WO2009147864A1 - 1細胞レベルでの抗体遺伝子の解析・同定方法 - Google Patents

1細胞レベルでの抗体遺伝子の解析・同定方法 Download PDF

Info

Publication number
WO2009147864A1
WO2009147864A1 PCT/JP2009/002539 JP2009002539W WO2009147864A1 WO 2009147864 A1 WO2009147864 A1 WO 2009147864A1 JP 2009002539 W JP2009002539 W JP 2009002539W WO 2009147864 A1 WO2009147864 A1 WO 2009147864A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
cell
human
cells
gene
Prior art date
Application number
PCT/JP2009/002539
Other languages
English (en)
French (fr)
Inventor
秋山靖人
Original Assignee
静岡県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 静岡県 filed Critical 静岡県
Priority to EP09758131.8A priority Critical patent/EP2316936B1/en
Priority to JP2010515785A priority patent/JPWO2009147864A1/ja
Priority to US12/995,404 priority patent/US20110091896A1/en
Publication of WO2009147864A1 publication Critical patent/WO2009147864A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • G01N33/56972White blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins

Definitions

  • the present invention relates to a method for analyzing and identifying antibody genes at the level of one human B cell, a method for producing an antibody derived from one B cell, a method for preparing an antibody gene derived from one B cell, etc. About.
  • An antibody is a protein called immunoglobulin capable of specifically identifying similar substances such as proteins, and is involved in antigen-specific humoral immunity in vivo.
  • the antibody encodes a part of the antibody (variable region), and rearrangement occurs at the DNA level, resulting in a group of B lymphocytes having various antibody gene sequences. Yes. This mechanism of gene diversification through DNA rearrangement can also be seen in the sexual process where organisms try to survive adapting to environmental changes while diversifying their offspring genes. Further, it is known that one type of immunoglobulin encoded by one type of antibody gene is always produced from each B lymphocyte cell.
  • an antibody gene and the like human peripheral blood lymphocytes are isolated, CD11c-specific antibodies and magnetic beads are used to remove CD11c-positive cells, in vitro immunization, and antigen-specific human antibody production response
  • the peripheral blood lymphocyte cells in which the antigen-specific antibody production response was induced were immortalized with Epstein-Barr virus, antigen-specific B cells were isolated, and RNA was extracted from these antigen-specific antibody-producing B cells
  • a method for obtaining an antigen-specific antibody gene wherein cDNA is synthesized from the extracted RNA, and the antibody variable region gene is amplified by PCR using the synthesized cDNA as a template and primers specific to each of VH and VL (For example, refer to Patent Document 1) and a labeled antigen formed by labeling an antigen recognized by a target antibody is used as a tag for producing the antibody.
  • the present inventors conducted a clinical trial of a dendritic cell vaccine treated with an HLA-A2 or A24 peptide cocktail in a case of metastatic melanoma, and an immune response against the cancer-specific antigen peptide was confirmed.
  • An analysis / identification of a melanoma peptide-specific antibody gene at a single cell level using B cells derived from a cancer patient has already been proposed (Japanese Patent Application No. 2007-147525).
  • Japanese Patent Application No. 2007-147525 Japanese Patent Application No. 2007-147525
  • it is essential to increase antibody-producing B cells against a specific antigen such as a cancer-specific peptide to a certain ratio or more by vaccine administration, and a specific cancer patient for whom vaccine therapy is established.
  • a specific antigen such as a cancer-specific peptide
  • An object of the present invention is to provide a technique for comprehensive analysis of antibody genes not only for specimens after vaccine administration but also for B cells derived from all cancer-bearing patients.
  • the object of the present invention is to provide a method for identifying and analyzing an antibody gene in one human B cell, a technique for producing an antibody derived from one identified B cell, and the like.
  • the present inventors analyzed and identified a melanoma peptide-specific antibody gene at the 1-cell level using immortalized B cells prepared from peripheral blood monocytes derived from melanoma patients before vaccine administration. That is, immortalized B cells are stained with GST-labeled melanoma-specific cancer antigen MAGE1, Alexa-labeled anti-GST antibody, and PE-labeled anti-human IgG antibody, and B cells that produce a specific antibody by performing single cell sorting was found to be able to be sorted one cell at a time, and after the extraction of total RNA from one sorted B cell, a practical technique for efficiently cloning a specific antibody gene was established.
  • the inventors consider that it is important to be able to amplify antibody genes even in normal B cells in view of the diversity of antibody induction, and by improving the RT-PCR technique, a more sensitive technique can be achieved.
  • the present invention provides [1] (A) a step of collecting peripheral blood mononuclear cells from peripheral blood obtained from a human; (B) Epstein-Barr virus (EBV) from the obtained peripheral blood mononuclear cells, Producing an immortalized B cell (EBV-B cell) line; (C) a step of labeling EBV-B cells with an antigen labeled with a labeling substance and an antibody capable of recognizing a human antibody labeled with a labeling substance different from the labeling substance; (D) the antigen EBV-B cells that express an antibody recognizing erythrocyte on the cell membrane one step at a time; (E) a step of extracting total RNA from one cell and synthesizing cDNA by a reverse transcription reaction; (F) synthesis PCR reaction using a primer pair specific to human antibody heavy chain region gene, PCR reaction using primer pair specific to human antibody light chain ⁇ region gene, or human antibody light chain ⁇ region (A) a step of amplifying each region gene fragment by
  • the present invention also provides [6] (A) a step of collecting peripheral blood mononuclear cells from peripheral blood obtained from a human; (B) Epstein-Barr virus (EBV) from the obtained peripheral blood mononuclear cells, A step of preparing an immortalized B cell (EBV-B cell) strain; (C) an antigen labeled with a labeling substance and an antibody that is labeled with a labeling substance different from the labeling substance and can recognize a human antibody A step of labeling EBV-B cells; (D) a step of sorting EBV-B cells expressing an antibody recognizing the antigen on a cell membrane one by one; (E) extracting total RNA from one cell A step of synthesizing cDNA by reverse transcription reaction; (F) PCR reaction using the synthesized cDNA as a template and a primer pair specific to human antibody heavy chain region gene, specific to human antibody light chain ⁇ region gene Primer A step of amplifying each region gene fragment by PCR reaction using a PCR reaction or
  • the present invention provides [11] (A) a step of collecting peripheral blood mononuclear cells from peripheral blood obtained from a human; (B) Epstein-Barr virus (EBV) from the obtained peripheral blood mononuclear cells, A step of preparing an immortalized B cell (EBV-B cell) strain; (C) an antigen labeled with a labeling substance and an antibody that is labeled with a labeling substance different from the labeling substance and can recognize a human antibody A step of labeling EBV-B cells; (D) a step of sorting EBV-B cells expressing an antibody recognizing the antigen on a cell membrane one by one; (E) extracting total RNA from one cell A step of synthesizing cDNA by reverse transcription reaction; (F) PCR reaction using the synthesized cDNA as a template and a primer pair specific to human antibody heavy chain region gene, specific to human antibody light chain ⁇ region gene Primer (A), (B), (C) amplifying each region gene fragment by PCR reaction using PCR
  • the antibody gene according to any one of [15] The antibody gene according to [14] above, wherein the [15] cancer-specific antigen peptide or cancer-specific antigen protein is MAGE1, MAGE2, MAGE3, MART1, tyrosinase, or gp100. Relates to a method of preparing the [15] cancer-specific antigen peptide or cancer-specific antigen protein.
  • functional antibody genes at the level of one B cell can be analyzed and identified for human B cells, and antibody genes against specific immune epitopes and tumor antigens can be comprehensively analyzed. Since it can be analyzed and identified, it is very effective for screening of new cancer treatment targets, development of cancer treatment drugs, and tailor-made medical treatment and diagnosis of cancer in the future.
  • FIG. 2 is a diagram showing an outline of a method for detecting EBV-B cells expressing an IgG antibody specific for a GST-labeled antigen of the present invention. It is a figure which shows the integration to the donor plasmid for baculovirus preparation containing the GFP-MAGE1 gene sequence used for this invention.
  • FIG. 2 is a diagram showing an outline of single-cell RT-PCR cloning of the present invention. It is a figure which shows the preparation method of the recombinant antibody of this invention. It is a figure which shows the design of the control RNA template for real-time PCR analysis used for this invention. It is a figure which shows the preparation method of the control RNA template for real-time PCR analysis used for this invention.
  • EBV-B cells derived from MEL-022, MEL-023, MEL-SCC004, and MEL-SCC005 cases are shown. It is a figure which shows the result of the flow cytometry analysis of this invention.
  • the analysis results of EBV-B cells derived from MEL-001post, MEL-006post, MEL-018post, and MEL-014 * cases are shown.
  • FIG. 3 shows the results of examining the expression of anti-MAGE-1 antibody in EBV-B cells of the present invention by immunohistological staining. It is a figure which shows the result of the refinement
  • FIG. 3 shows the results of examining the expression level (copy number) of ⁇ -actin gene in EBV-B cells of the present invention by real-time PCR. It is a figure which shows the result of having examined the expression level (copy number) of IgG gene in the EBV-B cell of this invention by real-time PCR.
  • FIG. 3 is a view showing a base sequence (SEQ ID NO: 71) of an antibody heavy chain gene (# 081215-1) obtained by the method of the present invention.
  • FIG. 3 is a view showing the base sequence (SEQ ID NO: 72) of the antibody light chain ⁇ gene (# 081215-1) obtained by the method of the present invention.
  • FIG. 3 is a view showing a base sequence (SEQ ID NO: 73) of an antibody heavy chain gene (# 081215-5) obtained by the method of the present invention.
  • FIG. 5 is a view showing a base sequence (SEQ ID NO: 74) of an antibody light chain ⁇ gene (# 081215-5) obtained by the method of the present invention.
  • FIG. 3 is a view showing a base sequence (SEQ ID NO: 75) of an antibody heavy chain gene (# 081215-19) obtained by the method of the present invention.
  • FIG. 3 is a view showing a base sequence (SEQ ID NO: 76) of an antibody light chain ⁇ gene (# 081215-19) obtained by the method of the present invention.
  • FIG. 3 is a view showing a base sequence (SEQ ID NO: 77) of an antibody heavy chain gene (# 081215-23) obtained by the method of the present invention.
  • FIG. 3 is a view showing the base sequence (SEQ ID NO: 78) of the antibody light chain ⁇ gene (# 081215-23) obtained by the method of the present invention.
  • FIG. 7 is a view showing a base sequence (SEQ ID NO: 79) of an antibody heavy chain gene (# 090204-15) obtained by the method of the present invention.
  • FIG. 5 is a view showing the base sequence (SEQ ID NO: 80) of the antibody light chain ⁇ gene (# 090204-15) obtained by the method of the present invention.
  • FIG. 3 is a view showing a base sequence (SEQ ID NO: 81) of an antibody heavy chain gene (# 090219-11) obtained by the method of the present invention.
  • FIG. 3 is a view showing a base sequence (SEQ ID NO: 82) of an antibody light chain ⁇ gene (# 090219-11) obtained by the method of the present invention.
  • FIG. 3 is a view showing a base sequence (SEQ ID NO: 83) of an antibody heavy chain gene (# 090225-100) obtained by the method of the present invention.
  • FIG. 3 is a view showing a base sequence (SEQ ID NO: 84) of an antibody light chain ⁇ gene (# 090225-100) obtained by the method of the present invention.
  • FIG. 3 is a view showing a base sequence (SEQ ID NO: 85) of an antibody heavy chain gene (# 090225-104) obtained by the method of the present invention.
  • FIG. 3 is a view showing a base sequence (SEQ ID NO: 86) of an antibody light chain ⁇ gene (# 090225-104) obtained by the method of the present invention.
  • the following steps (A), (B), (C), (D), (E), (F) and (G) are not particularly limited as long as they are sequentially provided, and the method for producing one B cell antibody of the present invention includes the following steps (A), (B), (C), ( D), (E), (F) and (H) are not particularly limited as long as they are sequentially provided.
  • Methods for preparing one B cell antibody gene of the present invention include the following: The method is not particularly limited as long as it includes the steps (A), (B), (C), (D), (E), and (F) shown in this order.
  • A collecting peripheral blood mononuclear cells from peripheral blood obtained from a human;
  • C a step of labeling B cells with an antigen labeled with a labeling substance and an antibody capable of recognizing a human antibody labeled with a labeling substance different from the labeling substance;
  • D A step of sorting B cells expressing an antibody recognizing the antigen on a cell membrane one by one;
  • E extracting total RNA from one cell and synthesizing cDNA by reverse transcription reaction;
  • F PCR reaction using a synthesized cDNA as a template and a primer reaction specific to a human antibody heavy chain region gene, a PCR reaction using a primer pair specific to a human antibody light chain ⁇ region gene, or a human antibody Amplifying each region gene fragment by a PCR reaction using a primer pair specific to the light chain ⁇ region gene;
  • G analyzing and determining the base sequence of the amplified gene fragment;
  • the method of the present invention may not include the step of producing the immortalized B cell in the above step (B), and in that case, the analysis of the antibody gene of one B cell of the present invention is performed.
  • the identification method is not particularly limited as long as the method includes the following steps (a), (c), (d), (e), (f), and (g).
  • the method for producing an antibody of one B cell of the invention is a method comprising the following steps (a), (c), (d), (e), (f) and (h) in sequence.
  • the method for preparing one B cell antibody gene of the present invention is not particularly limited, and the following steps (a), (c), (d), (e), and (f) ) Are not particularly limited as long as they are sequentially provided.
  • A collecting peripheral blood mononuclear cells from peripheral blood obtained from a human;
  • C Labeling B cells contained in the obtained peripheral blood mononuclear cells with an antigen labeled with a labeling substance and an antibody capable of recognizing a human antibody labeled with a labeling substance different from the labeling substance The step of converting;
  • D a step of sorting B cells expressing an antibody recognizing the antigen on a cell membrane one by one;
  • E extracting total RNA from one cell and synthesizing cDNA by reverse transcription reaction;
  • F PCR reaction using a synthesized cDNA as a template, a PCR reaction using a primer pair specific to the human antibody heavy chain region gene, a PCR reaction using a primer pair specific to the human antibody light chain ⁇ region gene, or a human antibody Amplifying each region gene fragment by a PCR reaction using a primer pair specific to the light chain ⁇ region gene;
  • G a step of analyzing and determining the base sequence of the amplified gene
  • the human to be a peripheral blood collection source is not particularly limited, but cancer patients in a cancer-bearing state can be preferably mentioned.
  • the above cancer cancer patients are not particularly limited as long as they are in a cancer-bearing state, and even if a cancer patient has not been administered a vaccine, an immune response to a specific antigen can be obtained by administering the vaccine. It may be a confirmed cancer patient, and the cancer may be a solid cancer or a blood cancer.
  • solid cancer includes sarcomas and carcinomas, and specifically includes melanoma, fibrosarcoma, mucosal sarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma.
  • Lymphangiosarcoma lymphatic endothelial sarcoma, synovial tumor, mesothelioma, Ewing tumor, leiomyosarcoma, rhabdomyosarcoma, stomach cancer, esophageal cancer, colon cancer, colon cancer, rectal cancer, pancreas Cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell cancer, basal cell cancer, adenocarcinoma, sweat gland cancer, sebaceous gland cancer, papillary cancer, papillary adenocarcinoma, sac adenocarcinoma, bone marrow Cancer, bronchogenic cancer, renal cell cancer, ureteral cancer, liver cancer, bile duct cancer, choriocarcinoma, seminoma, embryonic cancer, Wilms tumor, cervical cancer, intrauterine Membrane cancer, testicular cancer, small cell lung cancer, non-small cell lung cancer, bladder cancer, epithelial cancer, glioma,
  • EBV-B cell Epstein-Barr virus
  • peripheral blood mononuclear cells and EBV are mixed with feeder cells. It is only necessary to culture in the coexistence and immortalize peripheral blood mononuclear cells.
  • anti-CD19 antibody and anti-human IgG antibody which are B lymphocyte markers, a labeled antigen peptide is used to target the specific antigen The presence of the antibody producing EBV-B cell line can also be confirmed.
  • the antigen in the steps (C) and (c) is not particularly limited as long as it is a molecule specifically recognized by an antibody, and examples thereof include peptides or proteins, nucleic acids such as DNA and RNA, and the like. Among them, peptides (cancer-specific peptides) and proteins (cancer-specific proteins) that are specifically highly expressed in cancer cells can be mentioned as good examples. More specifically, MAGE1, Preferred examples include cancer-specific peptides and cancer-specific proteins such as MAGE2, MAGE3, MART1, tyrosinase, and gp100.
  • the antigen may be variously modified as long as it has a function as an antigen.
  • the antigen is a so-called fusion protein in which another peptide or protein part is added in addition to a functional part (epitope) as an antigen.
  • a sugar chain or a fatty chain may be added.
  • Alexa Fluorescent substances such as Fluor 488, green fluorescent protein (GFP), fluorescein isothiocyanate (FITC), phycoerythrin (PE), tetramethylrhodamine isothiocyanate (TRITC), chemiluminescence of luminol, isoluminol, acridinium derivatives, etc. Mention may be made of substances, biotin and magnetic beads.
  • an antigen labeled with a labeling substance, an antibody against the labeling substance, and an antibody labeled with a labeling substance different from the labeling substance and capable of recognizing a human antibody are used.
  • the labeling substance include epitope tags such as glutathione S-transferase (GST), c-Myc, HA, and FLAG.
  • GST glutathione S-transferase
  • c-Myc c-Myc
  • HA hexase
  • FLAG an antibody that specifically recognizes the tag
  • an antibody that specifically recognizes the tag can be used as an antibody against the labeling substance.
  • an antibody labeled with a labeling substance such as the above-described fluorescent substance or chemiluminescent substance can be used.
  • Labeling with these labeling substances can be performed by a conventional method, for example, Molecular Cloning, Third Edition, Cold Spring Harbor Laboratory Press, You can refer to New York.
  • an anti-human anti-human IgG antibody can be illustrated suitably.
  • a GST-labeled cancer-specific antigen protein is used as a cancer-specific antigen protein labeled with a labeling substance
  • an Alexa-labeled anti-GST antibody and a human antibody labeled with a different labeling substance are used.
  • labeling is preferably performed under conditions that do not cause the cell membrane-bound antibody of cancer antigen-specific antibody-producing B cells to fall off.
  • an EBV-B cell expressing an antibody recognizing an antigen such as a cancer-specific antigen peptide or a cancer-specific protein on the cell membrane or a non-immortalized primary B cell Sort one cell at a time.
  • an appropriate technique is used according to the type of labeling substance used. For example, when a fluorescent substance is used as the labeling substance, it is preferable to sort cells one by one by flow cytometry (single cell sorter) using fluorescence as an index. Flow cytometry enables efficient and highly accurate cell separation.
  • biotin is employed as the labeling substance, cells can be sorted one by one using a binding reaction with avidin.
  • magnet beads are employed, good separation using magnets is possible.
  • the cells can be sorted one by one using a cell microarray, a micromanipulator, a micromesh filter, or the like.
  • RNA is extracted from one antibody-producing B cell that has been collected one by one, and cDNA is synthesized by a reverse transcription reaction. Isolation of total RNA, isolation and purification of mRNA, and acquisition and cloning of cDNA are all conventional methods (for example, Molecular Cloning: A laboratory Mannual, 2nd Ed., Cold Spring Harbor). Laboratory, Cold Spring Harbor, NY., 1989.).
  • a PCR reaction using a synthesized cDNA as a template and a primer pair specific to the human antibody heavy chain region gene, a primer pair specific to the human antibody light chain ⁇ region gene Each region gene fragment is amplified by a PCR reaction using a PCR reaction or a PCR reaction using a primer pair specific to the human antibody light chain ⁇ region gene.
  • the primer pair specific to human antibody heavy chain region gene, human antibody light chain ⁇ region gene, or human antibody light chain ⁇ region gene is not particularly limited as long as it is a primer pair specific to each region gene sequence.
  • the primer pair specific to the human antibody heavy chain region gene includes one or more of the nucleotide sequences shown in SEQ ID NOs: 27 to 37, and SEQ ID NO: 38.
  • a primer pair specific to the human antibody light chain ⁇ region gene is a base pair represented by SEQ ID NOs: 39 to 61. Mention may be made of the one or more sequences of columns, a primer pair consisting of one or two sequences of the base sequence shown in SEQ ID NO: 62 and 63.
  • the base sequence of the amplified gene fragment is analyzed and determined by a conventional method in the above step (G). Examples of the antibody type include IgG, IgA, IgD, IgE, and IgM.
  • An antibody gene derived from one B cell can be prepared by using the gene fragment amplified in the above steps (F) and (f). That is, a human antibody heavy chain gene can be prepared by a PCR reaction using a primer pair specific to the human antibody heavy chain region gene.
  • a human antibody light chain gene is prepared by a PCR reaction using a primer pair specific to the human antibody light chain ⁇ region gene or a PCR reaction using a primer pair specific to the human IgG light chain ⁇ region gene. be able to.
  • the human antibody heavy chain variable region gene fragment can be prepared by PCR reaction using a primer pair specific to the human antibody heavy chain variable region gene fragment.
  • a human light chain can be obtained by PCR reaction using a primer pair specific to the human antibody light chain ⁇ variable region gene fragment or PCR reaction using a primer pair specific to the human IgG light chain ⁇ variable region gene fragment.
  • a chain variable region gene fragment can be prepared. These prepared human antibody genes can be subcloned and amplified. When genomic DNA is used as a template, effective amplification cannot be expected because exons are separated.
  • human antibody heavy chain variable region gene fragment (heavy chain fragment) and human light chain variable region gene fragment (light chain fragment) were amplified by PCR method, and these heavy chain fragment and light chain fragment were respectively obtained by PCR method.
  • ScFv human single chain antibody gene
  • the human antibody heavy chain gene and the human antibody light chain gene which are gene fragments amplified in the step (F) or (f), are expressed using an expression vector
  • Individual B cell-derived antibodies can be produced.
  • the expression vector is not particularly limited as long as it is suitable for the expression of an antibody gene.
  • an adenoviral vector used for transient expression in all cells (other than blood cells) including non-sorted cells ( Science, 252, 431-434, 1991), retroviral vectors used for long-term expression in dividing cells (Microbiology and Immunology, 158, 1-23, 1992) and non-pathogenic, non-dividing cells
  • adeno-associated virus vectors (Curr. Top. Microbiol.
  • SV40 virus vectors SV40 virus vectors
  • EB virus vectors SV40 virus vectors
  • papilloma virus vectors can be exemplified.
  • a selection marker gene can be introduced into these viral vectors in order to increase expression efficiency.
  • An antibody gene is introduced into an expression vector by a known method using restriction enzymes and DNA ligase (for example, Molecular Cloning, Third Edition, 1.84, See Cold Spring Harbor Laboratory Press, New York).
  • the above human antibody heavy chain gene and human antibody light chain gene are usually inserted into separate expression vectors, and the host is cotransformed with these two recombinant vectors to express the heavy and light chains in the same cell. It is preferable to make it.
  • the host is not particularly limited as long as it can retain the introduced antibody gene in an expressible state by being transformed with a recombinant vector.
  • Vero cells Hela cells, CHO cells, WI38 Cell, BHK cell, COS-7 cell, MDCK cell and the like.
  • methods for transforming a host with a recombinant vector include the lipofectin method, electroporation method, calcium phosphate method and the like.
  • a monoclonal antibody can be produced from one B cell without using a hybridoma.
  • E. coli can be transformed with a phagemid vector or a phage vector into which the human ScFv fragment is incorporated, and a phage display human single chain antibody can be produced using this transformed E. coli.
  • the method for producing an antibody derived from one B cell of the present invention makes it possible to obtain a large amount of a cancer antigen-specific antibody, which enables tailor-made diagnosis and treatment of individual patients.
  • the antibody gene obtained by the method for preparing an antibody gene derived from one B cell of the present invention can be used advantageously in the case of producing a large amount of cancer antigen-specific antibodies. It can also be used for diagnosis.
  • a partial human antibody obtained by immunizing with a mouse and producing a hybridoma can be obtained as a 100% human antibody in a form actually amplified in the human body. is there.
  • peripheral blood mononuclear cells Twelve peripheral blood mononuclear cells (PBMC) were collected from peripheral blood from melanoma patients (including the same patient before and after vaccine administration) before and / or after dendritic cell vaccine administration. .
  • the dendritic cell vaccine used for the treatment is HLA-A24-restricted MAGE1 135-143 (the amino acid sequence of MAGE1 135-143 is shown in SEQ ID NO: 64), MAGE2, MAGE3, gp100, and Tyrosinase.
  • Peptides or HLA-A2-restricted MAGE2, MAGE3, gp100, MART1 and Tyrosinase were treated with five types of peptides.
  • EBV-B cell line immortalized B cell line (EBV-transformed) B cell line (hereinafter referred to as EBV-B cell line) was prepared. Specifically, a human fibroblast cell line (MRC-5; ATCC cat. CCL-171) as a feeder was grown to 90% confluency in a 25 cm 2 flask (medium: MEM + 10% FBS), and 30-40 Gy irradiation was carried out. After 24 hours, the PBMC collected in Example 1 was suspended in a medium (IMDM + 20% FBS) so as to be 1 to 2 ⁇ 10 7 cells / 4 ml, and added to the culture MRC-5.
  • MRC-5 human fibroblast cell line
  • IMDM + 20% FBS medium
  • EBV solution EBV strain B95-8, ATCC cat. VR-1492
  • gas phase conditions 37 ° C. and 5% CO 2 .
  • the culture medium 48 hours after the start of the culture, the culture medium was changed every 4 days.
  • EBV-B cells B cells immortalized by EBV (EBV-B cells) were collected, and a total of 12 cases of EBV-B cells (MEL-001post, MEL-006post, MEL-014, MEL-016, MEL-017, MEL-018, MEL-018post, MEL-021, MEL-022, MEL-023, MEL-SCC004, MEL-SCC005) were prepared.
  • MEL-014, MEL-016, MEL-017, MEL-018, MEL-021, MEL-022, MEL-023, MEL-SCC004 and MEL-SCC005 are derived from patients before vaccine administration.
  • MEL-001post, MEL-006post and MEL-018post are derived from patients after vaccine administration.
  • MEL-018 and MEL-018post are EBV-B cells prepared from PBMC before and after vaccine administration (MEL-018post) of the same patient.
  • Alexa Fluor 488-labeled anti-GST polyclonal antibody (hereinafter referred to as Alexa-anti-GST antibody) was obtained from Invitrogen, and PE-labeled anti-human IgG antibody (hereinafter referred to as PE-anti-hIgG) was defined as BD. Purchased from Phaimingen.
  • EBV-B cells were washed with sorter buffer (PBS + 2% FBS + 0.1% NaN3) and then adjusted to 20 ⁇ l / tube.
  • GST or each GST-labeled protein adjusted to 100 ng / 20 ⁇ l with PBS (0.2% BSA) was added to the EBV-B cells, and reacted at 4 ° C. for 30 minutes.
  • 20 ⁇ l (10 ⁇ g / ml) of Alexa-anti-GST antibody was added and reacted at 4 ° C. for 30 minutes, and then 20 ⁇ l of PE-hIgG antibody was added and reacted at 4 ° C. for 30 minutes.
  • the stained EBV-B cells were analyzed with a flow cytometer FAC (FACS-CANTO, BD). In addition, PI staining was performed immediately before measurement for confirmation of living cells.
  • FIG. 8 shows data for MAGE1 before administration (MEL-018Pre) and after 6 administrations of dendritic cell vaccine (MEL-018Post) in MEL-018 cases.
  • MEL-018Pre dendritic cell vaccine
  • FIG. 8A the IgG and IgM fractions of the EBV-B cell line clearly have an increased ratio of IgG antibody positive after the vaccine.
  • FIG. 8B in the staining with GST-MAGE1, the cell population of IgG + / MAGE1 + was increased to 0.14% (0.02% in the case of only the negative control GST). An increase in B cells with an IgG antibody against MAGE1 was detected.
  • 9A to 9C show analysis data for other cancer-specific antigen proteins.
  • GFP-MAGE1 Green fluorescence protein labeled MAGE-1 protein
  • FIG. 2 the gene sequence encoding GFP-MAGE1 was incorporated into a donor plasmid (pFastBac) and prepared as Bacmid DNA in E. coli. This Bacmid DNA was transfected into insect-derived cells Sf9, and the baculovirus produced in the culture supernatant was recovered.
  • High-Five cells were infected with a high-titer baculovirus containing the GFP-MAGE1 gene sequence, and cultured with shaking (72 rpm) at 27 ° C. for 50 to 64 hours.
  • the cultured cells were collected, solubilized by freezing and thawing, and then centrifuged to collect the supernatant.
  • GFP-MAGE1 was purified with a metal chelate affinity gel using His-tag, desalted with a PD-10 column, and then concentrated with an ultrafiltration column.
  • GFP-MAGE1 was stored at 4 ° C. until use.
  • GFP-MAGE1 + / PE-anti-hIgG + EBV-B cells were subjected to single cell sorting for the purpose of sorting one cell at a time.
  • a BD FACSAria TM cell sorter manufactured by BD Science
  • a module for single cell sorting was used.
  • a 100- ⁇ m nozzle was used on a 96-well plate (MicroAmp® Optical 96-well Reaction Plate; Applied Biosystem) under the conditions of sort setup: low, flow rate 5000 events / sec, and Drop delay 25.73.
  • One cell was sorted.
  • Primer base sequence specific to human IgG heavy chain gene is SEQ ID NO: 1-26 (SEQ ID NO: 1-24 is forward primer, SEQ ID NO: 25 and 26 is reverse primer), primer specific to human IgG light chain ⁇ gene
  • the nucleotide sequence is SEQ ID NO: 27-38 (SEQ ID NO: 27-37 is a forward primer, SEQ ID NO: 38 is a reverse primer), and the primer nucleotide sequence specific for the human IgG light chain ⁇ gene is SEQ ID NO: 39-63 (SEQ ID NO: 39).
  • SEQ ID NO: 39 SEQ ID NO: 39
  • To 61 are forward primers, and SEQ ID NOs: 62 and 63 are reverse primers).
  • the size of the gene fragment amplified by each primer mix is about 1400 bp for the human IgG heavy chain gene, about 700 bp for the human IgG light chain ⁇ gene, and about 700 bp for the human IgG light chain ⁇ gene.
  • SuperScript TM III for synthesis CellsDirect cDNA Synthesis System (cat. 18080-300, manufactured by Invitrogen) was used.
  • 10 ⁇ l ResuspensionBuffer 1 ⁇ l of Lysis Enhancer solution was added and treated with a thermal cycler at 75 ° C. for 10 minutes.
  • 5 ⁇ l of DNase I (1 U / ⁇ l) and 1.6 ⁇ l of 10 ⁇ DNase IBuffer were added, mixed by pipetting, and incubated at room temperature for 5 minutes.
  • the plate was lightly centrifuged, 1.2 ⁇ l of 25 mM EDTA was added and incubated at 70 ° C.
  • PCR of cDNA prepared from one cell was performed using cloning primers.
  • 1 ⁇ l of cDNA was dispensed into 4 PCR 0.2 ml tubes (# 1 to # 4) per sample, and 1 ⁇ l of 10 ⁇ PCR bufferII (Mg + ), 1 ⁇ l of 2.5 mM dNTP Mix, 5.9 ⁇ l dH 2 O, 0.1 ⁇ l LA-Taq polymerase (TaKaRa LA-Taq® Hot Start version; manufactured by Takara Bio Inc.), 0.5 ⁇ l forward primer (10 ⁇ M), and 0.5 ⁇ l reverse primer (10 ⁇ M) were added, and a thermal cycler (GeneAmp R PCR) PCR reaction was performed using System9700 (Applied Biosystems).
  • Tube # 1 is the internal standard ⁇ -actin gene
  • tube # 2 is the human IgG heavy chain region gene
  • tube # 3 is the human IgG light chain ⁇ region gene
  • tube # 4 is the human IgG light chain ⁇ region gene PCR reaction Used for. The PCR reaction conditions for each tube are shown below.
  • Tube # 1 94 ° C for 5 minutes, (94 ° C for 15 seconds, 68 ° C for 2 minutes) x 55 cycles, 72 ° C for 5 minutes
  • Tube # 2 and # 3 94 ° C for 5 minutes, (94 ° C for 15 seconds , 68 ° C ⁇ 1 minute) x 55 cycles, 72 ° C ⁇ 5 minutes
  • Tube # 4 94 ° C ⁇ 5 minutes, (94 ° C ⁇ 15 seconds, 60 ° C ⁇ 30 seconds) ⁇ 40 cycles, 72 ° C ⁇ 5 minutes
  • the obtained reaction solution was electrophoresed using a 1.5% agarose gel, and the band was confirmed by ethidium bromide staining.
  • the size of the band of the PCR product amplified by the human IgG region gene region amplification primer set was confirmed, and two samples of each primer set were extracted and purified from the gel.
  • the mixture was placed on a heat block set at 50 ° C. in advance and subjected to Vortex every 2 minutes for a total of 10 minutes. Subsequently, centrifugation was performed at room temperature and 10,000 ⁇ g for 1 minute, and the supernatant was removed. Again, 500 ⁇ l of BufferQX1 was added to the precipitate, mixed with vortex, and centrifuged at room temperature and 10,000 ⁇ g for 1 minute. The supernatant was removed, 500 ⁇ l of BufferPE to which ethanol had been added in advance was added to the precipitate, mixed with vortex, centrifuged at room temperature and 10,000 ⁇ g for 1 minute, and the supernatant was removed.
  • Plasmid DNA was prepared by inserting the PCR fragment into the pCR4-TOPO-TA Plasmid vector. 1 ⁇ l of DNA fragment Salt Solution (TOPO TA Cloning R Kit for Sequencing; Invitrogen Corporation) and 1 ⁇ l of TOPO (R) Vector (TOPO TA Cloning R Kitfor Sequencin (manufactured by Invitrogen) was mixed on ice. After reacting at room temperature for 5 minutes, it was put back on ice and used for transformation. Plasmid DNA was introduced into a DH5 ⁇ competent cell (Competent high DH5 ⁇ ; manufactured by TOYOBO).
  • PCR products (tube # 2: 1.6 Kbp, tube # 3: 0.9 Kbp, tube # 4: 0.9 Kbp) of each PCR reaction solution were confirmed by electrophoresis using a 1.5% agarose gel.
  • a colony in which insertion of a PCR-amplified fragment into the vector was confirmed was selected, and shaking culture was performed overnight at 37 ° C. in 2 ⁇ YT liquid medium containing 3.5 ml of 50 ⁇ g / ml kanamycin.
  • the cultured sample (1.8 ml) was placed in a 2 ml sample tube and centrifuged at 1000 ⁇ g for 10 minutes. Discard the supernatant and 250 ⁇ l of Buffer for the precipitate A1 (NucleoSpin (R) Multi- 8 Plasmid; MACHEREY-NAGEL Inc.) were mixed by vortex added.
  • Buffer A2 250 ⁇ l was added and mixed by inversion, and then placed at room temperature for 5 minutes to lyse the cells.
  • 350 ⁇ l of Buffer A3 was added and mixed by inversion, followed by centrifugation at 4 ° C. and 14000 ⁇ g for 10 minutes.
  • the sequence of the obtained clone was determined by Cycle Sequencing method. In a 96-well plate placed on ice, add the DNA dilution prepared in Example 11 to 3 wells (# 2-1, # 2-2, # 2-3) for tube # 2, and to tubes # 3 and # 4. 6 ⁇ l each was added to 2 wells (# 3-1, # 3-2 and # 4-1, # 4-2).
  • Primers used for each sample were sample # 2-1: M13 reverse primer, sample # 2-2: M13 forward primer, sample # 2-3: HuIGCH-seq001, sample # 3-1: M13 Reverse primer, sample # 3-2: M13 forward primer, sample # 4-1: M13 reverse primer, sample # 4-2: M13 forward primer.
  • MultiScreen TM HV-plate Sephadex G-50 in (MultiScreen R HV-plate MILLIPORE Corp.) wells (Sephadex TM G-50 Superfine; GE Healthcare) and 300 ⁇ l of sterilized water were added and allowed to stand at room temperature for 2 hours. After sufficient hydration, centrifugation was performed at room temperature and 1100 ⁇ g for 5 minutes, and the effluent was discarded. Multiscreen TM A new 96-well plate (ASSAY PLATE 96 well round bottom; manufactured by IWAKI) was replaced with the HV-plate, the whole reaction solution was applied to each well, and the sample was collected by centrifugation at 1100 ⁇ g for 5 minutes at room temperature.
  • ASSAY PLATE 96 well round bottom manufactured by IWAKI
  • 96-well plate (MicroAmp R Optical) 96-well Reaction Plate (manufactured by Applied Biosystem), and further, 17.2 ⁇ l of sterilized water was added to the original well, and the entire amount was added to the same sample while washing the well.
  • x3130 / Genetic Using Analyzer (manufactured by Applied Biosystem), 6 to 8 clones were read for each sample, and multiple alignment analysis of the obtained sequences was performed. Regarding the bases that differed between the clones, the sequence with the larger number of clones having the base was regarded as the correct sequence, and the base sequence of each sample was determined.
  • EBV-B cell line (1 cell level) derived from melanoma patients of 5 cases (MEL-008, MEL-014, MEL-016, MEL-018Pre, MEL-018Post) ) Succeeded in isolating 12 clones of IgG antibody gene. Of these, 5 clones have been confirmed to express single-chain recombinant antibodies and are currently in the purification stage. *
  • the cultured bacteria were centrifuged (4 ° C., 8000 rpm, 10 minutes), collected, and then disrupted (BugBuster protein extraction reagent 10 ml, Benzonasenuclease 1 ⁇ l; treated at Novagen at 25 ° C. for 30 minutes), and the insoluble fraction was removed by centrifugation ( 4 ° C., 15000 rpm, 30 minutes), and the supernatant (E. coli soluble fraction) was collected.
  • MEL-018 scFv antibody Metal chelate affinity purification using a Ni Sepharose column was performed using the His tag as a label. Next, two-stage purification was performed by anion exchange chromatography (HiTrap QFF column). Furthermore, for the purpose of evaluating the specificity of the finally purified MEL-018 scFv antibody, Western blotting was performed using GST-labeled recombinant MAGE1 protein (543aa, 59.74 kDa) as an antigen. The purified primary antibody (MEL-018 scFv) is diluted 1000 times, reacted for 2 hours, and then secondary antibody (anti-FLAG M2 monoclonal antibody) was diluted 2000 times and reacted for 2 hours. A mouse anti-human MAGE1 monoclonal antibody (Abnova) was used as a control control antibody. A signal was detected by reacting with ECLplus reagent (manufactured by GE Healthcare) for 10 minutes.
  • ECLplus reagent manufactured by GE Healthcare
  • FIG. 12 The result of the above experiment is shown in FIG.
  • FIG. 12 as a result of anion exchange chromatography as the second step, scFv antibodies were recovered at the elution Fr.
  • FIG. 13 as a result of Western blotting, it was confirmed that the scFv antibody specifically recognizes the recombinant MAGE1 protein in the same manner as the mouse antibody (band near 60 Kd).
  • the IgG antibody gene was quantified at the single cell level of immortalized B cells by real-time PCR.
  • a probe (TaqMan) primer is designed to target the conserved region of the Fc segment of an IgG antibody, and mRNA of a partial sequence of the Fc segment is used to create a calibration curve. Synthesized in vitro ( Figures 5-7). Quantitative real-time PCR was performed on normal B cells separated by CD19 microbeads and immortalized B cell lines in the same melanoma case, and ⁇ -actin and IgG gene copy numbers per cell were measured and compared. It was.
  • FIGS. 14 The results of quantification by the above real-time PCR method are shown in FIGS.
  • In vitro synthesized ⁇ -actin and human IgG mRNA were serially diluted and PCR amplification was performed to prepare a standard curve for use in quantifying each copy number (FIG. 14). From this calibration curve, the quantifiable copy number per cell in this real-time PCR system was 100-5,000 copies of ⁇ -actin and 10-250 copies of human IgG.
  • the collected B cells were washed three times with 0.5 ml of phosphate buffered saline (FCS-PBS) containing 2% calf serum and 0.1% sodium azide ( 200-400 ⁇ g, 4 minutes, 4 ° C.), 5 ⁇ 10 5 cells were dispensed into a 1.5 ml tube and adjusted to a volume of 20 ⁇ l using FCS-PBS.
  • 20 ⁇ l of GST-labeled CMVpp65 antigen protein adjusted to 100 ng / 20 ⁇ l was added to each of the dispensed cells and reacted at 4 ° C. for 30 minutes under light shielding.
  • FCS-PBS 400 ⁇ g, 2 min, 4 ° C.
  • FCS-PBS 20 ⁇ l of 10 ⁇ g / ml Alexa488-labeled rabbit anti-GST polyclonal antibody (Invitrogen), and shield at 4 ° C. under light shielding.
  • the reaction was performed for 30 minutes.
  • 5 ⁇ l each of PE-labeled anti-human immunoglobulin antibody (manufactured by BD) and APC-labeled anti-human CD19 antibody were added and reacted at 4 ° C. for 30 minutes under light shielding, and then 3 times with 0.5 ml FCS-PBS.
  • the suspension was suspended in 0.5 ml of FCS-PBS and transferred to a 5 ml tube for taking up a flow cytometer.
  • the cells were stored on ice and protected from light until the cells were taken up. If necessary, 10 ⁇ l of 10 ⁇ g / ml propidium iodide was added to distinguish dead cells.
  • FACS-aria cells stained with three types of APC-labeled antibody, Alexa488-labeled antibody, and PE-labeled antibody were dispensed into each well of a 96-well plate.
  • B cells from a case in which the serum antibody titer against CMVpp65 was increased were used for staining identification and capture of CVMpp65 antigen-positive B cells using a cell microarray (FIG. 20).
  • B cells were selected by negative selection (AutoMACS; manufactured by Miltenyi) using a combination of anti-CD3, CD14 and CD56 antibodies.
  • B cells were stained by reacting 0.5-1 ⁇ M Fluo-4 reagent at 37 ° C. for 40 minutes. B cells stained with Fluo-4 were added onto the microchip and allowed to stand for 15 minutes so that each cell entered each well.
  • Alexa555-labeled rabbit anti-GST polyclonal antibody was added and reacted at 4 ° C. for 15 minutes.
  • Alexa 555 and Fluo-4 image data were acquired using a high-sensitivity scanner (SC @ Scanner, manufactured by SC World).
  • GST-labeled CMVpp65 antigen protein was added and reacted at 4 ° C for 15 minutes
  • Alexa555-labeled rabbit anti-GST polyclonal antibody was added again and reacted at 4 ° C for 15 minutes.
  • image data of Alexa 555 and Fluo-4 were acquired.
  • the obtained image data was analyzed using analysis-dedicated software (TIC-ChipAnalysis, manufactured by ESC World), and B cells stained with CMVpp65 antigen (Alexa555) / Fluo-4 were identified.
  • One cell was sorted into a PCR tube using an automatic 1-cell capture device (Cell Porter mini; manufactured by Sugino Machine).
  • An automatic 1-cell capture device Cell Porter mini; manufactured by Sugino Machine.
  • FIG. Among the 240,000 CD19 + B lymphocytes on the cell chip, 20 CMVpp65 (Alexa555) + / Fluo-4 + cells were confirmed, of which 5 cells showed an increase in intracellular calcium due to the addition of antigen. It was a piece. A total of 67 cells were captured per cell for RT-PCR.
  • single cell RT-PCR cloning was performed (FIGS. 22 and 25).
  • single-cell RT-PCR cloning was performed by improving the following four points as compared with Example 5 described above (FIG. 22).
  • 1. Yeast transfer as carrier in each well of 96-well plate or 0.2ml tube for PCR 5 ⁇ l of sterilized water containing RNA was added to receive the sorted viable cells.
  • 2. The cells were ruptured by osmotic pressure at the moment when the cells touched the sterilized water, and the contents were released. Therefore, it was considered that treatment for cell lysis was unnecessary, and DNase treatment and cell lysis treatment were omitted. 3.
  • IGH-PCR was performed using 6 ⁇ l of the synthesized cDNA solution.
  • the PCR reaction could only be brought into the PCR reaction under the conditions of 1 ⁇ l / total PCR reaction solution 30 ⁇ l, it is expected that the detection sensitivity will be higher than before in this system (6 ⁇ l / total PCR reaction solution 12 ⁇ l). did it. 4).
  • the nested PCR method was adopted. For both 1 st -PCR and 2 nd -PCR, Ex-taq HotStart ver was used, and in 1 st -PCR, primers corresponding to each repatova were the same as those in Example 5.
  • Reverse transcription reaction directly targeting a single cell was performed as follows. 96-well plates (MicroAmp R Optical 96- well Reaction Plate, manufactured by Applied Biosystem Co.), or the PCR for 0.2ml tubes, was added Yeast Transfer RNA is carrier (Ambion Inc.) and RNaseOUT TM (Invitrogen Corp.) 5 ⁇ l of sterilized water was added, and the sorted cells were collected one by one using FACS or Cell porter mini. The 96-well plate or 0.2 ml PCR tube that received the cells was lightly centrifuged and placed on ice.
  • Each well contained 10 ⁇ PCR buffer II (0.80 ⁇ l), 25 mM MgCl 2 (0.48 ⁇ l) 0.1 M DTT (0.40 ⁇ l), 40 U. / ⁇ l RNaseOUT TM (0.16 ⁇ l), 50 mM Oligo (dT) 20 (Invitrogen) (0.16 ⁇ l), 10 mM dNTPmix (0.16 ⁇ l), and dH 2 O (0.84 ⁇ l) were added, and a thermal cycler (GeneAmp R PCR) was added. System9700 (Applied Biosystems) was used for 90 seconds at 70 ° C.
  • a 96-well plate or 0.2 ml PCR tube was quickly transferred onto ice and allowed to stand for 2 minutes. Centrifuge the 96-well plate or 0.2 ml PCR tube lightly and put it back on ice again.
  • RNaseOUT TM 40 U / ⁇ l
  • 0.05 ⁇ l SuperScript TM III RT 200 U / ⁇ l; Invitrogen
  • 0.40 ⁇ l and 1.35 ⁇ l of dH 2 O was added to each well and mixed by pipetting.
  • the 96-well plate was lightly centrifuged and then treated with a thermal cycler at 50 ° C. for 50 minutes and at 70 ° C. for 10 minutes to synthesize DNA.
  • PCR buffer II (0.20 ⁇ l), MgCl 2 (0.12 ⁇ l), RNase H (0.30 ⁇ l; manufactured by Invitrogen) and dH 2 O (1.38 ⁇ l) were added and mixed well, and the mixture was mixed at 37 ° C. for 15 minutes. And treated at 70 ° C. for 10 minutes to prepare 12 ⁇ l of cDNA solution.
  • a 0.2 ml tube for PCR was set on the thermal cycler, and the reaction was performed with a program of (95 ° C. for 15 seconds, 68 ° C. for 1 minute, 72 ° C. for 1 minute) ⁇ 50 cycles, 72 ° C. for 5 minutes.
  • MinElutecolumn MinElute TM ReactionCleanupKit; manufactured by QIAGEN
  • 2 ml collectiontube MinElute TM ReactionCleanupKit; manufactured by QIAGEN
  • 750 ⁇ l of BufferPE MinElute TM ReactionCleanupKit; manufactured by QIAGEN
  • the column was returned to the collection tube again and centrifuged at room temperature and 22000 ⁇ g for 1 minute.
  • the drop on the column tub was removed with a micropipette and the column was set in a new 1.5 ml sample tube.
  • 10 ⁇ l of Buffer EB MinElute TM ReactionCleanupKit; manufactured by QIAGEN was added and left at room temperature for 1 minute, and then centrifuged at room temperature at 10,000 ⁇ g for 1 minute to recover the purified DNA fragment.
  • the # 1 tube contains HuIGKV_1 to 11mix and HuIGKC_1 (SEQ ID NOs: 27 to 38), which are light chain ⁇ region amplification primers
  • the # 2 tube contains HuIGLV_1 to 23mix and HuIGLC_1 to 2mix (sequence) for light chain ⁇ region amplification. Numbers 39-64) were used.
  • a 0.2 ml tube for PCR was set in the thermal cycler, and the reaction was carried out with a program of 95 ° C. for 5 minutes (95 ° C. for 30 seconds, 68 ° C. for 1 minute, 72 ° C.
  • PCR amplification was confirmed by the same method as in Example 11, and DNA fragments were purified for samples in which amplification was confirmed by combining IGH and IGK / L derived from the same clone.
  • FIG. 23 shows the result of comparison of the amplification efficiency of the PCR method for the antibody gene derived from one cell before and after the technical improvement shown in FIG.
  • the cells are B cells derived from MEL-SCC007, which are CMVpp65 + / IgG + cells that have been single cell sorted by FACSAria.
  • amplification was not confirmed in any of the 7 cells used, but in the new method shown in Example 10, the IGH antibody gene was successfully amplified in 10 cells out of 12, An improvement in efficiency was confirmed.
  • the antibody light chain region gene was also amplified from the same cDNA (FIG. 25).
  • Cells in which both the antibody heavy chain region gene (IGH) and antibody light chain region gene (IGL) were amplified in the same B cell were selected and used in the following experiments.
  • M13 reverse primer was used for sample # 1
  • M13 forward primer was used for sample # 2.
  • a 0.2 ml tube for PCR was set in the thermal cycler, and the reaction was carried out with a program of 95 ° C. for 1 minute (95 ° C. for 10 seconds, 50 ° C. for 5 seconds, 68 ° C. for 4 minutes) ⁇ 24 cycles.
  • Sephadex G-50 manufactured by GE Healthcare
  • 300 ⁇ l of sterilized water were added to the wells of MultiScreen TM HV-plate (manufactured by MILLIPORE) and allowed to stand at room temperature for 2 minutes.
  • the effluent was discarded by centrifugation at room temperature at 1100 ⁇ g for 5 minutes.
  • a new 96-well Assay plate (manufactured by IWAKI) was replaced with the Multiscreen TM HV-plate, and the whole sample was applied to each well and centrifuged at room temperature at 1100 ⁇ g for 5 minutes to collect the sample.
  • the purified sample was transferred to a 96-well plate for the entire sequencer. Further, 17.2 ⁇ l of sterilized water was added to the original well, and the entire amount was transferred to a 96-well plate while washing the well, and the sequence was determined using a DNA sequencer (x3130 / Genetic Analyzer; manufactured by Applied Biosystem).
  • White colonies were selected and inoculated into 3.5 ml of 2 ⁇ YT / Km liquid medium and cultured overnight at 37 ° C. with shaking. After culturing, 1.8 ml of the culture solution was placed in a 2 ml sample tube and centrifuged at 1000 ⁇ g for 10 minutes. The supernatant was discarded, BufferA1 of 250 ⁇ l against precipitation; a (NucleoSpin R Multi-8 Plasmid MACHEREY -NAGEL Inc.) was added and mixed by vortex.
  • Buffer A2 NucleoSpin R Multi-8 Plasmid (manufactured by MACHEREY-NAGEL) was added, mixed by inversion, and allowed to stand for 5 minutes at room temperature to lyse the cells.
  • Buffer A3 NucleoSpin R Multi-8 Plasmid (manufactured by MACHEREY-NAGEL) was added, and the mixture was then inverted and centrifuged at 4 ° C., 14000 ⁇ g for 10 minutes.
  • the membrane was washed by aspiration for a minute to allow the solution to permeate. Further, 900 ml of Buffer A4 was added, and the membrane was washed again by sucking at 400 mbar for 1 minute to permeate the solution. After drying the membrane, the NucleoSipn R MN Tube Strips (NucleoSpin R Multi-8 Plasmid; manufactured by MACHEREY-NAGEL, 120 ⁇ l of BufferAE (NucleoSpin R Multi-8) Plasmid (manufactured by MACHEREY-NAGEL) was added and allowed to stand for 1 minute, and aspirated at 400 mbar for 1 minute to recover plasmid DNA.
  • a 96-well plate was set on the thermal cycler, and the reaction was carried out with a program of 94 ° C for 1 minute (94 ° C for 10 seconds, 50 ° C for 5 seconds, 68 ° C for 4 minutes) x 25 cycles.
  • the Sephadex is added to the wells of the MultiScreen TM HV-plate.
  • G-50 was added, 300 ⁇ l of sterilized water was added and left at room temperature for 2 hours. When fully hydrated, the effluent was discarded by centrifugation at room temperature, 1100 ⁇ g for 5 minutes.
  • a new 96-well assay plate was replaced with the Multiscreen TM HV-plate, and the entire amount of the PCR reaction solution was applied to each well, followed by centrifugation at room temperature at 1100 ⁇ g for 5 minutes to collect a sample.
  • the purified sample was transferred to a 96-well plate for the whole volume sequencer, and then 17.2 ⁇ l of sterilized water was added to the original well, and the whole volume was transferred to the 96-well plate while washing the well.
  • Sequence analysis is x3130 / Genetic Performed with Analyzer. Read 6 to 8 clones for each sample, and obtain multiples of the resulting sequences. Alignment analysis was performed, and the base sequence of each sample was determined by assuming that the base having a difference between clones was the correct sequence when there were more clones having the base.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明の課題は、ヒト由来の、1個のB細胞における抗体遺伝子を同定・解析する方法や、同定された1個のB細胞由来の抗体を製造する技術等を提供することにある。本発明者らは、メラノーマ患者由来の末梢血単球から作製した不死化B細胞や、末梢血単球に含まれるプライマリーB細胞を用いて、1細胞レベルでのメラノーマ抗原特異的な抗体遺伝子について解析・同定を行った。すなわち、GST標識メラノーマ特異的がん抗原MAGE1、Alexa標識抗GST抗体、及びPE標識抗ヒトIgG抗体によりB細胞を染色し、シングルセルソーティングを行うことにより、特定の抗体を産生するB細胞を1細胞ずつ分取しできることを見い出し、さらに、分取した1個のB細胞から全RNAを抽出後、特異的な抗体遺伝子を効率的にクローニングする実用化技術を確立し、本発明を完成するに至った。

Description

1細胞レベルでの抗体遺伝子の解析・同定方法
 本発明は、ヒトのB細胞1細胞レベルでの抗体遺伝子の解析・同定方法や、1個のB細胞由来の抗体を製造する方法や、1個のB細胞由来の抗体遺伝子を調製する方法等に関する。
 人間などの高等脊椎動物の体には、体外から侵入する細菌・ウイルスなどの病原体や、危険物質、がん細胞などの異物から生命を守るために獲得免疫系が存在する。抗体はタンパク質等の相互に類似した物質を特異的に識別できる免疫グロブリンというタンパク質であり、生体内では抗原特異的液性免疫に関与している。抗体は、無数の異物を認識するために、抗体の一部(可変領域)をコードする遺伝子では、DNAレベルでの再編成が起き、多様な抗体遺伝子配列を持つBリンパ球の集団が生じている。このDNA再編成を通じた遺伝子多様化の仕組みは、生物が子孫の遺伝子を多様化しつつ、環境変動に適応して生き残ろうとする性の過程にも見られる。また、それぞれのBリンパ球細胞1個からは必ず一種類の抗体遺伝子がコードする一種類の免疫グロブリンが産生されることが知られている。
 従来、抗体遺伝子を取得する方法等としては、ヒト末梢血リンパ球を分離後、CD11c特異的抗体及びマグネチックビーズを用いCD11c陽性細胞を除去し、体外免疫を行い、抗原特異的ヒト抗体産生応答を誘導し、抗原特異的抗体の産生応答が誘導された末梢血リンパ球細胞を、エプスタインバールウィルスにより不死化し、抗原特異的B細胞を単離し、この抗原特異的抗体産生B細胞からRNAを抽出し、抽出されたRNAからcDNAを合成し、合成したcDNAを鋳型とし、VH及びVLのそれぞれに特異的なプライマーを用いたPCRにより抗体可変領域遺伝子の増幅を行う抗原特異的抗体遺伝子の取得方法(例えば、特許文献1参照)や、目的の抗体が認識する抗原を標識化してなる標識化抗原を、前記抗体を産生するターゲット細胞を含む細胞集団に接触させ、前記標識化抗原を前記ターゲット細胞に結合させ、得られる標識化ターゲット細胞を分離し、分離した標識化ターゲット細胞を用いて、それが保有する抗体遺伝子を調製し、調製した抗体遺伝子を、発現ベクターを用いて発現させる抗体作製方法(例えば、特許文献2参照)などが知られている。
特開2004-121237号公報 特開2006-180708号公報
 近年、がんや自己免疫疾患という病態での免疫細胞の異常クローンが注目されているが、免疫のダイナミックな順応メカニズムを考えれば、個々の細胞の機能的性格が異なることは容易に想像できる。免疫応答の観点からしてもT細胞受容体や抗体遺伝子の変異も最初は1個の細胞から始まる現象であり、免疫細胞の機能研究においては、1細胞レベルでの研究はもはや避けては通れない時代である。特に、がんという病態下での個々の免疫細胞の動態については、未だ詳細な検討はなされておらず、新しい治療を考える上で重要な研究課題となりうる。本発明者らは、転移性メラノーマの症例を対象にHLA-A2又はA24ペプチドカクテルにて処理をした樹状細胞ワクチンの臨床試験を実施し、該がん特異的抗原ペプチドに対する免疫応答が確認されているがん患者由来のB細胞を用いて、1細胞レベルでのメラノーマペプチド特異的な抗体遺伝子について解析・同定を既に提案している(特願2007-147525)。しかし、この方法は、ワクチン投与によりがん特異的ペプチドなどの特定の抗原に対する抗体産生B細胞を一定の割合以上に増加させることが必須であり、ワクチン療法の確立されている特定のがん患者を対象としたものであった。
 本発明の課題は、ワクチン投与後の検体のみならず、全ての担がん患者由来のB細胞を対象とした網羅的な抗体遺伝子の解析のための技術を提供することであり、より具体的には、ヒトの1個のB細胞における抗体遺伝子を同定・解析する方法や、同定された1個のB細胞由来の抗体を製造する技術等を提供することにある。
 本発明者らは、ワクチン投与前のメラノーマ患者由来の末梢血単球から作製した不死化B細胞を用いて、1細胞レベルでのメラノーマペプチド特異的な抗体遺伝子について解析・同定を行った。すなわち、GST標識メラノーマ特異的がん抗原MAGE1、Alexa標識抗GST抗体、及びPE標識抗ヒトIgG抗体により不死化B細胞を染色し、シングルセルソーティングを行うことにより、特定の抗体を産生するB細胞を1細胞ずつ分取できることを見い出し、分取した1個のB細胞から全RNAを抽出後、特異的な抗体遺伝子を効率的にクローニングする実用化技術を確立した。さらに、発明者らは、抗体誘導の多様性を考えると通常のB細胞でも抗体遺伝子を増幅可能にすることが肝要であると考え、RT-PCR技術の改良を行うことによりさらに高感度の技術を開発し、不死化していないB細胞を用いた1個のB細胞から抗体遺伝子を効率的にクローニングする実用化技術を確立し、本発明を完成するに至った。
 すなわち本発明は、[1](A)ヒトから得られる末梢血より末梢血単核球を採取する工程;(B)得られた末梢血単核球からエプスタインバールウイルス(EBV)を用いて、不死化B細胞(EBV-B細胞)株を作製する工程;
(C)標識物質により標識された抗原と、前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより、EBV-B細胞を標識化する工程;(D)前記抗原を認識する抗体を細胞膜上に発現するEBV-B細胞を、1細胞ずつ分取する工程;(E)1細胞から全RNAを抽出し、逆転写反応によりcDNAを合成する工程;(F)合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する工程;(G)増幅された遺伝子断片の塩基配列を解析・決定する工程;の(A)、(B)、(C)、(D)、(E)、(F)及び(G)の工程を順次備えたことを特徴とする、ヒト由来の1個のB細胞の抗体遺伝子の解析・同定方法や、[2](a)ヒトから得られる末梢血より末梢血単核球を採取する工程;(c)得られた末梢血単核球に含まれるB細胞を、標識物質により標識された抗原と、前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより標識化する工程;(d)前記抗原を認識する抗体を細胞膜上に発現するB細胞を、1細胞ずつ分取する工程;(e)1細胞から全RNAを抽出し、逆転写反応によりcDNAを合成する工程;(f)合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する工程;(G)増幅された遺伝子断片の塩基配列を解析・決定する工程;の(a)、(c)、(d)、(e)、(f)及び(g)の工程を順次備えたことを特徴とする、ヒト由来の1個のB細胞の抗体遺伝子の解析・同定方法や、[3]ヒトが、担がん患者であることを特徴とする上記[1]又は[2]記載の解析・同定方法や、[4]抗原が、がん特異的抗原ペプチド又はがん特異的抗原タンパクであることを特徴とする上記[1]~[3]のいずれかに記載の解析・同定方法や、[5]がん特異的抗原ペプチド又はがん特異的抗原タンパクが、MAGE1、MAGE2、MAGE3、MART1、tyrosinase、又はgp100であることを特徴とする上記[4]記載の解析・同定方法に関する。
 また本発明は、[6](A)ヒトから得られる末梢血より末梢血単核球を採取する工程;(B)得られた末梢血単核球からエプスタインバールウイルス(EBV)を用いて、不死化B細胞(EBV-B細胞)株を作製する工程;(C)標識物質により標識された抗原と、前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより、EBV-B細胞を標識化する工程;(D)前記抗原を認識する抗体を細胞膜上に発現するEBV-B細胞を、1細胞ずつ分取する工程;(E)1細胞から全RNAを抽出し、逆転写反応によりcDNAを合成する工程;(F)合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する工程;(H)増幅された遺伝子断片を、発現ベクターを用いて発現させる工程;の(A)、(B)、(C)、(D)、(E)、(F)及び(H)の工程を順次備えたことを特徴とする、ヒト由来の1個のB細胞の抗体を製造する方法や、[7](a)ヒトから得られる末梢血より末梢血単核球を採取する工程;(c)得られた末梢血単核球に含まれるB細胞を、標識物質により標識された抗原と、前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより標識化する工程;(d)前記抗原を認識する抗体を細胞膜上に発現するB細胞を、1細胞ずつ分取する工程;(e)1細胞から全RNAを抽出し、逆転写反応によりcDNAを合成する工程;(f)合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する工程;(h)増幅された遺伝子断片を、発現ベクターを用いて発現させる工程;以下の(a)、(c)、(d)、(e)、(f)及び(h)の工程を順次備えたことを特徴とする、ヒト由来の1個のB細胞の抗体を製造する方法や、[8]ヒトが、担がん患者であることを特徴とする上記[6]又は[7]記載の抗体を製造する方法や、[9]抗原が、がん特異的抗原ペプチド又はがん特異的抗原タンパクであることを特徴とする上記[6]~[8]のいずれかに記載の抗体を製造する方法や、[10]がん特異的抗原ペプチド又はがん特異的抗原タンパクが、MAGE1、MAGE2、MAGE3、MART1、tyrosinase、又はgp100であることを特徴とする上記[9]記載の抗体を製造する方法に関する。
さらに本発明は、[11](A)ヒトから得られる末梢血より末梢血単核球を採取する工程;(B)得られた末梢血単核球からエプスタインバールウイルス(EBV)を用いて、不死化B細胞(EBV-B細胞)株を作製する工程;(C)標識物質により標識された抗原と、前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより、EBV-B細胞を標識化する工程;(D)前記抗原を認識する抗体を細胞膜上に発現するEBV-B細胞を、1細胞ずつ分取する工程;(E)1細胞から全RNAを抽出し、逆転写反応によりcDNAを合成する工程;(F)合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する工程;の(A)、(B)、(C)、(D)、(E)及び(F)の工程を順次備えたことを特徴とする、ヒト由来の1個のB細胞の抗体遺伝子を調製する方法や、[12](a)ヒトから得られる末梢血より末梢血単核球を採取する工程;(c)得られた末梢血単核球に含まれるB細胞を、標識物質により標識された抗原と、前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより標識化する工程;(d)前記抗原を認識する抗体を細胞膜上に発現するB細胞を、1細胞ずつ分取する工程;(e)1細胞から全RNAを抽出し、逆転写反応によりcDNAを合成する工程;(f)合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する工程;の(a)、(c)、(d)、(e)及び(f)の工程を順次備えたことを特徴とする、ヒト由来の1個のB細胞の抗体遺伝子を調製する方法や、[13]ヒトが、担がん患者であることを特徴とする上記[11]又は[12]記載の抗体遺伝子を調製する方法や、[14]抗原が、がん特異的抗原ペプチド又はがん特異的抗原タンパクであることを特徴とする上記[11]~[13]のいずれかに記載の抗体遺伝子を調製する方法や、[15]がん特異的抗原ペプチド又はがん特異的抗原タンパクが、MAGE1、MAGE2、MAGE3、MART1、tyrosinase、又はgp100であることを特徴とする上記[14]記載の抗体遺伝子を調製する方法に関する。
 本発明によると、ヒトのB細胞を対象として、1個のB細胞レベルでの機能的な抗体遺伝子を解析・同定することができ、特異的な免疫エピトープや腫瘍抗原に対する抗体遺伝子を網羅的に解析・同定することが可能となるため、新たながん治療のターゲットのスクリーニングや、がん治療薬の開発、さらに、今後のがんのテーラーメイド医療や診断に非常に有効である。
本発明のGST標識抗原に特異的なIgG抗体を発現するEBV-B細胞の検出法の概略を示す図である。 本発明に用いた、GFP-MAGE1遺伝子配列を含むバキュロウイルス作製用のドナープラスミドへの組込みを示す図である。 本発明の、単一細胞RT-PCRクローニングの概略を示す図である。 本発明の、組換え抗体の調製方法を示す図である。 本発明に用いた、リアルタイムPCR解析用コントロールRNAテンプレートの設計を示す図である。 本発明に用いた、リアルタイムPCR解析用コントロールRNAテンプレートの作製方法を示す図である。 本発明に用いた、リアルタイムPCR用キット(TaqMan Gene ExpressionCell-to-Ct kit)の実験手順を示す図である。 本発明の、フローサイトメトリー解析の結果を示す図である。MEL-018症例における投与前(MEL-018Pre)及び樹状細胞ワクチン6回投与後(MEL-018Post)の患者由来EBV-B細胞の解析結果を示している。 本発明の、フローサイトメトリー解析の結果を示す図である。MEL-016、MEL-017、MEL-018、MEL-021症例由来EBV-B細胞の解析結果を示している。 本発明の、フローサイトメトリー解析の結果を示す図である。MEL-022、MEL-023、MEL-SCC004、MEL-SCC005症例由来EBV-B細胞の解析結果を示している。 本発明の、フローサイトメトリー解析の結果を示す図である。MEL-001post、MEL-006post、MEL-018post、MEL-014*症例由来EBV-B細胞の解析結果を示している。 本発明のEBV-B細胞の抗MAGE-1抗体の発現を、免疫組織染色により調べた結果を示す図である。 本発明のscF抗体の精製(金属キレートアフィニティー精製)の結果を示す図である。 本発明のscF抗体の精製(陰イオン交換精製)の結果を示す図である。 本発明のscF抗体のウエスタンブロットにより解析した結果を示す図である。 本発明のEBV-B細胞における遺伝子の発現量を検討するためのリアルタイムPCRの、検量線を示す図である。 本発明のEBV-B細胞におけるβ-アクチン遺伝子の発現量(コピー数)をリアルタイムPCRにより検討した結果示す図である。 本発明のEBV-B細胞におけるIgG遺伝子の発現量(コピー数)をリアルタイムPCRにより検討した結果示す図である。 ヒト血清中の抗CMV-pp65抗体の抗体価を測定した結果を示す図である。 GST標識CMVpp65抗原タンパク質、Alexa488標識抗GST抗体、及び、PE標識抗ヒトIgG抗体を用いてB細胞の染色を行った結果を示す図である。 CMV-pp65タンパク質を用いてB細胞の染色を行った結果を示す図である。 細胞マイクロアレイを用いたCVMpp65抗原陽性B細胞の染色同定と捕獲を行った結果を示す図である。 CMV-pp65陽性ウェルでカルシウムイオン流入を検出した結果を示す図である。 本発明のIgG遺伝子クローニングのための単一細胞RT-PCR法の手順を示す図である。 本発明のIgG遺伝子クローニングのための単一細胞RT-PCR法の効率を比較した結果を示す図である。 本発明のIgG遺伝子クローニングのための単一細胞RT-PCR法の手順を示す図である。 本発明のIgG遺伝子クローニングのための単一細胞RT-PCR法の結果を示す図である 本発明のIgG遺伝子クローニングのための単一細胞RT-PCR法によりクローニングに成功したB細胞の数を示す図である。 本発明の方法によりクローニングに成功した抗体遺伝子のレパトワ解析の結果を示す図である。 本発明に用いた2ndPCR用のプライマー配列(配列番号65~70)を示した図である。 本発明の方法により得られた抗体重鎖遺伝子(#081215-1)の塩基配列(配列番号71)を示す図である。 本発明の方法により得られた抗体軽鎖κ遺伝子(#081215-1)の塩基配列(配列番号72)を示す図である。 本発明の方法により得られた抗体重鎖遺伝子(#081215-5)の塩基配列(配列番号73)を示す図である。 本発明の方法により得られた抗体軽鎖κ遺伝子(#081215-5)の塩基配列(配列番号74)を示す図である。 本発明の方法により得られた抗体重鎖遺伝子(#081215-19)の塩基配列(配列番号75)を示す図である。 本発明の方法により得られた抗体軽鎖κ遺伝子(#081215-19)の塩基配列(配列番号76)を示す図である。 本発明の方法により得られた抗体重鎖遺伝子(#081215-23)の塩基配列(配列番号77)を示す図である。 本発明の方法により得られた抗体軽鎖λ遺伝子(#081215-23)の塩基配列(配列番号78)を示す図である。 本発明の方法により得られた抗体重鎖遺伝子(#090204-15)の塩基配列(配列番号79)を示す図である。 本発明の方法により得られた抗体軽鎖κ遺伝子(#090204-15)の塩基配列(配列番号80)を示す図である。 本発明の方法により得られた抗体重鎖遺伝子(#090219-11)の塩基配列(配列番号81)を示す図である。 本発明の方法により得られた抗体軽鎖λ遺伝子(#090219-11)の塩基配列(配列番号82)を示す図である。 本発明の方法により得られた抗体重鎖遺伝子(#090225-100)の塩基配列(配列番号83)を示す図である。 本発明の方法により得られた抗体軽鎖κ遺伝子(#090225-100)の塩基配列(配列番号84)を示す図である。 本発明の方法により得られた抗体重鎖遺伝子(#090225-104)の塩基配列(配列番号85)を示す図である。 本発明の方法により得られた抗体軽鎖κ遺伝子(#090225-104)の塩基配列(配列番号86)を示す図である。
 本発明の1個のB細胞の抗体遺伝子の解析・同定方法としては、以下に示す工程(A)、(B)、(C)、(D)、(E)、(F)及び(G)を順次備えた方法であれば特に制限されるものではなく、本発明の1個のB細胞の抗体を製造する方法としては、以下に示す工程(A)、(B)、(C)、(D)、(E)、(F)及び(H)を順次備えた方法であれば特に制限されるものではなく、本発明の1個のB細胞の抗体遺伝子を調製する方法としては、以下に示す工程(A)、(B)、(C)、(D)、(E)、及び(F)を順次備えた方法であれば特に制限されるものではない。
(A)ヒトから得られる末梢血より末梢血単核球を採取する工程;
(C)標識物質により標識された抗原と、前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより、B細胞を標識化する工程;
(D)前記抗原を認識する抗体を細胞膜上に発現するB細胞を、1細胞ずつ分取する工程;
(E)1細胞から全RNAを抽出し、逆転写反応によりcDNAを合成する工程;
(F)合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する工程;
(G)増幅された遺伝子断片の塩基配列を解析・決定する工程;
 また、本発明の方法としては、上記の工程(B)の不死化B細胞を作製する工程を含まないものであってもよく、その場合、本発明の1個のB細胞の抗体遺伝子の解析・同定方法としては、以下に示す工程(a)、(c)、(d)、(e)、(f)及び(g)を順次備えた方法であれば特に制限されるものではなく、本発明の1個のB細胞の抗体を製造する方法としては、以下に示す工程(a)、(c)、(d)、(e)、(f)及び(h)を順次備えた方法であれば特に制限されるものではなく、本発明の1個のB細胞の抗体遺伝子を調製する方法としては、以下に示す工程(a)、(c)、(d)、(e)、及び(f)を順次備えた方法であれば特に制限されるものではない。
(a)ヒトから得られる末梢血より末梢血単核球を採取する工程;
(c)得られた末梢血単核球に含まれるB細胞を、標識物質により標識された抗原と、前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより標識化する工程;
(d)前記抗原を認識する抗体を細胞膜上に発現するB細胞を、1細胞ずつ分取する工程;
(e)1細胞から全RNAを抽出し、逆転写反応によりcDNAを合成する工程;
(f)合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する工程;
(g)増幅された遺伝子断片の塩基配列を解析・決定する工程;
(h)増幅された遺伝子断片を、発現ベクターを用いて発現させる工程;
 上記工程(A)及び(a)において、末梢血の採取源となるヒトは、特に制限されるものではないが、担がん状態のがん患者を好適に挙げることができる。上記がん癌患者としては、担がん状態にある患者であれば特に制限されるものではなく、ワクチン投与を行っていないがん患者であっても、ワクチン投与により特定の抗原に対する免疫応答が確認されているがん患者であってもよく、上記がんとしては、固形がんであっても、血液がんであってもよい。ここで固形がんとは、肉腫および癌腫を含むものであり、具体的には、メラノーマ(黒色腫)、繊維肉腫、粘膜肉腫、脂肪肉腫、軟骨肉腫、骨原性肉腫、脊索腫、血管肉腫、リンパ管肉腫、リンパ管内皮肉腫、滑膜腫、中皮腫、ユーイング腫瘍、平滑筋肉腫、横紋筋肉腫、胃がん、食道がん、大腸がん、結腸がん、直腸がん、膵臓がん、乳がん、卵巣がん、前立腺がん、扁平上皮細胞がん、基底細胞がん、腺がん、汗腺がん、皮脂腺がん、乳頭がん、乳頭腺がん、嚢腺がん、骨髄がん、気管支原性がん、腎細胞がん、尿管がん、肝がん、胆管がん、絨毛がん、精上皮腫、胎生期がん、ウィルムス腫瘍、子宮頚がん、子宮内膜がん、精巣がん、小細胞肺がん、非小細胞肺がん、膀胱がん、上皮がん、神経膠腫、星状細胞腫、骨髄芽種、頭蓋咽頭がん、喉頭がん、舌がん、脳室上衣細胞腫、松果体腫、血管芽細胞腫、聴神経腫瘍、乏突起神経膠腫、髄膜腫、腹膜播腫、奇形腫、神経芽細胞腫、髄芽腫および網膜芽細胞腫等が挙げられ、また、上記血液がんとは、骨髄腫およびリンパ腫が含まれるものであり、具体的には、急性骨髄性白血病、急性前骨髄性白血病、慢性骨髄性白血病、急性リンパ性白血病、慢性リンパ性白血病、Hodgkin病、非Hodgkinリンパ腫、成人T細胞白血病リンパ腫、多発性骨髄腫等が挙げることができる。
 上記工程(B)における末梢血単核球をエプスタインバールウイルス(EBV)を用いて、不死化B細胞(EBV-B細胞)株を作製するには、末梢血単核球とEBVをフィーダー細胞の共存下で培養し、末梢血単核球を不死化すればよく、Bリンパ球マーカーである抗CD19抗体、抗ヒトIgG抗体に加えて、標識化抗原ペプチドを用いて、目的とする抗原特異的抗体産生EBV-B細胞株の存在を確認することもできる。
 上記工程(C)及び(c)における抗原とは、抗体により特異的に認識される分子であれば特に制限されるものではなく、ペプチドないしはタンパクや、DNAやRNAなどの核酸等を例として挙げることができ、なかでも、がん細胞において特異的に高発現するペプチド(がん特異的ペプチド)やタンパク(がん特異的タンパク)を好例として挙げることができ、より具体的には、MAGE1、MAGE2、MAGE3、MART1、tyrosinase、gp100等のがん特異的ペプチドやがん特異的タンパクを好適に例示することができる。上記抗原は、抗原としての機能を備える限り様々な修飾がなされていてもよく、例えば、抗原としての機能部分(エピトープ)に加えて他のペプチドないしはタンパク部分を付加した、いわゆる融合タンパクであっても、糖鎖や脂肪鎖などを付加したものであってもよい。また、上記工程(C)における標識物質としては、Alexa
Fluor 488、グリーンフルオレセントプロテイン(GFP)、フルオレセインイソチオシアネート(FITC)、フィコエリスリン(PE)、テトラメチルローダミンイソチオシアネート(TRITC)などの蛍光物質、ルミノール、イソルミノール、アクリジニウム誘導体などの化学発光物質、ビオチン、マグネットビーズを挙げることができる。さらに、上記工程(C)は、標識物質により標識された抗原、前記標識物質に対する抗体、及び前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより、EBV-B細胞を標識化する工程であってもよく、この場合の標識物質としては、例えば、グルタチオンS-トランスフェラーゼ(GST)、c-Myc、HA、FLAG等のエピトープタグを挙げることができ、これらのエピトープタグを特異的に認識する抗体を、標識物質に対する抗体として用いることができる。また、上記エピトープタグを特異的に認識する抗体は、上述の蛍光物質や化学発光物質等の標識物質により標識したものを用いることができる。これらの標識物質による標識化は常法で行うことができ、例えばMolecular Cloning, Third Edition,ColdSpringHarborLaboratory Press,
New Yorkを参照することができる。また、工程(C)におけるヒト抗体を認識しうる抗体としては、抗ヒト抗ヒトIgG抗体を好適に例示することができる。例えば、工程(C)において、標識物質により標識されたがん特異的抗原タンパクとして、GST標識がん特異的抗原タンパクを用い、Alexa標識抗GST抗体、及び異なる標識物質により標識されたヒト抗体を認識しうる抗体として、PE標識抗ヒト抗ヒトIgG抗体を用いる場合など、がん抗原特異的抗体産生B細胞の細胞膜結合型抗体が脱落しない条件で標識化を行うことが好ましい。
 上記工程(D)及び(d)において、がん特異的抗原ペプチドやがん特異的タンパクなどの抗原を認識する抗体を細胞膜上に発現するEBV-B細胞や不死化していないプライマリーB細胞を、1細胞ずつ分取する。B細胞を1細胞ずつ分取するには、使用した標識物質の種類に応じて適切な手法が用いられる。例えば、標識物質として蛍光物質を使用した場合には、蛍光を指標としたフローサイトメトリー(シングルセルソーター)によって、1細胞ずつ分取することが好ましい。フローサイトメトリーによれば効率的かつ高精度の細胞分離が可能となる。また、標識物質としてビオチンを採用した場合においてもアビジンとの結合反応を利用して1細胞ずつ分取することができる。マグネットビーズを採用した場合にも同様に、磁石を用いた良好な分離が可能である。さらに、細胞マイクロアレイや、マイクロマニピュレーターや、マイクロメッシュフィルター等を用いて1細胞ずつ分取することもできる。
 上記工程(E)及び(e)においては、1細胞ずつ分取した1個の抗体産生B細胞から、全RNAを抽出し、逆転写反応によりcDNAを合成する。全RNAの分離、mRNAの分離や精製、cDNAの取得とそのクローニングなどはいずれも常法(例えば、Molecular Cloning: A laboratory Mannual, 2nd Ed., Cold Spring Harbor
Laboratory, Cold Spring Harbor, NY.,1989.参照)に従って実施することができる。
 上記工程(F)及び(f)においては、合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する。ヒト抗体重鎖領域遺伝子、ヒト抗体軽鎖κ領域遺伝子、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対としては、それぞれの領域遺伝子配列に特異的なプライマー対であれば特に制限されないが、例えば、ヒト抗体重鎖領域遺伝子に特異的なプライマー対としては配列番号1~24に示される塩基配列の1種又は2種以上の配列と、配列番号25又は26に示される塩基配列とからなるプライマー対を挙げることができ、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対としては配列番号27~37に示される塩基配列の1種又は2種以上の配列と、配列番号38に示される塩基配列とからなるプライマー対を挙げることができ、また、ヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対としては配列番号39~61に示される塩基配列の1種又は2種以上の配列と、配列番号62及び63に示される塩基配列の1種又は2種の配列とからなるプライマー対を挙げることができる。増幅された遺伝子断片の塩基配列が、上記工程(G)において常法により解析・決定される。抗体のタイプとしては、IgGの他、IgA、IgD、IgE、IgMを挙げることができる。
 上記工程(F)及び(f)で増幅された遺伝子断片を用いて、1個のB細胞由来の抗体遺伝子を調製することができる。すなわち、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応により、ヒト抗体重鎖遺伝子を調製することができる。また、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒトIgG軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応により、ヒト抗体軽鎖遺伝子を調製することができる。さらに、ヒト抗体重鎖可変部領域遺伝子断片に特異的なプライマー対を用いたPCR反応により、ヒト抗体重鎖可変部領域遺伝子断片を調製することができる。また、ヒト抗体軽鎖κ可変部領域遺伝子断片に特異的なプライマー対を用いたPCR反応、又はヒトIgG軽鎖λ可変部領域遺伝子断片に特異的なプライマー対を用いたPCR反応により、ヒト軽鎖可変部領域遺伝子断片を調製することができる。これら調製されたヒト抗体遺伝子をサブクローニングして増幅させることもできる。なお、ゲノムDNAを鋳型にする場合、エクソンが離れているためいるため効果的な増幅が期待できない。
 また、ヒト抗体重鎖可変部領域遺伝子断片(重鎖断片)及びヒト軽鎖可変部領域遺伝子断片(軽鎖断片)をPCR法により増幅し、これら重鎖断片と軽鎖断片をPCR法によりそれぞれ重鎖断片-重鎖リンカー配列-制限酵素XbaI認識配列を含む重鎖複合断片と、制限酵素NheI認識配列-軽鎖リンカー配列-軽鎖断片を含む軽鎖複合断片として増幅し、重鎖複合断片を制限酵素XbaIで、前記軽鎖複合断片を制限酵素NheIで、それぞれ消化した後に、ライゲーションにより連結させ、ライゲーション産物を制限酵素XbaIと制限酵素NheIで消化した後、重鎖断片-リンカー配列-軽鎖断片からなるヒト一本鎖抗体遺伝子(ScFv)断片としてPCR法により増幅する本発明者らによる方法(特願2007-92968)を用いると、ヒトScFv断片を大量かつ効率よく製造することができる。
 上記工程(H)及び(h)において、工程(F)又は(f)において増幅された遺伝子断片である、ヒト抗体重鎖遺伝子やヒト抗体軽鎖遺伝子を、発現ベクターを用いて発現させ、1個のB細胞由来の抗体を製造することができる。発現ベクターとしては、抗体遺伝子の発現に適したものであれば特に限定されず、例えば、非分列細胞を含む全ての細胞(血球系以外)での一過性発現に用いられるアデノウイルスベクター(Science, 252, 431-434, 1991)や、分裂細胞での長期発現に用いられるレトロウイルスベクター(Microbiology and Immunology,158, 1-23, 1992)や、非病原性、非分裂細胞にも導入可能で、長期発現に用いられるアデノ随伴ウイルスベクター(Curr. Top. Microbiol. Immunol., 158, 97-129, 1992)の他、SV40ウイルスベクター、EBウイルスベクター、パピローマウイルスベクターを挙げることができる。これらのウイルスベクターには、発現効率を高めるためにプロモータ配列、エンハンサー配列などの制御配列の他、選択マーカー遺伝子を導入しておくこともできる。発現ベクターへの抗体遺伝子の導入は、制限酵素及びDNAリガーゼを用いた周知の方法(例えば、Molecular Cloning, Third Edition, 1.84,
Cold Spring Harbor Laboratory Press, New Yorkを参照できる)により行うことができる。
 上記ヒト抗体重鎖遺伝子やヒト抗体軽鎖遺伝子は、通常、それぞれ別の発現ベクターに挿入され、これら2つの組換えベクターで宿主を共形質転換し、同一細胞内で重鎖及び軽鎖を発現させることが好ましい。上記宿主としては、組換えベクターで形質転換されることにより、導入された抗体遺伝子を発現可能な状態に保有できるものであれば特に制限されず、例えば、Vero細胞、Hela細胞、CHO細胞、WI38細胞、BHK細胞、COS-7細胞、MDCK細胞等を挙げることができる。組換えベクターにより宿主を形質転換する方法としては、リポフェクチン法、エレクトロポレーション法、リン酸カルシウム法等を例示することができる。このようにして、ハイブリドーマを用いることなく、1個のB細胞から、モノクローナル抗体を製造することができる。また、上記ヒトScFv断片が組み込まれたファージミドベクター又はファージベクターにより大腸菌を形質転換し、この形質転換大腸菌を用いてファージディスプレイヒト一本鎖抗体を作製することもできる。
 本発明の1個のB細胞由来の抗体遺伝子の解析・同定方法によって、がん患者の抗体遺伝子を解析・同定することにより、患者個人の体内で産生されているがん抗原特異的抗体の種類の全体像に関する情報を得ることができる。また、本発明の1個のB細胞由来の抗体を製造する方法によって、がん抗原特異的抗体を大量に得ることができ、テイラーメイド的な患者個人の診断や治療が可能となる。また、本発明の1個のB細胞由来の抗体遺伝子を調製する方法によって得られる抗体遺伝子は、がん抗原特異的抗体を大量に製造する場合に有利に用いられる他、テイラーメイド的な患者個人の診断にも利用することができる。特に、従来マウスで免疫してハイブリドーマを作製して得られていた部分的なヒトの抗体を、実際にヒトの体内で増幅した形で、100%ヒトの抗体として獲ることができるという大きな利点がある。
 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。
[末梢血単核球の採取と不死化B細胞株の作製]
 樹状細胞ワクチン投与前及び/又は投与後のメラノーマ患者(ワクチン投与前後の同一患者を含む)由来の末梢血から、12例分の末梢血単核球(peripheral blood mononuclear cell;PBMC)を採取した。なお、治療に使用された樹状細胞ワクチンは、HLA-A24拘束性MAGE1135-143(MAGE1135-143のアミノ酸配列は配列番号64に示す)、MAGE2、MAGE3、gp100、及びTyrosinaseの5種類のペプチド、又はHLA-A2拘束性MAGE2、MAGE3、gp100、MART1及びTyrosinaseの5種類のペプチドで処理されたものである。
[不死化B細胞株の作製]
 エプスタインバールウイルス(EBV)を用いて、採取したPBMCから不死化B細胞株(EBV-transformed
B cell line;以下EBV-B細胞株という)を作製した。具体的には、フィーダーであるヒト繊維芽細胞株(MRC-5;ATCC cat.CCL-171)を、25cmフラスコにて90%confluencyまで増殖させ(培地:MEM+10%FBS)、30-40Gyのirradiationを実施した。24時間後、実施例1で採取したPBMCを1~2×10cells/4mlとなるように培地(IMDM+20%FBS)に懸濁し、上記の培養MRC-5に加えた。その後、1mlのEBV溶液(EBV strain B95-8、ATCC cat.VR-1492)を25mlフラスコに添加し、37℃、5%COの気相条件下で培養した。培養開始から48時間後に培地を交換した後、4日ごとに培地交換を行った。3~4週間後に、B細胞の増殖を確認し、EBVにより不死化したB細胞(EBV-B細胞)を回収し、全部で12症例分のEBV-B細胞(MEL-001post, MEL-006post, MEL-014, MEL-016, MEL-017, MEL-018,
MEL-018post, MEL-021, MEL-022, MEL-023, MEL-SCC004, MEL-SCC005)を作製した。作製した12株のうち、MEL-014、MEL-016、MEL-017、MEL-018、MEL-021、MEL-022、MEL-023、MEL-SCC004及びMEL-SCC005はワクチン投与前の患者由来であり、MEL-001post、MEL-006post及
びMEL-018postはワクチン投与後の患者由来である。また、MEL-018及びMEL-018postは、同一患者のワクチン投与前(MEL-018)とワクチン投与後(MEL-018post)のPBMCから作製されたEBV-B細胞である。
[EB-B細胞の染色とフローサイトメトリーによる解析]
 GST標識メラノーマ関連組換えタンパク、Alexa Fluor 488標識抗GST抗体、及びPE標識抗ヒトIgG抗によるEB-B細胞の染色ならびにフローサイトメトリーによる解析を行った。この実験の概略を図1に示す。6種のGST標識メラノーマ関連組換えタンパクのうち、MAGE1、MAGE2、MAGE3、MART1及びTyrosinaseはAbnoba社より、gp100はAbcam社よりそれぞれ購入した。陰性コントロールであるGSTタンパクは大腸菌にて合成した。また、Alexa Fluor 488標識抗GSTポリクローナル抗体(以下Alexa-抗GST抗体という)はInvitrogen社より、PE標識抗ヒトIgG抗体(以下PE-抗hIgGという)はBD
Phaimingen社よりそれぞれ購入した。
 染色は以下の手順で行った。まず、EBV-B細胞をsorter buffer (PBS+2% FBS+0.1% NaN3)により洗浄した後、20μl/tubeとなるよう調整した。このEBV-B細胞に、PBS(0.2%BSA)にて100ng/20μlに調整したGST又は各GST標識タンパクを添加し、4℃で30分間反応させた。次に、Alexa-抗GST抗体を20μl(10μg/ml)添加し、4℃で30分間反応させた後、PE-hIgG抗体を20μl添加、4℃で30 分間反応させた。染色後のEBV-B細胞を、フローサイトメーター (FACS-CANTO, BD)により解析した。また、生細胞確認のため計測直前にPI染色を実施した。
 フローサイトメトリーの解析結果を図8及び図9に示す。図8に、MEL-018症例における投与前(MEL-018Pre)及び樹状細胞ワクチン6回投与後(MEL-018Post)の、MAGE1に対するデータを示す。図8Aからも分かるように、EBV-B細胞株のIgG、IgMの分画は、明らかにワクチン後にIgG抗体陽性の比率が増加している。また、図8Bに示すように、GST-MAGE1による染色では、IgG/MAGE1の細胞集団が0.14%に増加しており(陰性コントロールのGSTのみの場合0.02%)、明らかにMAGE1に対するIgG抗体をもつB細胞の増加が検出された。図9A~9Cに、そのほかのがん特異的抗原タンパクに対する解析データを示す。各種メラノーマ抗原タンパク(GST融合)による染色では、MAGE1に対するIgG抗体の陽性症例は、5/12例(0.03~0.14%)であった。またgp100に対するIgM、IgG抗体が全症例で検出された(gp100/IgG;0.06~3.6%)。興味深いことに樹状細胞ワクチン投与後のMEL-018Postでは、tyrosinaseに対するIgM、IgG抗体がともに検出された。
[EBV-B細胞の免疫組織染色]
 Green fluorescence protein (GFP)標識MAGE-1タンパク(以下、GFP-MAGE1という)を合成し、EBV-B細胞の免疫組織染色を行った。GFP-MAGE1はバキュロウイルスの生産系を用いて作成した。図2に示すように、GFP-MAGE1をコードする遺伝子配列をドナープラスミド(pFastBac)に組み込み、大腸菌内でBacmid DNAとして調整した。このBacmidDNAを、昆虫由来細胞Sf9にトランスフェクションし、培養上清中に産生されたバキュロウイルスを回収した。次に、GFP-MAGE1遺伝子配列を含む高力価のバキュロウイルスをHigh-Five細胞に感染させ、27℃で50~64時間の振とう培養(72rpm)を行った。培養後の細胞を回収し、凍結融解により細胞を可溶化した後、遠心分離し上清を回収した。回収した上清から、His-tagを利用した金属キレートアフィニティーゲルによりGFP-MAGE1を精製し、PD-10カラムにて脱塩後、限外ろ過カラムを用いてタンパクを濃縮した。GFP-MAGE1は使用時まで4℃保存した。実験に使用する際には、保存したGFP-MAGE1(4mg/ml)に、使用時等量の2-メルカプトエタノール(20mM)を添加して4℃で一晩反応させ、その後、sorter bufferにて100μg/mlに調整した(終濃度20μg/ml、4℃で1時間反応)。このGFP-MAGE1を用いて、実施例1で作製したEBV-B細胞の免疫組織染色を行い、蛍光顕微鏡にてGFP-MAGE1の結合した細胞の検出を行った。MEL-018Pre由来のEBV-B細胞を染色した結果、細胞体全体が淡く染色されたが、染色された細胞の割合は、かなり少数(IgG+B細胞のうち約2%)であった。また、図10に示すように、強拡大(×200)した場合、小斑状に陽性に染色された、抗MAGE1抗体を発現する思われるB細胞が確認された。
[EBV-B細胞の単一細胞ソーティング]
 GFP-MAGE1/PE-抗hIgGのEBV-B細胞を、1細胞ずつ分取する目的で、単一細胞(シングルセル)ソーティングを行った。ソーティングは、シングルセルソーティング用モジュールを装着したBD FACSAriaTMセルソーター(BD Science社製)を用いた。ソーティングには、100μmのノズルを用い、sort setup: low , flow rate 5000 events/sec, Drop delay 25.73の条件で、96ウェルプレート(MicroAmp(R) Optical 96-ウェル Reaction Plate;Applied Biosystem社製)に1細胞ずつ分取した。
[単一細胞RT-PCRクローニング]
 実施例4により1細胞ずつ分取したEBV-B細胞の、単一細胞RT-PCRクローニングを行った。クローニングの実験概要は図3に示す。また、クローニング様のプライマーとして、ヒトIgG重鎖遺伝子、ヒトIgG軽鎖κ遺伝子、又はヒトIgG軽鎖λ遺伝子の各領域に特異的なPCR用プライマーを設計した。ヒトIgG重鎖遺伝子に特異的なプライマー塩基配列を配列番号1~26(配列番号1~24がフォワードプライマー、配列番号25及び26がリバースプライマー)に、ヒトIgG軽鎖κ遺伝子に特異的なプライマー塩基配列を配列番号27~38(配列番号27~37がフォワードプライマー、配列番号38がリバースプライマー)に、ヒトIgG軽鎖λ遺伝子に特異的なプライマー塩基配列を配列番号39~63(配列番号39~61がフォワードプライマー、配列番号62及び63がリバースプライマー)にそれぞれ示す。また、各プライマーミックスにより増幅される遺伝子断片の大きさは、ヒトIgG重鎖遺伝子が約1400bp、ヒトIgG軽鎖κ遺伝子が約700bp、ヒトIgG軽鎖λ遺伝子が約700bpである。
 まず、分取された1細胞からのRNA抽出及び逆転写反応によるcDNAの合成を行った。合成には、SuperScriptTMIII
CellsDirect cDNASynthesisSystem(cat.18080-300、Invitrogen社製)を用いた。10μlのResuspensionBuffer
及び1μlのLysis Enhancer solutionを加え、サーマルサイクラーを用いて75℃で10分間処理した。続いて、5μlのDNaseI(1U/μl)及び1.6μlの10xDNaseIBufferを加え、ピペッティングにより混和し、室温で5分間インキュベートした。プレートを軽く遠心し、1.2μlの25mM EDTAを加え、サーマルサイクラーを用いて70℃で5分間インキュベートした。その後、プレートを軽く遠心し、氷上で、各ウェルに2μlの50mM Oligo(dT)20及び1μlの10mM
dNTP Mixを加えた。ピペッティングによる混和の後、サーマルサイクラーを用いて70℃で5分間処理し、氷上で2分間インキュベートした。プレートを軽く遠心し、再び氷上で、6μlの5xRT Buffer、1μlのRNaseOUTTM(40U/μl)、1μlのSuperScriptTMIII RT(200U/μl)、及び1μlの0.1M
DTTを加え、ピペッティングにより混和した。プレートを軽く遠心し、サーマルサイクラーを用いて50℃で50分間、85℃で5分間インキュベートし、cDNAを合成した。
 次に、クローニング用プライマーを用いて、1細胞から調製したcDNAのPCRを行った。cDNAを、1サンプルにつき4本のPCR用0.2mlチューブ(#1~#4)に1μlずつ分注し、各チューブに、1μlの10xPCR bufferII(Mg)、1μlの2.5mM dNTP Mix、5.9μlのdHO、0.1μlのLA-Taqポリメラーゼ(TaKaRa LA-Taq(R) Hot Start
version;タカラバイオ社製)、0.5μlのフォワードプライマー(10μM)、及び0.5μlのリバースプライマー(10μM)を加え、サーマルサイクラー(GeneAmpR PCR
System9700;Applied Biosystems社製)を用いてPCR反応を行った。チューブ#1は内部標準であるβ-アクチン遺伝子、チューブ#2はヒトIgG重鎖領域遺伝子、チューブ#3はヒトIgG軽鎖κ領域遺伝子、チューブ#4はヒトIgG軽鎖λ領域遺伝子のPCR反応に用いた。
 各チューブのPCR反応条件を以下に示す。
 チューブ#1:94℃・5分間、(94℃・15秒、68℃・2分間)x55サイクル、72℃・5分間
 チューブ#2及び#3:94℃・5分間、(94℃・15秒、68℃・1分間)x55サイクル、72℃・5分間
 チューブ#4:94℃・5分間、(94℃・15秒、60℃・30秒)x40サイクル、72℃・5分間
 PCR反応後、得られた反応液を、1.5%のアガロースゲルを用いて電気泳動し、エチヂウムブロマイド染色によりバンドを確認した。ヒトIgG領域遺伝子領域増幅用プライマーセットにより増幅されたPCR産物のバンドの大きさを確認し、各プライマーセットにつき2サンプルずつ、DNAをゲルから抽出精製した。具体的には、メスでPCR反応チューブ#2、#3、及び#4の増幅バンド部分のゲルを切り出し、1.5mlサンプルチューブに移し、切り出したゲルを秤量した。1mg=1μlと換算し、3倍量のBufferQX1及び17.2μlのQIAEXIISuspensionを加えた。Vortexにてよく混和してから、予め50℃に設定しておいたヒートブロック上に置き、2分ごとにVortexにかけ、合計10分間処理した。次いで、室温・10000×gで1分間遠心を行い、上清を取り除いた。再度、沈殿に500μlのBufferQX1を加えた後、vortexにて混和し、室温・10000×gで1分間遠心を行った。上清を取り除き、予めエタノールを加えておいた500μlのBufferPEを沈殿に加えてからvortexにて混和し、室温・10000×gで1分間遠心後、上清を取り除いた。再度、10000×gを沈殿に加えてからvortexにて混和し、室温・10000×gで1分間遠心を行い、上清を取り除いた。サンプルチューブをクリーンベンチ内で蓋を開けたまま15分間置き、沈殿を乾燥させた。沈殿に20μlのBufferPE(MinEluteTM Reaction
Cleanup Kit;QIAGEN社製)を加えてvortexにて混和し、室温に5分間置いた。室温・10000×gで1分間遠心を行い、上清を別の1.5mlサンプルチューブに回収し、沈殿に再び20μlのBufferPEを加えた。Vortexにて混和した後、室温に5分間置き、室温・10000×gで1分間遠心を行い、先に回収した上清に加えた。
 計40μlの回収液に対して、300μlのBufferERC(MinEluteTM Reaction Cleanup Kit;QIAGE社製)を加え、vortexにて混和した。混和溶液が黄色であることを確認し、2mlcollection tube(MinEluteTM
Reaction Cleanup Kit;QIAGE社製)にセットしたMinElute column(MinEluteTM
Reaction Cleanup Kit;QIAGE社製)の中に全量をアプライし、室温・10000×gで1分間遠心を行った。流出液を廃棄してから、カラムを再びcollection
tubeに戻し、予めエタノールを加えておい750μlのBufferPEを加え、室温・10000×gで1分間遠心を行った。流出液を廃棄してから、カラムを再度collection
tubeに戻し、室温・22000×gで1分間遠心を行った。カラムの淵についている液滴をマイクロピペットで取り除き、カラムを新しい1.5mlサンプルチューブにセットした。10μlのBuffer EB(MinEluteTM Reaction
Cleanup Kit;QIAGEN社製)を加え、室温で1分間静置した後、室温・10000×gで1分間遠心を行い、精製されたDNA断片を回収した。
 PCR断片を、pCR4-TOPO-TA Plasmid vectorに挿入することによりプラスミドDNAを作製した。DNA断片1μlのSalt Solution ( TOPO TA CloningRKit
for Sequencing;Invitrogen社製)及び1μlのTOPO(R)Vector( TOPO TA CloningRKitfor
Sequencin;Invitrogen社製)を氷上で混和した。室温で5分間反応させた後、再び氷上に戻しTransformationに使用した。プラスミドDNAを、DH5αコンピテントセル(Competent high DH5α;TOYOBO社製)に導入した。融解したDH5αコンピテントセル20μlに、プラスミドDNAを2μlずつ加え、チップの先で穏やかに混和した。氷上に30分間置いた後、ヒートブロックを用いて42℃で30秒間処理をした。再び、氷上に2分間置き冷却した後、250μlのSOC培地を加え、37℃で1時間振盪培養を行った。振盪培養を行っている間に、50μg/mlのカナマイシンを含む2×YT固形培地に0.1M IPTG(Isopropyl β-D-1-thiogalactopyranoside;SIGMA社製)及び0.1MX-Gal(5-Bromo-4-chloro-3-indolyl
β-D-galactopyranoside;SIGMA社製)を50μlずつ塗付した。作製した固形培地に培養したサンプル100μlを播き、37℃で一晩培養した。固定培地にコロニーが出現していることを確認した後、4℃に5時間静置した。白いコロニーをマークしてからチップの先を使って軽くつつき、50μlの滅菌水の入った96ウェルプレートに入れて軽くゆすいだ。サーマルサイクラーを用いて95℃で5分間処理をした後に、軽く遠心を行い、2μlを新しいプレートのウェルに入れた。続いて、1μlの10x PCR bufferII(Mg)、0.8μlの2.5mM dNTP Mix、6.11μlのdHO、0.05μlのLA-Taqポリメラーゼ(TaKaRa LA-Taq(R) Hot Start
version;タカラバイオ社製)、0.02μlの100μM
M13フォワードプライマー、及び0.02μlの100μM M13リバースプライマーを加え、プレートを軽く遠心した。サーマルサイクラーGeneAmp(R) PCRSystem9700を用いて、94℃で1分間の熱変性の後、94℃で10秒、50℃で10秒、及び68℃で2分間の反応を35サイクル繰り返す反応条件でのPCR反応を行った。1.5%アガロースゲルを用いた電気泳動により、各PCR反応液のPCR産物(チューブ#2:1.6Kbp、チューブ#3:0.9Kbp、チューブ#4:0.9Kbp)を確認した。
 ベクターへのPCR増幅断片の挿入が確認されたコロニーを選び、3.5mlの50μg/mlのカナマイシンを含む2×YT液体培地中で、37℃で一晩振盪培養を行った。培養したサンプル1.8mlを2mlサンプルチューブに入れ、1000×gで10分間遠心した。上清を廃棄し、沈殿に対して250μlのBuffer
A1(NucleoSpin(R)Multi-8 Plasmid;MACHEREY-NAGEL社製)を加えvortexして混和した。続いて、250μlのBuffer A2を加え転倒混和してから室温で5分間置き、細胞を溶解させた。350μlのBuffer
A3を加え転倒混和し、4℃・14000×gで10分間遠心をした。上清をNucleoVac vacuum manifoldにセットしたNucleoSipn(R)
Plasmid Binding Stripsに移した。400mbarで1分間吸引して溶液をsilica
membraneを透過させ、DNAを結合させた。600mlのBuffer AWを加え400mbarで1分間吸引して溶液を透過させた後、900mlのBuffer
A4を加えて、400mbarで1分間吸引して溶液を透過させ、silica membraneを洗浄した。再度、900mlのBuffer
A4を加えて、400mbarで1分間吸引して溶液を透過させ、silica membraneを洗浄した。600mbarで15分間吸引し、silica membraneを乾燥させた。NucleoVac vcuum
manifoldに回収用のNucleoSipnR MN Tube Stripsを付け替え、membraneに120μlのBuffer AEを加え1分間置き、400mbarで1分間吸引してプラスミドDNAを回収した。回収したプラスミドDNA液3μlに、1μlの10×H Buffer、5μlのdHO、及び1μlのEcoRI(TOYOBO社製)加え、37℃で1時間処理した。1.5%アガロースゲルを用いた電気泳動により、酵素反応液中のDNA消化断片(チューブ#2:1.4Kbp、チューブ#3:0.7Kbp、チューブ#4:0.7Kbp)を確認し、各プラスミドサンプルについて吸光度を測定してDNA濃度を算出し、100μg/μlのプラスミドDNA希釈液を調製した。
 得られたクローンの配列を、Cycle Sequencing法により決定した。氷上に置いた96ウェルプレートに実施例11で調製したDNA希釈液をチューブ#2については3ウェル(#2-1、#2-2、#2-3)に、チューブ#3及び#4については2ウェル(#3-1、#3-2及び#4-1、#4-2)にそれぞれ6μlずつ加えた。続いて、各ウェルに、3μlの5×Sequencing Buffer (BigDyeRTerminator
v3.1Cycle Sequencing Kit;Applied Biosystem社製)、2μlのBigDyeTerminator
Pre mix(BigDyeRTerminatorv3.1 Cycle
Sequencing Kit;Applied Biosystem社製)、8μlのdHO、1μlの3.2μM プライマーを加え、軽く遠心した。
 各サンプルに用いたプライマーは、サンプル#2-1:M13 リバースプライマー、サンプル#2-2:M13 フォワードプライマー、サンプル#2-3:HuIGCH-seq001、サンプル#3-1:M13
リバースプライマー、サンプル#3-2:M13 フォワードプライマー、サンプル#4-1:M13 リバースプライマー、サンプル#4-2:M13 フォワードプライマーである。サーマルサイクラーGeneAmpR PCR System9700を用いて、94℃で1分間の熱変性の後、94℃で10秒、50℃で5秒、及び68℃で4分間の反応を25サイクル繰り返す反応条件でのPCR反応を行った。反応が終わるまでに、MultiScreenTMHV-plate(MultiScreenRHV-plate;MILLIPORE社製)のウェルにSephadex G-50(SephadexTMG-50 Superfine;GE
Healthcare社製)、及び滅菌水300μlを加え、室温で2時間静置した。十分に水和させた後、室温・1100×gで5分間遠心して、流出液を廃棄した。MultiscreenTM
HV-plateに新しい96ウェルプレート(ASSAY PLATE 96 well round bottom;IWAKI社製)を付け替え、反応液全量を各ウェルにアプライし、室温、1100×gで5分間遠心してサンプルを回収した。
 精製されたサンプルを全量シークエンサー用の96ウェルプレート(MicroAmpROptical
96- well Reaction Plate;Applied Biosystem社製)に移し、さらに元のウェルに滅菌水17.2μlを加え、ウェルを洗いながら全量を同一のサンプルに加えた。x3130/Genetic
Analyzer(Applied Biosystem社製)を用いて、各サンプルに付いて6~8クローンずつ配列を読み、得られた配列のMultiple alignment解析を行った。クローン間で差があった塩基については、その塩基を有するクローンが多いほうを正しい配列であるとし、各サンプルの塩基配列を決定した。
 上記のクローニングの結果、表1に示すように、5症例(MEL-008、MEL-014、MEL-016、MEL-018Pre、MEL-018Post)のメラノーマ患者由来のEBV-B細胞株(1細胞レベル)よりIgG抗体遺伝子12クローンを単離することに成功した。そのうち5クローンについて、一本鎖組み換え抗体の発現を確認しており、現在精製段階にある。 
Figure JPOXMLDOC01-appb-T000001
[一本鎖組換え抗体scFvタンパクの発現/精製と機能解析]
 MEL-018scFvの発現:実施例5でクローニングされたIgG遺伝子のうち、#008(MEL018Pre)の遺伝子配列を用い、IgH鎖およびIgL鎖の可変領域の遺伝子VH、VLを一本鎖抗体遺伝子発現用プラスミド(pOZ1、pUC119由来自作ベクター)に組み込んでMEL-018 scFv(一本鎖組換え抗体)を大腸菌にて発現させた (図4)。抗体遺伝子のC末端には、FLAG
tagとHis tagを連結させ、flagはタンパクの検出に、His tagは精製にそれぞれ利用した。大腸菌の培養法を以下に具体的に記載する。2xYT培地(アンピシリン)、37℃,250rpm,一晩全培養を行い、2xYT培地(アンピシリン)、37℃,250rpm,4時間本培養を行った。その後、IPTG(1mM)を添加して発現誘導を行い、さらに20時間培養した。培養の菌を遠心し(4℃,8000rpm, 10分間)集菌した後、細胞破砕し(BugBuster protein extraction reagent10ml、Benzonasenuclease1μl;Novagen社にて25℃、30分処理)、不溶性画分の遠心除去(4℃、15000rpm、30分間)を行い、上清(大腸菌可溶性画分)を採取した。
 MEL-018 scFv抗体の精製:His tagを標識に、Ni Sepharoseカラムを用いた金属キレートアフィニティー精製を行った。次に、陰イオン交換クロマトグラフィー(HiTrap QFFカラム)により2段階の精製を実施した。さらに、最終的に精製したMEL-018scFv抗体の特異性を評価する目的で、GST標識組換えMAGE1タンパク(543aa,59.74kDa)を抗原としてウエスタンブロッティングを行った。精製後の1次抗体(MEL-018 scFv)を1000倍希釈し、2時間反応させた後、2次抗体(anti-FLAG
M2モノクローナル抗体)を2000倍希釈し、2時間反応させた。対照コントロール抗体として、マウス抗ヒトMAGE1モノクローナル抗体(Abnova社)を使用した。ECLplus試薬(GE Healthcare社製)にて10分間反応させ、シグナルを検出した。
 以上の実験の結果を図11に示す。MEL-018scFv抗体を含む可溶性画分の金属キレートアフィニテイー精製の結果を示す。溶出Fr.2~4に30kdサイズの抗体タンパクの回収が確認された。また、図12に示すように、第2段階として陰イオン交換クロマトグラフィーを実施した結果、溶出Fr.6~9 にscFv抗体が回収された。さらに、図13に示すように、ウエスタンブロッティングの結果、scFv抗体はマウス抗体と同様に組換えMAGE1タンパクを特異的に認識することが確認できた(60Kd付近のバンド)。
[EBV-B細胞の1細胞レベルでのIgG抗体遺伝子の定量]
 リアルタイムPCR法により、不死化B細胞の1細胞レベルでのIgG抗体遺伝子の定量を行った。IgG抗体のFcセグメントの保存領域を標的にプローブ(TaqMan)プライマーを設計し、検量線作成用にFcセグメントの部分配列のmRNAをin
vitroにて合成した(図5~7)。同一メラノーマ症例においてCD19マイクロビーズで分離した通常のB細胞と不死化したB細胞株それぞれにつき定量リアルタイムPCR法を実施し、1細胞あたりのβ-アクチンとIgG遺伝子コピー数を測定し、比較を行った。
 以上のリアルタイムPCR法による定量の結果を図14~16に示す。In vitro合成したβ-アクチンおよびヒトIgG mRNAを段階希釈し、PCR増幅を行うことによりそれぞれのコピー数定量に使用する検量線を作成した(図14)。この検量線から、このリアルタイムPCR系における、1細胞あたりの定量可能なコピー数は、β-アクチンが100~5,000コピーおよびヒトIgGが、10~250コピーであった。メラノーマ患者由来のEB-B細胞6株を用いて、リアルタイムPCR解析を行った結果、β-アクチン遺伝子コピー数は、不死化B細胞では平均110.7コピー/cellであり、通常の
B細胞では増幅されなかったが、10細胞からの増幅データから換算すると10コピー前後と推測された(図15)。一方、EB-B細胞のIgG抗体遺伝子のコピー数は、平均265.7コピー/cellであるのに対し、通常のB細胞では増幅・検出されなかった。このため同様に10細胞のデータから換算すると、通常のB細胞では平均23.7個/cellと推測された。以上の結果よりEB-B細胞におけるIgG抗体遺伝子のコピー数は、通常のB細胞の10倍以上に増幅されていることが確認された(図16)。
[不死化していないB細胞を用いた1細胞レベルの抗体遺伝子解析]
 がん患者及び健常人から血清を採取し、血清中の抗CMVpp65抗原特異的IgG抗体価を測定した。結果を図17に示す。最も抗体価の高かったMEL-SCC007由来のB細胞を以降の抗体遺伝子同定に使用した。
 続いて、GST標識CMVpp65抗原タンパク質、Alexa488標識抗GST抗体、及び、PE標識抗ヒトIgG抗体を用いてB細胞の染色を行った(図18)。具体的には、まず、回収したB細胞を0.5mlの2%子牛血清及び0.1%アジ化ナトリウムを含むリン酸緩衝生理食塩水(FCS-PBS)を用いて3回洗浄し(200~400xg、4分、4℃)、1.5mlのチューブに5x10個の細胞を分注しFCS-PBSを用いて20μl容量に合わせた。分注された細胞に100ng/20μlに調整されたGST標識CMVpp65抗原タンパク質を20μlずつ加え、遮光下、4℃で30分反応させた。0.5mlのFCS-PBSを用いて3回洗浄し(400xg、2分、4℃)、10μg/mlのAlexa488標識ウサギ抗GSTポリクローナル抗体(インビトロジェン社製)を20μl加え、遮光下、4℃で30分反応させた。次に、PE標識抗ヒトイムノグロブリン抗体(BD社製)、APC標識抗ヒトCD19抗体を5μlずつ加え遮光下、4℃でさらに30分反応させ、0.5mlのFCS-PBSを用いて3回洗浄した後(400xg、2分、4℃)、0.5mlのFCS-PBSに浮遊させ、フローサイトメーター取込み用の5mlチューブに移した。細胞を取り込むまでの間は氷上、遮光下で保存した。また、必要に応じて、死細胞を区別するために10μg/mlのヨウ化プロピジウムを10μl加えた。FACS-ariaを用いてAPC標識抗体、Alexa488標識抗体、及びPE標識抗体の三種類で染まった細胞を96ウェルプレートの各ウェルに1細胞ずつ分注した。このようにして、CMV抗原/IgG抗体の両方に染色されたB細胞は、CD19陽性B細胞全体の0.04%であり、FACS-ariaを用いて単一細胞ソーティングを行った。結果を図19に示す。CMVpp65抗原タンパク100ng/10細胞で染色した場合、CMVpp65/IgG細胞の比率は、0.04%(GSTタンパクのみの場合は、0.01%)であった。RT-PCR用に1細胞ごとに捕獲した細胞は、全部で57個であった。
[細胞マイクロアレイを用いたB細胞の染色同定と捕獲]
 実施例8と同様に、CMVpp65に対する血清抗体価の上昇している症例のB細胞を使用し、細胞マイクロアレイを用いたCVMpp65抗原陽性B細胞の染色同定と捕獲を行った(図20)。抗CD3、CD14、CD56抗体の組み合わせによるnegative selection(AutoMACS;Miltenyi社製)によりB細胞を選別した。0.5~1μMのFluo-4試薬を37℃で40分反応させB細胞を染色した。Fluo-4にて染色されたB細胞をマイクロチップ上に添加して15分間放置し、1細胞ごと各ウェルに入るようにした。バックグラウンド染色を行なうためにAlexa555標識ウサギ抗GSTポリクローナル抗体を添加して4℃で15分間反応させた。Alexa555とFluo-4の画像データを高感度スキャナー(SC@Scanner、エスシーワールド社製)を用いて取得した。GST標識CMVpp65抗原タンパク質を添加し、4℃で15分間反応させ、再度Alexa555標識ウサギ抗GSTポリクローナル抗体を添加し、4℃で15分間反応させた。ここで、Alexa555とFluo-4の画像データを取得した。得られた画像データから解析専用ソフトウェア(TIC-ChipAnalysis、エスシーワールド社製)を用いて解析し、CMVpp65抗原(Alexa555)/Fluo-4でともに染色されたB細胞を同定した。自動1細胞捕獲装置(Cell Porter mini;スギノマシン社製)を用いてPCRチューブ内に1細胞ずつ分取した。代表的な結果を図21に示す。細胞チップ上の24万個のCD19Bリンパ球の中でCMVpp65(Alexa555)/Fluo-4細胞は20個確認され、そのうち抗原の添加により細胞内カルシウムの増加が見られた細胞が5個であった。RT-PCR用に1細胞ごとに捕獲した細胞は全部で67個であった。
[単一細胞RT-PCRクローニング]
 次に、単一細胞RT-PCRクローニングを行った(図22、25)。ここでは、上述の実施例5と比較して以下の4点を改良して単一細胞RT-PCRクローニングを行った(図22)。
1.96ウェルプレートの各ウェル又はPCR用0.2mlチューブに、キャリアーとしてYeast transfer
RNAを含む5μlの滅菌水を加え、分取した生細胞を受けるようにした。
2.細胞が滅菌水に触れた瞬間に浸透圧によって細胞が破裂し、内容物が放出されるので細胞溶解の処理は不要であると考え、DNase処理及び細胞溶解処理を省略した。
3.合成したcDNA液6μlを使ってIGH-PCRを行った。実施例5の方法では、1μl/トータルPCR反応液30μlの条件でしかPCR反応に持ち込めなかったので、今回の系(6μl/トータルPCR反応液12μl)ではこれまでより検出感度が高くなることが期待できた。
4.特異性・増幅効率を改善するためにNested PCR法を採用した。1st-PCR,2nd-PCR共にEx-taq HotStart verを利用し、1st-PCRでは各レパトワに対応するプライマーは、実施例5と同様のものを用いた。
 単一細胞を直接ターゲットとした逆転写反応は以下のように行った。96ウェルプレート(MicroAmp Optical 96-ウェル Reaction Plate、Applied Biosystem社製)、或いはPCR用0.2mlチューブに、キャリアーであるYeast Transfer RNA(Ambion社製)とRNaseOUTTM(Invitrogen社製)を添加した滅菌水5μlを入れておき、FACS或いはCell porter miniを用いてsortした細胞を1細胞ずつ分取した。細胞を受けた96ウェルプレート或いは0.2mlPCRチューブを軽く遠心して氷上におき、各ウェルに、10xPCRbufferII(0.80μl)、25mM MgCl(0.48μl)0.1M DTT(0.40μl)、40U/μl RNaseOUTTM(0.16μl)、50mM
Oligo(dT)20(Invitrogen社製)(0.16μl)、10mM dNTPmix(0.16μl)、及び、dHO(0.84μl)を加え、サーマルサイクラー(GeneAmpR PCR
System9700;Applied Biosystems社製)を用いて70℃で90秒間処理した。熱処理後は、速やかに96ウェルプレート、或いは0.2ml PCRtubeを氷上に移し、2分間静置した。96ウェルプレート、或いは0.2ml PCRチューブを軽く遠心してから再び氷上に戻し、RNaseOUTTM(40U/μl)、0.05μlのSuperScriptTMIII RT(200U/μl;Invitrogen社製)、0.40μl及び1.35μlのdHOを各ウェルに加えてピペッティングで混和した。96ウェルプレートを軽く遠心してから、サーマルサイクラーを用いて50℃で50分間、70℃で10分間処理し、DNAを合成した。さらに、10xPCRbufferII(0.20μl)、MgCl(0.12μl)、RNaseH(0.30μl;Invitrogen社製)、及び、dHO(1.38μl)を加えてよく混合し、37℃で15分間、70℃で10分間処理をし、12μl のcDNA液を調製した。
[ヒト抗体重鎖領域遺伝子(IGH)の1stPCR]
 合成したcDNA液を鋳型として、ヒト抗体重鎖領域遺伝子(IGH)の1stPCRを以下のように行った。PCR用0.2mlチューブを用意し氷上に置き、実施例9で調製したcDNA液を6μlずつ各PCR用0.2mlチューブに入れた。続いて、10xExTaqbufferII(2.0μl)、2.5mM dNTPMix(2.0μl)、dHO(13.8μl)、Ex-TaqHotStartversion(0.2μl;タカラバイオ社製)、10μMフォワードプライマーmix[HuIGHV_1~24](1.0μl)、10μMリバースプライマーmix[HuIGHC_1~2](1.0μl)を加え、軽く遠心した。ここで使用したヒトIgG重鎖遺伝子に特異的なプライマーの塩基配列は配列番号1~26にそれぞれ示される。サーマルサイクラー(GeneAmpR PCR System9700)にPCR用0.2mlチューブをセットし、(95℃・15秒間、68℃・1分間、72℃・2分間)x30サイクル、72℃・5分間のプログラムで反応を行った。
[ヒト抗体重鎖領域遺伝子(IGH)の2ndPCR]
 上記の1stPCRにより得られたPCR産物を鋳型として、さらに2ndPCRを行った。PCR用0.2mlチューブを氷上に置き、1stPCRの反応産物を0.5μlずつ加えた。続いて、10xExTaqbufferII(2.0μl)、2.5mM
dNTPMix(2.0μl)、dHO(13.8μl)、Ex-TaqHot Start version(0.2μl)、10μMフォワードプライマーmix[M13-HuVH_201~206](1.0μl)、及び、10μMリバースプライマー[M13-HuCH_401](1.0μl)を加えて軽く遠心した。上記のプライマー(M13-HuVH_201~206及びM13-HuCH_401)の塩基配列は図28及び配列番号65~70にそれぞれ示す。サーマルサイクラーにPCR用0.2mlチューブをセットし、(95℃・15秒間、68℃・1分間、72℃・1分間)x50サイクル、72℃・5分間のプログラムで反応を行った。
[PCR産物からのDNA抽出]
 以上のようにして得られた2ndPCR反応液を電気泳動により分画して目的のPCR断片の精製を行った。2ndPCR反応液を1.5%アガロースゲルを用いて電気泳動を行ってバンドを分離し、電気泳動後にエチヂウムブロマイド染色したゲルについて、増幅をUVで確認した後に増幅バンド部分のゲルを切り出し、1.5mlサンプルチューブに移した。IGHの増幅が確認出来たクローンについては、以下の実施例11に示すヒト抗体軽鎖κ及びλ領域遺伝子のPCR増幅を行い、ヒト抗体重鎖領域とヒト抗体軽鎖κ又はλ領域遺伝子の両方の増幅が確認できたサンプルのPCR増幅バンドについて精製した。具体的には、切り出したゲルを秤量して1mg=1μlと換算し、ゲルの3倍量に当たるBufferQX1(QIAEXIIRGelExtractionKit;QIAGEN社製)とQIAEXIISuspension(MinEluteTMReactionCleanupKit;QIAGEN社製)17.2μlを加え、Vortexを用いてよく混和した。予め50℃に設定しておいたヒートブロック上に置き、2分ごとにVortexにかけ、合計10分間処理してゲルを完全に溶解させた。溶液が黄色であることを確認し、室温・10000×gで1分間遠心を行い、上清を取り除いた。再度、沈殿にBufferQX1を500μl加えてからvortexにて混和し、室温、10000×gで1分間遠心を行った。上清を取り除いた後、500μlのBufferPE(QIAEXIIRGelExtractionKit;QIAGEN社製)を加え、vortexにて混和した。室温、10000×gで1分間遠心を行い、上清を取り除き、再度、BufferPE500μlを沈殿に加えてからvortexにて混和し、室温、10000×gで1分間遠心を行った。上清を取り除いた後、サンプルチューブをクリーンベンチ内で蓋を開けたまま15分間置き、沈殿を乾燥させた。沈殿にBufferEB(MinEluteTMReactionCleanupKit;QIAGEN社製)20μlを加えてvortexにて混和し、室温に5分間置いた。室温、10000×gで1分間遠心を行い、上清を別の1.5mlサンプルチューブに回収し、沈殿に再びBufferEB20μlを加えた。Vortexにて混和した後室温に5分間置き、室温・10000×gで1分間遠心を行い、上清を同じチューブに回収した。計40μlの回収液に対して、BufferERC(MinEluteTMReactionCleanupKit;QIAGEN社製)300μlを加えVortexにて混和した。2mlcollectiontube(MinEluteTMReactionCleanupKit;QIAGEN社製)にセットしたMinElutecolumn(MinEluteTMReactionCleanupKit;QIAGEN社製)の中に全量をアプライし、室温・10000×gで1分間遠心を行った。流出液を廃棄してから、カラムを再びcollection
tubeに戻し、予めエタノールを加えておいたBufferPE(MinEluteTMReactionCleanupKit;QIAGEN社製)750μlを加え、室温、10000×gで1分間遠心を行った。流出液を廃棄してから、カラムを再度collection tubeに戻し、室温・22000×gで1分間遠心を行った。カラムの淵についている液滴をマイクロピペットで取り除き、カラムを新しい1.5mlサンプルチューブにセットした。BufferEB(MinEluteTMReactionCleanupKit;QIAGEN社製))10μlを加え1分間室温に置いてから、室温、10000×gで1分間遠心を行い、精製されたDNA断片を回収した。
 [ヒト抗体軽鎖κ及びλ領域遺伝子のPCR増幅実験]
 PCR用0.2mlチューブを、1サンプルにつき2本(#1、#2)用意し氷上に置き、実施例10で調製したcDNA液を1μlずつ各PCR用0.2mlチューブに入れた。続いて、10xPCRbufferII(Mg)(1μl)、2.5mM dNTPMix(1μl)、dHO(5.9μl)、LA-TaqHotStartversion(TaKaRa LA-TaqR Hot Start version;タカラバイオ社製)(0.1μl)、10μMフォワードプライマー(0.5μl)、及び10μMリバースプライマー(0.5μl)を加え、軽く遠心した。#1チューブには軽鎖κ領域増幅用プライマーであるHuIGKV_1~11mix及びHuIGKC_1(配列番号27~38)を、#2チューブには軽鎖λ領域増幅用であるHuIGLV_1~23mix及びHuIGLC_1~2mix(配列番号39~64)を使用した。サーマルサイクラーにPCR用0.2mlチューブをセットし、95℃・5分間、(95℃・30秒間、68℃・1分間、72℃・5分間)x55サイクルのプログラムで反応を行った。PCR終了後、実施例11と同様の方法で、PCR増幅を確認し、同一のクローン由来のIGHとIGK/Lがセットで増幅が確認できたサンプルについてDNA断片の精製を行った。
 以上のようなnested PCR法を行うことにより、Single-Cell RT-PCR法の感度の増加することが明らかとなった。図22に示す技術改良を行なう前後での1細胞由来の抗体遺伝子のPCR法の増幅効率を比較した結果を図23に示す。細胞はMEL-SCC007由来のB細胞であり、FACSAriaによりsingle cell sortingされたCMVpp65/IgG細胞である。改良前の方法では、用いた7個の細胞のいずれにおいても増幅は確認されなかったが、実施例10に示す新法では12個中10個の細胞でIGH抗体遺伝子の増幅に成功しており、効率の改善が確認された。さらに、IGHの増幅に成功した細胞については、同一のcDNAより抗体軽鎖領域遺伝子の増幅をあわせて行った(図25)。同一のB細胞で抗体重鎖領域遺伝子(IGH)及び抗体軽鎖領域遺伝子(IGL)の両方の遺伝子が増幅された細胞を選択し、以下の実験に用いた。
[IGHレパトワの確認]
 続いて、得られたヒト抗体重鎖遺伝子(IGH)DNA断片の塩基配列をPCR-Direct Sequence法により確認し、クローニングサンプルを選択した。具体的には、実施例11で精製したIGH2ndPCR断片を、氷上に置いた96ウェルプレートの2のウェル(#1、#2)にそれぞれ2μlずつ加えた。さらに、5×SequencingBuffer(3μl)、BigDyeRTerminatorPremix(BigDyeRTerminator v3.1 Cycle Sequencing Kit;Applied Biosystem社製)(2μl)、dHO(12μl)、及び、3.2μMプライマー(1μl)を加え軽く遠心した。サンプル#1にはM13リバースプライマーを、サンプル#2にはM13フォワードプライマーを使用した。サーマルサイクラーにPCR用0.2mlチューブをセットし、95℃・1分間、(95℃・10秒間、50℃・5秒間、68℃・4分間)x24サイクルのプログラムで反応を行った。反応が終わるまでに、MultiScreenTMHV-plate(MILLIPORE社製)のウェルにSephadex G-50(GE Healthcare社製)と滅菌水300μlを加え、室温で2間静置した。十分に水和させた後に、室温、1100×gで5分間遠心して流出液を廃棄した。MultiscreenTMHV-plateに新しい96ウェル Assay plate(IWAKI社製)を付け替え、先に反応させたサンプルを各ウェルに全量アプライし、室温、1100×gで5分間遠心してサンプルを回収した。精製されたサンプルを全量シークエンサー用の96ウェルプレートに移した。さらに元のウェルに滅菌水17.2μlを加え、ウェルを洗いながら全量を96ウェルプレートに移し、DNAシークエンサー(x3130/Genetic Analyzer;Applied Biosystem社製)を用いて配列を決定した。配列を決定した後にV-QUEST(http://www.imgt.org/IMGT_vquest/share/textes/)を利用して登録されているレパトワとのアラインメント解析を行い、クローンのIGHレパトワ及びCDR-3配列を決定した。以上のようにして決定されたIGHレパトワ及びCDR-3配列の情報を基にして、重複するIGHレパトワとCDR-3配列を持つクローンを除外し、残りのクローンから以下に示す方法でクローニングを行った。
[クローニング]
 まず、TOPOR TA PCRクローニングキット・シークエンシング用(Invitrogen社製)を使用してPCR断片とpCR4.0-TA Plasmid vectorを連結させた。具体的には、500μlサンプルチューブを氷上に置き、実施例10で得られたDNA断片4μlと1μlのSalt Solution、1μlのPlasmid vectorを加えてピペッティングにより混和した。室温で5分間反応させ、再び氷上に戻しトランスフォーメーションに使用した。DH5α Competent cell(TOYOBO社製)を氷上で融解し、20μlずつ別のサンプルチューブに分注した。ここに、上記のPlasmid vector反応液を2μlずつ加え、チップの先で穏やかに混和した。氷上に30分間置いた後、ヒートブロックを用いて42℃で30秒間処理をした。氷上に2分間置き冷却した後、250μlのSOC mediumを加え、37℃で1時間振盪培養を行った。培養したサンプル100μlを、0.1M IPTG(SIGMA社製)及び0.1M X-Gal(SIGMA社製)を50μlずつ塗付した2xYT/Kmプレートにまき、37℃でオーバーナイト培養した。
 白色コロニーを選択して3.5mlの2xYT/Km液体培地に植菌し、37℃でオーバーナイト振盪培養を行った。培養後の培養液1.8mlを2mlサンプルチューブに入れ、1000×gで10分間遠心した。上清を廃棄し、沈殿に対して250μlのBufferA1(NucleoSpinR Multi-8 Plasmid;MACHEREY-NAGEL社製)を加え、vortexにて混和した。さらに、250μlのBufferA2(NucleoSpinR Multi-8
Plasmid;MACHEREY-NAGEL社製)を加え、転倒混和してから室温で5分間置き、細胞を溶解させた。350μlのBufferA3(NucleoSpinR Multi-8
Plasmid;MACHEREY-NAGEL社製)を加えて後転倒混和し、4℃、14000×gで10分間遠心をした。上清を回収し、NucleoVac vacuum manifoldにセットしたNucleoSipnR
Plasmid Binding Strips(NucleoSpinR Multi-8
Plasmid;MACHEREY-NAGEL社製)に移した。400mbarで1分間吸引して、silica membraneにDNAを結合させた。600mlのBufferAW(NucleoSpinR
Multi-8 Plasmid;MACHEREY-NAGEL社製)を加え400mbarで1分間吸引して溶液を透過させた後、900mlのBufferA4(NucleoSpinR Multi-8 Plasmid;MACHEREY-NAGEL社製)を加えて400mbarで1分間吸引して溶液を透過させてmembraneを洗浄した。さらに、900mlのBufferA4を加えて、400mbarで1分間吸引して溶液を透過させることにより再度membraneを洗浄した。membraneを乾燥させた後、Vcuum manifoldに回収用のNucleoSipnR MN Tube Strips(NucleoSpinR
Multi-8 Plasmid;MACHEREY-NAGEL社製)を付け替え、120μlのBufferAE(NucleoSpinR Multi-8
Plasmid;MACHEREY-NAGEL社製)を加え1分間静置し、400mbarで1分間吸引してプラスミドDNAを回収した。回収したプラスミドDNA溶液3μlに対して、10×Hバッファー(1μl)、dHO(5μl)、及び、1μlのEcoRI(TOYOBO社製)を加え、37℃で1時間処理した。この制限酵素反応液を1.5%アガロースゲルを用いた電気泳動により分画し、インサート(IGH:0.5kbp、IGK/L:0.7kbp)が確認されたクローンをシークエンス解析を行うサンプルとして選択した。各サンプルは吸光度を測定してDNA濃度を算出し、100ng/μl プラスミドDNA溶液を調製した。
[プラスミドDNAの配列決定]
 Cycle Sequencing法によりPlasmid
DNAの塩基配列を決定した。具体的には、調製したプラスミドDNA希釈液を、氷上に置いた96ウェルプレートにIGHについては3ウェル(#1.#2.#3)に、IGK/Lについては2ウェル(#4.#5)にそれぞれ6μlずつ加えた。続いて、5 x Sequencing Buffer(3μl)、BigDyeTerminator Pre mix(2μl)、dHO(8μl)、3.2μMプライマー(1μl)を加えて軽く遠心した。3.2μMプライマーとサンプル#の組み合わせは以下の通りである。
#1:T7pプライマー
#2:HuIGCH-seq001プライマー
#3:T3pプライマー
#4:M13リバースプライマー
#5:M13フォワードプライマー
 サーマルサイクラーに96ウェルプレートをセットし、94℃・1分間(94℃・10秒間、50℃・5秒間、68℃・4分間)x25サイクルのプログラムで反応を行った。反応が終わるまでに、MultiScreenTMHV-plateのウェルにSephadex
G-50を入れ、滅菌水300μlを加え、室温で2時間置いた。十分に水和させたら、室温、1100×gで5分間遠心して流出液を廃棄した。MultiscreenTMHV-plateに新しい96ウェルアッセイプレートを付け替え、PCR反応液を各ウェルに全量アプライし、室温、1100×gで5分間遠心してサンプルを回収した。精製されたサンプルを全量シークエンサー用の96ウェルプレートに移し、さらに元のウェルに滅菌水17.2μlを加え、ウェルを洗いながら全量を96ウェルプレートに移した。配列の解析はx3130/Genetic
Analyzerにより行った。各サンプルに付いて6~8クローンずつ配列を読み、得られた配列のMultiple
alignment解析を行い、クローン間で差があった塩基については、その塩基を有するクローンが多いほうを正しい配列であるとし、各サンプルの塩基配列を決定した。
 以上の実験の結果、単一細胞ソーティング法にて捕獲した57個の細胞中IGH/Lの両方の抗体遺伝子のクローニングに成功した細胞が8個であった(図26)。また、細胞マイクロアレイを使用した場合、捕獲した67個の細胞のうち成功例は2個であった。単一細胞ソーティング法にて成功例が多かった理由としてB細胞の染色行程においてIgG陽性細胞の選別を行なっていたためと考えられた。
 CMVpp65抗原特異的IgG抗体遺伝子のレパトワ、CDR3、及び、全長の配列解析の結果を図27、30~44に示す。IGH/Lの両方の抗体遺伝子のクローニングに成功した合計10クローンのうち機能的な配列が確認されたものは8クローンであった。6個は単一細胞ソーティング法由来であり、2個は細胞マイクロアレイ由来のB細胞であった。使用されたレパトワの解析では、IGHおよびIGLともにすべて異なる種類のfamilyが使用されていた(図27)。クローニングされた各cDNAのIGHおよびIGLの配列の全長は、図29-44及び配列番号71~86に示す。

Claims (15)

  1. 以下の(A)、(B)、(C)、(D)、(E)、(F)及び(G)の工程を順次備えたことを特徴とする、ヒト由来の1個のB細胞の抗体遺伝子の解析・同定方法。
    (A)ヒトから得られる末梢血より末梢血単核球を採取する工程;
    (B)得られた末梢血単核球からエプスタインバールウイルス(EBV)を用いて、不死化B細胞(EBV-B細胞)株を作製する工程;
    (C)標識物質により標識された抗原と、前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより、EBV-B細胞を標識化する工程;
    (D)前記抗原を認識する抗体を細胞膜上に発現するEBV-B細胞を、1細胞ずつ分取する工程;
    (E)1細胞から全RNAを抽出し、逆転写反応によりcDNAを合成する工程;
    (F)合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する工程;
    (G)増幅された遺伝子断片の塩基配列を解析・決定する工程;
  2. 以下の(a)、(c)、(d)、(e)、(f)及び(g)の工程を順次備えたことを特徴とする、ヒト由来の1個のB細胞の抗体遺伝子の解析・同定方法。
    (a)ヒトから得られる末梢血より末梢血単核球を採取する工程;
    (c)得られた末梢血単核球に含まれるB細胞を、標識物質により標識された抗原と、前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより標識化する工程;
    (d)前記抗原を認識する抗体を細胞膜上に発現するB細胞を、1細胞ずつ分取する工程;
    (e)1細胞から全RNAを抽出し、逆転写反応によりcDNAを合成する工程;
    (f)合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する工程;
    (g)増幅された遺伝子断片の塩基配列を解析・決定する工程;
  3. ヒトが、担がん患者であることを特徴とする請求項1又は2記載の解析・同定方法。
  4. 抗原が、がん特異的抗原ペプチド又はがん特異的抗原タンパクであることを特徴とする請求項1~3のいずれかに記載の解析・同定方法。
  5. がん特異的抗原ペプチド又はがん特異的抗原タンパクが、MAGE1、MAGE2、MAGE3、MART1、tyrosinase、又はgp100であることを特徴とする請求項4記載の解析・同定方法。
  6. 以下の(A)、(B)、(C)、(D)、(E)、(F)及び(H)の工程を順次備えたことを特徴とする、ヒト由来の1個のB細胞の抗体を製造する方法。
    (A)ヒトから得られる末梢血より末梢血単核球を採取する工程;
    (B)得られた末梢血単核球からエプスタインバールウイルス(EBV)を用いて、不死化B細胞(EBV-B細胞)株を作製する工程;
    (C)標識物質により標識された抗原と、前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより、EBV-B細胞を標識化する工程;
    (D)前記抗原を認識する抗体を細胞膜上に発現するEBV-B細胞を、1細胞ずつ分取する工程;
    (E)1細胞から全RNAを抽出し、逆転写反応によりcDNAを合成する工程;
    (F)合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する工程;
    (H)増幅された遺伝子断片を、発現ベクターを用いて発現させる工程; 
  7. 以下の(a)、(c)、(d)、(e)、(f)及び(h)の工程を順次備えたことを特徴とする、ヒト由来の1個のB細胞の抗体を製造する方法。
    (a)ヒトから得られる末梢血より末梢血単核球を採取する工程;
    (c)得られた末梢血単核球に含まれるB細胞を、標識物質により標識された抗原と、前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより標識化する工程;
    (d)前記抗原を認識する抗体を細胞膜上に発現するB細胞を、1細胞ずつ分取する工程;
    (e)1細胞から全RNAを抽出し、逆転写反応によりcDNAを合成する工程;
    (f)合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する工程;
    (h)増幅された遺伝子断片を、発現ベクターを用いて発現させる工程; 
  8. ヒトが、担がん患者であることを特徴とする請求項6又は7記載の抗体を製造する方法。
  9. 抗原が、がん特異的抗原ペプチド又はがん特異的抗原タンパクであることを特徴とする請求項6~8のいずれかに記載の抗体を製造する方法。
  10. がん特異的抗原ペプチド又はがん特異的抗原タンパクが、MAGE1、MAGE2、MAGE3、MART1、tyrosinase、又はgp100であることを特徴とする請求項9記載の抗体を製造する方法。
  11. 以下の(A)、(B)、(C)、(D)、(E)及び(F)の工程を順次備えたことを特徴とする、ヒト由来の1個のB細胞の抗体遺伝子を調製する方法。
    (A)ヒトから得られる末梢血より末梢血単核球を採取する工程;
    (B)得られた末梢血単核球からエプスタインバールウイルス(EBV)を用いて、不死化B細胞(EBV-B細胞)株を作製する工程;
    (C)標識物質により標識された抗原と、前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより、EBV-B細胞を標識化する工程;
    (D)前記抗原を認識する抗体を細胞膜上に発現するEBV-B細胞を、1細胞ずつ分取する工程;
    (E)1細胞から全RNAを抽出し、逆転写反応によりcDNAを合成する工程;
    (F)合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する工程;
  12. 以下の(a)、(c)、(d)、(e)及び(f)の工程を順次備えたことを特徴とする、ヒト由来の1個のB細胞の抗体遺伝子を調製する方法。
    (a)ヒトから得られる末梢血より末梢血単核球を採取する工程;
    (c)得られた末梢血単核球に含まれるB細胞を、標識物質により標識された抗原と、前記標識物質とは異なる標識物質により標識された、ヒト抗体を認識しうる抗体とにより標識化する工程;
    (d)前記抗原を認識する抗体を細胞膜上に発現するB細胞を、1細胞ずつ分取する工程;
    (e)1細胞から全RNAを抽出し、逆転写反応によりcDNAを合成する工程;
    (f)合成したcDNAを鋳型として、ヒト抗体重鎖領域遺伝子に特異的なプライマー対を用いたPCR反応、ヒト抗体軽鎖κ領域遺伝子に特異的なプライマー対を用いたPCR反応、又はヒト抗体軽鎖λ領域遺伝子に特異的なプライマー対を用いたPCR反応とにより、それぞれの領域遺伝子断片を増幅する工程;
  13. ヒトが、担がん患者であることを特徴とする請求項11又は12記載の抗体遺伝子を調製する方法。
  14. 抗原が、がん特異的抗原ペプチド又はがん特異的抗原タンパクであることを特徴とする請求項11~13のいずれかに記載の抗体遺伝子を調製する方法。
  15. がん特異的抗原ペプチド又はがん特異的抗原タンパクが、MAGE1、MAGE2、MAGE3、MART1、tyrosinase、又はgp100であることを特徴とする請求項14記載の抗体遺伝子を調製する方法。
PCT/JP2009/002539 2008-06-04 2009-06-04 1細胞レベルでの抗体遺伝子の解析・同定方法 WO2009147864A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09758131.8A EP2316936B1 (en) 2008-06-04 2009-06-04 Method for analysis/identification of antibody gene at one-cell level
JP2010515785A JPWO2009147864A1 (ja) 2008-06-04 2009-06-04 1細胞レベルでの抗体遺伝子の解析・同定方法
US12/995,404 US20110091896A1 (en) 2008-06-04 2009-06-04 Method for analysis/identification of antibody gene at one-cell level

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008146964 2008-06-04
JP2008-146964 2008-06-04

Publications (1)

Publication Number Publication Date
WO2009147864A1 true WO2009147864A1 (ja) 2009-12-10

Family

ID=41397944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002539 WO2009147864A1 (ja) 2008-06-04 2009-06-04 1細胞レベルでの抗体遺伝子の解析・同定方法

Country Status (4)

Country Link
US (1) US20110091896A1 (ja)
EP (1) EP2316936B1 (ja)
JP (1) JPWO2009147864A1 (ja)
WO (1) WO2009147864A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101593750B1 (ko) * 2013-08-01 2016-03-02 인제대학교 산학협력단 한국인에서 cyp2d6 유전형을 포함하는 약물반응 유전자들의 유전형 분석을 위한 표준 유전자 불멸화 세포주
GB201316644D0 (en) * 2013-09-19 2013-11-06 Kymab Ltd Expression vector production & High-Throughput cell screening

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121237A (ja) * 2002-09-05 2004-04-22 Japan Science & Technology Agency 体外免疫末梢血リンパ球を用いた抗原特異的抗体
WO2004087914A1 (ja) * 2003-03-31 2004-10-14 Institute For Antibodies Co. Ltd. 抗体作製方法
JP2007092968A (ja) 2005-09-30 2007-04-12 Nsk Ltd ナットの製造方法
JP2007147525A (ja) 2005-11-30 2007-06-14 Hitachi Ltd 渦電流探傷プローブと被検査体のリフトオフ量評価方法及びその評価装置並びに渦電流探傷方法及び渦電流探傷装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256542A (en) * 1992-03-09 1993-10-26 Tanox Biosystems, Inc. Selecting low frequency antigen-specific single B lymphocytes with correction for background noise
AU6266899A (en) * 1998-10-05 2000-04-26 Ludwig Institute For Cancer Research Methods for producing human tumor antigen specific antibodies
EP1561107A1 (en) * 2002-11-13 2005-08-10 Micromet AG Method for identifying antigen specific b cells
CN101048426A (zh) * 2004-10-22 2007-10-03 金克克国际有限公司 分离人抗体
JP5205597B2 (ja) * 2007-06-01 2013-06-05 静岡県 1細胞レベルでの抗体遺伝子の解析・同定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121237A (ja) * 2002-09-05 2004-04-22 Japan Science & Technology Agency 体外免疫末梢血リンパ球を用いた抗原特異的抗体
WO2004087914A1 (ja) * 2003-03-31 2004-10-14 Institute For Antibodies Co. Ltd. 抗体作製方法
JP2007092968A (ja) 2005-09-30 2007-04-12 Nsk Ltd ナットの製造方法
JP2007147525A (ja) 2005-11-30 2007-06-14 Hitachi Ltd 渦電流探傷プローブと被検査体のリフトオフ量評価方法及びその評価装置並びに渦電流探傷方法及び渦電流探傷装置

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Molecular Cloning", COLD SPRING HARBOR LABORATORY PRESS
"Molecular Cloning: A laboratory Mannual", 1989, COLD SPRING HARBOR LABORATORY
CURR. TOP. MICROBIOL. IMMUNOL., vol. 158, 1992, pages 97 - 129
LIEBY P. ET AL.: "Memory B cells producing somatically mutated antiphospholipid antibodies are present in healthy individuals", BLOOD, vol. 102, no. 7, 1 October 2003 (2003-10-01), pages 2459 - 2465, XP008138613 *
MICROBIOLOGY AND IMMUNOLOGY, vol. 158, 1992, pages 1 - 23
ROMERO P. ET AL.: "Antigenicity and immunogenicity of Melan-A/MART-1 derived peptides as targets for tumor reactive CTL in human melanoma", IMMUNOL. REV., vol. 188, October 2002 (2002-10-01), pages 81 - 96, XP009143135 *
SCIENCE, vol. 252, 1991, pages 431 - 434
See also references of EP2316936A4 *
TILLER T. ET AL.: "Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning", J. IMMUNOL. METHODS, vol. 329, no. 1-2, 1 January 2008 (2008-01-01), pages 112 - 124, XP022389335 *
VOLKHEIMER A.D. ET AL.: "Progressive immunoglobulin gene mutations in chronic lymphocytic leukemia: evidence for antigen-driven intraclonal diversification", BLOOD, vol. 109, no. 4, 15 February 2007 (2007-02-15), pages 1559 - 1567, XP009136340 *
WRAMMERT J. ET AL.: "Rapid cloning of high-affinity human monoclonal antibodies against influenza virus", NATURE, vol. 453, no. 7195, 29 May 2008 (2008-05-29), pages 667 - 672, XP002524388 *

Also Published As

Publication number Publication date
EP2316936B1 (en) 2013-08-07
EP2316936A4 (en) 2012-03-07
EP2316936A1 (en) 2011-05-04
US20110091896A1 (en) 2011-04-21
JPWO2009147864A1 (ja) 2011-10-27

Similar Documents

Publication Publication Date Title
CN107843730B (zh) 使靶细胞可逆染色的方法
RU2402777C2 (ru) Способ скрининга библиотеки фагового дисплея
AU2018279728B2 (en) Methods and compositions for identifying epitopes
Elliott et al. A pre-eclampsia-associated Epstein-Barr virus antibody cross-reacts with placental GPR50
CN111303286A (zh) 一种anti-CD19的全人源抗体或抗体片段及其嵌合抗原受体和应用
JP5205597B2 (ja) 1細胞レベルでの抗体遺伝子の解析・同定方法
WO2009147864A1 (ja) 1細胞レベルでの抗体遺伝子の解析・同定方法
CN116102643B (zh) 针对猴痘病毒a35蛋白的单克隆抗体及其应用
CN114560929B (zh) 针对冠状病毒np蛋白的单克隆抗体及其应用
JP2010035472A (ja) Sst−rex法を用いた新規のがん抗原特異的抗体遺伝子スクリーニング方法
JP4729043B2 (ja) 抗体ライブラリーをスクリーニングする方法
JP2009011236A (ja) 1細胞レベルでのt細胞抗原レセプター遺伝子の解析・同定方法
CN114410641B (zh) 一种用于检测风疹病毒的核酸适配体、试剂盒及应用
CN117487004B (zh) 抗冠状病毒s蛋白的单克隆抗体及其应用
CN114410640B (zh) 一种用于检测麻疹病毒的核酸适配体、试剂盒及应用
Masibag Aptamer selection for targeting AXL protein receptor expressed on cells and human IgG FC fragment
CN118290575A (en) Nanometer antibody for resisting HIV P24 antigen and its application and product
Kirpach Erforschung der Einsatzmöglichkeiten von B Zellen für die Diagnose der Borreliose: Investigation of the possible use of B cells for the diagnosis of acute Lyme disease
Fransson Establishment and characterization of antibodies against Ciz1b for detection of early-stage lungcancer
Strautins et al. Epstein-Barr virus (EBV)-specific antibodies in Multiple Sclerosis patients, including targeted investigation of a candidate EBV nuclear antigen-1 (EBNA-1) B cell epitope.
Kirpach Erforschung der Einsatzmöglichkeiten von B Zellen für die Diagnose der Borreliose: Investigation of the possible use of B cells for the diagnosis of acute Lyme disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515785

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12995404

Country of ref document: US

Ref document number: 2009758131

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE