの給電をどのように配分するかが決定される。
 最後に、ステップS6において、システム電圧および電力配分を実現するように昇圧コンバータ12.1~12.nとインバータ14,22の制御が実行され、ステップS7で制御はメインルーチンに移される。
 図8は、図7のステップS4で実行されるシステム電圧の決定処理を示した図である。
 図8を参照して、まず処理が開始されるとステップS11において、次式(1)に基づいて、昇圧電圧指令値Vcrが決定される。
Vcr=MAX(Vm1,Vm2,Vb1,Vb2,Vex) … (1)
 ここで、Vm1は、モータジェネレータMG1を動作させるために要求される電圧を示し、Vm2は、モータジェネレータMG2を動作させるために要求される電圧を示す。また、Vb1,Vb2は、それぞれバッテリの電圧を示す。なお、バッテリ数が2個の場合が例示されているが、バッテリ数がn個であれば、Vb1~Vbnが列挙される。Vexは、外部給電ユニットで電力を授受する際に必要とされる電圧を示す。またMAX()は、最大値を選択することを示す。
 続いて、ステップS12では、ステップS11で求めた昇圧電圧指令値Vcrが最低昇圧電圧Vthよりも小さいか否かが判断される。最低昇圧電圧Vthは、昇圧コンバータの性能により定まる値であり、昇圧コンバータが昇圧動作を制御可能に維持できる下限の電圧である。
 ステップS12において、Vcr<Vthが成立していればステップS13に処理が進み、昇圧電圧指令値Vcrが最低昇圧電圧Vthに設定され、ステップS14に処理が進む。ステップS12においてVcr<Vthが成立しなければ、ステップS13は実行されずステップS14に処理が進み、ステップS11で算出された昇圧電圧指令値Vcrそのままの値が用いられる。
 図9は、図7のステップS5の電力配分処理の詳細を示した図である。
 図9を参照して、まず処理が開始されると、ステップS20においてバッテリ出力可能電力Wout_bが次式(2)に基づいて算出される。
Wout_b=Wout1+…+Woutn  …(2)
 ここで、Wout1、Woutnは、それぞれ、バッテリB.1,B.nの出力可能な電力を示す。バッテリ温度、充電状態SOC、バッテリの劣化度合いなどに基づいて、Wout1,Woutnがそれぞれマップなどから得られる。
 続いて、ステップS22において、給電ユニット電力Wout_exの算出が次式(3)に基づいて行なわれる。
Wout_ex=MIN(Wout_s,Wout_r)  …(3)
 路面設備の送電可能電力Wout_sは、走行する場所によって異なることが考えられるので、無線などでその情報を路面設備側から受信する。受電側の受電可能電力Wout_rは、車両ごとに搭載される装置の能力で定まるので定数である。
 MIN()は、送電可能電力Wout_s、受電可能電力Wout_rのうち小さいほうを給電用整流回路から給電可能な電力Wout_exとすることを示す。
 とくに、自動車の場合は電車等とは異なり、いろいろな場所を走行することが考えられるので、給電可能な電力Wout_exを可変にしておくことで、走行する場所ごとに給電可能な最も大きな電力を車両に受けることができる。
 続いて、ステップS23において、システム出力可能電力Woutの算出が次式(4)に基づいて行なわれる。
Wout=Wout_b+Wout_ex  …(4)
 そして、ステップS24において、要求電力Wrefとシステム出力可能電力Woutの比較が行われる。要求電力Wrefは、図7のステップS1~S3で得られた情報に基づいて決定される電力であり、ドライバの要求を実現するために、車両の電源装置に要求される電力である。
 ステップS24においてWref>Woutが成立する場合には、要求電力が出力可能電力を超えているので、ステップS25に処理が進み出力電力Wは制限される。
 すなわち、W=Woutに設定され、各バッテリから出力される出力電力W1~Wnはそれぞれ出力可能電力Wout1~Woutnに設定される。そして、外部から給電される電力Wexは給電可能電力Wout_exに設定される。
 ステップS24においてWref>Woutが成立しない場合には、ステップS26に処理が進み要求電力Wrefどおりの電力を出力電力Wとする。
 そして、外部から給電可能な電力Wout_exをすべて受電して使用する。すなわちWex=Wout_exに設定する。そして不足分があれば均等に各バッテリから出力し、余った分があれば各バッテリに均等に充電を行なう。なお、バッテリ容量やSOCが異なる場合には配分の重みを変更しても良い。
 ステップS25、S26のいずれかで電力配分が決定されるとステップS27に処理が進み、図7のステップS6の昇圧コンバータおよびインバータ制御が決定された電力配分に基づいて実行される。
 なお、以上の実施の形態では、モータジェネレータを力行運転させる場合について説明したが、回生運転させた場合においてバッテリや外部に戻す場合にも同様に配分を行なえばよい。この場合には充電可能電圧をWinとすると、上記の式において「Wout」に代えて「Win」と読み替えて適用すればよい。
 以上説明したように、実施の形態1においては、複数のバッテリを搭載しかつ外部から給電を受けながら走行する車両において、電力マネジメントが適切に行われる。
 [実施の形態2]
 図10は、実施の形態2の車両の概略構成を示した図である。
 図10に示す車両は、図6に示した車両の構成において、昇圧コンバータ12とインバータ14との間の電力線対に接続されていた給電用整流回路26が無くなり、受電ユニット28がモータジェネレータMG1,MG2のステータコイルの中性点に接続される点が異なる。バッテリや昇圧コンバータについては図6と同様であるので特に説明は繰返さない。
 図10に示した構成では、路面設備側の送電用電源40から送電ユニット42を経由して非接触で受電ユニットに給電された電力は、モータジェネレータMG1のステータコイルの中性点とモータジェネレータMG2のステータコイルの中性点との間に加えられる。
 図11は、実施の形態2において図7のステップS4のシステム電圧の決定処理を説明するためのフローチャートである。
 図11を参照して、まず処理が開始されるとステップS51において、次式(5)に基づいて、昇圧電圧指令値Vcrが決定される。
Vcr=MAX(Vm1,Vm2,Vb1,Vb2)+Vex … (5)
 ここで、Vm1は、モータジェネレータMG1を動作させるために要求される電圧を示し、Vm2は、モータジェネレータMG2を動作させるために要求される電圧を示す。また、Vb1,Vb2は、それぞれバッテリの電圧を示す。なお、バッテリ数が2個の場合が例示されているが、バッテリ数がn個であれば、Vb1~Vbnが列挙される。Vexは、外部給電ユニットで電力を授受する際に必要とされる電圧を示す。またMAX()は、最大値を選択することを示す。
 続いて、ステップS52では、ステップS51で求めた昇圧電圧指令値Vcrが最低昇圧電圧Vthよりも小さいか否かが判断される。最低昇圧電圧Vthは、昇圧コンバータの性能により定まる値であり、昇圧コンバータが昇圧動作を制御可能に維持できる下限の電圧である。
 ステップS52において、Vcr<Vthが成立していればステップS53に処理が進み、昇圧電圧指令値Vcrが最低昇圧電圧Vthに設定され、ステップS54に処理が進む。ステップS52においてVcr<Vthが成立しなければ、ステップS53は実行されずステップS54に処理が進み、ステップS51で算出された昇圧電圧指令値Vcrそのままの値が用いられる。
 図12は、図11のステップS51における昇圧電圧指令値の決定について説明するための第1の波形図である。
 図13は、図11のステップS51における昇圧電圧指令値の決定について説明するための第2の波形図である。
 図12では、外部から給電を受けていない場合が示されており、モータジェネレータMG1のステータコイルの中性点の電圧とモータジェネレータMG1のステータコイルの中性点の電圧は同じになっている。このような場合では、モータジェネレータMG1の電圧Vm1とモータジェネレータMG2の電圧Vm2のうち振幅が大きい方をカバーできるように昇圧電圧指令値Vcrが決定される。
 図13では、モータジェネレータMG1の中性点電圧とモータジェネレータMG2の中性点電圧との間に外部からの給電電圧Vexが与えられた場合が示されている。このような場合では、モータジェネレータMG1の電圧Vm1とモータジェネレータMG2の電圧Vm2のうち振幅が大きい方の電圧に給電電圧Vexを加算した電圧に昇圧電圧指令値Vcrを定めるとモータ制御が良好に実行できる。
 最後に、再び図1等を参照して本願の実施の形態について総括する。車両100は、蓄電装置であるバッテリB.1と、車両外部の送電ユニット42から電力を受ける受電ユニット28と、蓄電装置から供給される電力と受電ユニット28から供給される電力とによって駆動される第1の回転電機(モータジェネレータMG2)と、第1の回転電機の駆動制御を行なう制御装置30とを備える。図6,図9に示すように、制御装置30は、蓄電装置の状態に基づいて蓄電装置から出力可能な第1の電力Wout_bを算出し、送電ユニットの送電可能電力Wout_sと受電ユニットの受電可能電力Wout_rに基づいて外部から充電することが可能な第2の電力Wout_exを算出し、第1、第2の電力の合計を電源出力可能電力Woutとして求め、電源出力可能電力Woutに基づいて第1の回転電機の駆動制御を行なう。
 好ましくは、車両100は、蓄電装置から出力される第1電圧を変換する電圧変換部(昇圧コンバータ12.1)と、電圧変換部によって変換された電圧を受けて第1の回転電機を駆動する回転電機駆動ユニット(インバータ14,22)とをさらに備える。受電ユニット28は、電圧変換部と回転電機駆動ユニットとの間を接続する電力授受経路(PL2,SL2)に接続される。制御装置30は、図8に示したように、蓄電装置から出力される第1電圧(Vb1,Vb2)、回転電機駆動ユニットが要求する第2電圧(Vm1,Vm2)、受電ユニット28が要求する第3電圧(Vex)のうち最大となる電圧に基づいて電圧変換部に対する電圧変換制御を行なう。
 より好ましくは、車両100は、内燃機関(エンジン4)と、内燃機関から動力を受けて、第1の回転電機(モータジェネレータMG2)で用いる電力を発電する第2の回転電機(モータジェネレータMG1)とをさらに備える。回転電機駆動ユニット(インバータ14,22)は、第1の回転電機に加えて第2の回転電機を駆動し、第1、第2の回転電機の動作に基づいて定まる第2電圧(Vm1,Vm2)を要求する。
 好ましくは、車両100は、内燃機関(エンジン4)と、内燃機関から動力を受けて、第1の回転電機(モータジェネレータMG2)で用いる電力を発電する第2の回転電機(モータジェネレータMG1)と、蓄電装置から出力される第1電圧を変換する電圧変換部(昇圧コンバータ12.1)と、電圧変換部によって変換された電圧を受けて第1、第2の回転電機を駆動する回転電機駆動ユニット(インバータ14,22)とをさらに備える。回転電機駆動ユニットは、第1、第2の回転電機の動作に基づいて定まる第2電圧(Vm1,Vm2)を要求する。図10に示すように、受電ユニットは、第2の回転電機のステータコイルの中性点N1と、第1の回転電機のステータコイルの中性点N2とに接続される。制御装置30は、図11に示すように、蓄電装置から出力される第1電圧(Vb1,Vb2)、回転電機駆動ユニットが要求する第2電圧(Vm1,Vm2)のうち最大となる電圧と、受電ユニットが要求する第3電圧(Vex)とに基づいて電圧変換部に対する電圧変換制御を行なう。
 なお、本実施の形態では、共鳴法を送電方法として使用する例を示したが、ワイヤレスで電力を送電可能な方法であれば、これに限定されるものではなく、電磁誘導によるものや、マイクロ波等の電波を使用する方法であっても良い。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 2 車輪、3 動力分割機構、4 エンジン、10.1~10.n,13,21.1~21.n 電圧センサ、12.1~12.n 昇圧コンバータ、14,22 インバータ、15 U相アーム、16 V相アーム、17 W相アーム、24,25 電流センサ、26 給電用整流回路、28 受電ユニット、30 制御装置、40 送電用電源、42 送電ユニット、100 車両、102 路面設備、B.1~B.n バッテリ、C1,C2,CH 平滑用コンデンサ、D1~D8 ダイオード、L1 リアクトル、MG1,MG2 モータジェネレータ、PL2 給電ライン、Q1~Q8 IGBT素子、R 制限抵抗、SL1,SL2 接地ライン、SMR1~SMR3 システムメインリレー、SR1~SR3 リレー。

Claims (8)

  1.  蓄電装置(B.1)と、
     車両外部の送電ユニット(42)から電力を受ける受電ユニット(28)と、
     前記蓄電装置(B.1)から供給される電力と前記受電ユニット(28)から供給される電力とによって駆動される第1の回転電機(MG2)と、
     前記第1の回転電機(MG2)の駆動制御を行なう制御装置(30)とを備え、
     前記制御装置(30)は、前記蓄電装置(B.1)の状態に基づいて前記蓄電装置(B.1)から出力可能な第1の電力を算出し、前記送電ユニット(42)の送電可能電力と前記受電ユニット(28)の充電可能電力に基づいて外部から充電することが可能な第2の電力を算出し、前記第1、第2の電力の合計を電源出力可能電力として求め、前記電源出力可能電力に基づいて前記第1の回転電機(MG2)の駆動制御を行なう、車両。
  2.  前記蓄電装置から出力される第1電圧を変換する電圧変換部(12.1)と、
     前記電圧変換部によって変換された電圧を受けて前記第1の回転電機を駆動する回転電機駆動ユニット(14,22)とをさらに備え、
     前記受電ユニット(28)は、前記電圧変換部と前記回転電機駆動ユニットとの間を接続する電力授受経路(PL2,SL2)に接続され、
     前記制御装置(30)は、前記蓄電装置から出力される前記第1電圧、前記回転電機駆動ユニットが要求する第2電圧、前記受電ユニットが要求する第3電圧のうち最大となる電圧に基づいて前記電圧変換部に対する電圧変換制御を行なう、請求の範囲第1項に記載の車両。
  3.  内燃機関(4)と、
     前記内燃機関から動力を受けて、前記第1の回転電機(MG2)で用いる電力を発電する第2の回転電機(MG1)とをさらに備え、
     前記回転電機駆動ユニット(14,22)は、前記第1の回転電機に加えて前記第2の回転電機を駆動し、前記第1、第2の回転電機の動作に基づいて定まる前記第2電圧を要求する、請求の範囲第2項に記載の車両。
  4.  内燃機関(4)と、
     前記内燃機関から動力を受けて、前記第1の回転電機(MG2)で用いる電力を発電する第2の回転電機(MG1)と、
     前記蓄電装置から出力される第1電圧を変換する電圧変換部(12.1)と、
     前記電圧変換部によって変換された電圧を受けて前記第1、第2の回転電機を駆動する回転電機駆動ユニット(14,22)とをさらに備え、
     前記回転電機駆動ユニットは、前記第1、第2の回転電機の動作に基づいて定まる第2電圧を要求し、
     前記受電ユニットは、前記第2の回転電機のステータコイルの中性点(N1)と、前記第1の回転電機のステータコイルの中性点(N2)とに接続され、
     前記制御装置(30)は、前記蓄電装置から出力される前記第1電圧、前記回転電機駆動ユニットが要求する前記第2電圧のうち最大となる電圧と、前記受電ユニットが要求する第3電圧とに基づいて前記電圧変換部に対する電圧変換制御を行なう、請求の範囲第1項に記載の車両。
  5.  蓄電装置(B.1)と、車両外部の送電ユニット(42)から電力を受ける受電ユニット(28)と、前記蓄電装置から供給される電力と前記受電ユニットから供給される電力とによって駆動される第1の回転電機(MG2)とを含む車両の制御方法であって、
     前記蓄電装置の状態に基づいて前記蓄電装置から出力可能な第1の電力を算出するステップ(S20)と、
     前記送電ユニットの送電可能電力と前記受電ユニットの充電可能電力に基づいて外部から充電することが可能な第2の電力を算出するステップ(S22)と、
     前記第1、第2の電力の合計を電源出力可能電力として求めるステップ(S23)と、
     前記電源出力可能電力に基づいて前記第1の回転電機の駆動制御を行なうステップ(S24~S26)とを備える、車両の制御方法。
  6.  前記車両は、前記蓄電装置から出力される第1電圧を変換する電圧変換部(12.1)と、前記電圧変換部によって変換された電圧を受けて前記第1の回転電機を駆動する回転電機駆動ユニット(14,22)とをさらに含み、
     前記受電ユニットは、前記電圧変換部と前記回転電機駆動ユニットとの間を接続する電力授受経路(PL2,SL2)に接続され、
     前記制御方法は、
     前記蓄電装置から出力される前記第1電圧、前記回転電機駆動ユニットが要求する第2電圧、前記受電ユニットが要求する第3電圧のうち最大となる電圧に基づいて前記電圧変換部に対する電圧変換制御を行なうステップ(S11)をさらに備える、請求の範囲第5項に記載の車両の制御方法。
  7.  前記車両は、内燃機関(4)と、前記内燃機関から動力を受けて、前記第1の回転電機(MG2)で用いる電力を発電する第2の回転電機(MG1)とをさらに含み、
     前記回転電機駆動ユニットは、前記第1の回転電機に加えて前記第2の回転電機を駆動し、前記第1、第2の回転電機の動作に基づいて定まる前記第2電圧を要求する、請求の範囲第6項に記載の車両の制御方法。
  8.  前記車両は、内燃機関(4)と、前記内燃機関から動力を受けて、前記第1の回転電機(MG2)で用いる電力を発電する第2の回転電機(MG1)と、前記蓄電装置から出力される第1電圧を変換する電圧変換部(12.1)と、前記電圧変換部によって変換された電圧を受けて前記第1、第2の回転電機を駆動する回転電機駆動ユニット(14,22)とをさらに含み、
     前記回転電機駆動ユニットは、前記第1、第2の回転電機の動作に基づいて定まる第2電圧を要求し、
     前記受電ユニットは、前記第2の回転電機のステータコイルの中性点(N1)と、前記第1の回転電機のステータコイルの中性点(N2)とに接続され、
     前記制御方法は、
     前記蓄電装置から出力される前記第1電圧、前記回転電機駆動ユニットが要求する前記第2電圧のうち最大となる電圧と、前記受電ユニットが要求する第3電圧とに基づいて前記電圧変換部に対する電圧変換制御を行なうステップ(S51)をさらに備える、請求の範囲第5項に記載の車両の制御方法。
PCT/JP2009/060125 2008-06-09 2009-06-03 車両および車両の制御方法 WO2009150969A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/996,462 US8473132B2 (en) 2008-06-09 2009-06-03 Vehicle and method for controlling the same
EP09762399.5A EP2295279B1 (en) 2008-06-09 2009-06-03 Vehicle, and vehicle controlling method
CN2009801216528A CN102056762B (zh) 2008-06-09 2009-06-03 车辆以及车辆的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-150661 2008-06-09
JP2008150661A JP4488090B2 (ja) 2008-06-09 2008-06-09 車両および車両の制御方法

Publications (1)

Publication Number Publication Date
WO2009150969A1 true WO2009150969A1 (ja) 2009-12-17

Family

ID=41416678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060125 WO2009150969A1 (ja) 2008-06-09 2009-06-03 車両および車両の制御方法

Country Status (5)

Country Link
US (1) US8473132B2 (ja)
EP (1) EP2295279B1 (ja)
JP (1) JP4488090B2 (ja)
CN (1) CN102056762B (ja)
WO (1) WO2009150969A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011128750A3 (en) * 2010-04-14 2012-01-05 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle equipped with power supply system
JP2013516949A (ja) * 2010-01-05 2013-05-13 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 電気車両用の誘導充電システム

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142724A (ja) * 2010-01-06 2011-07-21 Hitachi Ltd 非接触電力伝送装置及びそのための近接場アンテナ
US8725330B2 (en) 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
US8626368B2 (en) * 2010-09-07 2014-01-07 Caterpillar Inc. Electric drive power response management system and method
JP5732870B2 (ja) * 2011-01-25 2015-06-10 株式会社明電舎 非接触給電装置および非接触給電方法
US20130033229A1 (en) * 2011-08-06 2013-02-07 Delphi Technologies, Inc. Method and system to electrically charge and discharge a battery using an electrical charging system that electrically communicates with a regenerative braking electrical circuit
TWI425738B (zh) * 2011-08-12 2014-02-01 富達通科技股份有限公司 Vehicle induction charging method
US20130047616A1 (en) * 2011-08-23 2013-02-28 GM Global Technology Operations LLC Electrical power cogeneration system
JP5781882B2 (ja) * 2011-09-29 2015-09-24 トヨタ自動車株式会社 送電装置、車両および電力伝送システム
JP2013081321A (ja) * 2011-10-05 2013-05-02 Toyota Motor Corp モータジェネレータで走行する自動車
EP2908426B1 (en) * 2012-10-11 2021-11-17 Honda Motor Co., Ltd. Power generation control device
CN103213615B (zh) * 2013-03-19 2015-07-01 山东理工大学 一种可以纵横行驶的转向装置
CN105452036B (zh) * 2013-08-06 2019-09-10 沃尔沃卡车集团 混合动力车辆
US10046646B2 (en) * 2013-09-06 2018-08-14 Samsung Sdi Co., Ltd. Power conversion system for electric vehicles
US10202042B2 (en) * 2013-10-04 2019-02-12 Samsung Sdi Co., Ltd. Electric vehicle power conversion system
KR102314037B1 (ko) * 2014-06-09 2021-10-15 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 공기조화기
US9667189B2 (en) * 2015-08-27 2017-05-30 Abb Schweiz Ag Control of electrically excited synchronous machine drives for ride through and controlled braking operations
JP6709113B2 (ja) * 2016-06-21 2020-06-10 株式会社Subaru 車両用制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421102U (ja) 1990-06-15 1992-02-21
JP2001197736A (ja) 2000-01-07 2001-07-19 Shinko Electric Co Ltd 非接触給電装置
JP2006174676A (ja) 2004-12-20 2006-06-29 Nissan Motor Co Ltd 車両用マイクロ波送電システム及び車両用マイクロ波受電装置
JP2007128778A (ja) * 2005-11-04 2007-05-24 Toyota Motor Corp 燃料電池システム、その制御方法及びそれを搭載した車両

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331225A (en) * 1978-04-25 1982-05-25 Bolger John G Power control system for electrically driven vehicle
WO1994025304A1 (en) * 1993-05-03 1994-11-10 Cadac Holdings Limited Power collector for inductive power transfer
US6166926A (en) 2000-01-11 2000-12-26 Thomson Licensing S.A. Zero voltage switching power supply with burst mode
JP4040241B2 (ja) * 2000-08-03 2008-01-30 トヨタ自動車株式会社 車両の制御装置
JP2002152996A (ja) 2000-11-10 2002-05-24 Toyota Motor Corp 電力受給システム
US7336002B2 (en) * 2003-02-17 2008-02-26 Denso Corporation Vehicle power supply system
US6889126B2 (en) * 2003-04-22 2005-05-03 Nissan Motor Co., Ltd. Drive force control for hybrid electric vehicle
JP4063192B2 (ja) * 2003-10-23 2008-03-19 日産自動車株式会社 モータ駆動4wd車両の制御装置
JP2006141077A (ja) * 2004-11-10 2006-06-01 Hitachi Ltd 車両用駆動装置
EP1819033A4 (en) * 2004-11-30 2014-09-10 Toyota Motor Co Ltd AC POWER SUPPLY SYSTEM, POWER SUPPLY AND VEHICLE THEREFOR
JP4548374B2 (ja) * 2005-03-31 2010-09-22 マツダ株式会社 ハイブリッド電気自動車のパワートレイン及びパワートレインの制御方法
JP4281725B2 (ja) * 2005-09-01 2009-06-17 トヨタ自動車株式会社 ハイブリッド自動車
US7440827B2 (en) * 2006-03-30 2008-10-21 Mazda Motor Corporation Method of controlling series hybrid electric vehicle powertrain
JP4680124B2 (ja) * 2006-04-28 2011-05-11 本田技研工業株式会社 ハイブリッド車両の駆動制御装置
JP4337848B2 (ja) * 2006-07-10 2009-09-30 トヨタ自動車株式会社 電源システムおよびそれを備える車両、ならびに温度管理方法
JP4487989B2 (ja) * 2006-08-04 2010-06-23 トヨタ自動車株式会社 電力システムおよびその電力システムにおいて充電状態を管理する方法
JP4984754B2 (ja) * 2006-09-04 2012-07-25 トヨタ自動車株式会社 電源システムおよびそれを備えた車両
JP4656042B2 (ja) * 2006-10-24 2011-03-23 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、電源システムの制御方法、ならびに電源システムの制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP4743082B2 (ja) * 2006-11-01 2011-08-10 トヨタ自動車株式会社 電源システムおよびそれを備えた車両
US7497285B1 (en) * 2007-11-15 2009-03-03 Vladimir Radev Hybrid electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421102U (ja) 1990-06-15 1992-02-21
JP2001197736A (ja) 2000-01-07 2001-07-19 Shinko Electric Co Ltd 非接触給電装置
JP2006174676A (ja) 2004-12-20 2006-06-29 Nissan Motor Co Ltd 車両用マイクロ波送電システム及び車両用マイクロ波受電装置
JP2007128778A (ja) * 2005-11-04 2007-05-24 Toyota Motor Corp 燃料電池システム、その制御方法及びそれを搭載した車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANDRE KURS ET AL.: "Wireless Power Transfer via Strongly Coupled Magnetic Resonances", SCIENCE, vol. 317, 6 July 2007 (2007-07-06), pages 83 - 86, XP002695551, DOI: doi:10.1126/science.1143254

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516949A (ja) * 2010-01-05 2013-05-13 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 電気車両用の誘導充電システム
US8937454B2 (en) 2010-01-05 2015-01-20 Access Business Group International Llc Inductive charging system for electric vehicle
US9701212B2 (en) 2010-01-05 2017-07-11 Access Business Group International Llc Inductive charging system for electric vehicle
WO2011128750A3 (en) * 2010-04-14 2012-01-05 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle equipped with power supply system

Also Published As

Publication number Publication date
CN102056762A (zh) 2011-05-11
US8473132B2 (en) 2013-06-25
EP2295279B1 (en) 2020-04-15
JP4488090B2 (ja) 2010-06-23
EP2295279A4 (en) 2017-10-04
CN102056762B (zh) 2013-04-03
EP2295279A1 (en) 2011-03-16
US20110077812A1 (en) 2011-03-31
JP2009296848A (ja) 2009-12-17

Similar Documents

Publication Publication Date Title
JP4488090B2 (ja) 車両および車両の制御方法
US9421868B2 (en) Electrical powered vehicle and power feeding device for vehicle
US8380380B2 (en) Electric power reception apparatus and electrical powered vehicle
EP2343211B1 (en) Electric power source system for electrically driven vehicle and its control method
Fujimoto et al. Development of Wireless In-wheel Motors for Dynamic Charging: From 2nd to 3rd generation
JP5229389B2 (ja) 電動車両の電源システムおよびその制御方法
JP5035427B2 (ja) 車両の充電システム
JP4572979B2 (ja) 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
KR101561761B1 (ko) 차량
US20110259694A1 (en) Electrically powered vehicle
EP2353920A1 (en) Electrically driven vehicle and electrically driven vehicle control method
WO2010131349A1 (ja) 車両用充電装置
WO2010143280A1 (ja) 電動車両および電動車両の制御方法
CN102197567A (zh) 非接触供电设备以及非接触供电系统
JPWO2010035321A1 (ja) 給電システムおよび電動車両
WO2011148254A2 (en) Power feeding system and vehicle
JP5229120B2 (ja) 電動車両の電源システムおよび電動車両
JP2010115050A (ja) 車両の電源システム
JP2011172400A (ja) 電動車両の電源システムおよび電動車両
JP2014165947A (ja) 駆動装置
KR20120124816A (ko) 전기 자동차의 배터리 충전 장치 및 이를 포함한 전기 자동차

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121652.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762399

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12996462

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009762399

Country of ref document: EP