WO2009145475A2 - 전력 제어 장치 및 방법 - Google Patents

전력 제어 장치 및 방법 Download PDF

Info

Publication number
WO2009145475A2
WO2009145475A2 PCT/KR2009/001697 KR2009001697W WO2009145475A2 WO 2009145475 A2 WO2009145475 A2 WO 2009145475A2 KR 2009001697 W KR2009001697 W KR 2009001697W WO 2009145475 A2 WO2009145475 A2 WO 2009145475A2
Authority
WO
WIPO (PCT)
Prior art keywords
switch
current
power
error
generator
Prior art date
Application number
PCT/KR2009/001697
Other languages
English (en)
French (fr)
Other versions
WO2009145475A3 (ko
Inventor
고희상
강윤태
이재두
Original Assignee
삼성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성중공업 주식회사 filed Critical 삼성중공업 주식회사
Priority to EP09754940A priority Critical patent/EP2293408A2/en
Priority to JP2011511494A priority patent/JP2011522507A/ja
Priority to CA2726581A priority patent/CA2726581A1/en
Priority to US12/424,418 priority patent/US8159196B2/en
Publication of WO2009145475A2 publication Critical patent/WO2009145475A2/ko
Publication of WO2009145475A3 publication Critical patent/WO2009145475A3/ko
Priority to US13/419,209 priority patent/US8319480B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to a power control apparatus and method, and more particularly, to a power control apparatus and method for stably controlling the over-current of the generator side when the system low voltage.
  • power systems such as power generation systems and power transmission systems have devices or methods that can prevent overcurrent, overvoltage, etc. in order to maintain a stable power system.
  • the power system uses a three-phase AC / DC / AC pulse width modulation (PWM) converter as the power converter.
  • PWM pulse width modulation
  • These power converters are used by connecting a converter connected to an AC power source, an inverter connected to a load, and a DC capacitor serving as a buffer between the inverter and the converter.
  • the electrolytic capacitor is mainly used as a DC capacitor, and since the electrolytic capacitor has a large capacity compared to the low price, it is widely used as a filter or an energy buffer.
  • measuring capacitance suffers from the need to separate the capacitor from the system.
  • estimating capacitance without separation can be made relatively accurately through many experimental results and algorithms, but there is a device that can control power so that the system does not leave the system due to an accident that may occur during system operation. There is a problem that is not.
  • the power system includes a power control device including a DC-DC converter for converting direct current into direct current.
  • the power control device includes a DC-DC converter in the power converter, and is located between the converter and the inverter.
  • the DC-DC converter controls the power by limiting the DC current between the converter and the inverter or by changing it to one DC voltage.
  • the conventional power system has a problem that it is not possible to control the power by detecting a power change in real time so that the system does not leave the system due to an accident that may occur during system operation.
  • the conventional power system has a problem that does not meet the conditions that require continuous system operation when low voltage occurs.
  • FIG. 1 is a block diagram of a power generation system having a power control apparatus according to an embodiment of the present invention
  • Figure 2 is a block diagram of a power control apparatus according to an embodiment of the present invention.
  • 7 and 8 are diagrams for describing a power control apparatus and method according to an embodiment of the present invention. 7 and 8 will be described below with reference to necessity.
  • the power generation system is connected to the generator 10, the generator 10, the power conversion unit 20 for converting the power produced by the generator 10, power conversion unit 20 and a power control device 30 for controlling the overcurrent using the current measured at the generator side.
  • the power generation system of the present invention is preferably a wind power generation system, but can be applied to a power generation system using natural force.
  • the generator 10 is an electric generator for generating electric power.
  • the generator may be a squirrel cage generator or a permanent magnet generator, and any generator that can be used as a generator may be applied to those skilled in the art.
  • the power converter 20 is a power converter that is connected to the generator 10 can stably supply the power generated by the generator 10.
  • the power converter 20 may include a converter (not shown) for converting AC into DC and an inverter (not shown) for converting DC into AC.
  • the power converter 20 may convert unstable power generated by the generator 10 into a constant output by using a converter and an inverter to obtain more reliable power quality.
  • the power control device 30 is connected to the generator for generating power and compares the measured current measured in the generator with the reference current of the generator to calculate the error current, the current comparator 40, receiving the error current ⁇ input effective power A control unit 50 that calculates a value and outputs a switch driving signal corresponding to the calculated real power value, a switch 60 operated by the switch driving signal of the control unit, and a resistor connected to the switch to consume an error current ( 70).
  • the current comparator 40 compares the measured current I measured at the rotor side of the generator 10 with the reference current I rated at the rotor side to calculate an error current e I that is a current difference.
  • the reference current e I may be preset by the operator as a current for stably supplying power.
  • the controller 50 includes a controller 52 that receives the error current e I and performs control, and a driver 54 that controls driving of a plurality of switches according to an active power P, which is a control value of the controller.
  • the controller 52 may be any one of a proportional (P) controller, a proportional differential (PD) controller, a proportional integral (PI), and a proportional integral differential (PID) controller, and performs linear control.
  • P proportional
  • PD proportional differential
  • PI proportional integral
  • PID proportional integral differential
  • the driver 54 controls the operation of the switch by outputting respective driving signals to the plurality of switches according to the active power value calculated by the controller 52.
  • the driver 54 may vary the output signal of the driving signal according to the effective power value.
  • the driver 54 may drive the corresponding n (n is a natural number) switches by selecting the calculated active power value from a preset table value.
  • the table value is composed of a switch driven according to the active power value calculated as shown in FIG. 8 and the resistance value of the resistor connected to the switch, and n (n is a natural number suitable for consuming overcurrent corresponding to the active power value). ) Switches can be selected.
  • the switch 60 operates by a switch driving signal of the controller 50 and guides an error current to the resistor device 70.
  • Switch 60 may be a plurality of power device switch, it is apparent to those skilled in the art that a switch widely used for power control may be used.
  • a thyristor may be used as the power device switch.
  • the power device switch will be described as an example of the thyristor.
  • the resistance device 70 includes a resistance element that is connected to a switch and consumes an error current when an error current is distributed.
  • the resistance device 70 may include a plurality of resistance elements, and the plurality of resistance elements are connected to each other by the plurality of switches 60, so that an error current is consumed in the corresponding resistance element according to the driving of the switch 60. Can be.
  • the plurality of resistors may be selected by the switch 60 driven according to the effective power value by varying the resistance value.
  • the active power (P) can be calculated by the following equation.
  • the proportional gain of the proportional integral controller is 3, the integral gain is 2, and the time is 0.2 seconds.
  • the error current e I is 0.1 [ampere].
  • the effective power P is 0.26 [watt].
  • FIG. 3 is a flowchart of a power control method according to an embodiment of the present invention.
  • step S310 the power control device 30 measures the current at the rotor side of the generator.
  • the power control device 30 calculates an error current e I using a difference between the measured current I and the reference current I rated of the rotor side of the generator.
  • the power control apparatus 30 calculates an active power P capable of controlling the overcurrent with an overcurrent exceeding the reference current I rated as the calculated error current e I.
  • the power control device 30 outputs a switch driving signal corresponding to the calculated effective power value P to the plurality of thyristors.
  • the power control device 30 operates the thyristors S 1 , S 2 ,..., S n in response to a switch driving signal, and the error current e I passes through the switch.
  • the switch driving will be described in more detail.
  • the switch driving signal is 3.
  • the switch S 1 and S 2 operate (ON) and the other switches are inoperative (OFF).
  • the switch to be driven according to the active power value is selected according to the combination of the resistance value of the resistance element connected to the switch, which is preset in the table and stored in the power control device 30, more specifically the driver 54 Can be used.
  • the power control device 30 may efficiently output an error current by outputting a switch driving signal to a switch of n (n is a natural number) to be driven according to the effective power value.
  • the power control device 30 consumes an error current e I in the resistance element.
  • FIG. 4 is a block diagram of a power generation system having a power control device according to another embodiment of the present invention
  • Figure 5 is a block diagram of a power control device according to another embodiment of the present invention.
  • the power generation system is connected to the generator 10, the generator 10, the power converter 20 for converting the power produced by the generator 10 And a power control device 80 for controlling the overcurrent using the voltage measured at the DC capacitor 25 side of the power converter 20.
  • the overcurrent may be a current I dc flowing from the DC capacitor 25 side.
  • the power converter 20 may include a converter (not shown) for converting AC into DC, an inverter (not shown) for converting DC into AC, and a DC capacitor 25 connecting the converter and the inverter.
  • the power converter 20 may convert unstable power generated by the generator 10 into a constant output by using a converter and an inverter to obtain more reliable power quality.
  • the power control device 80 receives the voltage comparator 45 and the error voltage by comparing the measured voltage and the reference voltage measured in the DC capacitor 25 converting a DC current into an AC current, and calculating an error voltage.
  • a control unit 50 that calculates a real power value and outputs a switch driving signal corresponding to the calculated real power value, a switch 60 operated by a switch driving signal of the control unit, and an error corresponding to the error voltage connected to the switch And a resistor device 70 in which current is consumed.
  • the error current corresponding to the error voltage may be a current Idc flowing from the DC capacitor 25 side of the power converter 20 with an overcurrent exceeding the reference current.
  • the voltage comparator 45 compares the measured voltage V dc measured by the DC capacitor 25 with the reference voltage V dc, rated to calculate an error voltage e v that is a voltage difference.
  • the reference voltage (V dc, rated ) is a voltage for stably supplying power may be preset by the operator.
  • the controller 50 includes a controller 52 that receives the error voltage e v and performs control, and a driver 54 that controls driving of a plurality of switches according to an active power P, which is a control value of the controller.
  • the controller 52 may be any one of a proportional (P) controller, a proportional differential (PD) controller, a proportional integral (PI) controller, or a proportional integral differential (PID) controller, and performs linear control.
  • P proportional
  • PD proportional differential
  • PI proportional integral
  • PID proportional integral differential
  • the driver 54 controls the operation of the switch by outputting respective driving signals to the plurality of switches according to the active power value calculated by the controller 52.
  • the driver 54 may vary an output signal of a driving signal according to an active power value.
  • the driver 54 may drive the corresponding n (n is a natural number) power device switches by selecting the calculated active power value from a preset table value.
  • the table value is composed of a switch driven according to an active power value calculated as shown in FIG. 8 and a resistance value of a resistor connected to a power device switch, and suitable for consuming an overcurrent corresponding to the active power value. Is a natural number) switches can be selected.
  • the switch 60 operates by a switch driving signal of the controller 50, and leads an overcurrent corresponding to the error voltage e v to the resistor device 70.
  • Switch 60 may be a plurality of power device switch, it is apparent to those skilled in the art that a switch widely used for power control may be used.
  • the resistance device 70 includes a resistance element that is connected to a switch and consumes an error current when an overcurrent corresponding to the error voltage e v is distributed.
  • the resistance device 70 may include a plurality of resistance elements, and the plurality of resistance elements are connected by the plurality of switches 60, respectively, and the error voltage e in the corresponding resistance element according to the driving of the switch 60.
  • the error current corresponding to v ) may be consumed.
  • the plurality of resistors may be selected by the switch 60 driven according to the effective power value by varying the resistance value.
  • the active power (P) can be calculated by the following equation.
  • the proportional gain of the proportional integral controller is 3, the integral gain is 2, and the time is 0.2 seconds.
  • FIG. 6 is a flowchart of a power control method according to another embodiment of the present invention.
  • step S610 the power control device 80 measures the voltage of the DC capacitor 25 side of the power converter 20.
  • the power control device 80 calculates an error voltage e v using the difference between the measured voltage V dc at the DC capacitor side and the reference voltage V dc, rated at the DC capacitor side.
  • the power control device 80 calculates an active power P capable of controlling an overcurrent corresponding to the overvoltage, as the calculated error voltage e v is an overvoltage exceeding the reference voltage V dc, rated . do.
  • the power control device 80 outputs a switch driving signal corresponding to the calculated effective power value P to the plurality of power device switches.
  • the power control device 80 operates the power device switches S 1 , S 2 ,..., S n in response to a switch driving signal so that an error current corresponding to the error voltage e v passes through the switch. do.
  • the error current is an overcurrent exceeding the reference current.
  • the switch driving will be described in more detail.
  • the switch driving signal is 3.
  • the power control device 80 operates the switches S 1 and S 2 and turns off the remaining switches.
  • the switch to be driven according to the active power value is selected according to the combination of the resistance value of the resistance element connected to the switch, which is preset in the table and stored in the power control device 80, more specifically the driver 54 Can be used.
  • the power control device 80 may efficiently output an error current by outputting a switch driving signal to a switch of n (n is a natural number) to be driven according to the effective power value.
  • step S660 the power control device 80 consumes an error current corresponding to the error voltage e v in the resistance element.
  • Embodiments of the invention may include computer readable media containing program instructions for performing various computer-implemented operations.
  • the computer readable medium may include program instructions, local data files, local data structures, or the like, alone or in combination.
  • the media may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • FIG. 1 is a block diagram of a power generation system having a power control device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a power control apparatus according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of a power control method according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of a power generation system having a power control device according to another embodiment of the present invention.
  • FIG. 5 is a block diagram of a power control apparatus according to another embodiment of the present invention.
  • FIG. 6 is a flow chart of a power control method according to another embodiment of the present invention.
  • FIG. 7 and 8 are diagrams for explaining a power control apparatus and method according to an embodiment of the present invention.
  • generator 20 power conversion unit
  • control unit 52 controller
  • the present invention can prevent the generator from being cut off from the grid by detecting and controlling an overcurrent induced above the rated current when a low voltage occurs on the grid side by using a resistor on the generator side.
  • the present invention can prevent the generator from being cut off from the grid by controlling the overcurrent by detecting an overvoltage induced above the rated voltage when a low voltage occurs on the system side by using a resistor in the DC capacitor of the power converter connected to the generator. .
  • the present invention can achieve a stable power quality by implementing an efficient power generation system by continuing the system linkage of the generator having a power conversion unit, regardless of the generator type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

본 발명은 전력 제어 장치 및 방법에 관한 것으로, 더욱 상세하게는 계통 저전압 시 발전기 측 과전류를 안정적으로 제어하는 전력 제어 장치 및 방법에 관한 것이다. 본 발명의 일 측면에 따르면, 발전 시스템에서 전력을 제어하는 장치를 제공한다. 본 발명의 일 실시예에 따른 전력 제어 장치는 전력을 생성하는 발전기와 연결되어 상기 발전기에서 측정된 측정 전류와 상기 발전기의 기준 전류를 비교하여 오차전류를 산출하는 전류비교기, 상기 오차전류를 입력 받아 유효 전력 값을 산출하고, 상기 산출된 유효 전력 값에 상응하는 스위치 구동 신호를 출력하는 제어부, 상기 제어부의 스위치 구동 신호에 의해 동작하는 스위치 및 상기 스위치 동작에 의해 상기 오차전류가 분배되어 상기 오차전류를 소모하는 저항장치를 포함할 수 있다.

Description

전력 제어 장치 및 방법
본 발명은 전력 제어 장치 및 방법에 관한 것으로, 더욱 상세하게는 계통 저전압 시 발전기 측 과전류를 안정적으로 제어하는 전력 제어 장치 및 방법에 관한 것이다.
일반적으로, 발전 시스템, 송전 시스템 등과 같은 전력 시스템은 안정된 전력계통을 유지하기 위하여 과전류, 과전압 등을 방지할 수 있는 장치 또는 방법을 갖고 있다.
종래 기술에 따르면, 전력 시스템은 3상 AC/DC/AC PWM(Pulse Width Modulation) 컨버터를 전력 변환 장치로 사용한다. 이러한 전력 변환 장치는 AC 전원과 연결된 컨버터, 부하에 연결되는 인버터 및 인버터와 컨버터 사이에 버퍼역할을 하는 직류 커패시터가 연결되어 사용되었다. 여기서, 직류 커패시터는 주로 전해 커패시터가 주로 사용되었으며, 전해 커패시터는 저가격에 비해 큰 용량을 가지므로 필터나 에너지 버퍼로서 널리 사용된다.
이러한 커패시터는 전류에 의해 열이 발생하여 커패시턴스가 감소하고, 커패시터의 수명도 단축된다. 그래서, 직류 커패시터를 포함하는 전력 시스템은 커패시터의 커패시턴스가 정확하게 측정 또는 추정되어야 한다. 이것은 커패시터의 수명을 진단하여 교체 시기를 예측할 수 있게 한다.
하지만, 커패시턴스를 측정하는 것은 커패시터를 시스템으로부터 분리해야 하는 문제점이 있다.
또한, 분리하지 않고 커패시턴스를 추정하는 것은 많은 실험 결과 및 알고리즘을 통해 비교적 정확한 추정을 할 수 있으나, 시스템 운용 중에 발생할 수 있는 사고로 시스템이 계통으로부터 이탈되지 않도록 전력을 제어할 수 있는 장치가 구비되어 있지 않은 문제점이 있다.
종래 기술에 따르면, 전력 시스템은 직류를 직류로 변환하는 DC-DC 컨버터를 포함하는 전력 제어 장치를 포함한다. 여기서, 전력 제어 장치는 전력 변환 장치 내에 DC-DC 컨버터를 포함하여 구성한 것으로써, 컨버터와 인버터 사이에 위치한다. 그래서, DC-DC 컨버터는 컨버터와 인버터 사이에서 직류 전류를 제한하거나 또는 하나의 직류 전압으로 변경시킴으로써 전력을 제어한다.
하지만, 종래의 전력 시스템은 시스템 운용 중에 발생할 수 있는 사고로 시스템이 계통으로 이탈되지 않도록 실시간으로 전력 변화를 감지하여 전력을 제어할 수 없는 문제점이 있다.
또한, 종래의 전력 시스템은 저 전압 발생 시 계속적인 시스템 운영을 요구하는 조건을 충족 시키지 못하는 문제점이 있다.
이하, 본 발명의 실시예를 첨부한 도면들을 참조하여 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 전력 제어 장치를 가진 발전 시스템의 구성도이고, 도 2는 본 발명의 일 실시예에 따른 전력 제어 장치의 블록도이다.
또한, 도 7 및 도 8은 본 발명의 실시예에 따른 전력 제어 장치 및 방법을 설명하기 위한 도면이다. 이하, 도 7 및 도 8은 필요에 따라 참조하여 설명하기로 한다.
도 1 및 도 2를 참조하면, 본 발명에 따른 발전 시스템은 발전기(10), 발전기(10)에 연결되며, 발전기(10)에서 생산되는 전력을 변환하는 전력변환부(20), 전력변환부(20)와 발전기 측에서 측정된 전류를 이용하여 과전류를 제어하는 전력 제어 장치(30)를 포함한다.
본 발명의 발전 시스템은 풍력 발전 시스템이 바람직하나, 이외 자연력을 이용한 발전 시스템에도 적용될 수 있음은 당업자에게 자명하다.
보다 자세하게, 본 발명에 따른 발전기(10)는 전력을 생성하는 전기발생장치이다. 발전기는 농형유도기 발전기 또는 영구자석 발전기 일 수 있으며, 발전기로 사용될 수 있는 발전기이면 적용될 수 있음은 당업자에게 자명하다.
다음으로, 전력변환부(20)는 발전기(10)에 연결되어 발전기(10)에서 생성되는 전력을 안정적으로 공급할 수 있는 전력변환장치이다.
이러한, 전력변환부(20)는 교류를 직류로 변환하는 컨버터(미도시)와 직류를 교류로 변환하는 인버터(미도시)로 구성될 수 있다.
전력 변환부(20)는 컨버터 및 인버터를 이용하여 발전기(10)에서 생성된 불안정한 전력을 일정한 출력으로 변환하여 보다 신뢰성 있는 전력품질을 얻을 수 있다. 
다음으로, 전력 제어 장치(30)는 전력을 생성하는 발전기와 연결되어 발전기에서 측정된 측정 전류와 발전기의 기준 전류를 비교하여 오차전류를 산출하는 전류비교기(40), 오차전류를 입력 받아 유효 전력 값을 산출하고, 산출된 유효 전력 값에 상응하는 스위치 구동 신호를 출력하는 제어부(50), 제어부의 스위치 구동 신호에 의해 동작하는 스위치(60) 및 스위치에 연결되어 오차전류가 소모되는 저항장치(70)를 포함한다.
전류비교기(40)는 발전기(10)의 회전자 측에서 측정된 측정전류(I)과 회전자 측 기준 전류(Irated)을 비교하여 전류차인 오차전류(eI)을 산출한다. 여기서 기준전류(eI)는 전력을 안정적으로 공급하기 위한 전류로 운용자에 의해 미리 설정될 수 있다.
제어부(50)는 오차전류(eI)를 입력 받아 제어를 수행하는 제어기(52) 및 제어기의 제어 값인 유효전력(P)에 따라 복수의 스위치의 구동을 제어하는 구동기(54)를 포함한다.
제어기(52)는 비례(P) 제어기, 비례미분(PD) 제어기, 비례적분(PI) 또는 비례적분미분(PID) 제어기 중 어느 하나일 수 있으며, 선형 제어를 수행한다.
구동기(54)는 제어기(52)에서 산출된 유효전력 값에 따라 복수의 스위치에 각각의 구동 신호를 출력하여 스위치의 동작을 제어한다.
구동기(54)는 도 4에 도시된 바와 같이 유효 전력 값에 따라 구동 신호의 출력 신호가 달라질 수 있다.
구동기(54)는 산출된 유효전력 값을 미리 설정된 테이블 값에서 선택하여 상응하는 n(n은 자연수)개의 스위치를 구동할 수 있다.
테이블 값은 도 8에 도시된 바와 같이 산출된 유효전력 값 및 스위치에 연결된 저항 소자의 저항 값에 따라 구동되는 스위치로 구성되며, 유효전력 값에 해당되는 과전류를 소모하기 위하여 적합한 n(n은 자연수)개의 스위치가 선택될 수 있다.
스위치(60)는 제어부(50)의 스위치 구동 신호에 의해 동작하며, 오차 전류를 저항장치(70)로 인도한다.
스위치(60)는 복수의 전력소자 스위치일 수 있으며, 전력 제어를 위하여 널리 사용되는 스위치가 이용될 수 있음은 당업자에게 자명하다. 예를 들어, 전력소자 스위치는 사이리스터가 이용 될 수 있다. 이하 본 발명에서는 전력소자 스위치를 사이리스터로 예를 들어 설명하기로 한다.
저항장치(70)는 스위치에 연결되어 오차전류가 분배되는 경우 오차전류가 소모되는 저항소자를 포함한다.
저항장치(70)는 복수의 저항소자를 포함할 수 있으며, 복수의 저항소자는 복수의 스위치(60)에 의해 각각 연결되어, 스위치(60)의 구동에 따라 해당되는 저항소자에서 오차전류가 소모될 수 있다. 여기서, 복수의 저항소자는 각각 저항 값을 달리하여 유효 전력 값에 따라 구동되는 스위치(60)가 선택될 수 있다.
예를 들어, 제어기(52)가 비례적분(PI) 제어기로 구성될 경우, 유효전력(P)는 다음 수학식에 의해 산출될 수 있다. 여기서, 비례적분 제어기의 비례게인은 3, 적분게인은 2, 시간은 0.2초라고 가정한다.
[수학식 1]
Figure PCTKR2009001697-appb-I000001
여기서, 기준 전류(Irated)가 1[ampere]이고, 측정전류(I)가 1.9[ampere]라고 가정할 경우, 오차전류(eI)는 0.1[ampere]가 된다. 상기 수식에 적용하면, 유효전력(P)는 0.26[watt]가 된다.
이때, 도 7을 참조하면, 도 7에서 P1=0.1[watt], P2=0.2[watt], P3=0.3[watt], , P10=1[watt]라 하면, 앞서 산출된 유효전력(P) 값인 0.26[watt]는 P2와 P3의 사이에 위치하여 구동기 출력신호는 2가 된다. 이때, 도 8을 참조하면, 구동기 출력신호가 2이므로, 스위치 S1은 오프(OFF), S2는 온(ON)되는 구동을 한다.
도 3는 본 발명의 일 실시예에 따른 전력 제어 방법의 순서도이다.
도 3를 참조하면, 단계 S310에서 전력 제어 장치(30)는 발전기의 회전자 측의 전류를 측정한다.
단계 S320에서 전력 제어 장치(30)는 측정 전류(I)와 발전기의 회전자 측 기준 전류(Irated)의 차이를 이용하여 오차전류(eI)를 산출한다.
단계 S330에서 전력 제어 장치(30)는 산출된 오차전류(eI)는 기준전류(Irated)를 초과하는 과전류로 이 과전류를 제어할 수 있는 유효전력(P)을 산출한다.
단계 S340에서 전력 제어 장치(30)는 산출된 유효전력 값(P)에 상응하는 스위치 구동 신호를 복수의 사이리스터에 출력한다.
단계 S350에서 전력 제어 장치(30)는 스위치 구동 신호에 의해 사이리스터(S1, S2,..., Sn)가 동작하여 오차전류(eI)가 스위치를 통과한다.
도 7 및 도 8을 참조하여, 스위치 구동을 더욱 상세히 설명하면, 전력 제어 장치(30)는 유효전력 값(P)이 P3이면, 스위치 구동 신호는 3이 된다. 이후, 전력 제어 장치(30)는 스위치 구동 신호가 3이면, 스위치 S1과 S2가 동작(ON)을 하며 나머지 스위치들은 비동작(OFF)하게 된다. 여기서, 유효전력 값에 따라 구동하게 되는 스위치는 스위치에 연결된 저항소자의 저항 값의 조합에 따라 선택되며, 이는 테이블로 미리 설정되어 전력 제어 장치(30), 더욱 상세하게는 구동기(54)에 저장되어 이용될 수 있다.
따라서, 전력 제어 장치(30)는 유효 전력 값에 상응하여 구동하게 될 n(n은 자연수)의 스위치에 스위치 구동신호를 출력하여 오차 전류를 효율적으로 소비할 수 있다.
단계 S360에서 전력 제어 장치(30)는 저항소자에서 오차전류(eI)를 소비한다.
도 4는 본 발명의 다른 실시예에 따른 전력 제어 장치를 가진 발전 시스템의 구성도이고, 도 5는 본 발명의 다른 실시예에 따른 전력 제어 장치의 블록도이다.
도 4 및 도 5를 참조하면, 본 발명의 다른 실시예에 따른 발전 시스템은 발전기(10), 발전기(10)에 연결되며, 발전기(10)에서 생산되는 전력을 변환하는 전력변환부(20), 전력변환부(20)의 직류 커패시터(25) 측에서 측정된 전압을 이용하여 과전류를 제어하는 전력 제어 장치(80)를 포함한다. 여기서, 과전류는 직류 커패시터(25) 측으로부터 유입되는 전류(Idc)일 수 있다.
이하, 앞서 상술한 본 발명의 일 실시예에 따른 전력 제어 장치를 가진 발전 시스템과 중복되는 설명은 생략하기로 한다.
전력변환부(20)는 교류를 직류로 변환하는 컨버터(미도시), 직류를 교류로 변환하는 인버터(미도시) 및 컨버터와 인버터를 연결하는 직류 커패시터(25)로 구성될 수 있다.
전력 변환부(20)는 컨버터 및 인버터를 이용하여 발전기(10)에서 생성된 불안정한 전력을 일정한 출력으로 변환하여 보다 신뢰성 있는 전력품질을 얻을 수 있다.
다음으로, 전력 제어 장치(80)는 직류 전류를 교류 전류로 변환하는 직류 커패시터(25)에서 측정된 측정전압과 기준전압을 비교하여 오차전압을 산출하는 전압비교기(45), 오차전압을 입력 받아 유효 전력 값을 산출하고, 산출된 유효 전력 값에 상응하는 스위치 구동 신호를 출력하는 제어부(50), 제어부의 스위치 구동 신호에 의해 동작하는 스위치(60) 및 스위치에 연결되어 오차전압에 상응하는 오차전류가 소모되는 저항장치(70)를 포함한다. 여기서, 오차전압에 상응하는 오차전류는 기준전류를 초과하는 과전류로 전력변환부(20)의 직류 커패시터(25) 측으로부터 유입되는 전류(Idc)일 수 있다.
전압비교기(45)는 직류 커패시터(25)에서 측정된 측정전압(Vdc)과 기준전압(Vdc,rated)을 비교하여 전압차인 오차전압(ev)을 산출한다. 여기서, 기준전압(Vdc,rated)은 전력을 안정적으로 공급하기 위한 전압으로 운용자에 의해 미리 설정될 수 있다.
제어부(50)는 오차전압(ev)을 입력 받아 제어를 수행하는 제어기(52) 및 제어기의 제어 값인 유효전력(P)에 따라 복수의 스위치의 구동을 제어하는 구동기(54)를 포함한다.
제어기(52)는 비례(P) 제어기, 비례미분(PD) 제어기, 비례적분(PI) 제어기 또는 비례적분미분(PID) 제어기 중 어느 하나일 수 있으며, 선형 제어를 수행한다.
구동기(54)는 제어기(52)에서 산출된 유효전력 값에 따라 복수의 스위치에 각각의 구동 신호를 출력하여 스위치의 동작을 제어한다.
구동기(54)는 도 7에 도시된 바와 같이 유효전력 값에 따라 구동신호의 출력신호가 달라질 수 있다.
구동기(54)는 산출된 유효전력 값을 미리 설정된 테이블 값에서 선택하여 상응하는 n(n은 자연수)개의 전력소자 스위치를 구동할 수 있다.
테이블 값은 도 8에 도시된 바와 같이 산출된 유효전력 값 및 전력소자 스위치에 연결된 저항 소자의 저항 값에 따라 구동되는 스위치로 구성되며, 유효전력 값에 해당되는 과전류를 소모하기 위하여 적합한 n(n은 자연수)개의 스위치가 선택될 수 있다.
스위치(60)는 제어부(50)의 스위치 구동 신호에 의해 동작하며, 오차전압(ev)에 상응하는 과전류를 저항장치(70)로 인도한다.
스위치(60)는 복수의 전력소자 스위치일 수 있으며, 전력 제어를 위하여 널리 사용되는 스위치가 이용될 수 있음은 당업자에게 자명하다.
저항장치(70)는 스위치에 연결되어 오차전압(ev)에 상응하는 과전류가 분배되는 경우 오차전류가 소모되는 저항소자를 포함한다.
저항장치(70)는 복수의 저항소자를 포함할 수 있으며, 복수의 저항소자는 복수의 스위치(60)에 의해 각각 연결되어, 스위치(60)의 구동에 따라 해당되는 저항소자에서 오차전압(ev)에 상응하는 오차전류가 소모될 수 있다. 여기서, 복수의 저항소자는 각각 저항 값을 달리하여 유효 전력 값에 따라 구동되는 스위치(60)가 선택될 수 있다.
예를 들어, 제어기(52)가 비례적분(PI) 제어기로 구성될 경우, 유효전력(P)는 다음 수학식에 의해 산출될 수 있다. 여기서, 비례적분 제어기의 비례게인은 3, 적분게인은 2, 시간은 0.2초라고 가정한다.
[수학식 2]
Figure PCTKR2009001697-appb-I000002
여기서, 기준전압(Vdc,rated)이 1[volt]이고, 측정전압(Vdc)이 1.9[volt]라고 가정할 경우, 오차전압(ev)은 0.1[volt]가 된다. 상기 수식에 적용하면, 유효전력(P)는 0.26[watt]가 된다.
이때, 도 7을 참조하면, 도 7에서 P1=0.1[watt], P2=0.2[watt], P3=0.3[watt], , P10=1[watt]라 하면, 앞서 산출된 유효전력(P) 값인 0.26[watt]는 P2와 P3의 사이에 위치하여 구동기 출력신호는 2가 된다. 이때, 도 8을 참조하면, 구동기 출력신호가 2이므로, 스위치 S1은 오프(OFF), S2는 온(ON)되는 구동을 한다.
도 6은 본 발명의 다른 실시예에 따른 전력 제어 방법의 순서도이다.
도 6을 참조하면, 단계 S610에서 전력 제어 장치(80)는 전력변환부(20)의 직류 커패시터(25) 측의 전압을 측정한다.
단계 S620에서 전력 제어 장치(80)는 직류 커패시터 측의 측정전압(Vdc)과 직류 커패시터 측의 기준전압(Vdc,rated)의 차이를 이용하여 오차전압(ev)을 산출한다.
단계 S630에서 전력 제어 장치(80)는 산출된 오차전압(ev)은 기준전압(Vdc,rated)을 초과하는 과전압으로 이 과전압에 상응하는 과전류를 제어할 수 있는 유효전력(P)을 산출한다.
단계 S640에서 전력 제어 장치(80)는 산출된 유효전력 값(P)에 상응하는 스위치 구동 신호를 복수의 전력소자 스위치에 출력한다.
단계 S650에서 전력 제어 장치(80)는 스위치 구동 신호에 의해 전력소자 스위치(S1, S2,..., Sn)가 동작하여 오차전압(ev)에 상응하는 오차전류가 스위치를 통과한다. 여기서, 오차전류는 기준전류를 초과하는 과전류이다.
도 7 및 도 8을 참조하여, 스위치 구동을 더욱 상세히 설명하면, 전력 제어 장치(80)는 유효전력 값(P)이 P3이면, 스위치 구동 신호는 3이 된다. 이후, 전력 제어 장치(80)는 스위치 구동 신호가 3이면, 스위치 S1과 S2가 동작(ON)을 하며 나머지 스위치들은 비동작(OFF)하게 된다. 여기서, 유효전력 값에 따라 구동하게 되는 스위치는 스위치에 연결된 저항소자의 저항 값의 조합에 따라 선택되며, 이는 테이블로 미리 설정되어 전력 제어 장치(80), 더욱 상세하게는 구동기(54)에 저장되어 이용될 수 있다.
따라서, 전력 제어 장치(80)는 유효 전력 값에 상응하여 구동하게 될 n(n은 자연수)의 스위치에 스위치 구동신호를 출력하여 오차전류를 효율적으로 소비할 수 있다.
단계 S660에서 전력 제어 장치(80)는 저항소자에서 오차전압(ev)에 상응하는 오차전류를 소비한다.
본 발명의 실시예는 다양한 컴퓨터로 구현되는 동작을 수행하기 위한 프로그램 명령을 포함하는 컴퓨터 판독 가능 매체를 포함할 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 로컬 데이터 파일, 로컬 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
도 1는 본 발명의 일 실시예에 따른 전력 제어 장치를 가진 발전 시스템의 구성도.
도 2은 본 발명의 일 실시예에 따른 전력 제어 장치의 블록도.
도 3는 본 발명의 일 실시예에 따른 전력 제어 방법의 순서도.
도 4는 본 발명의 다른 실시예에 따른 전력 제어 장치를 가진 발전 시스템의 구성도.
도 5는 본 발명의 다른 실시예에 따른 전력 제어 장치의 블록도.
도 6은 본 발명의 다른 실시예에 따른 전력 제어 방법의 순서도.
도 7 및 도 8은 본 발명의 실시예에 따른 전력 제어 장치 및 방법을 설명하기 위한 도면.
<도면의 주요부분에 대한 부호의 설명>
10: 발전기 20: 전력변환부
25: 직류 커패시터 30: 전력제어장치
40: 전류비교기 45: 전압비교기
50: 제어부 52: 제어기
54: 구동기 60: 스위치
70: 저항장치 80: 전력제어장치
본 발명은 발전기 측에 저항장치를 이용함으로써 계통 측 저 전압 발생 시 정격전류 이상으로 유도되는 과전류를 감지 및 제어함으로써 발전기가 계통으로부터 차단되는 것을 방지할 수 있다.
또한, 본 발명은 발전기에 연결된 전력변환부의 직류 커패시터에 저항장치를 이용함으로써 계통 측 저 전압 발생 시 정격전압 이상으로 유도되는 과전압을 감지하여 과전류를 제어함으로써 발전기가 계통으로부터 차단되는 것을 방지할 수 있다.
또한, 본 발명은 발전기 타입에 관계없이 전력변환부를 구비한 발전기의 계통 연계를 지속하게 함으로써 효율적인 전력발전 시스템을 구현하여 안정적인 전력품질을 얻을 수 있다.

Claims (13)

  1. 전력을 생성하는 발전기를 포함하는 발전 시스템에서 전력을 제어하는 장치에 있어서,
    상기 발전기에서 측정된 측정 전류와 상기 발전기의 기준 전류의 차이에 근거하여 오차전류를 산출하는 전류비교기; 
    상기 오차전류를 입력 받아 유효 전력 값을 산출하고, 상기 산출된 유효 전력 값에 상응하는 스위치 구동 신호를 출력하는 제어부;
    상기 스위치 구동 신호에 의해 동작하는 스위치; 및
    상기 스위치에 연결되어 상기 오차전류가 소모되는 저항장치를 포함하는 전력 제어 장치.
  2. 제1항에 있어서,
    상기 제어부는
    상기 오차 전류를 입력 받아 유효전력 값을 산출하는 제어기; 및
    상기 산출된 유효전력 값에 따라 복수의 스위치에 각각의 구동 신호를 출력하는 구동기를 포함하는 전력 제어 장치.
  3. 전력을 생성하는 발전기를 포함하는 발전 시스템에서, 교류를 직류로 변환하는 컨버터, 상기 직류를 교류로 변환하는 인버터 및 상기 컨버터 및 상기 인버터와 병렬로 연결되는 직류 커패시터를 포함하는 전력변환장치와 연결되어 전력을 제어하는 장치에 있어서,
    상기 직류 커패시터에서 측정된 측정전압과 상기 직류 커패시터의 기준전압의 차이에 근거하여 오차전압을 산출하는 전압비교기;
    상기 오차전압을 입력 받아 유효전력 값을 산출하고, 상기 산출된 유효전력 값에 상응하는 스위치 구동 신호를 출력하는 제어부;
    상기 스위치 구동 신호에 의해 동작하는 스위치; 및
    상기 스위치에 연결되어 상기 오차전압에 상응하는 오차전류가 소모되는 저항장치를 포함하되,
    상기 오차전류는 상기 직류 커패시터로부터 유입되는 전류인 것을 특징으로 하는 전력 제어 장치.
  4. 제3항에 있어서,
    상기 제어부는
    상기 오차 전압을 입력 받아 유효전력 값을 산출하는 제어기; 및
    상기 산출된 유효전력 값에 따라 복수의 스위치에 각각의 구동 신호를 출력하는 구동기를 포함하는 전력 제어 장치.
  5. 제1항 또는 제3항에 있어서,
    상기 스위치는 전력소자 스위치인 것을 특징으로 하는 전력 제어 장치.
  6. 제5항에 있어서,
    상기 전력소자 스위치는 n(n은 자연수)개이며, 상기 유효 전력 값에 따라 구동되는 상기 전력소자 스위치의 개수가 조절되는 것을 특징으로 하는 전력 제어 장치.
  7. 제1항 또는 제3항에 있어서,
    상기 저항 장치는 m(m은 자연수)개의 저항 소자를 포함하며, 상기 스위치의 구동신호에 따라 상기 스위치에 연결된 저항 소자에서 상기 오차전류가 소모되는 것을 특징으로 하는 전력 제어 장치.
  8. 제1항 또는 제3항에 있어서,
    상기 발전 시스템은 풍력 발전 시스템인 것을 특징으로 하는 전력 제어 장치.
  9. 전력을 생성하는 발전기를 포함하는 발전 시스템에서 전력을 제어하는 방법을 실행하는 전자장치가 판독 가능한 기록매체에 있어서,
    상기 발전기와 연결되어 발전기의 전류를 측정하는 단계;
    상기 측정된 측정전류와 기준전류의 차이에 근거하여 오차전류를 산출하는 단계;
    상기 오차전류를 이용하여 유효 전력 값을 산출하는 단계; 
    상기 유효 전력 값에 상응하는 스위치 구동 신호를 출력하는 단계; 및
    상기 스위치 구동 신호에 따라 상기 스위치가 구동되어 상기 오차전류가 저항 장치에서 소모되는 단계를 포함하는 전력 제어 방법을 실행하는 전자 장치가 판독 가능한 기록매체.
  10. 전력을 생성하는 발전기 및 전력변환장치를 포함하는 발전 시스템에서 전력을 제어하는 방법을 실행하는 전자장치가 판독 가능한 기록매체에 있어서,
    상기 직류 커패시터의 전압을 측정하는 단계;
    상기 측정된 측정전압과 기준전압의 차이에 근거하여 오차전압을 산출하는 단계;
    상기 오차전압을 이용하여 유효 전력 값을 산출하는 단계;
    상기 유효 전력 값에 상응하는 스위치 구동 신호를 출력하는 단계; 및
    상기 스위치 구동 신호에 따라 상기 스위치가 구동되어 상기 오차전압에 상응하는 오차전류가 저항 장치에서 소모되는 단계를 포함하되,
    상기 오차전류는 상기 직류 커패시터로부터 유입되는 전류인 것을 특징으로 하는 전력 제어 방법을 실행하는 전자 장치가 판독 가능한 기록매체.
  11. 제9항 또는 제10항에 있어서,
    상기 유효 전력 값을 이용하여 스위치 구동 신호를 출력하는 단계는
    상기 유효 전력 값에 상응하여 미리 설정된 n(n은 자연수)개의 스위치가 선택되는 단계; 및
    선택된 n(n은 자연수)개의 스위치에 스위치 구동 신호를 출력하는 단계를 실행하는 기록매체.
  12. 제9항 또는 제10항에 있어서,
    상기 스위치 구동 신호에 따라 상기 스위치가 구동되어 오차전류가 저항 장치에서 소모되는 단계는
    상기 스위치 구동 신호에 따라 상기 n(n은 자연수)개의 스위치가 구동되어 상기 오차전류가 상기 스위치를 통과하는 단계; 및
    상기 스위치와 연결된 각각의 저항 소자에서 상기 오차전류가 소모되는 단계를 실행하는 기록매체.
  13. 제9항 또는 제10항에 있어서,
    상기 발전 시스템은 풍력 발전 시스템인 것을 특징으로 하는 전력 제어 방법을 실행하는 기록매체.
PCT/KR2009/001697 2008-05-30 2009-04-02 전력 제어 장치 및 방법 WO2009145475A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09754940A EP2293408A2 (en) 2008-05-30 2009-04-02 Power control apparatus and method thereof
JP2011511494A JP2011522507A (ja) 2008-05-30 2009-04-02 電力制御装置及び方法
CA2726581A CA2726581A1 (en) 2008-05-30 2009-04-02 Apparatus and method of power control
US12/424,418 US8159196B2 (en) 2008-05-30 2009-04-15 Apparatus and method of power control
US13/419,209 US8319480B2 (en) 2008-05-30 2012-03-13 Apparatus and method of power control

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0050696 2008-05-30
KR20080050696 2008-05-30
KR1020080102083A KR101010352B1 (ko) 2008-05-30 2008-10-17 전력 제어 장치 및 방법
KR10-2008-0102083 2008-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/424,418 Continuation US8159196B2 (en) 2008-05-30 2009-04-15 Apparatus and method of power control

Publications (2)

Publication Number Publication Date
WO2009145475A2 true WO2009145475A2 (ko) 2009-12-03
WO2009145475A3 WO2009145475A3 (ko) 2010-01-21

Family

ID=41686769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001697 WO2009145475A2 (ko) 2008-05-30 2009-04-02 전력 제어 장치 및 방법

Country Status (6)

Country Link
US (2) US8159196B2 (ko)
EP (1) EP2293408A2 (ko)
JP (2) JP2011522507A (ko)
KR (1) KR101010352B1 (ko)
CA (1) CA2726581A1 (ko)
WO (1) WO2009145475A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016032084A1 (ko) * 2014-08-28 2016-03-03 대우조선해양 주식회사 액화천연가스 운반선의 추진 장치, 액화천연 가스 운반선, 해양 플랜트의 전력 공급 장치 및 상기 전력 공급 장치를 포함하는 해양 플랜트
WO2016032083A1 (ko) * 2014-08-28 2016-03-03 대우조선해양 주식회사 액화천연가스 운반선의 추진 장치 및 액화천연 가스 운반선
KR20160025815A (ko) * 2014-08-28 2016-03-09 대우조선해양 주식회사 해양 플랜트의 전력 공급 장치 및 상기 전력 공급 장치를 포함하는 해양 플랜트

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101528916B (zh) 2006-04-28 2013-09-04 宾夕法尼亚大学托管会 规模可调的aav生产方法
KR101010352B1 (ko) * 2008-05-30 2011-01-25 삼성중공업 주식회사 전력 제어 장치 및 방법
KR101235907B1 (ko) 2011-08-24 2013-02-21 주식회사 플라스포 풍력발전시스템의 제어장치 및 그 방법
KR101264169B1 (ko) 2011-10-31 2013-05-14 한국전기연구원 풍속 의존형 풍력발전기의 최대출력 추종 emtdc 해석모델
KR101305003B1 (ko) * 2012-04-05 2013-09-05 삼성중공업 주식회사 배전 시스템, 추진 시스템, 및 이를 포함하는 동적 위치 유지 시스템
JP2014110721A (ja) * 2012-12-04 2014-06-12 Samsung Electronics Co Ltd 電力変換装置
CA2946392A1 (en) 2014-04-25 2015-10-29 James M. Wilson Ldlr variants and their use in compositions for reducing cholesterol levels
IL296929A (en) 2015-09-24 2022-12-01 Univ Pennsylvania A preparation and method for the treatment of a complement-mediated disease
EP3387117B1 (en) 2015-12-11 2022-11-23 The Trustees Of The University Of Pennsylvania Scalable purification method for aav8
EP4085934A1 (en) 2015-12-11 2022-11-09 The Trustees of The University of Pennsylvania Gene therapy for treating familial hypercholesterolemia
US11028372B2 (en) 2015-12-11 2021-06-08 The Trustees Of The University Of Pennsylvania Scalable purification method for AAVRH10
WO2017100674A1 (en) 2015-12-11 2017-06-15 The Trustees Of The University Of Pennsylvania Scalable purification method for aav1
WO2017160360A2 (en) 2015-12-11 2017-09-21 The Trustees Of The University Of Pennsylvania Scalable purification method for aav9
JP7061067B2 (ja) 2015-12-14 2022-04-27 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア クリグラー・ナジャー症候群の処置のための組成物
KR102574810B1 (ko) 2016-04-15 2023-09-08 더 트러스티스 오브 더 유니버시티 오브 펜실베니아 습성 연령 관련 황반 변성의 치료를 위한 조성물
US11401527B2 (en) 2016-04-17 2022-08-02 The Trustees Of The University Of Pennsylvania Compositions and methods useful for prophylaxis of organophosphates
WO2018152485A1 (en) 2017-02-20 2018-08-23 The Trustees Of The University Of Pennsylvania Gene therapy for treating familial hypercholesterolemia

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465340A (en) 1977-11-02 1979-05-25 Toshiba Corp Controller for syandby generator
JPS60106335A (ja) 1983-11-11 1985-06-11 株式会社日立製作所 同期運転を行なう発電装置
JPH01180834U (ko) * 1988-05-31 1989-12-26
JPH0496625A (ja) * 1990-08-08 1992-03-30 Fuji Electric Co Ltd 逆潮流抑制装置
JPH05137264A (ja) * 1991-11-06 1993-06-01 Shinko Electric Co Ltd 誘導発電機の制御方法
JPH05284656A (ja) * 1992-04-01 1993-10-29 Mitsubishi Electric Corp 風力発電設備の逆電力防止装置
JPH0641350U (ja) 1992-05-20 1994-05-31 川崎重工業株式会社 給電制御装置
US5625545A (en) * 1994-03-01 1997-04-29 Halmar Robicon Group Medium voltage PWM drive and method
JPH10112931A (ja) 1996-10-03 1998-04-28 Tokyo Gas Co Ltd ガスタービン用高速限流遮断装置
JP2000009021A (ja) * 1998-06-22 2000-01-11 Ntt Power & Building Facilities Inc 風力発電システム
JP2002125317A (ja) * 2000-10-12 2002-04-26 Nissin Electric Co Ltd 系統安定化装置
TWI249287B (en) * 2003-06-25 2006-02-11 Matsushita Electric Works Ltd Electronic switch
JP2005073362A (ja) * 2003-08-22 2005-03-17 Rikogaku Shinkokai 電力変換装置、モータドライブ装置、btbシステムおよび系統連系インバータシステム
JP4208770B2 (ja) * 2004-06-10 2009-01-14 キヤノン株式会社 記録ヘッド及び該記録ヘッドが用いられる記録装置
KR100716537B1 (ko) * 2005-05-26 2007-05-10 한국전기연구원 분산전원용 제어장치 및 제어방법
JP2007043825A (ja) * 2005-08-03 2007-02-15 Denso Corp 車両用発電制御装置
KR20070054855A (ko) * 2005-11-24 2007-05-30 삼성전자주식회사 트랜지스터의 과전류 보호 장치
KR100668118B1 (ko) * 2005-12-30 2007-01-16 한국전기연구원 권선형 유도 발전기 제어용 전력변환장치 및 전력변환방법
GB2435529B (en) * 2006-02-23 2008-06-18 Rolls Royce Plc A generator control arrangement
US7439715B2 (en) * 2006-05-22 2008-10-21 Hamilton Sundstrand Corporation Dual source power generating system
US7400117B1 (en) * 2007-06-20 2008-07-15 Hamilton Sundstrand Corporation Generating system with a regulated permanent magnet machine and an active rectifier
US7521906B2 (en) * 2007-07-06 2009-04-21 Hamilton Sundstrand Corporation Generating system with a regulated permanent magnet machine
KR101010352B1 (ko) * 2008-05-30 2011-01-25 삼성중공업 주식회사 전력 제어 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016032084A1 (ko) * 2014-08-28 2016-03-03 대우조선해양 주식회사 액화천연가스 운반선의 추진 장치, 액화천연 가스 운반선, 해양 플랜트의 전력 공급 장치 및 상기 전력 공급 장치를 포함하는 해양 플랜트
WO2016032083A1 (ko) * 2014-08-28 2016-03-03 대우조선해양 주식회사 액화천연가스 운반선의 추진 장치 및 액화천연 가스 운반선
KR20160025815A (ko) * 2014-08-28 2016-03-09 대우조선해양 주식회사 해양 플랜트의 전력 공급 장치 및 상기 전력 공급 장치를 포함하는 해양 플랜트
KR101629195B1 (ko) * 2014-08-28 2016-06-10 대우조선해양 주식회사 해양 플랜트의 전력 공급 장치

Also Published As

Publication number Publication date
US20090296436A1 (en) 2009-12-03
KR101010352B1 (ko) 2011-01-25
US8319480B2 (en) 2012-11-27
JP2014030347A (ja) 2014-02-13
EP2293408A2 (en) 2011-03-09
CA2726581A1 (en) 2009-12-03
KR20090124892A (ko) 2009-12-03
US20120170331A1 (en) 2012-07-05
JP2011522507A (ja) 2011-07-28
US8159196B2 (en) 2012-04-17
WO2009145475A3 (ko) 2010-01-21

Similar Documents

Publication Publication Date Title
WO2009145475A2 (ko) 전력 제어 장치 및 방법
KR910008547B1 (ko) 자기소호소자를 구비한 전류형 전력변환장치
WO2013004180A1 (en) Dc link module for reducing dc link capacitance
WO2011030971A1 (ko) 직류 전동차 탑재용 회생전력 저장 시스템
TW200906043A (en) Modularized active power
WO2014061933A1 (ko) 부하에 직류전원을 끊김 없이 공급하는 무정전 직류전원장치
WO2019103296A1 (ko) 모듈러 멀티레벨 컨버터의 서브 모듈 검사 시스템 및 모듈러 멀티레벨 컨버터의 서브 모듈 커패시터 용량 측정 방법
WO2021141321A1 (ko) 절연형 양방향 dc-dc 컨버터에서 센서리스 과전류 예측방법
CN106549501B (zh) 用于通信电源的智能管理监控单元和变电站通信电源系统
WO2015069010A1 (ko) 무정전 직류전원장치
KR20090018653A (ko) 회생 제동 장치
WO2018216850A1 (ko) 전력 변환 장치
WO2014007432A1 (ko) 향상된 전력품질을 제공하는 단상풀브릿지인버터
WO2020013457A1 (ko) 전기 자동차의 인버터 장치 및 그 방법
WO2020159026A1 (ko) 누전 차단기 및 그 누설 전류 검출 방법
WO2016060319A1 (ko) 무효 전력 보상 장치 및 무효 전력 보상 방법
WO2018074861A1 (ko) 자기유도 전원 공급 장치
WO2020130357A1 (ko) 전력선에서의 전압강하를 고려한 자기장 에너지 하베스팅 결선 방법 및 장치
WO2012026683A1 (ko) 전력변환장치 및 전력변환장치의 에너지 절감 부하시험방법과 그 방법을 기록한 컴퓨터에서 읽을 수 있는 기록매체
WO2019221362A1 (ko) 셀프 파워 계전기 및 이의 오동작 방지 방법
WO2022203484A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2022203475A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2014175695A1 (ko) 스위칭 증폭기 및 그 제어 방법
WO2022177194A1 (ko) 전원 공급 장치, 전자 장치, 및 그 제어 방법
WO2021095967A1 (ko) 모듈러 멀티레벨 컨버터의 서브모듈 전류 및 전압 제어방법 및 이를 수행하는 제어모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754940

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2726581

Country of ref document: CA

Ref document number: 2011511494

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009754940

Country of ref document: EP